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ABSTRACT

An efficient algorithm, HALO, is given to compute haloed line
drawings of wire frame objects. (Haloed line drawings are
described by Appel et al. in ACM Computer Graphics (SIG~
GRAPH'79 Proceedings), Vol. 13(2) pp. 151~157 (August 1979).)

HALO has two parts: CUT and DRAW. CUT uses an adaptive grid to
find all edge intersections. It overlays a square grid, whose
fineness is a function of the number and length of the edges,
on the scene. It determines the cells that each edge passes
through, sorts these by cell to obtain the edges in each cell,
and then, in each cell, tests each pair of edges in that cell
for intersection. For broad classes of input this takes time
linear in the number of edges plus the number of intersec-
tions. CUT writes a file containing all the locations where
each edge is crossed in front by another, Given a halo width,
DRAW reads this file edge by edge. For each edge, it sub-
tracts and adds the halo width to each intersection to get the
locations where the edge becomes invisible and visible. It
sorts these along the edge, and then traverses the edge, plot-
ting those portions where the number of "visible" transitions
is equal to the number of "invisible" transitions., DRAW takes
time linear in the number of edge segments, Dividing HALO into
two parts means that redrawing a plot with a different halo
width is fast, since only DRAW need be rerun.

CR Categories and Subject Descriptors: I.3.5 [Computer Graph~
ics]: Computational Geometry and Object Modeling - geometric
algorithms, languages, and systems; F.2.2 [Analysis of Algo~
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems - geometrical problems and computations

General Terms: Algorithms, design

Additional Key Words and Phrases: Hidden line elimination,
haloed line effect, wire frame



1. INTRODUCTION

As computer aided design (CAD) deals with more complicated
databases, it becomes crucial to display the data effectively
so that people can comprehend it. A suitable method must be
efficient since users will be interactively manipulating and
displaying thelir data. With special purpose hardware becoming
less expensive, and even custom VLSI design becoming as easy
as writing software (for those with the appropriate facili-
ties), a suitable algorithm should lend itself to parallelism
and implementation in silicon. Since a CAD database may con-
tain wire frame models without any surface information, the

algorithm should be able to handle them,

This paper offers an efficient algorithm called HALO to solve
this problem via the technique of haloed line elimination.
Haloed lines are introduced in [1] which cites many reasons
for using them and gives good examples. Briefly, we assume
that each line has a narrow region, or halo, that runs along
it on both sides. If another more distant line intersects this
first line, then that part of the farther line that passes
through the first line's halo is blotted out. For example, see
Figure 1 which shows four drawings of a pair of cubes. Figure
1(a) gives all the edges. Figure 1(b) draws the visible edges
solidly, but removes the hidden edges. Figure 1(c) draws the
visible edges solidly, but dashes the hidden edges. Finally,
Figure 1(d) gives all the edges, but adds the haloed line

effect. It should be clear that the haloed drawing shows more
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3~dimensional relationships than the other three. Figures
1(b) and 1(e¢) do not give the 3~dimensional relationship
between two edges that are both hidden, since either both will
be omitted or both will be drawn dashed. Further, if we dash
the hidden edges, we must be able to tell which edges are hid-
den, so we must Know what the faces of the objects are. In
contrast, with haloed lines we produce a gap on an edge where
it passes behind another edge, so we need only the edge data

and not the faces.

To be fair, Markowsky and Wesley [12] show how to calculate
the faces from just the edges, but the process is slow and
subject to ambiguities. To observe that distinct objects can
have the same wire frame, refer to Figure 2 which shows an
object with 9 vertices (the corners and the center of a rec-
tangular block) and 20 edges (the edges of the block and those
connecting each block corner to the center). This represents
a closed object which is a rectangular block with two opposite
pyramids (extending from two opposite faces to the center)
subtracted. However, all three possible choices of pairs of
pyramids create an object with the same wire frame. Thus it is
difficult to use general hidden surface methods without face

information.

The algorithm presented here has several advantages:

1. It is fast, especially on complex scenes with
thousands of short edges. The execution time is propor-

tional to the number of projected edge intersections plus
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the number of edges, for broad classes of input.

2. The computation is split into two parts; The first,
which is the slower, uses just the edges, and not the
halo width. Thus if we wish to draw the same object
repeatedly with various sizes of halos (perhaps to pick
the best looking plot) we save most of the computation

for the second and later plots.

3. The algorithm lends itself to being executed in paral-
lel. Most of the steps of HALO elither i) Perform the
same operation independently on each element of a set,
writing out elements of a new set, or ii) Sort the ele~
ments of a set. The former can obviously be made paral-
lel N ways for an N element set [1l4]. As for the latter,
there is currently much effort on parallel sorting algo-

rithms [11].

After this introduction, the structure of the paper is as fol-
lows. In Section 2 we present HALO in its entirety. Section 3
deals with some implementation issues. Section U4 discusses

its efficiency and mentions the results of our implementation.
Finally, Section 5 suggests ways of improving and generalizing

HALO.
2. THE ALGORITHM

HALO is divided into two parts: CUT and DRAW. CUT uses an
adaptive (variable) grid to determine which projected edges

intersect. (Adaptive grids are described in [6,7,8,9]1.) Then
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it writes a file of them. DRAW uses this intersection file and
the desired halo width to compute and draw the visible parts

of the edges.

The input to CUT is a set of N edges in 3~dimensional space,
{(X1,Y1,Z1,X2,Y2,Zz)}. Assume without loss of generality that
for all edges 0<X1,Yi<1 and Zi>0 for i=1,2; (Thus X and Y
coordinates have been scaled to a 1 by 1 screen.) The
viewpoint is placed at (0,0,00), so the projection of point
(X,Y,Z) is (X,Y). We are not concerned with the preliminary
rotation, scaling, and perspective transformation since effi~-

cient techniques are well known.
Algorithm CUT:

C1. Read the input set to determine the average projected edge

length, L.

(2. Overlay a regular grid on the screen of B by B squares (of
sides G=1/B). Here B is an integer and G is supposed to be AL
where A is a constant about 1. (This will be made clearer in
Section U4.) We assume that each cell is identified by a unique

integer in [1,B2] which will be called the "cell number."

¢3. Initialize a set CEPAIR as ¢. For each edge E in the

input set, repeat €3.1-C3.2:

¢3.1. Determine the cells that the projection of E passes

through.

¢3.2. For each cell C found in C3.1 add an ordered pair
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(C,E) to CEPAIR.

¢4, Sort CEPAIR (i.e. the set {(C,E)}) by the cell number

(i.e. C) to make a linear list.

¢5. Collect all the elements in this linear 1list with the same

cell number to make a new set NEWCE consisting of {(c,{EN}.

C6. Initialize a new set TRIPLE as ¢. For each cell C in

NEWCE repeat C6.1-C6.5:
C6.1. Pair up the edges in C in every combination.

¢6.2. For each pair of projected edges E1 and E2 deter-

mine whether they intersect.

¢6.3. If E1 and E2 intersect then calculate the intersec~
tion point and determine if it is in cell cC. If it is
not in this cell, this intersection is ignored. This
ensures that if E1 and E2 have several cells in common,

then the intersection will be noted only once.

¢6. 4, If E, and E, are still considered to intersect then

determine which one is in front at the point of intersec-

tion.

¢6.5. Assume without loss of generality that E1 is behind
E2 at the intersection point P, Calculate the angle
between projected E1 and E2 and call it 6. Add an
ordered triple (E1,P,e) to TRIPLE.

¢7. Sort TRIPLE (i.e. the set {(E,P,8)}) by the edge number



Efficient Haloed Lines
(i.e. E).

¢8. Collect together all the points for each edge in TRIPLE to

make a new set CUTSET. Thus CUTSET is given as {(E,{(P,8)])}.

¢9. Determine which edges E have no elements in CUTSET. These
are edges that never pass behind another edge; For each such

edge £ add a dummy element (E,¢) to the set.
¢10. Write out CUTSET.
End CUT.

DRAW reads CUTSET and the desired halo width 6. Then it draws

the visible parts of the edges on an edge by edge basis,
Algorithm DRAW:

D1. Initialize and scale the plotter for a screen of coordi-

nates in the range (0,1) by (0,1).
D2. For each edge E in CUTSET repeat D2.1-D2.5:

p2.1. Initialize a set SIGN as ¢. SIGN will contain ele~

ments of the form (P,sign) where P is a point on E and

sign is + or ~.

D2.2. For each intersection point P of E, subtract and
add an effective halo width 3 (determined by & and 6 ) to
obtain points P1 and P2 where the halo on E respectively

starts and stops. Add two elements (P,,-) and (P,,+) to

SIGN. (This assumes a direction on E from the first to
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the second endpoint of E.)

D2.3. Let PE1 and PE2 be the first and second endpoints

of E, respectively. Add two final elements to SIGN:

(PE1,+) and (PEZ,—).

p2.4. Sort SIGN so that the points in its elements will

pe in order along E.

D2.5. Process the elements of the sorted SIGN in order,
counting the accumulated number of +'s and -'s up to each
point; At a point where the excess of +'s over ~'s
becomes one, start drawing a visible part of E. Stop
drawing it at the first point where the number of +'s and
~-'s becomes equal. Any part where there are more ~'s than
+'s is a region of overlapping halos, or else a halo
going off the end of E. There is never more than one
excess + and at the last point the number of +'s will be

equal to the number of ~'s.
End DRAW.

The validity of these two algorithms must be clear from above
descriptions; Basically, the correctness of CUT follows from
the provision in ¢6.3 to note each intersection only once.
The correctness of DRAW readily follows from the way + and -
signs are assigned and D2.5. An aesthetically important case

that DRAW can handle (but does not as presented above) will be

discussed in Section 5.



3. IMPLEMENTATION NOTES

We now look at the several implementation issues. The com~

ments below refer to the steps of CUT or DRAW.

€3.1-C3.2: If we include a few extra cells, the final result
will still be correct. Thus a convenient method is to draw a
rectangular box around E and include all the cells that the
box passes through; This is only noticeably suboptimal for

edges much longer than L, which are statistically infrequent.

1t is noted that the cells must partition the space exactly,
{.e. each point must fall in exactly one cell. This can be
satisfied by considering each vertical grid line between two
cells to be inside its right neighbor, and considering each
norizontal grid line between two grid cells to be inside its

upper neighbor.

It is noted that unlike Warnock's algorithm [13], we are not
cutting or recursively dividing on the edges. We are merely
noting which cells each edge passes through. There is a dis~
cussion of recursive subdivision for curved edges in Section

5.
ClU: In this step one can use a 1inear bucket sort since the

keys are in [1;B2];

¢5: Each element of NEWCE contains both a cell and all the
edges passing through that cell (and possibly a few more edges

also). In an efficient implementation this compaction step
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can be combined with the sorting step (Cl4), by combining adja-
cent elements whenever they have the same cell. An alterna-
tive way is to establish a linked list for each cell and then
read CEPAIR, adding each edge to its appropriate list. How-
ever, this way even empty cells will have a list header that
requires space, must be initialized, and then must be read.
Besides, with linked 1ists intertwining through storage, there

is no longer any locality of reference.

¢6.2-C6.3: A convenient way involves precalculating the edges'
equations; E1 and E2 intersect if and only if the endpoints of
E1 are on the opposite sides of E2 (possibly extended) and

also the endpoints of E2 are on the opposite sides of E1 (pos~
sibly extended). A point (X,Y) is on one side or the other of
a projected edge with equation aX+BY+Y=0 according to the sign

of this expressionL Thus a good way may be to precalculate the

edges' equations at the start and store them with edge.

An important point to observe is that if two edges intersect
at an endpoint then this intersection must be 1gnored; This is
conceptually easy but in practice numerical problems may war-

rant special care.

C6.4: The easiest way is to precalculate an equation for each
edge, in three dimensions, of the form Z=oX+gY+Y. This equa~-
tion is singular for edges perpendicular to the screen, but as

those edges project to points, we are not concerned.

¢9: A good way is to allocate a bit array with N elements, one
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per edge, and scan the set, setting bits. In practice, we

could set this array earlier as we found the intersections.

D2.4: Unless E is truly vertical, one can sort the points
along E by their X coordinates, When E is vertical, the
points P must be sorted by their Y coordinates. In general,
only a small number of halos are expected for many edges; thus

one can legitimately resort to a naive sorting algorithm such

as bubble sort.
4, EFFICIENCY

We shall assume that the input edges are independently and
identically distributed. In practice this assumption can be
relaxed considerably so that scenes of correlated and struc-

tured edges can be calculated fast.

Choosing the suitable A for a given scene can be done within a
broad range without really affecting the efficiency of the
algorithm. (Our experience shows that a B value between 10 to
30 is in general a good choice, regardless of the scene
characteristics.) The optimal A would depend on the relative
speed of various parts of CUT so it is hard to predict a
priori. The reader is referred to [8] for a thorough discus-

sion of this issue.

In CUT, two things dominate the execution time. The first
involves deciding which cells each edge falls in. The second
is the processing of each cell. We have N edges of average

length L in a B by B grid of sides G=1/B, G=AL. To find the

-10~
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cells an edge falls in takes time proportional to a constant
plus the actual number of those cells. The expected number of

cells covered by the bounding box of an edge is O(LZBZ). Thus

the total time to place the edges in cells 1is 0(NL2B2), or

after using B=A/L, O(N).

For the second part of CUT, there are 0(N) (C,E) pairs distri-
buted among 52 cells, for an average of O(N/BZ) edges per
cell. This gives an average of O(NzGu) pairs of edges to test
for intersection per cell. (This must hold since the edges
are independently distributed. Thus their number in any cell
is Poisson distributed, whence the mean of the square is the
square of the mean.) The time to process all cells becomes
O(BZNZGM), or after using G=AL, O(N2L2). Since the latter is
equal to the expected number of intersections of the edges CUT

behaves linearly in the sum of input and output elements.

The execution time of DRAW {s linear in the number of edges
and points, assuming that one can use a linear sorting algo-
rithm for the points along each edge. (Note that DRAW uses
CUTSET which has one element per intersection plus one per

edge that is not crossed in front.)

We implemented HALO in Ratfor, a Fortran preprocessor [10].
Our implementation runs on a prime 750. A single precision
floating multiplication takes 2~3 microseconds on a Prime 750.
Figure 3 shows a simple scene made of cubes. Figure Y4 shows
about 15% of a another cube plot which has 9408 edges. (The

whole plot, which is a regular array of 28 by 28, is too large

-11~
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to be duplicated here.) This took about 5 CPU minutes to com~
pute. What makes HALO efficient is its use of the fast edge
intersection algorithm, CUT. On a separate test, the first
author implemented EDGE (a version of CUT written in Flecs,
another Fortran preprocessor [4]) which creates random edges
of varying lengths and angles, finds all the intersections,
and then plots the edges with intersections marked. In the

following table, sample statistics are given on the timing of

EDGE.

N L G ] T1 T2 T

100 0.100 0,100 15 0.17. 0.26 0.43

300 0,100 0,100 153  0.54 0.93 1,47
1000 0.010 0.010 1 1.73 3.62 5.35
1000 0.030 0.030 163 1.72 2.54 4,25
1000 0,100 0.100 1720 1.7 4.46 6,18
3000 0.010 0,010 149 5.24 8.05  13.29
3000 0.030 0.030 1487 5.1 8.82 14,22
3000 0.100 0,100 15656  5.19 27.93  33.12
10000 0.003 0,010 156 16.36 16,45  32.82

10000 0.010 0.010 1813 17.38  26.02 43.40
10000 0.030 0,030 16633 17.68 uy,78 67.45
30000 0.001 0,010 149  u48.33 43.95 92,28
30000 0.003 0,010 1797  48.46 54,21  102.66
30000 0.010 0,010 16859 52.85 98,93 151.78
50000 0.001 0.010 315 T7.T 75.75 153.46
50000 0.003 0,010 4953  79.49 92.37 171.87
50000 0.010 0.010 47222  86.23 278.49  364.72

LEGEND

Number of edges

Average length of edges, assuming a 1 by 1 screen

: Length of side of each grid cell

. Number of intersections found

T1: GPU time in seconds to preprocess edges

T2: CPU time in seconds to find the edge intersections
T: T1 plus T2

Q2

Note, for instance, that even for a large case with 50000

~-12~
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edges and 17222 intersections, EDGE is taking very reasonable
time. Some other statistics for this biggest case are: 98753

(¢,E) pairs and 11534 rejected intersections.

5. EXTENSIONS

The first thing that comes to mind is to use a hierarchical
grid to accommodate regions of the plot where the edges are
clustered more. This would save time in scenes where there
are orders of magnitude variation in the edge density. On the
other hand, as soon as the cells become hierarchical, parts of
GUT such as determining the cells an edge falls in become more
complicated and slower, It is also noted that in practice
scenes are resolution l1imited, that is, people do not create
scenes with enormous variations, If there is a large blank
expanse, some detail will be added there. If there is a
crowded region, simplifying notation and approximations will

be used.

In general, if pathological input is a problem, one can use
more complicated yet proven computational geometry techniques
such as those giveﬁ in [2,3]. For example, Bentley and
Wood's algorithm [3] finds intersections of rectangles in
worst case time proportional to the number of actual intersec~
tions. As applied to HALO, we would put a box around each
edge and use their algorithm instead of the adaptive grid to
produce pairs of edges likely to intersect. (Nevertheless, an
adversary can defeat this by creating a scene with parallel

slanted lines whose boxes intersect even though the edges

-1 3—-
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themselves do not intersect.) The sweep line technique of
Bentley and Ottmann [2] reports all K intersections among N
line segments in O((N+K)logN) time. A recent result of
Chazelle [5] shows that it is in fact possible to compute all
K intersections among N line segments in time O(K+f(N)) where
f is a subquadratic function of N. Nevertheless, all these
algorithms use sophisticated data structures whose practical

implementation may pose some difficulties.

Another extension is to handle curved edges. This can be done
without modifying the general structure of HALO. The following

rather low level changes become fundamental:

1. The edges are no longer defined by endpoints but by

the coordinates of the splines, say.

2. It is more difficult to tell which cells a given curve
falls in. If the curve is smooth, it can be enclosed in
a box. Then one would find the cells overlapping that
box. (It does not matter {f a few extra cells are also
included.) If the curve is complicated, one can subdivide

it until it is smooth, and then use the bounding box.

3. One must determine whether two curves in the same cell
intersect, and if so, the parameter value. Efficient
curve intersection is an area of current research. One
can split the curves into line segments, intersect them
to get approximate crossing points, and then refine them

with a few iterations of Newton's rule. It is also pos-

-4~
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sible to approximate the curves by quadratic parametrics

for which closed form solutions are known.

4, One must sort the intersection points along each

curve. If the curve is parametric, this means that we
need the point as a parameter value, not just as (X,Y);
If the curve is in some other form but is single valued

in X (or Y) one can sort the points in X (or Y).

HALO takes no account of the possible effects between nonin-
tersecting line segments; There may be cases where this is
aesthetically important. Consider two line segments, E1 and
E2, situated such that the halo of the first effects the
second, although E1 does not intersect E2 (Figure 5). This may
easily be resolved with further processing but the additional
work would probably lessen the advantage of haloed line draw-
ings. After all, one resorts to haloed lines for quick but
approximate hidden line elimination and for easy perception of
relative depth of lines, axes, curves, and lettering. Appel
et al [ 1] summarize this nicely when they state "While some

naloing is inconsistent, the overall effect is vivid..."
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Fig. 1 Four ways of looking at a pair of cubes: (a) show all
edges, (b) remove hidden edges, (c) dash hidden edges, (d) use
haloed lines
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Fig. 2 A wire frame model that corresponds to three different

objects
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Fig. 3 A small example output of HALO

-2 -



