SIMULATION OF PARALLEL ALGORITHMS ON A DISTRIBUTED NETWORK

Anneke A. Schoone and Jan van Leeuwen

RUU-CS-86-1
January 1986

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestiaan 6 - 3584 CD Utrecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53 1454

The Netherlands

SIMULATION OF PARALLEL ALGORITHMS ON A DISTRIBUTED NETWORK

Anneke A. Schoone and Jan van Leeuwen

Technical Report RUU-CS-86-1
January 1986

Department of Computer Science
University of Utrecht
P.0. Box 80.012
3508 TA Utrecht
the Netherlands

SIMULATION OF PARALLEL ALGORITHMS ON A DISTRIBUTED NETWORK
Anneke A. Schoone and Jan van Leeuwen

Department of Computer Science, University of Utrecht,

P.0.Box 80.012, 3508 TA Utrecht, the Netherlands.

Abstract. We investigate the possibilities to ensure synchroni-
zation in a distributed network by enhancing the link-level pro-
tocol used for communication on the network links, It is shown
that distributed (local) synchronization and link-level message
control can be achieved by means of one protocol skeleton, that
can be proved correct by the technique of system-wide invari-
ants. The result is used to obtain a general protocol for the
message-efficient simulation of (synchronous) parallel algo-
rithms on (asynchronous) distributed networks that requires only
one bit of extra information in every message for control pur-
poses in the simplest case.

1. Introduction. Since it is usually easier to design and analyze a

parallel algorithm than a distributed algorithm, it would be helpful to
have a standard transformation from the one type of algorithm to the
other. Any general transformation technique of this sort will allow
programmers to write a distributed (hence, asynchronous) algorithm as if
it were run on a synchronous network. Awerbuch [1] refers to such
transformations as "synchronizers", and has shown the existence and use
of rather efficient synchronizers. His technique forces a more or less
system-wide synchronization of the distributed (i.e. asynchronous) net-
work, at the expense of a small number of extra control messages.

In this paper we explore a different and more pragmatic approach to
synchronization in distributed networks. First, we only strive for syn-
chronization between processors in the network that communicate directly
over a link. After all, the question whether processors that do not
directly communicate are completely synchronized is irrelevant to the
correctness of a parallel algorithm. Second, we note that in most dis-
tributed networks there are so-called 1link-level protocols (like the

alternating bit and two-way sliding window protocols) in effect that

control the exchange of messages between neighboring processors and
guard against the loss of information, and that are based on a weak form
of synchronization between sender and receiver. As the synchronizing
tool may thus exist already at the level of current protocols, we will
attempt to exploit the type of synchronization that is inherent to
several link-level protocols to ensure (local) synchronization. This is
done to minimize the amount of overhead.

We show that distributed (local) synchronization and link-level
message control can be achieved by means of one protocol skeleton, that
can be tuned to one's further needs. To prove the partial correctness
of the general protocol skeleton and derive results about the degree of
synchronization in the network, we use a technique due to Krogdahl (3]
and Knuth [2] using system-wide invariants. The synchronizing protocol
actually is an extension of the general approach to link-level protocols
presented in [4] and [5], where it was shown that the alternating bit
protocol and the "balanced" two-way sliding window protocol are
instances of one general protocol skeleton, and can thus be treated
together,

The remainder of the paper is organized as follows. Section 2 con-
tains the assumptions about the network model and the definition of the
general protocol skeleton, following the style of [5]. Section 3 con-
tains a first version of the protocol skeleton of the general synchron-
izer, of which we show that the restriction to the practical case of the
alternating bit protocol can give rise to deadlock. In section U we
present a modification of the synchronizer skeleton which can use alter-
nating bit protocols and is free of deadlock in all cases, Section 5
contains a synchronizer which achieves the same degree of synchroniza-
tion as the alternating bit synchronizer of section 4, but which is free
from the basic asymmetry of the latter (i.e., the asymmetry of "who
begins" in the protocol). 1In section 6 we discuss the composition (con-

catenation) of protocols, and in section 7 we offer some final comments.

2. Preliminaries. Our approach is motivated by the wish to simulate

parallel algorithms, 1i.e., synchronous computations, on a distributed

network that has the right structure but not necessarily the required

3

synchronous mode of processor activity. The model we use for parallel
computations is the following. Characteristics of a parallel algorithm
are:
P1. N processors (nodes) in a fixed interconnection network.
P2, Every processor executes the same algorithm but uses (perhaps)
different data.
P3. The processors execute in a synchronized manner, 1i.e., they
proceed in lock-step fashion.
We will assume that each processor in a parallel algorithm performs a

cycle of the type

Cp. while no termination do
begin communicate with all neighbors,
i.e., send to and receive from them;
compute

end.

(without loss of generality). Communication between processors consists
of a send and a receive over the connecting link, i.e., an exchange of
one packet of information between neighboring processors. This leads to
another characteristic:

P4, Every processor communicates with all its neighbors in one time

step.

The latter characteristic is the reason for wanting processor networks
in which the nodes have low degrees. We assume that the communication

subsystem is fault and error free. Complexity is measured in terms of

parallel time.

The model we use for distributed computations is fairly standard
also. Characteristics of a distributed algorithm are:
D1. N processors in a (fixed) interconnection network.
D2. Every processor uses the same communication primitives but uses
(perhaps) a different algorithm and different data.
D3. Every processor executes at its own finite (non-zero) speed and

all links carry packets at their own finite (non-zero) speed.

We will assume that each processor in a distributed algorithm performs a

cycle of the type

Cd. while no termination do
begin communicate with a neighbor,
i.e., send to or receive from it;
compute
end.

(without loss of generality). We do not require that data is sent to or
received from all neighbors in a cycle, and assume the entire operation
i1s asynchronous. We assume that the cycle specifies either a send or a
receive when the cycle gets to the communication statement in the cycle,
e.g8., as in CSP, Additional characteristics are:

Di. Messages may be lost or damaged in a link.

D5. Links may go down or come up.

D6. Processors may go down or come up.

D7. Every processor knows its neighbors.

D8. Every processor proceeds with its algorithm in some finite time

(unless it crashes).

D9. Links preserve the ordering of messages sent on that link.
Complexity is measured in terms of the number of mesSages or bits
exchanged.,

To control and deal with the possible loss or damage of messages
(D4) there exist several link-level protocols, e.g., the commercial
"embedded" versions of the alternating bit and sliding window protocols.
We will assume that networks have low degree and that the processors
exchange messages according to some version of the alternating bit or
sliding window protocol. Hence we assume that the communication can be
described by the unifying protocol skeleton presented in [4] and [5].
As we will build on it in the remainder of this paper, we need the ter-
minology and the definition of the protocol skeleton.

Essential in our approach is the idea that processors will generate
sequences of messages that need to be exchanged. The generation process

may depend on past messages, as will be the case in the simulation of

parallel algorithms, For the time being we will assume that the mes-
Sages generated by a processor P and destined for a neighbor Q carry
unique and unbounded sequence numbers and can be referred to as MO’ M1,
M2, The corresponding sequence of messages generated by Q and

destined for P will be referred to as NO’ N1, N We assume that

) eee o
incoming messages are buffered at either end of ihe link in FIFO-queues.
It should be clear what is meant by the "P-to-Q queue" in this respect.
We shall assume that "sending" means either inserting a message at the
rear of the queue, or losing it. "Receiving" is done only when the
queue is nonempty, in which case the message at the front of the queue.

is read and deleted from the queue,

Notation: we will add the name of a processor P as a (first) sub-
script to the names of variables and operations if these variables and
operations are maintained in P or performed at P, respectively. We will
add the name of a neighboring processor Q as a (second) subscript if the

variables or operations refer to P's link to Q.

We need the following variables for a proper implementation of the
protocol skeleton for two-way link-level protocols:
APQ = the number of consecutive messages that P is sure Q has
received and stored,
aPQ = the number of consecutive messages that P has received from Q
and stored.
Here it is assumed that messages are ordered in the way they are gen-
erated by the algorithm that runs in P. 1In addition, for every P and Q

S -
PQ PQ+fQP'1 with
the following meaning: fQP is a constant such that if P sends Q a mes-

there are two nonnegative values f and fQP’ such that f

sage Mj’ its sequence number (j) is used as an implicit acknowledgement

for message Nj—pr from Q to P. Likewise, fPQ

if Q sends P a message Ni’ its sequence number (i) is used as an impli-

is a constant such that

cit acknowledgement for message M from P to Q. Now we can formu-

i—fPQ

late the possible operations S1PQ and R1PQ for P by means of which it

can communicate with a neighbor Q:

S1PQ: send message Mj’ where m1n(APQ, aPQ+fQP_1)SJ<aPQ+fQPf
R1PQ: receive message Ni and optionally store it;
ir 1-fPQ+1>APQ then APQ:=i-fPQ+1;
aPQ:= new (maximal) value such that P has received and stored
messages NO’ N1, ...,NaPQ_1 from Q.

Likewise, Q's communication to P is built up from the corresponding
operations Si1 and R1

QP QP Initially, we set aP =0 and A_,.=-f for all
P and Q.

Q PQ "PQ

The idea is that two processors P and Q can execute S1 and Ri1
actions as often as they want and in any order, and that despite this
certain "system-wide" invariants about the messages transfer are main-
tained. The "option"™ in the R1 action reflects a choice which need not
be made here, namely what to do with messages that arrive out of order.
One possibility is to buffer these messages, another possibility is to
discard them and wait for a retransmission. By a suitable choice of
actions (like alternating send and receive actions whenever possible)
one can try to arrive at a protocol that guarantees the transfer of the
complete message-sequences, under the additional assumption that every
message that is sent will arrive at least once free of error and thus be

stored. For a better understanding we recall these system-wide invari-

ants.

Lemma 2.1. Let processors P and Q be neighbors, Then

(i) A, and a_,. are nondecreasing.

PQ PQ
(ii) APQZaPQ—qu.
(iii) The number of possible values for j in SlPQ is at least 1 and
at most fPQ+fQP'
(iv) APQsaQPf
(v) Let Mj s aves Mj be the contents of the P-to-Q queue from
1 r

the front to the rear, where r20, and let jmax be the maximum
index of any message that has ever been removed from the P-
to-Q queue. (If nothing has ever been removed, let jmax=-1.)
Let j0=j and j then

for Osk<k'sr+1,

r+172pq Tpg
et fptfop

max
Jy

Of course the corresponding invariants with "P" and "Q" interchanged are
valid too. For further details we refer to [4] and [5]. It can be
shown that unbounded sequence numbers can always be avoided while
retaining the characteristics of the protocol, and that it is sufficient

in fact to count sequence numbers modulo 2(f). We can formulate

pQ*Tap
the programcycle of a processor P as follows:

C1P: while no termination do

begin do operation S1P or R1P for some neighbor Q;

Q Q

compute

end.

3. The general synchronizer (first version). The partial synchroniza-

tion between the two ends of every single link as implied by the specif-
ication of the link-level protocol is not sufficient for achieving local
synchronization. To achieve it we have to incorporate some kind of syn-
chronization between all link ends at every single processor. One pos-
sible adaptation of the protocol skeleton immediately comes to mind:
maintain a "state counter" in every processor P that checks the atomic
progress on the links incident to P and restrict for each link the send-
ing possibilities or the receiving possibilities with respect to the
value of this state counter. We will first explore the effect of res-
tricting only the sending possibilities. 1In addition to the variables
aPQ for each link, each processor P will now also maintain a counter aP.
Initially, aP is set to 0. We change the sending operation of processor
P in the protocol skeleton as follows:

SZPQ : send message Mj’ where mln(APQ, ap+f

—1)Sj<ap+f

QP QP°

The receive action simply remains identical to R1 However, the pro-

PQ*
gramcycle of processor P is changed, to implement the synchronization of

the link-ends incident to P and maintain the value of aP as follows:

C2.: while no termination do

begin do operation S2

or R1P for some neighbor Q;

PQ Q

if for all neighbors Q aPQ>aP

then begin a :=aP+1; compute end

P
end.

Hence the "compute" part of the cycle is only performed when all 1links
have advanced far enough with their communication. To evaluate the
effect of this change, we need relations which remain invariant under

the operations S2 R1QP’ CZP and C2

P’ Mpgr S2gp: Q°

Lemma 3.1. Let processors P and Q be neighbors. Then
and a_ are nondecreasing.

(1) Apgs apg P

(ii) APQzaPQ-fPQzaP_fPQ‘

(iii) The number of possible values for j in SZP is at least 1 and

Q
at‘most fPQ+fQP'
(iv) APQsaQP'
(v) Let Mj s eees Mj be the contents of the P-to-Q queue from
1 r

the front to the rear, where r20, and let jmax be the maximum
index of any message that has ever been removed from the P-
to-Q queue. (If nothing has ever been removed, let jmax=—1.)
Let j0=j and Jr+1=aP—fPQ’ then
3 1
jk < Jk'+fPQ+fQP for Osk<k'sr+1.

max

Proof. Note that aPSapq, from the specification of C2P'

proofs are completely analogous to those of the corresponding lemmas in
[(5]. Q.E.D.

The remaining

- <
Theorem 3.1. aQ fQP S aP s aQ+fPQ.

Proof. Have a closer look at the relationship between A__ and jmax from

QP
lemma 3.1.(v). Initially, Jmaxs—j and AQP=_fQP‘ Later
jmaxamax{j|Mj was removed from the P-to-Q queue} and
AQP=max{J-pr+1|Mj was removed from the P-to-Q queue}, Hence

jmastQP+fQP-1. Thus by lemma 3.1.(v) j -1 <

max~ *qp*fqp r+1*fpQ*fop =

- < <
aP fPQ+fPQ+fQP aP+fQP‘ Hence AQPSap. Q'aQP'AQP+fQPsaP+fQP'
Thus also aPSaQ+f‘PQ and the desired inequalities follow. Q.E.D.

Now a

Theorem 3.2. If Mj is in the P to Q queue, we have
- - < - - i <
3 TapTpq 2gp fapTrg 3 < 3q*Tap*Trq * 2ap*Tap*Tre:

Proof. By lemma 3.1.(v) j>jmax_fQP_fPQ‘ Since j we have

max=AQP+fQP_1
. e 1> p —p - s ; PO
J)AQP fQP 1.aQP fQP f‘PQ 1 by lemma 3.1.(ii). Hence JZaQP fQP qu.
Lemma 3.1.(v) gives us J<Jr+1+fQP+fPQ = aP—fPQ+fQP+fPQ = aP+fQP' By
theorem 3.1 we have j<aQ+fQP4fPQ. Further application of lemma 3.1.(ii)

gives us the desired result. Q.E.D.

It follows from theorem 3.2 that it is not necessary to use unbounded
sequence numbers and counters, but that it is sufficient to use sequence
numbers mod n (i.e., windows of size n/2) instead, where n is any fixed
number with nZZ(fPQ+fQP) for all links (P,Q).

For the simulation of a parallel algorithm on a distributed net-
work, it is desirable from the efficiency point of view to have only one
round of communication separated from the next round by a computation.
Hence we have to restrict the sending windows to one value. Thus we

want to set f =1 for all links (P,Q), and in fact we are using the

PQ*Tap
alternating bit protocol (cf. [4], [5]).

Theorem 3.3. When the alternating bit protocol is used on all links and

programcycle C2 in all nodes, deadlock can arise.

Proof. Consider the network consisting of three nodes P, Q and R, and
the links (P,Q), (Q,R) and (R,P). Take fPQ=fQR=fRP=O and fQP=fPR=fRQ=1.

Let a. be x. By theorem 3.1 we have a_ sa_sSa +1. Hence a.=x or a.,=x+1.

P PTQP . Q Q
Also ap—1§aRSaP. Thus aR=x-1 or aj=X.
Case 1. aQ=x+1. Then, as aQSaRSaQ+1, aR2ij. Contradiction.
Case 2. aQ=x. Then aR=x or aR=x+1 and, hence, necessarily aR=x.
Thus always a_=a_=a But this means no processor can increase its

P "Q "R’
value of ap and hence no processor can make progress from the initial

value of 0. Q.E.D.

- 10 -

Observe that no deadlock arises in the network in the given proof if we
had taken fPQ-fPR=fQR=1 and fQP'fRP'fRQso'
modify the protocol skeleton further to avoid the possibility of

deadlock, without losing the essence of the invariants and the synchron-

In the next section we

izing character.

4, The alternating bit synchronizer. The reason for deadlock in the

above synchronizer was that the restriction on the sending capability of
the processors, while reasonable, can be too strict. 1In this section we
will show that the restriction can be relaxed without losing the syn-
chronizing character of the protocol skeleton., The resulting protocol
skeleton will have the desired properties of a general synchronizer. We
prove this only for the case of the "augmented" alternating bit proto-

col, and defer the general case to section 5.

Definition. fP-max{fQP|Q a neighbor of P}.

We change the sending operation and the programcycle of every processor
P as follows:

S3PQ: send message Mj! where

m1n(APQ,bP+fP—j,aPQ+fQP-1)5j<min(bp+fp,aPQ+fQP).
and
C3P: while no termination do
begin do operation S3PQ or R1PQ for some neighbor Q;

if for all neighbors Q a
then begin b

pQ’Pp

P:-bP+1; compute end

end.

Hence, compared to Ssz, sending in S3 is slightly less restricted for

PQ
those 1inks (P,Q) where fp>fQP. The system-wide invariants of the modi-

fied protocol skeleton now are as follows.

_11-

Lemma 4.1. Let processors P and Q share a link. Then
and b, are nondecreasing.

(1i) APQzaPQ-fPQZbP—fPQ'

(1ii) The number of possible values for j in S3PQ is at least 1 and

at most fPQ+fQPf
(iv) APQsaQP‘
(v) Let M M. be the contents of the P-to-Q queue from

j » LR] j
1 r
the front to the rear, where rz20, and let Jmax be the maximum
index of any message that has ever been removed from the P-
to-Q queue. (If nothing has ever been removed, let jmax=-1.)
Let Josj and Jr+1’min(bP+fP’aPQ+fQP)—fPQ_fQP' Then
1
Jk < jk,+fPQ+fQP for 0sk<k'sr+1,

max

Proof. Note that bPSaPQ from the specification of C3P' The remaining

proofs are analogous to those of the corresponding lemmas in [5]. Q.E.D.

Theorem 4.1. bQ-fP s bP s bQ+fq.

Proof. Compare the proof of theorem 3.1. Since Jmax is again AQP+fQP—
1, we have AQP+fQP-1{ min(bP+fP,aPQ+fQP) by lemma U.1.(v). Hence
bQSaQPS AQP+fQP$ min(bP+fP,aPQ+fQP) 5bP+fPT Q.E.DT

Theorem 4.2. If M, is in the P-to-Q queue, we have

3
b Tap Tpq S 2gp~TpTpq § 3 < min(dg+f+fop,anp+fp+fpg)-

Proof. 1In the proof of theorem 4.1 we saw that aQPSmin(bP+fP,aPQ+fQP).

Hence astmin(bQ*fQ'an+pr)f . From lemma 4.1.(v) we have j<
< . . .

min(bP+fP,aPQ+fQP) s 9PQ+fQP‘ min(bQ+fofQP,aQP+fPQ+fQP). Also

-f & b -f

323 pax 1 Tpq T p™ Ap*far TroTap® 2p TrpoTae® Pq fqp Tpq: QE-D-

Corollary 4.1. bP pS 3pg s bP+fPQ+fP.

Proof. From theorem 4.2 with "P" and "Q" interchanged. Q.E.D.

Hence in transmissions according to the new protocol skeleton it would
be sufficient again to use sequence numbers modulo some n with
n22(f), but for the administration in every processor P of b and

ep” PQ
for all neighbors Q we need at least nz2i+ fP +max{fPQ|Q a nelghbor

aPQ
of P}.

Returning to the alternating bit protocol on all 1links (hence
for all 1links), we conclude that one bit suffices for

But this

TpQ*Top=!
transmission, but that we need two bits for the counter bP'
need not be so in the very special case that for each processor P and

each neighbor Q of P, fp=f In that case, operation S3 amounts to

QpP’
operation S2 because P bP always, and hence one bit for bP suffices.
However, it can be shown that to be able to fulfill this condition, the

network must be bipartite (because we need f for all neighbors Q

op~Trp
and R of P, for each processor P),.

Using the alternating bit protocol means we have to fix the order
of the send and receive operations. Since we want only one round of
communication separated from the next round by a computation, we have to
ensure that each 1link, after completing one round of communication,
waits until the state counter is increased and it can begin its next
round of communication. Otherwise, some links might try to reiterate
the same round of communication over and over again. Hence we introduce
a "wait for synchronization" statement of the form: do nothing until ...
. If we define fP=1 for all processors P to simplify the formulation,

this gives us the following protocol.

The Alternating Bit Synchronizer:

Protocol for P's link to i =
S nk to Q in case 0-9
Apqi="Tpgs
while no termination do
begin do nothing until A PQ+fPQ$bP’
send message <M,APQ mod 2>;
receive message <N,bit>;
if bit=(APQ PQ) mod 2
then begin store N; APQ:=APQ+1 end

end.

/
Protocol for P's link to Q in case f_.=

pQ=1
Apqi=~Tps
while no termination do
begin do nothing until APQ+fPQSbP;
receive message <N,bit>;
if b1t=(APQ+fPQ) mod 2 _
then begin store N; APQ:-APQ+1 end;
send message <M,A mod 2>

PQ
end,

Programcycle for processor P.
b, :=0;
while no termination do
if for all neighbors Q A_.+f_>b

“PQ "PQ" P
then begin b :=bp+1; compute end.

P

Note that the only difference in the formulation of the 1link protocols
for fPQ=0 or fPQ=1, is in the order of the send and receive operations.
It is easily seen that the alternating bit synchronizer is a more
specific formulation of the protocol skeleton consisting of operations
S3 and R1 together with programcycle C3, if we note that the relation
APQSaPQ_fPQ is now a system-wide invariant. Hence we have local syn-
chronization by theorem 4.1.

Theorem Y4.3. One bit is sufficient for all variables in the alternating
bit synchronizer.

Proof. Since fPQ+fQP=1 over all 1links (P,Q), we can use sequence

numbers mod 2 in all messages., If fPQBO we have bPSaPQ=APQ$bP+1. If

fPQ=1 we have bPSaPQ=APQ+]SbP+2. However, in this 1last protocol we

introduced an extra waiting step to ensure synchronization., Hence we

can 1improve the bound on aPQ to aPQSbP+1. In the beginning
aPQ=APQ+1=0=bP. Upon receipt of a message either APQ stays the same or

is increased by one. Hence APQ=bP or APQ+1=bP. On the other hand, bP

can only be changed to bP+1 if for all neighbors Q of P, APQ+fPQ>bP‘ In

- 14 -

particular this can only happen if APQ+1>bP. Hence we had APQ=bP, which

PQ+1=bP when bP is increased by one. Moreover, the guard

" "
do nothing until APQ+1$bP ensures that APQ

next receive and hence possibly increase A

changes to A
+1=bP before we can do a
Thus A_.=b, or AP

PQ* PQ P Q
+TSbP+1. Hence for all variables

+1 =bP
is invariant and we have bPSaPQ=APQ
computing mod 2 suffices., Q.E.D.

Note that now it is not the case that if we know that fPQ=O and fQP=1,

and bpaebQ that we can deduce bQ=bP+1. For example, we could have

bQ=aQP=aPQ=bP+1 as well as bP=aPQ=aQP=bQ+1. Hence we do not have the

problem with deadlock as in theorem 3.3. It does have the consequence
that inspecting the bit values bP and bQ gives no information on which
processor is behind which, but we do not need this anyway.

5. The sliding window synchronizer. The alternating bit protocol (and

hence, the alternating bit synchronizer) has a basic asymmetry - one
side must begin with sending and the other must wait with sending until
it has received a correct message. This might be inconvenient in a net-
work geared to true distributed computations. To deal with the asym-
metry, we consider another modification of the basic synchronizer from
section 3.

We could get around the asymmetry problem in the following way:
PQ=fQP=1 for all links

(P,Q). However, this leads to a new problem. If we allow that messages

allow all nodes to begin with sending, by taking f

are 1lost in a 1link, we now have no way to prevent that messages are

> to Q and

receives No, N1 from Q. If M1 is lost, Q does not send N2 which would
be an acknowledgement for M1. Hence P times out and retransmits M1.
0’ M2, M1 and the original ordering is 1ost, Moreover,
as aQP and AQP are increased, values are skipped. In this example a

received out of order. For example, P sends MO, M1, M

Thus Q receives M

QP

attains the values 0,1,1,3 and A the values -1,0,2,2 respectively.

QP
Hence we need a buffer for each link to store the messages that arrived
"before their turn" (unless we throw them away and wait for a
retransmission by P) and a buffer for the messages that still might have

to be retransmitted. To be able to write down the protocol for

-15_

communication over a link we have to specify the waiting conditions for

the beginning of a new "state" in terms of a and A Hence we

p*2pQ PQ’
will first analyze the meaning of different combinations of values of
these variables in the basic protocol of section 3. The programcycle

remains unchanged at CZP.

Lemma 5.1. Using programcycle C2 at all nodes and operations SZPQ and
R1PQ with fPQ=fQP=1 for all links (P,Q) gives only four possible
relations between ap,aPQ and APQ’ namely
(1) APQ=aPQ-1=aP-1,

(ii) APQ=aPQ-1=aP,

(iii) APQ=aPQ-1=aP+1 and

(iv) APQ=aPQ+1=aP+1.
Proof. From lemma 3.1 and theorem 3.1 we have with fPQ=fQP=1
c =18 - -1= = =

ap 1.aPQ 1SAPQSaP+1. Hence aj-1 APQ’ or a, APQ or ap+l APQ' If

aP—1=APQ we know that aP=aPQ' The case aP=APQ implies APQ=aPQ or

APQ=aPQ—1, whereas aP+1=APQ gives rise to the three possibilities
APQ=aPQ—1, APQ=aPQ and APQ=aPQ+1. However, consider the case that
APQ=aPQ and recall the meanings of AP and a_., respectively., If A

Q PQ PQ
has value j, we know that message Mj has been received. If aPQ has
value Jj, we Kknow that messages M0 up to Mj—1 have been received. But
since Mj has been received too, aPQ must at least have value j+1. Hence

the case APQ=aPQ cannot occur and we are left with the four remaining
PQ=aPQ—1=aP—1, (ii) A (iii) A

PQ=aPQ+1=aP+1 . Q.E.D.

relations (i) A
and (iv) A

-1=a —1=a,+1

PQ-2pQ '~ PQ2pQ 7%

What 1is the meaning of these four relations? Case (iv)

A__=a__ +1=a_+1 corresponds with the situation that message M is
PQ "PQ P APQ

received from Q, while message M =M is not, probably because it

ApQ7! 2pq

was lost. Hence, if we want to keep the synchronization, we can do

nothing but wait for a retransmission of MA 1
: PQ

PQ=aPQ—1=aP+1, since aPQ will be increased by two and

APQ and aP have not changed. Thus we will have to wait until ap is

If it arrives, we end

up in case (iii) A

16

PQ=aPQ-1 ==aP to be allowed to do a new

send operation corresponding to the next "state". Recall that the

increased and we have case (ii) A

corresponding receive operation has already been done earlier. However,
if up till now messages have been arriving in order, case (ii)

APQ=aPQ-1=aP corresponds to the situation where the communication over
this link was finished and we are walting for the transition to the next
PQ=aPQ--1=aP-1.

This analysis gives rise to the following protocol specification,

"state", after which we have case (i) A

apart from the time-out mechanism for retransmission of possible lost

messages, which we omit.

The sliding window synchronizer,
Protocol for P's link to Q.
aPQ:=O; APQ:=-1;
while no termination do
begin if APQ=aP+1 then
begin while APQ=aPQ+1 do
begin receive message Ni and optionally store it;

if i>A then APQ:=i;

PQ
aPQ:= new (maximum) value such that P has
received and stored messages N,, N., ..., N
0 1 aPQ—1
from Q
end;
do nothing until aPQ—1=aP;
send message M
2p
end else
begin do nothing until aP=aPQ;
send message M_ ;
%
receive message Ni and optionally store it;
if 1>APQ then APQ:=1;
aPQ:= new (maximum) value such that P has received and
stored messages NO’ N1, ceey NaPQ_1 from Q

end

end.

-17_

The sliding window synchronizer is a more specific formulation of
the protocol skeleton consisting of actions S2 and R1 together with pro-
gramcycle C2, as is clear from the analysis above., Hence we have 1local
synchronization by theorem 3.1. Of course in the case of the sliding
window synchronizer two bits are sufficient for all variables. Hence we
have to pay for getting rid of the asymmetry of the alternating bit pro-

tocol by an extra variable for each link (we now need both A_. and aPQ)’

PQ
while we also need two bits in stead of one for all variables. The mes-
sages have become one bit longer too, and the protocol specification 1is

more complicated.

6. Composition of sliding window protocols. Consider a chain of three

processors P, Q and R, and the bidirectional links (P,Q) and (Q,R).

Assume that the communication on the links is governed by sliding window

PQ’ fQP’ f‘QR and qu.
Q's only task is to send each message it receives from P, on to R, and

protocols for some values of f Assume further that

to send each message it receives from R, on to P. Thus Q acts as a
relay between P and R. 1Is it possible to describe the communication
between P and R by one sliding window protocol? It is clear that this
asks for the compositionality of this sort of protocol.
Consider the basic protocol skeleton with actions S1 and R1 as
defined in section 2. Recall that we defined
aPQ = the number of consecutive messages that P has received from Q
and stored.
APQ = the number of consecutive messages that P is sure Q has
received and stored.
To be able to define the "hypothetical" variables a

and A

PR and APR we should

take a to make the definitions meaningful. To

PR™2pQ PR™APQ* TP TR
see this, note that since Q sends only messages that it has received and

stored from R, the number of consecutive messages that P has received

from R is the same. Hence a Further, P knows A because it has

PQ
: an implicit acknowledge-

PR™2PQ"
received a message Nj from Q with APQ= j-fPQ+1

ment from Q for message M from P. However, we also know Q must

3=Tpq
have received Nj from R, which is an implicit acknowledgement for mes-

which Q sent to R. Thus Q sent M._f
QR I ar

sage M, to R Dbecause it

j-f

18

received Mj;f from P. Hence now message Nj becomes an implicit ack-

QR
nowledgement that R received message Mj—f from P, Thus P should set
i QR
ApR to J—fQR+1 and we should define APR=APQ+fPQ—fQR‘ From this discus-

sion we can conclude that in order for P and R to communicate according
to a sliding window protocol, the component protocols should have param-=

eters f and f

o= = '
pr-TaR rp~Top!

Theorem 6.1. If P and Q communicate under a sliding window protocol
with parameters fPQ and fQP’ Q and R communicate under a sliding
window protocol with parameters fQR and fRQ’ and Q only sends mes-
sages to R and to P if it has received them from P and R respec-
tively, then the communication between P and R satisfies the condi-
tions of a sliding window protocol with parameters fQR and fQP if
f. . 2f_ . and f_ 2f If £ and f

rZ’pq r<Tra’ R™Trq ep~Tra
tions for the P-to-R and R-to-P message transfers are exactly the

the protocol descrip-

same as those for the P-to-Q and R-to-Q message transfers,

Proof. Define APR=APQ+fPQ_fQR’ 9PR=aPQ’ fPR=fQR’ ARP=ARQ+fRQ—fQP’
= = 2 3

app=2pq and fRP fQP‘ Let fQR‘fPQ and fQPZfRQ' We immediately have (see

for example lemma 3.1): f (and

= —f >3 ~f = _
Aor=2patTro T ar®2PQ TQR™®PR TPR

> a .
RP.aRP fRP)f Consider the case that Q sends Mj to R. We know from the

X 1y < 3
Q to R protocol that mln(AQP,aQR+f‘RQ 1) £ 3K aQR+fRQ' However, Q must

A

have received Mj from P, too. Hence jsjmax with jmax from the P-to-Q
< _ X s

queue and thus J.AQP+fQP 1, This gives us J<mln(aQR+fRQ’AQP+fQP)‘ Now

we can reformulate the system-wide invariant about the contents of the

Q-to-R queue as follows:

Claim. Let M Mj be the contents of the Q-to-R queue, from the

y eeey

j1 r

front to the rear, where rz0, and let jmax be the maximum index of
any message that has ever been removed from the Q-to-R queue. (If
nothing has ever been removed, let Jmax=-1). Let Jo=3ma
then

and j =
X r+i
min(aQR+qu,AQP+fQP)—fRQ-fQR,

.) Lt <
Iy < Jk,+fRQ+fQR for 0Sk<k'Sr+1.

19

Proof. Initially the queue is empty, j0=-1 and jr+1=-fRQ_fQR’ hence the

relation JO < jr+1+fRQ+fQR holds. Operations S1PQ’ R1PQ' S1QP’ R1QP’

R1QR and S1R

R1QR

adds an Mj at the end of the queue, with necessarily
r\'

+frbq-1) S I < min(aQR+qu,AQP+fQP). Since JP'ZaQR-fQR’ Ip
Also,

Q do not change the contents of the Q-to-R queue. R1QP and

might 1increase jr+1’ which preserves the inequalities too. S1QR

min(AQR,aQR

. - < 3
< Jr+1+fQR+fRQ mln(aQR+fRQ’AQP+fQP) s aQR+fRQ < Jr'+fQR+fRQ'
Jp < min(aQR+qu,AQP+fQP) = Jrf1+fQR+fRQ' Hence the invariant remains
valid under S1QR. R1RQ removes Mj from the front of the queue, and
1

sy - X . : . X . X :

3" pax max(Jmax,J1). Since the invariant was valid for both J nax and 3y
it remains valid for the maximum of both. Q.E.D.

As a consequence, we have jmax < jr+1+fRQ+fQR and since Jmax=ARQ+fRQ_?’
ARQ+fRQ s mln(aRQ+fQR,AQP+fQP) s AQP+fQP' The corresponding derivation
on the Q-to-P queue gives us APQ+fPQ s AQR+fQRf Thus APR = APQ+fPQ+fQR
S a

and a

. F > ,
(and ARPSaPR). Since fPR fQR'fPQ’ APRSAPQ and

we have that min(qu,aPQ—fQP—1) $j« aPQ+fQP

< - ==

S AgpTerTar RQ™ZRP
since fpp=fop PR™2PQ
implies mln(APR,aPR+fRP—1) £3jK« aPR+fRP' Since we know that for Mj in
the Q-to-R queue we have (a consequence of the claim) aRQ-fRQ—fQR £j <

aRQ+fRQ+fQR and fPR+fRQ=fQR+fQPZfQR+fRQ’ this implies that aRP‘fRP—fPR s

J < aRP+fRP+fPR‘ Hence the communication between P and R satisfies the

conditions of a sliding window protocol with parameters fPRSfQR and

fRP=fQP’ and the descriptions of S1pq, R1pq, S1RQ and S1RQ coincide with
the descriptions of S1PR’ R1PR’ S1RP and R1RP respectively if fQP=fRQ
and fQR=fPQ' Q.E.D.

We leave it to the reader to check that the same theorem holds if
P, Q and R use sending operation S2 instead of 51, and thus are syn-

chronizing via their sliding window protocols.

Corollary 6.1. If £ _z2f and f then a_ _-f

QP='RQ QR>IPQ e frp = 2o Top

apq = apRr s aRQ+fQR = aRP+fPR' If S2 sending operations are used,

then aR-fRP s aP < aR+fPR.

Assume we have a network which is synchronized by the sliding

20

window synchronizer. Assume it contains a node Q Qith neighbors P and
R, and Q only relays messages from P to R and vice versa. Then we can
ignore Q and view the communication between P and R as if it is taking
place over a direct link between P and R. Note that as a consequence of
the relay character of Q, the synchronization between P and R has become
closer too! Namely, we now have a_-1s%a_.sa_+1 instead of

R P™'R

aR—2Sa —1SaPSa~+1SaR+2 which we had before.

Q Q

7. Discussion. It is useful to compare the synchronizers we derived
with the results of Awerbuch [1]. We saw that for the alternating bit |
synchronizer the synchronization follows more or less natural from the
original alternating bit protocol. We note that it is similar to
Awerbuch's synchronizer o [1]. However, apart from our weaker assump-
tions on the network model (we allow messages to be lost while Awerbuch
does not), we use less communication overhead to achieve the synchroni-
zation, There is another difference in these synchronizers, and that is
that synchronizer a ensures synchronization over the whole network,
while the alternating bit synchronizer ensures only local synchroniza-
tion between neighboring nodes. This 1s really all that is needed
because, after all, only nodes that communicate directly over a link
need to be synchronized, and the fact that nodes which do not communi-
cate directly are not completely synchronized is usually irrelevant to
the correctness of a parallel algorithm. Thus for synchronizer‘ o the
(virtual) state counters of any two processors in the network would
differ at most one, while the alternating Dbit synchronizer can ensure
only a difference of at most the diameter of the network. Awerbuch uses
in each synchronization round i) the messages (to possibly only some)
neighbors due to the simulated algorithm, ii) acknowledgements for these
messages, and iii) "safe messages" to all neighbors. We use only mes-
sages to all neighbors, although their length is increased by one Dbit.
If the simulated algorithm does not require messages to all neighbors,
we can add dummy messages for synchronization. Thus it depends on the
communication in the original algorithm whether the savings in communi-
cation are negligible or amount to a factor of three.

Awerbuch's objection to synchronizer a is its relatively high cost

..21-

of communication. For the alternating bit synchronizer the extra cost
of communication is neglible in case the simulated algorithm uses a lot
of communication (over all links), but quite substantial, though still
less than for synchronizer a, in case the simulated algorithm uses only
a small subset of 1links of the network for communication (e.g. only
those that form a spanning tree for the network). However, there 1is a
large class of algorithms where we can save the extra amount of communi-
cation due to the introduction of dummy messages for . synchronization.
These are the algorithms where the communication over one link has the
following pattern: for some time the link is used regularly for communi-
cation, followed by a period where the link is never used again. Think
for example of algorithms that begin by building up some kind of span-
ning tree, and that later confine all communication to the links of that
spanning tree. What we can do in that case is using only the links that
are currently active in communication for synchronization. This would
mean substituting "all currently active links (P,Q)" for "all neighbors
Q" in programcycle C2 of processor P. Unfortunately, though it is easy
to declare a link "dead" for synchronization purposes, it is in general
not possible to bring it to life again, since the invariants of the pro-
tocol prescribe that neighbors have state counters that differ by at
most one. Hence it 1is not possible to choose correct values for the
protocol variables to begin communication over a link if the state
counters of the nodes differ by more than one, and we only know that
they differ at most the number of active links between them. Note how-
ever that we do not encounter this difficulty in starting up the alter-
nating bit synchronizer, since a node can only leave its 1initial state
of zero after it has woken up all its neighbors and has received mes-

sages from them.
References.

[1] Awerbuch, B., Complexity of Network Synchronization, J. ACM 32(1985)
804-823,

[2] Knuth, D.E., Verification of link-level protocols, BIT 21(1981) 31~
36.

(3]

[ul

[51]

22

Krogdahl, S., Verification of a class of 1ink-level protocols, BIT
18(1978) 436-u448,

Schoone; A.A. and J. van Leeuwen, An alternate view of the alternat-
ing bit protocol, in: H.Noltemeier (Ed.), Proc. WG'85 (Int. Workshop
on Graph-theoretic Concepts in Computer Science), Trauner Verlag,
Linz, 1985, pp. 347-354.

Schoone, A.A. and J. van Leeuwen, Verification of balanced 1link-
level protocols, Techn. Rep. RUU-CS-85-12, University of Utrecht,
Utrecht, 1985. (Submitted for publication.)

