STORING TREES INTO PARALLEL MEMORIES

(extended abstract)

H.A.G. Wijshoff

RUU-CS-85-29
October 1985

'3 8y
K %
& %
[n
h a4
277 s

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestiaan 6 3584 CD Utrecnt

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53 1454

The Netheriands

STORING TREES INTO PARALLEL MEMORIES

(extended abstract)

H.A.G. Wijshoff

Technical Report RUU-CS-85-29
October 1985

Department of Computer Science
University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht
the Netherlands

STORING TREES INTO PARALLEL MEMORIES

(extended abstract)

H.A.G. Wijshoff

Department of Computer Science, University of Utrecht

P.0O. Box 80.012, 3508 TA Utrecht, the Netherlands

Parallel memories require special storage schemes from a
given data-structure into a set of memory banks. These
storage schemes, also known as skewing schemes, received con-
siderable attention in the literature recently. However,
until now only storage schemes for d-~dimensional arrays have
been considered. In this paper we are concerned with storage
schemes for tree data-structures. We give bounds on the
minimal number of memory banks needed for certain applica-
tions, and furthermore we introduce the regular skewing
schemes which have the property of being compactly represent-
able and which can be computed fast.

INTRODUCTION
The availability of data can heavily affect the performance of parallel comput-

ers. This 1is a result of (i) the increased ratio between memory cycle time and
execution cycle time and (ii) the need to supply data to several processing units
simultaneously. An efficient solution to the data-distribution problem is provid-
ing_a parallel computer with a number of (interleaved) memory banks. This
approach can be found in e.g., the BSP, the CDC 205, and the CRAY 1. The struc-

ture of such a computer architecture is depicted in figure 1.

: 0
e 1
L
: M-1
processors interconnection memory
(possibly network/bus banks
pipelined)

Figure 1.

-7=

Whenever the processors want access to a set of data elements, they send requests
to the memory banks in which the data elements are stored. The time needed for
handling these requests is proportional to the maximum number of data elements
requested that are stored within the same memory bank. So the problem arises how
to distribute the data over a number of memory banks such that certain parts of
the data can be fetched conflict-free, i.g., such that they are stored in dif-
ferent banks. This problem is also known as the granularity problem of parallel
memories. Mappings that give such a distribution are called skewing schemes.
Thus, a skewing scheme merely is a mapping from some kind of data-structure into
the set {0,1,...,M=1} corresponding to the names of the M memory banks. A part T
of the data to which the processors want access in called a template.
An important issue is that skewing schemes are not of much practical interest, ir
they do not allow for a short representation in a formula, or cannot otherwise be
computed fast. This is so because all processors have to know where the particu-
lar data elements they want access to are stored [3,5,6]. Recently new advances
were made in distributing d-dimensional arrays over a number of memory banks
(1,2,3,4,5,6]. Other kinds of data-structures, however, have not been considered
yet.
In this paper we will deal with storage schemes for tree data-structures, which
are fundamental in many non-numerical computations. First we discuss general
skewing schemes for tree data-structures, and we give a characterisation of the
minimal number of memory banks needed for a skewing scheme to be conflict-free
for a collection of templates. In the last section we introduce a class of skew-
ng schemes, the regular skewing schemes, which appear to be‘representable in a
compact way and can be computed fast. Moreover, they are very feasible for some

interesting sets of templates.

In this paper we just give a short impression of the results obtained. In [7] the

results are given in full detail.

GENERAL SKEWING SCHEMES FOR TREE DATA-STRUCTURES

In order to define skewing schemes for trees we may pose the question how to
represent these trees. First we make the assumption that trees are infinite, com-
plete, and k-ary, and that they have a fixed orientation (i.e., the trees are
"pooted”). So when we mention trees throughout this paper, we mean trees which
have these restrictions. Note that an arbitrary finite k—-ary tree can be seen as
embedded in such a tree. In the following definitions we give a manner of label-

ing (numbering) the nodes (elements) of a tree.

Definition 2.1. Given a (k-ary) tree T with root ay. Let e1,e2,...,ek denote the
edges from a node to its sons numbered from left to right. Then lab: T + {all
strings over the alfabet {e1,e2,...,ek}} is defined by lab (a) = A1 AZ .o An’
with for all 1sisn : Ai € {e1,e2,...,ek} and A1A2..An constitutes the labeled

path from %y to a.
lab (ao) = ¢ (the empty string).

We usually identify a node with the sequence 1ab(a), which uniquely defines it.

In particular T can be seen as the infinite set of strings over the alfabet

{61,e2,...,ek}.

Definition 2.2.
(1) A template P on a tree T is any finite set of nodes {°1’“2”"’GN} < T,

(ii1) An instance P(Y),Y € T, of a template P is the set {Ya1ﬁa2,...,YaN}.

Definition 2.3.
(1) A skewing scheme s on a tree T is a surjective map from T into {0,1,...,M-1},
(i1) A skewing scheme s is valid for a collection of templates C =
(P, PyyeesP), 1F V15188 VYET VRB{0,1, ... M=1): P(VAs @ | 5 1.
(iii) m(P1,P2,...,
skewing scheme s: T » {0,1,...,M-1} which is valid for {P1,P2,...,Ps}.

Ps) is equal to the minimal number M such that there exists a

An example of a binary tree, a template with its instances, and a skewing scheme

which is valid for this template is given in figure 2.

09 '
P = {e1,e2,e1e2,e2e1}
,/A\\ /A\ .
' @70\ e
N Vd

N\ I

\ \\ 4 s
NN e —_—_—— - —— = 4 s/
N\ - - 4 /==
\ 7
\\/) / /’O)l
») /
A s as AN 1/
\ /
/ / \ \ , /
L———-’/ / yd \ — =l /
11 (0(3 1 (Cg \/OY OV rOv 1
-0 \ / WA rME — = a4\ A
/ A\ [vy [\ ,’ !
/ ! \ ! / \ \ ! 1 ' ' !
VAN [Vs VAL,
O1 00'\O 09/201 0 0\0 301 00\O 301

Figure 2.

b=

The notion of the transposed template given in definition 2.4 will appear to be

very convenient for determining the validity of skewing schemes.

Definition 2.4. Let the mapping tr:T+T be defined by tr(A1A2...An) = xnxn_x...x1.
Then

(1) a* = tr(a) is the transposed node of a
(i1) P* = tr(P) is the transposed template of P.

*
Lemma 2.5. In general it is not true that m(P) = M iff m(P) = M.

= {e,e1e1,e1e1e1, €5 e1e1e2 1e1e1e2} (See figure 3) Then m(P)=6 and m(P)=8. o

"\, N\

Figure 3.

*
With the aid of P we can define the conflict-number Cp(u) of a node a, which
denote the number of different ways in which the template P can be laid on the

node a.

Definition 2.6.
Given a template P. The conflict number C (a) of a node a, with respect to P, is
defined as Cp(a) | {8,8€ P* and 8 lies on the path from the root a, to a }|

The following theorem gives a rather rough estimate on the number m(P).

Theorem 2.7. For any template P, m(P) s |P|. max C,(a).
a€T

Note that |P|. max Cp(a) is bounded by |P|
a€T

An exact characterisation of m(P1.P2,,..,Ps) is obtained by reducing the problem
of finding a valid skewing scheme for a tree to the problem of finding a valid
skewing scheme for a strip data-structure, which is in some sense related to a

d-dimensional array. Because of the fact that this reduction is very involved, we

confine ourselves to state one of the results that follows from this characteri-

sation. For a detailed analysis see [T].

A template P is called connected if for all a € P and for all 8 on the path from
*
the root ao toa : B8 € P,

*
Theorem 2.8. Given a template P. If P is connected, then m(P) = |P|.

Note that the implication: if P is connected, then m(P) = |P| is not true. See,

e.g., the following example.

Example (T is a binary tree). Let P be the template: /. .
* .
So P is :) . \\
/// \\\ /}D /}l
o L o

/.< JJ
{ J
o
Then it follows that |P| = 7(=lp*|), m(P)=7, but m(P’)=8.

REGULAR SKEWING SCHEMES

Skewing schemes are only of practical interest if they can be represented in a
simple and compact manner. For d-dimensional arrays the so-called periodic (reg-
ular) skewing schemes fulfill this condition [3,5,6]. A skewing scheme is called
periodic (regular) if the following is true: whenever two points x and y of a
data-structure (e.g. a d-dimensional array) are mapped into the same memory bank,
then any two points which are in the same relative position to each other as X
and y, are mapped into the same bank also. If we formalise this for trees, we

get the following definition.

Definition 3.1.

(i) A skewing scheme s: T + {0,1,...,M-1} is called semi-regular if the follow-
ing condition holds: if for some a, Y€ T : s(a) = s{aY), then for all § €T :
s(8) = s(8Y).

(ii) A basis for a semi-regular skewing scheme s 1is the minimal set Bs -

{Y1,Y2,...} such that

1. for all €T, 121 : s(a) = s(aYi), and

2. for all skewing scheme s' : T » {0,1,...,M-1} there exists a set Fs,g; T,
|Fg.| is finite, such that from the condition

—6-

for all a € T, i21 : 8'(a) = s'(uYi) follows that
for all a € T there exists a 6 € F, = s'(a) = 8'(6).

In order to provide that a regular skewing scheme s is compactly representable we

need that IBSI is finite. However, the following theorem shows that this approach

does not yield the desired result.

Theorem 3.2. If s is a semi-regular skewing scheme and |B | is finite, then By =

{a,|a] = d}, for some d. (|a| denotes the length of the string a.)

So we see that the semi-regular skewing schemes s, with IBSI is finite, are only
a very restrictive set of skewing schemes. From this we may conclude that we

need a stronger notion than semi-regularity. Therefore we introduce the notion of

regularity in definition 3.3.

Definition 3.3.
(i) A skewing scheme s : T ~» {0,1,...,M-1} is called regular if the following

condition holds: if for some a, B € T : s(a) = s(B), then for all Y 8T : s(Ya) =

s(YR).

(1ii) A Dbasis for a regular skewing scheme 1is the minimal set Bs =
{[a1,81],[a2,82],...} such that

1. for all YeT, izt : s(Yai) = s(YBi), and

2. for all skewing scheme s' : T * {0,1,...,M-1} there exists a set Fs, cT,

|Fs,| is finite, such that from the condition
for all Y € T, i21 : s'(Yai) = s'(YBi) follows that
for all a € T there exists a 6 € F, : s'(a) = s'(8).

Lemma 3.4. If s is regular then s is semi-regular.

These regular skewing schemes are very feasible for skewing a collection of tem-

plates. See, for instance, the next example.

Example (T is again the complete and infinite binary tree).

Consider Bs = {[e, e1e1], [e, ezez], [e1.e2e1], [ez,e1e2]} and let Fs = {eg,
ej,ez}° In addition let s(e)=0, s(e1)-1, s(ez) = 2. Then for all a€T s(a) is
fixed. Hence s is a regular skewing scheme.

Furthermore it follows that s is valid for the template //’\\\ .
® @

Figure U shows the elements a of T with s(a) = 0.

VANVAARYA VAN VANA
AV A TV U A T A
® O @ ol | ' @ OO0
TN AR AN TN
SRR SRR s
/l \\\ // ./ \ o \. \ / \

In [7] conditions are given for a regular (and semi-regular) skewing scheme to be
valid for an arbitrary collection of templates. With the help of these conditions

the next two theorems are proven.

Theorem 3.5. Given a binary tree T, and the template P = {a,]a| s d}, for some
d20. (Thus P is the complete subtree of depth d.) Then there exists a regular

skewing scheme s: T » {O,1,...,2d+1-1} (2d+1 = m(P)), that is valid for P, and

where [B_| = 2941,

A template P is called a double-path of length d on a binary tree, if there
exists a path a0(=the root), Byslyyeensly g of length d-1, such that P = {B,aai

(0gigd-1): B = a.€

i 8 or B=aie2}.

Theorem 3.6. Given a binary tree T and C the collection of all double-paths of
length d, for some dz1. Then there exists a regular skewing scheme s: T -
{0,1,...,2d-1} (2d=m(C)), that is valid for C, where |B_| = 2(d+1).

These two theorems can be generalized in a natural way for k-ary trees, with k>2.

As final result we show that each regular skewing scheme can indeed be

represented at a low cost and computed in a fairly short time.

.—8_

Theorem 3.7. Given a regular skewing scheme s with IBSI = b and max |8}
[a,81€B,

Then s can be represented in space - (d+3).b, such that for all a € T: s(a) can

be computed in time $ b.d.|al.

Consider the subtree T of T which is defined by T = {Y,3a,8] € Bs: YY'sB*, for
some Y' € T}. Call the nodes Y of T, for which there exists a [a, g1 €B s’ Yy'erT
with YY' = B*, the leaves of T. Assign to each leaf Y of T the node B(Y) = q,
if [a,B] € B and YY' - B , for some Y'. Assign to each node € T, with Y eFr s’
the number f(Y) = s(Y Y. Then the following algorithm A computes s(a), for arbl-

trary a.

Algorithm A :
Y := the root of T ;
g := u* ;
repeat until § = €
if Y is a leaf
then g := B(Y) £;
Y := the root of T
else #E= eJ E'#
g := g ;
Y = Y eJ

endif
end repeat
result := £(Y).

The algorithm A is correct and costs at most b.d. |a| time. Furthermore the
representation costs are

~ nthe size of T" + "the value's f(Y)" + "the value's B(Y)"

|T| + IFSI + |Bs|.d - 2.|Bs| + lBSI + [Bgl.a = (d+3).|BS|, o

REFERENCES

[1] P. Budnik and D.J.Kuck, "The organization and use of parallel memories", IEEE
Trans. Comput., vol. C-20, pp.1566-1569, 1971.

[2] D.H.Lawrie, "Access and alignment in an array processor", IEEE Trans. Com-
put., vol. C-24, pp. 1145-1155, 1975.

[3] H.D. Shapiro, "Theoretical limitations on the use of parallel memories", IEEE
Trans. Comput., vol. C=27, pp. 2U1-248, 1978.

tu)l

(5]

£él]

£71

J. van Leeuwen and H.A.G. Wijshoff, "Data mappings in large parallel comput-
ers", Dep. Comput. Sci., Univ. Utrecht, Utrecht, the Netherlands, Tech. Rep.
RUU-CS-83-11, 1983. (Also appeared in I.Kupka (ed.), GI-13 Jahrestagung,
Informatik Fb 73, Springer Verlag, 1983, pp 8-20.)

H.A.G. Wijshoff and J. van Leeuwen, nperiodic storage schemes with a minimum

number of memory banks", Dep. Comput. Sei., Univ. Utrecht, Utrecht, the

Netherlands, Techn. Rep. RUU-CS-83-4, 1983.
H.A.G. Wijshoff and J. van Leeuwen, "The structure of periodic storage

schemes for parallel memories", IEEE Trans. Comput., vol. c-34, pp. 501-505,

1985.
H.A.G. Wijshoff, "Storing trees into parallel memories", Dep. Comput. Sei.,

Univ. Utrecht, Utrecht, the Netherlands, Techn. Rep. RUU-CS-85-.... (forth-

coming), 1985.

