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ABSTRACT

This paper presents an implementation of Franklin’s object space hidden surface algorithm for
polyhedral scenes [ACM Computer Graphics 14(3), 117-123, 1980]. It is known that if the
faces are independently and identically distributed this algorithm performs in time linear in the
number of faces and in particular, is not affected by the depth complexity. The algorithm
overlays a grid on the scene with fineness depending on the statistics of the edges and the
faces. It then preprocesses the edges and the faces in a grid data structure so that distant edges
and faces will not be compared.

The implementation of the algorithm on a Prime 750 using Ratfor shows that it is indeed
very fast for random and structured scenes alike.

Keywords: hidden surface removal, object space, adaptive grid, polyhedra,
INTRODUCTION

Hidden surface removal is now a well-researched and reasonably well-developed area of computer graphics. There
are many algorithms, most of which work in the image space (the realm of graphics output devices) as opposed to
the object space (the realm of precise computations). Object space algorithms for visibility are important because
in nearly all computer aided design applications the exactness of the computation is a prerequisite for integrity.
For a rather dated but otherwise perfect survey of hidden surface research, see [13]. Important algorithms include
(but are not limited to) those by Newell [11], Weiler and Atherton [15], Whitted [16], Franklin [4], Sechrest and
Greenberg [12], and Carpenter [2]. Newell’s solution is a very elegant technique known as the painter’'s algo-
rithm. Weiler and Atherton presented what may essentially be summarized as an inverse painter’s algorithm.
Whitted gave an extension of ray tracing, another elegant technique originally invented by Arthur Appel.
Sechrest and Greenberg’s algorithm is based on image coherence. Finally, Carpenter described an extension of
the celebrated z-buffer technique and called it the A-buffer.

In this paper we give an implementation of Franklin’s object space hidden surface algorithm for polyhedral
scenes [4]). Franklin’s algorithm is based on the idea of an adaptive (variable) grid. For a detailed study of
adaptive grids the reader is referred to [3, 6]; applications of adaptive grids similar to the one reported in this
paper are given in [8,4]. The adaptive grid data structure is a uniform grid overlaid on the scene. The fineness of
the grid is some experimentally determined function of the statistics of the objects, e.g. average edge length, aver-
age face area, number of edges, etc. The adaptive grid is especially suitable to tell efficiently which few pairs of a
large number of short edges intersect. In this case the average execution time is linear in the expected number of
intersections plus the number of edges, thus optimal within a multiplicative constant for a wide range of scenes.

The input to our program (which is written in Ratfor [10] and runs on a Prime 750) is a set of polyhedra.
The output of the program is a set of visible polygons with associated shading information.

(*) Address until July 1986: Computer Science Division, Electrical Eng. and Computer Science Dept., 543 Evans Hall,
University of California, Berkeley, CA 94720, USA.
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DATA STRUCTURES

The algorithm uses several data structures in addition to the input data structures consisting of FACES, the set of
faces and EDGES, the set of edges of the objects in the scene. In the implementation, the inputs to the algorithm
are FACES and VERTICES, the set of vertices. EDGES are obtained from this information. A simple boundary
representation is assumed for an object. In particular, each face is given as an ordered list of its vertices around it.

As an important aspect, it should be noted that all the data structures are of the abstract data type set. Thus,
in an implementation environment which can support the set data type efficiently, all the operations would work
on sets. This is a feature which not only simplifies the algorithmic description but also shows its key characteris-
tics that make it a good candidate for implementation in silicon. In particular, the algorithm lends itself to being
executed in parallel. It spends most of its time either i) Performing the same operation on each element of a set,
or ii) Sorting the elements of a set. There are various ways to make the former task parallel, the most obvious
being an N-way parallelism for an N element set. As for the latter, there is now a considerable amount of work
on parallel sorting algorithms [14].

We now summarize the other data structures used by the algorithm:

() A regular G by G grid of square cells superimposed on the projected scene. Each cell C of the grid has the
following three data structures which are initially empty: (1) The name of the closest blocking face BE(C),
if any, of this cell. BF(C) covers C completely and thus blocks everything behind. (2) The set of faces
FF(C) which intersect C and are in front of BF(C). (3) The set of edges FE(C) which intersect C and are in
front of BF(C). It is noted that, without loss of generality, the viewpoint is at the infinity in the positive z-
direction and orthographic projections of the objects are taken in the xy-plane,

(i) The set XSECT of pairs of intersecting edges (along with their intersection points). XSECT contains all the
visible and some of the hidden intersections.

(iii) The set VISS of visible edge segments. The elements of VISS make up the edges of VISP given below.

(iv) The set VISP of visible polygons. Each element of VISP is a connected visible part of a face.
THE ALGORITHM (High-Level Description)

The algorithm first transforms the scene to fit inside a unit square at the origin using known techniques. Then it
decides on the grid size G. The choice of G to obtain optimal execution time is heuristically made and is based on
the statistics of the edges and the faces. (Fine-tuning the algorithm by choosing a suitable G is discussed later.)
After these preparations, the algorithm proceeds as follows:

Algorithm A

Al. Overlay a G by G grid onto the scene and initialize the data structures for each grid cell. Initialize XSECT,
VISS, and VISP.

A2. For each projected face F in FACES do the following:

Determine the grid cells CELLS that F partly or wholly covers. For a cell C in CELLS see if C has a
blocking face BF(C) which is always in front of F throughout C. If so, this C is no more considered with F.
Otherwise, F itself may be a blocking face of C. In that case, BF(C) is updated as F. If none of the previous
cases holds, then F is added to FF(C). This is repeated for each C in CELLS.

A3. For each grid cell C do the following:
Compare BF(C) to all F’s in FF(C). Delete from FF(C) all F’s that are behind BF(C) throughout cell C. The

reason that there may be faces to delete is that BF(C) may have been changed as the faces were processed
in step A2.

Ad. For each projected edge E in EDGES do the following:
Determine the grid cells CELLS that E partly or wholly belongs. For a cell C in CELLS see if E is behind
BF(C). If not, then E is added to FE(C). This is repeated for each C in CELLS.

AS. For each grid cell C do the following:
For each pair of projected edges E1 and E2 in FE(C) see if E1 and E2 intersect. If so, and if the intersec-
tion point is inside C then add E1 to the list of edges intersecting E2, and E2 to the list of edges intersect-
ing E1. Due to the way XSECT was defined earlier, we are in fact adding pairs to XSECT, i.e. (E1,E2) and

(E2,E1) with an implied intersection point. Note however that once the members of XSECT are all found, it
is trivial to obtain the list of edges intersecting each edge via sorting,

A6. For each projected edge E in EDGES do the following:
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Sort the intersection points of E along it and use them to split E into segments SEGS. (An edge with no
intersections is just one segment.) Then for each segment S in SEGS, if the midpoint of S is visible then
add S to VISS. (The visibility of the midpoint is determined by comparing it against BF(C) and the faces in
FF(C) where C is the cell including the midpoint.)
A7. Determine the regions VISP of the straight-edge planar graph formed by the elements of VISS. This is done
by the procedure given in [9). The idea is to form a data structure using the edges and to navigate through it to
obtain the regions one after another, with special care exercised to handle regions within regions correctly.

AB. For each polygon P in VISP do the following:

Let I be a point inside P and let C be the cell which includes I. Compare I against FF(C). Let F be the
closest face in FF(C) whose projection contains I. Then P corresponds to a visible part of F and should be
given an appropriate shading value. If I is not on any element of FE(C), it corresponds to the background
and is given the default shading value.

End
THE ALGORITHM (Details)

Proving the above algorithm correct is easy since it is a refinement of the following naive algorithm which is of
quadratic complexity in the number of edges:

Intersect all the projected edges pair by pair, to cut each edge into segments. (Each segment is either com-
pletely visible or else completely hidden.) Compare each segment against all faces to determine its visibil-
ity. Construct the visible regions from the visible segments and compare each region against all faces to see
which it corresponds to and shade it accordingly.

There are a number of rather low-level details that are omitted from the description of the algorithm in the previ-
ous section. These are crucial for an implementation and are mentioned now:

1. As for the optimal grid size, the following is found to be a suitable value (although C here is an unspecified
constant less than 1 and is heuristically determined)

G=floor(C min(N'2, L~1))

Here N is the number of edges and L is the average projected edge length. An experimentally observed fact
about the grid size is that changing it within a factor of two makes little difference. It is also apparent that C will

be hard to predict in general since it depends on the relative speeds of various parts of the program implementing
the algorithm,

2. At step A2 of the algorithm, determining the cells is not done by comparing each of the cells with F. The cells
belonging to the bounding box of F is a good approximation. A better determination can be made by considering

F’s edges. It is emphasized that if extra cells are included then the algorithm will still perform correctly, albeit
slower.

3. At step Ad, the visibility of E versus BF(C) is seen by clipping E at the borders of C to E’ and testing whether
the endpoints of E’ are both behind BF(C).

4. At step AS, the point-in-cell test is necessary. This catches duplications caused by the fact that the same pair of
edges may pass through several cells. In fact, the total number of duplicate intersections gives a good idea about
the propemess of a particular grid size.

If only the visible edges are wanted and not the visible surfaces, then one must compute which one of E1 and E2

is in front of the other in three dimensions at the point of intersection. Assuming that E1 is in front, the intersec-
tion point is only added to E2’s list.

5. At step A6, a face F of FF(C) hides the midpoint in question if it satisfies two conditions: i) The point is
behind F’s plane in three dimensions, and ii) The projected point is inside the projected F.
6. At step A8, the interior point I must be taken very close to the boundary of F in order to avoid incorrect pic-

tures. Notice that an arbitrary interior point of F will not do since there may be separate components enclosing
each other.

THE IMPLEMENTATION

Implementation of an algorithm is a good way of testing its viability and effectiveness. This is an especially
important issue in graphics and computational geometry since conceptually easy tasks such as applying the
Boolean operators to polyhedra or constructing the Voronoi diagram of a set of points turn out to be difficult
when it comes to handling all the special cases.
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Our implementation of the algorithm outlined above was done in Ratfor, a structured variant of Fortran [10].
The program, which is about 3500 lines of moderately commented code, runs on a Prime 750. After reading the
input polyhedra the program works basically in one of three modes:

Computation: In this mode, no graphics is done and no results are written to a file; they are left in core.
This mode exists to see the effectiveness of the program in terms of execution speed.

Graphics: The results are drawn on a vector terminal (e.g. Imlac) as they are being computed. There is

another facility which takes a picture file generated by the next mode of operation and displays it on a raster
screen (e.g. DeAnza).

Output: The results of the visibility computation (i.e. visible polygons along with intensities) are written to a

file for device-independent and off-line graphics.
The program gathers extensive statistics about the objects, the usage of the data structures, and its execution. The
polyhedra are given as a set of vertex coordinates and a set of faces which consist of the vertex names making up
their boundary. The edges are obtained by the program. In general no extra information is input for an object
(such as the face plane equations). If a particular information is needed, it is computed and either stored (when
necessary) or consumed. The program has been tested in several modes for a particular scene to determine the
bottlenecks. To see the effectiveness of the grid method, the first mode of operation mentioned above has been
chosen. It has especially been observed that the preprocessing step of the algorithm (i.e. entering all the edges and
the faces to the grid data structure) is extremely fast, e.g. a few percent of the overall execution time. Other
relevant statistics that the program collects include average/maximum/minimum edge lengths,
average/maximum/minimum face areas, number of cells with a blocking face, number of edges belonging only to
a grid cell/grid column/grid row, number of edge intersections in the projection, number of duplicate edge inter-
sections (which are due to the use of a grid), average number of edges/faces per cell, number of segments, and
number of visible segments. By careful study of these statistics it is possible to determine a close-to-optimal grid
size for a wide range of scenes. However, it remains as a valuable heuristic that the execution time of the algo-
rithm is not affected by changing the grid size within a factor of two.

A number of pictures illustrating the type of scenes that the program handles are shown in Figures 1-6. The
first four pictures are taken from an Imlac vector terminal via hardcopy. Figures 5 and 6 are from a DeAnza raster
display via hardcopy. (These pictures were made at the Image Processing Laboratory of RPL) All these scenes
took only a few seconds to compute, the largest requiring about ten seconds.

FINAL REMARKS

We have successfully tested the adaptive grid data structure on a key problem in graphics, namely, polyhedral
visibility computation; similar previous tests are given in [5,8). It becomes clear that the data structure has a very
good average case behavior. It is noted that a common method of line intersection in computational geometry is
some sort of plane sweep as reported by Bentley and Ottmann [1]. The problem with Bentley and Ottmann’s
method is that it is difficult to program and hides large constants inside big-oh bounds. Nevertheless, the plane
sweep has an excellent worst case time while the worst case time for the adaptive grid is bad although it works
perfectly on a wide variety of scenes. Franklin also remarks that the adaptive grid can be used to solve some

problems efficiently that the sweep method cannot handle fast, e.g. interference detection between two parts such
as a robot arm and a workpiece [7].

Although it can be varied within a factor of two without changing the performance of the algorithm appreci-
ably, the grid size G is a potential area of investigation. It would be worthwhile to collect statistics on a scene
before processing to determine the optimal G. The reader is referred to [5] for a thorough discussion of this sub-
ject. If the scene is not homogeneous, a hierarchical (as opposed to regular) grid may be faster. This obviously

would make some steps of the algorithm more complex. Besides, an adversary can find sequences of scenes that
still execute slowly.

Acknowledgments: The work of the first author is supported by the National Science Foundation under grant no.
ECS-8351942, and by the Schlumberger-Doll Research Labs, Ridgefield, CT.
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Figure 1. A 13 by 13 array of cubes with hidden fines removed.
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’Figure 2. A random arrangement of blocks with hidden lines removed.
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Figure 3, Another random arrangement of blocks with hidden lines removed.
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Figure 4. Two semi-regular polyhedra with visible surfaces cross-hatched.



Figure 5. Three semi-regular polyhedra with visible surfaces painted.



Figure 6. A random arrangement of blocks with visible surfaces painted.



