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ABSTRACT

An algorithm is presented for reconstructing visible regions from visible edge segments in
object space. This has applications in hidden surface algorithms operating on polyhedral scenes
(e.g. WR. Franklin, "A linear time exact hidden surface algorithm,” ACM Computer Graphics
14(3), 117-123, 1980). A special case of reconstruction can be formulated as a graph problem:
"Determine the faces of a straight-edge planar graph given in terms of its edges.” This is
accomplished in O (n log n) time using linear space for a graph with » edges, and is worst-case
optimal. (The graph may have separate components but the components must not contain each
other.) The general problem of reconstruction is then solved by applying our algorithm to each
component in the containment relation.

Keywords: hidden surface removal, polyhedra, holes, object space, straight-edge planar graph,
point-location.

INTRODUCTION

The hidden surface problem in computer graphics has been an important area of study for the last two decades.
For a somewhat dated but otherwise excellent survey see [16]; a bibliography is provided by Griffiths [10]. The
majority of the currently used algorithms for hidden surface removal operate in image space, the realm of (raster)
display devices. When the accuracy of the output (as opposed to a particular rendering) is crucial, algorithms
which perform the visibility calculations at object resolution are needed. These object space algorithms include
(but are not limited to) those by Loutrel [11], Fuchs et al [8], Weiler and Atherton [18], Sechrest and Greenberg
[15], and Franklin [1,2]. Various analyses of the hidden surface problem from the viewpoint of computational
complexity can be found in F.F. Yao [19], Schmitt [14], Ottmann and Widmayer [13], and Nurmi [12].

In this paper, we present an algorithm, at object space, for reconstructing the visible regions in a polyhedral
scene, i.e. joining the visible edge segments output from a hidden line program to find the visible regions. Such an
algorithm is used by e.g. Franklin’s hidden surface algorithm [2] as well as applications in cartography [3]. The
input to the algorithm is a set of visible edge segments computed as in [2]. (This will be detailed in the sequel.)
The regions output by the algorithm may be stored (along with their intensities which must be computed) for later
display. Although the algorithm is based on a simple graph problem, namely, "Determine the faces of a straight-
edge planar graph given in terms of its edges," this to our knowledge is the first published implementation in com-
puter graphics. Our algorithm to solve the above problem is worst-case optimal and spends O (n log n) time and
linear space for a graph with n edges. (It is required that the graph has no separate components containing each
other.) The reconstruction is done by solving the above problem for each component in the containment relation
of the graph under consideration. The algorithm has been implemented in each of Ratfor, Franz Lisp, and Prolog.
For brevity, we only give the Prolog implementation (1) in this paper (cf. Appendix); others are available upon
request.

(*) Address until July 1986: Computer Science Division, Electrical Eng. and Computer Science Dept., 543 Evans Hall,
University of California, Berkeley, CA 94720, USA. Research of this author is supported by the National Science
Foundation under grant no. ECS-3351942, and by the Schlumberger-Doll Research Labs, Ridgefield, CT.

(1) The advantages of Prolog for computational geometry and graphics have recently been studied; for some views and
implementations see Franklin [6], Gonzales et al [9], and Swinson [171.
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PROBLEM DEFINITION AND TRANSFORMATION

Given a family of polyhedra in the three-dimensional Euclidean space, the following algorithm (2) computes a

hidden surface picture assuming that the viewpoint is at o in the positive z -direction and orthographic projections

of the polyhedra are taken in the xy -plane:

(i) Compute in the xy-plane the intersections of the projected edges of the given polyhedra to subdivide each
edge into edge segments (hereinafter, segments). An edge with no intersections is just one segment. Each
segment is completely visible or else completely hidden.

(i) Compute the visibility status of each segment (i.e. take the midpoint of the segment and determine its status
which necessarily is the segment’s status).

(iii) Compute the regions in the xy-plane described the visible segments.

(iv) For each computed region, determine the three-dimensional face which gave rise to it and shade the region
accordingly.

In the above algorithm, step (iii) where the polygons in the xy-plane corresponding to visible parts of faces must
be found from a set of visible segments is called polygon reconstruction and will be the subject matter of this
paper. For the upcoming discussion, it is better to cast this problem in a more abstract setting, ie. in terms of
straight-edge planar graphs. (From now on, when talking about the problem in the visibility context we shall use
the terms "segment” and "region" whereas in the graph context we shall employ the terms "edge" and "face,"
respectively.)

Let E be a set of edges in the xy-plane. It is assumed that the members of E are such that they constitute a
legal planar subdivision, i.e. one in which every face is bounded save the outer one which is infinite. If E is
obtained as a result of the above hidden surface algorithm then the subdivision is necessarily legal (under the rea-
sonable assumption that the polyhedral input to the hidden surface algorithm is meaningful). Notice that the
notion of legality is similar to constructive solid geometry in the sense that we do not allow dangling edges (Fig-
ure 1). The polygon reconstruction problem asks for a listing of the faces of the planar subdivision given in terms
of its edges. By listing, we mean specifying the vertices of the faces in order (clockwise (cw) or counterclock-
wise (ccw)) starting with any of them. Thus, in Figure 2(a), we are given a picture of three polyhedra in space.
The visible segments have been shown in Figure 2(b). Notice that they are in no particular order, ie.
E={eey, - - - ,e5}. In Figure 2(c) the reconstructed faces have been shown. Denoting them by F, it is seen

that F={f 1,f5, - - - .fs}. (It will be shortly clear why the vertices are labeled in Figure 2(c) in that particular
way.)

A crucial point in Figure 2 is that the graph has two components. In this case, the separate parts are caused
by the fact that the pyramid projects individually while the cubes overlap in projection. Our algorithm can handle
such separate components as long as they do not enclose each other. However, it is also possible to have separate
components due to holes in the given polyhedra or due to components one of which projects inside the other.
This is demonstrated in Figure 3(a) and Figure 3(b), respectively. Our algorithm will not be able to handle this.
Before we proceed any further, we must therefore resolve this issue.

The problem can be solved by finding the connected components of the graph using standard algorithms. As
long as two connected components do not enclose each other they can be included in the same input set to our
algorithm. The question of containment can be decided by repeated applications of standard point-location algo-
rithms. In particular, consider two separate components C; and C 2. If one takes any point p of C; and finds out
that C, encloses p then it is seen that C, contains C;. However note that we are still left with the problem of
specifying an order of the computed faces which must eventually be painted in a hidden surface display. Consider
the faces in Figure 4. Here we have a "tower" of three connected components enclosing each other. The right
approach is to start the painting with the "outer" component and progress toward the "innermost” component. In
other words here we must paint the computed faces in the following order: f1.f5, - - ,f10- (Within each com-
ponent, the order of painting its faces can be made arbitrary.) With these explanations, we assume that the general
problem of reconstruction is solved as soon as we give our algorithm for reconstructing a planar graph with no
containment. Accordingly, in the sequel we shall assume that we are dealing with a legal straight-edge planar sub-

division with no "holes." Separate components are on the other hand allowed as long as they do not violate this
requirement.

Another important issue to be resolved is that of real coordinates. The fact that one is in fact dealing with
numbers output by a line intersection algorithm makes it necessary that we take care of the small discrepancies

(2) Although Franklin’s algorithm is an extension of this naive algorithm and uses an adaptive grid to reduce its com-
plexity from quadratic worst-case to linear expected time, it is conceptually the same [2, 4,7).
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introduced in the way the intersections were computed and the set of visible segments were arrived. Specifically,
refer to Figure 5 where there must be a tiny region to be output by the polygon reconstruction algorithm assuming
that everything is correct. However, this triangle is most probably due to numerical errors in computing the vertex
it in fact "corresponds” to and should in many cases be discarded. (We refer the reader to Franklin [5] for an
account of such numerical errors caused by the underlying computer algebra.) Thus, a preconditioning step prior
to reconstruction is needed. This process will take as input a value & and will output a new set of segments so that
if there are vertices in the segment set within e-neighborhood of each other then they are "reduced” to a single
common vertex. The proper value of ¢ is dependent on the underlying numerical errors. (Nevertheless, since
situations such as Figure 5 can actually occur, there is no way to guarantee a good €.) This preconditioning pro-
cess is assumed in the following description. In fact, we shall, without loss of generality, describe our polygon
reconstruction algorithm assuming that the graph vertices all have integer coordinates.

THE ALGORITHM

(The reader may follow the example in the next section while reading this section.) The input to the algorithm
consists of n edges in the xy-plane (grid) which are specified by their endpoint coordinates

E={((xi1yi1)sxinyi)): i=1, - - - ;n}

It is emphasized that no particular order is assumed in E. As a matter of fact, the operations of our algorithm can
be carried out on the abstract data type "set” in an environment supporting set operations efficiently.

Given E, we first obtain the graph specified by E. To do this, we create E”=E U E’ where E’ is the
"reverse" of E, that is

E'= {((62Yi 5% 1:9:1)): ((i1,Yi1)5(Kizsyio))eE }

As a matter of fact, E” corresponds to the edges of the directed graph specified by E now. Next we sort E” by
the first key in lexicographic order in x and y values. Specifically, consider an element ((x 1,y 1),(x2,y2)) of E”.
Then the sort takes place on key (x1,y1) and the lexicographic order < is such that

((: Ly 1),(x2,y2)<((X 1,Y 1),(X2,Y2)) iff (x1<X 1) or (x1=X1 and y1<Y 1)

for another element ((X 1,Y 1,),(X2,Y2)) of E”. Now, consider the elements of E” with the same key (3). These
are the edges of the planar graph which have an endpoint (vertex) equal to their common key. We shall call the
totality of the other endpoints (vertices) of these edges a "row" and the common vertex a "pivot" for descriptive
purposes in the following algorithm. (The pivot is not included in the row.) Thus the planar graph can be visual-
ized as a table made of a family of rows each having a different pivot. Finally, we sort the elements of each row
about their pivots in angular order (4). (The angle 6 of a vertex satisfies 0<6<2r.) We shall refer to this final table
as the "navigation” table since the algorithm to be given below will navigate through this table to obtain the faces
one after another. Associated with each row of the table we hold a counter which is initialized to the cardinality
of the row in the beginning of the navigation.

Algorithm Navigate

; There are n rows (and thus » pivots) in the navigation table

; Initially all elements of the rows are marked as "unused”

; We use integers instead of the vertex names (e.g. 1 means v,)

; Count field of each row has also been initialized

CurrentPivot <-- 1

; Come here after outputting a face

; Find new pivot to start with

L1:

IF Count(CurrentPivot) = 0 THEN

CurrentPivot <-- CurrentPivot + 1
IF CurrentPivot > n THEN STOP ELSE GO TO L1 FI

FI

CurrentRow <-- CurrentPivot

CurrentVertex <-- First "unused” element of CurrentRow

(3) For convenience, we assume that we renamed the vertices so that the graph is now represented by vertex names and
not vertex coordinates. :

(4) If the vertices are sorted in cw order then the final faces output by the algorithin will be in ccw order (save the
infinite face which will be cw). If the vertices are sorted in ccw order then the final faces will be cw (with a ccw
infinite face). In the sequel we assume that the latter approach is taken.
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Face <-- {CurrentPivot} ; Initialize the face to be output
DO FOREVER ; This loop corresponds to the navigation
Append CurrentVertex to Face
Mark CurrentVertex as "used”
Count(CurrentRow) <-- Count(CurrentRow) - 1
IF CurrentVertex = CurrentPivot THEN
OUTPUT Face ; This face finished
GOTOL1
FI
PreviousRow <-- CurrentRow
CurrentRow <-- CurrentVertex
CurrentVertex <-- The element of CurrentRow following PreviousRow (with wrap-around)
oD
End

Correctness: The steps prior to the execution of the algorithm (i.e. building the graph) are obviously correct. The
correctness of the algorithm is easy to establish under our assumption that the graph is a legal subdivision. In par-
ticular, we start with the first pivot and the correct handling of Count guarantees that the right pivots are always
chosen after that. As soon as face is output the algorithm starts anew with a partially marked navigation table.
Each element in each row is marked "used" once and only once. The navigation stops as soon as there are no
pivots with a nonzero Count field.

Complexity: The initial sorting of E” to obtain the pivot vertices takes O (n log n) time. (Renaming the vertices
and obtaining the graph also takes this much time since we simply take each coordinate pair and via binary search
find its vertex name (binary search on first coordinate followed by a binary search on the second coordinate).)
Sorting in angular order around a pivot takes O (d;log d;) for pivot i with degree d;. (The degree of a pivot is
the cardinality of its associated row.) An upper bound on the total time spent in this process is again O (n log n)
since the sum of the degrees is linear in n. Now, consider the navigation process. Assume that we are construct-
ing one of the faces and suppose that it will eventually have v vertices. The cost of constructing this face is then
only O (v log n) since the only non-constant time operation in the algorithm is locating the first "unused” element
of CurrentRow and this clearly takes O (log n) time by binary search (since a row is in sorted angular order).
Each vertex i of the graph will appear in exactly d; faces, giving again a total time of O (n log n) for all the faces

to be output. Thus, after the navigation table is built the algorithm uses O(n log n) time. The total space used is
clearly O (n).

Optimality: We shall show that the algorithm is worst-case optimal by demonstrating that it can be used to sort
real numbers ry,r, - - - ,r,. Assuming that the numbers are lying on the x-axis in the xy -plane the following con-
struction is made (Figure 6(a)): For each r; include in the set of edges to be submitted to the algorithm the edges
of the triangle A,B,C where C=(0,1) and, A,=(r;i-¢,0) and B, =(r;+¢,0). (Here ¢ is a small positive constant.)
When terminated the algorithm would have output the boundary

C.By1,Ax1,C By 1 1An-1,1 " * ,C B, A;

although not necessarily in this order. However from this boundary polygon one can infer in linear time the
ascending sorted order of the given numbers. Note that in this proof, we have assumed that the polygon recon-
struction algorithm always outputs the boundary of the infinite face of the subdivision. Clearly, this boundary is
not necessitated and one can argue that there may exist another algorithm which only the outputs the proper faces.
However, even an algorithm which does not output the infinite face would require O (n log n) time since one can
make a "thicker" single polygon out of the polygons in Figure 6(a). This is shown in Figure 6(b).

Before closing this section we shall briefly treat the problem of shading the regions obtained by the algo-
rithm above. Consider any region f found by the algorithm. Let p be an interior point of f (5). Compare p
against the projections of all faces. (Franklin’s algorithm does this much more efficiently via adaptive grid [2] but
this is not the issue here.) Let F be the closest face whose projection contains p. Then f corresponds to a visible
part of F and should be given an appropriate shading value (e.g. proportional to the surface normal of F ). Ifpis
not on any face then it corresponds to the background and is given the default shading value.

(5) Caveat: Notice that since there may be separate components enclosing each other the point must be taken very close
to the boundary of the face to guarantee a correct picture.
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AN EXAMPLE

We now give an example to clarify how the algorithm works. Consider the graph shown in Figure 7. The input is
E={((2,4)(3,4)),((3,2),(3,4)),((4,2),3,4)),((3,2),(4,2)),
((3:2),(2,2)),((2,2),(24)):((1,3),(2,4)),((2,1),(3,1)),
((2,1),(2,2)),((3,2),(3,1)),((1,3),(2,2))}

After "reversing” E to get E’ and uniting these two we get
E” = {((2/4),(3,4)),((3,2),(3,4),((4,:2),3,4)),((3,2),(4,2)),
((3:2),(2,2)),((2,2),(2:4)),((1,3),2),((2,1),(3,1)),
((21),2,2)),((3,2),(3,1)),((1,3),(2,2)),
(3:4),(2,4)),((3,4),(3,2)),((3,4),(4,2)):((4,2),3,2)),
((2:2),(3.2)),((2:4),(2,2)),((2,4),(1,3)),((3,1),(2, 1)),
((2,2),2,1)),((3,1),(3,2)),((2,2),(1,3))}

After lexicographic sorting we get new E” as
((1,3),(2,4)),((1,3),(2,2)),

(21),(3,1)):((2,1),(2,2)),
((2,2),(2,4)),((2,2),(3,2)),((2,2),(2,1)):((2,2),(1,3)),
(24,(3.9).((2,4),(2.2)),((24),(1,3)),
(B,1,(2,1)),((3,1),(3,2)),
((3:2),(3:9),((3,:2),(4,2)),((3,2):(2,2)):((3,2),(3, 1)),
((3:4),(2,4)),((3,4),(3,2)),((3,4),4.2)),
((4,2),(3,4)),((4,2),(3,2))

Note that we have omitted the set signs and listed E” such that the elements in each row above have the same

pivot. Now we can rename the graph vertices (i.e. deal with names instead of coordinates). The renaming is as
follows

vi=(1,3)
vy=(2,1)
va=(2,2)

v~ 2,4)
vs=(3,1)
ve=(3,2)
v=(3,4)
ve=(4,2)

Thus we have the following graph (notice that this corresponds to the adjacency list representation)

V1 VgV

Va! Vs,V

V3 VgV VaV1
V4l V,V3, Vg
Vs Va,Vg

Ve V7,Vg,V3,Vs
V9 V4V Vg

v 8'- v7yv6



After angular sorting of the rows about the pivots we get the navigation table

Vil VgVi

Va! Vg, V3

V3l Vg V4V1,V2o

Va4 V7,V1,¥3

Vsl VgVy

Ve VgV7,V3,Vs

Va. V4VeVs

Vg V,V6

In the above table the pivots are the first elements in each row before the column sign. It is emphasized that there
is a wrap-around for each row, e.g. in row 7 it is implicit that v, follows vg. The regions created by the naviga-

tion algorithm are then
F1=(vpveva)
F=(VvavaVsVevevevs)
f3=(vava,vevs)
fa=(3vevave)
Fs=(evevy)

Note that f, is the boundary of the infinite face. Also note that all proper faces are in cw order whereas fais
CCW.

It may also be instructive for the reader to try the algorithm on a graph with separate components, say two
squares. We omit such an example here.

SUMMARY

We presented an optimal algorithm and its Prolog implementation for reconstructing visible regions from a set of
visible segments output by a hidden line program. This is an important operation in object space hidden surface
algorithms operating on polyhedral scenes.

Note: We have recently learned that R.I. Hartley of University of Waterloo (Dept. of Computer Science) has a
1985 technical report titled "Reassembling polygons from edges.” Although not yet seen by us, this title sounds
suggestive of the topic of the present paper.
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APPENDIX

Here we give the complete code of an implementation of the polygon reconstruction problem in C-Prolog. We
divided the code into two parts: UTIL and PLANAR. The former consists of several useful programs used by the
polygon reconstruction program which is given in the latter.

After defining a planar graph (via edge and vertex data structures as shown at the end of PLANAR) the
polygons are found by just running the main program main. The polygons are stored in polygon.

o,

% UTIL -- General Utility Procedures.

q,

% Double indentation => Not user callable usually.

%

% append Append one list to another

% bag_to set Remove dupls from unsorted list
% find Find elt in list, or append it

% findset Find set of all elts w property
% findall Find bag of all elts w property
% my_collect bag (internal)

% getnext

% maplist Apply fn to each elt of list

% quick_sort Quick sort

% qsort

% partition

% lessp (quick and dirty)

% remove_duplicates Remove dupls from sorted list
% reverse Reverse order of list

% reverse2

% second Return 2nd elt of list

%

% APPEND -- Append a list to the end of another.

% Notice that any two of the arguments of "append" can be instantiated,
% and "append” will instantiate the third argument to the appropriate

% result. This property is known as "reversible programming.”

append((],L,L).
append([H|T],L,[HIS]) :- append(T,L,S).

% BAG_TO_SET -- Remove duplicates from unsorted list.

bag_to_set(LO,L) :- quick_sort(LO,L1),remove_duplicates(L1,L).

%
% FIND(Plist,Elt) -- Find elt in list, or append it.

find((E|_LE).
find([_T),E) :- find(T,E).

%
% FINDSET(E,R,S) -- Find the set of elements E with property R.

findset(E,R,S) :- findall(E,R,S0),bag_to_set(S0,S).

%
% FINDALL -- Find bag (multiset) of all elts with certain property.

findali(X,P, ) :- asserta(bag(mark)),P,asserta(bag(X)),fail.
findall(_, ,L) :- my_collect_bag([],M),!,L=M.
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% "collect_bag" changed to "my_collect_bag" since there is a predefined
% "collect_bag" that is not documented and that doesn’t appear to do
% the same thing.

my_collect_bag(S,L) :- getnext(X),!,my_collect_bag([X|S],L).
my_collect bag(L,L).

getnext(X) :- retract(bag(X)),not(X=mark).

%
% MAPLIST(A,F,B) -- Apply proc F to each elt of list A to create B.

maplist([A1|A],F,[B1[B]) :- !,Z=..[F,A1,B1],call(Z),maplist(A,F,B).
maplist({],_,[]).

/70

% QUICKSORT -- Note that ’<’ works for atoms as well as numbers.

quick_sort(LO,L) :- qsort(LO,L,{]).

gsort([X,..L],R,R0) :- !,partition(L,X,LO,L1),
gsort(L1,R1,R0),qsort(LO,R,[X,.R1]).

gsort([},R,R).

partition([X,..L],Y,[X,..L0],L1) :- lessp(X,Y),!,partition(L,Y,LO,L1).
partition([X,..L],Y,L0,[X,..L1]) :- !,partition(L,Y,LO,L1).
partition([],_,[1,(1).

% "lessp" is a quick and dirty general comparison for anything.
% Atoms are less than lists. Lists are compared on first elt only.

lessp([A|B],[CID}) :- 1,lessp(A,C).
lessp(L,[CID]) :- !. % Cut in case of retry.
lessp(A,B) :- A < B.

70

% REMOVE_DUPLICATES -- Remove duplicate entries from sorted list.

remove_duplicates([X,X[LO],L) :- remove_duplicates([X|LO},L),!.
remove_duplicates([X|LO0],[XIL]) :- remove_duplicates(LO,L),!.
remove_duplicates(X,X).

%
% REVERSE -- Reverse order of list.

reverse(A,B) :- reverse2(A,B,[]).
reverse2([AOJA]B,L) :- reverse2(A,B,[AO[L]).
reverse2([],B,B).

%
% SECOND -- Return the second element of list.

second([_,Al_],A).
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%

% PLANAR -- Find polygons of planar graph.
%

% Purpose:

% This takes the vertices and edges defining a planar graph and

% calculates the polygons.

%

% Sample Application:

% Joining the visible edge segments output from a hidden line program
% to find the visible regions.

%

% Algorithm Limitations:

% Cannot handle containment among separate graph components.

%

% Implementation Limitations:

% Because of the lack of real arithmetic, this program does not do

% actual geometry, only topology. Hence it wants as input the angle
% (in degrees in the positive (ccw) direction) that each edge leaves its
% first vertex. :

%

% Input data structures:

%  vert(vname,x,y)

%  edge(ename,v1,v2,angle)

R

% Order of procedures:
split_vertl
split_vert2
split_all vert
makecorner
otherend
joinl

join2

joinall
orderedges
order_a_vertex
reverseangle
main

RIS

% Separate out the individual corners at the vertices.
% SPLIT_VERT1(vertexlist of edges from it).
split_vert1(V,[EIT]) :- split_vert2(V,E,[EIT]). % Need 1st elt later.

% SPLIT_VERT2(vertex,1st edge,list of unprocessed edges).

split_vert2(V,E1,[E2,E3|T]) :- makecomer(V,E2,E3),
split_vert2(V,E1,[E3|T]).

split_vert2(V,E1,[E2]) :- makecomer(V,E2,E1).

split_all_vert :- retractall(comer(_,_, )),fail.

split_all_vert :- edgeorder(V,L),split_vert1(V,L),fail.
split_all vert.

%

% MAKECORNER -- Given a vertex and its 2 adjacent edges, find the
% adjacent vertices and assert that fact.

makecorner(V,E1,E2) :- otherend(E1,V,V0),otherend(E2,V,V2),
assert(comer([V0,V,V2],V,V2)),
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otherend(E,U,V) :- edge(E,U,V, ).
otherend(E,U,V) :- edge(E,V,U, ).

% JOINALL -- Join edge segments into a long edge.

% Data structure: comer([v1,v2,..vn],v(n-1),vn)

% The list contains all the vertices. The last two are repeated
% outside the list for efficiency.

joinl :- % Join 2 polygon chains that match on two vertices.
corner(L, VN1,VN),corner({VN1,VNM],WN1,WN),
join2(L,VN1,VN,M,WN1,WN).

join2(L,VNL,VN,M,VNL,VN) :- % We’ve got a complete polygon.
L=[VN1,VNM],
1
retract(corner(L, , )),
assert(polygon(M)),
1

join2(L,VN1,VN,M,WN1,WN) :- % This is a separate proc of the cut.
append(L,M,N),
retract(corner(L,_, )),
retract(corner([VN1,VNM],WN1,WN)),
assert(corner(N,WN1,WN)),
1

joinall :- join1,fail.
joinall,

%

% ORDEREDGES -- Given the angles of the edges, find the set of edges
% in clockwise order around each vertex and assert facts of the
% form: edgeorder(v,[e,e,...])

orderedges :- retractall(edgeorder(_, )),fail.
orderedges :- vert(V,_, ),order_a_vertex(V),fail.
orderedges.

order_a_vertex(V) :- % Order the edges around one vertex.

% Edges leaving this vertex,

findall([A,E],(edge(E,V,_,A0),reverseangle(A0,A)),S1),
% Edges entering this vertex.

findall([A,E],edge(E,_,V,A),S2),

append(S1,52,AElist),

quick_sort(AElist,Sorted_AElist),

maplist(Sorted_AElist,second,Edges0),

reverse(Edges0,Edges),

assert(edgeorder(V,Edges)),

% Don’t take chances. No redoing within

% this code is wanted after the vertex is found.
L.

%
% REVERSEANGLE -- Find the angle of an edge going in the opposite
% direction to an edge with this angle. 0 <= output < 360.

reverseangle(A,B) :- A<180,B is A+180,!.
reverseangle(A,B) :- B is A-180.
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%

main :-
orderedges, % and assert edgeorder.
split_all vert, % and assert polygons.
joinall.

% Example:

vert(v1,0,0).
vert(v2,1,0).
vert(v3,1,1).
vert(v4,0,1).
vert(v5,2,0).
edge(el,v1,v2,0).
edge(e2,v2,v3,90).
edge(e3,v3,v4,180).
edge(ed,v4,v1,270).
edge(e5,v2,v5,0).
edge(e6,v5,v3,120).
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Figure 1. Dangling edges are not allowed.
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Figure 2. The polygon reconstruction problem.

(2 (b

Figure 3. Two separate compiments with containment.






