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Abstract. We consider a simple version of the load-distribution problem
for ring networks of n processors. Assume the networks know rounds. 1In
each round a random processor receives a packet of information (a
"record") from some external source, that must be stored somewhere on
the ring. By some protocol the record is moved to a node on the ring
(i;e., a processor), where the record is stored. There are no a priori
constraints on the nodes where a specific record can be stored. In this
paper we propose and analyse some token-based protocols for this problem
that attempt to minimize the maximum number of records stored at a node
(by a given total number of records) and/or the number of messages
needed to achieve a fair load-distribution on the average, We also dis-
cuss how deletion of records can be incorporated in the model, while

preserving the properties of the protocols.

1. Introduction. Let n processors be connected in a ring, and assume

that each processor can directly communicate with its two immediate
neighbours. We usually assume the ring to be oriented. The nodes and
links of the network are assumed to work fault- and error free. In this
paper we consider a special version of the load-distribution problem for
rings of processors, modelled in the following way (cf. figure 1.1).
Assume the network knows rounds. In each round the following sequence
of events can/must happen:

~ an arbitrary processor receives a packet of information (a "record")

*
The work of this author was supported by the Foundation for Comput-
er Science (SION) of the Netherlands Organization for the Advancement of
Pure Research.



- 2.'..

from some external source that must be stored somewhere on the ring,
by some protocol the record is moved to a processor somewhere on the
ring (possibly it is not moved at all),

=~ the record is stored at this processor, and

-~ (possibly) some administrative actions take place.

There are no a priori constraints on the processors where a single
record can be stored. The load-distribution problem asks for protocols
that attempt to minimize the maximum number of records stored at a node
and/or the number of messages needed to achieve a fair load-distribution
on the average. In this paper several token-based protocols will be

proposed and analyzed for the problem, that are of sufficient simplicity
to be useful in practice.

E
S
X
0
T [}] : processor
U
E
R
\ R C : memory where packets
N ~ can be stored
E
A
S
L

Figure 1.1. A graphical representation of the model

For the average case analysis of the protocols (viewed as communica-
tion algorithms) we assume that 1in each round each processor has an
equal probability to receive the incoming record from an external
source; 1i.e., for each node v and for each round the probability that v
receives a record from an external source in that round is 1/n. We 1let

p denote the total number of records stored at the nodes. Initially p
will be o.
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The model of the load-distribution problem as presented can be
used, for 1instance, in the following manner: the network is used to
implement a (distributed) database on which insertions of data-records
and queries are performed. (In section 7 we consider deletions of
records as well.) We assume that the number of updates (i.e., inser-
tions) is relatively small over time, and the number of queries is
large. Typically queries are sent around the ring and are pipelined,
the bottleneck of the pipeline will be the node with the largest number
of records stored in memory. Therefore it is desirable to minimize the

maximum number of records stored at a node on the ring.

In this paper we will propose and analyse some token-based proto-
cols for the given model. 1In section 2 we recall some elementary facts
of finite Markov chain theory that are used later in the paper. In sec~-
tions 3, U4 and 5 we will consider several protocols that use tokens to
distribute the records in a (more or less) uniform way over the nodes.
In section 6 we consider the trivial protocol that stores a record in
the very node where it arrives. In section 7 Wwe discuss how deletions

can be incorporated in the model.

2. Elementary facts from the theory of finite Markov chains. In this

section we will mention some definitions and results from the theory of
finite Markov chains that are needed for the analysis in the later sec~
tions. Most of the following definitions and results, and a more
detailed introduction in the theory of finite Markov chains, can be
found in [2] or [4].

Consider a process S that can be in a finite number of states s1,...,sr.
At each step in time the process can move to another state. Further sup-
pose that the probability that the process moves from state si to state
sj only depends on i and j, and on nothing else. We denote this proba~
bility by pij‘ This type of process is called a finite Markov chain. A
finite Markov chain can be represented in two ways:
i) by a (directed) transition graph, with nodes Siseees8, and edges
from si to sj labeled pij for pij +# 0, and
ii) by the matrix of transition probabilities
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For example, consider the following Markov process with 3 states s1, 82’
and s3.1 The probability that the process moves from state s1 tg state
52 is §; the probability that the system stays in state s1 is 3; th$
probability that the system moves from state 52 to state s1 or s3 is T
and % respectively, and the probability that the system moves from state

s3 to state S, is 1 (during one step in time). This process can be
represented by the transition graph from figure 2.1.a. and the matrix
from figure 2.1.b.

2/3

<:::> '3 1 2/3 1/3 0
| (::>/"“>g —~y 16 0 3/4

OO o 1 o
St 174 5 F;?;Ef, S

(a) (b)

Figure 2.1.(a) A transition graph and (b) the corresponding
matrix of transition probabilities

The probability that the system starts in sj is denoted by pJO; For

instance, if it is given that the system starts in state Si» then pJ.o

0if j =i and pio = 1. The probability that the system is in state sj



after t state-transitions from an initial state is denoted by pjt. It
easily follows that for all J, 1sjsr and t2o:

r

t+1 t
p = I Dp;, * P, (1)
J i=1 1
r
t
X pj=1 (2)
J=1
o s p;' S =1 (3)

Let Bt denote the rector (pf; p;,...,p: ), and recall that p
is the matrix of transition probabilities. From equation (1) it
follows that

St+1 >t
and hence, Bt = pt('8° ), (5)

for all t 2 o.

If the transition graph of the Markov chain is strongly connected,
i.e. each state can be reached from each other state by a number of
transitions with non-zero probability, then the Markov chain is called

ergodic. We will further only consider ergodic Markov chains.

Definition. The period of an ergodic Markov chain is the number d=gecd
{1] there is a (simple) cycle of length 1 in the transition graph}.

Suppose the Markov chain has period d. It means that the set of states
can be subdivided into 4 disjunct subjects S "';’Sd—1’ such that from a

state in s (oSiSd-1) only states in s can be reached by a

(i+1)mod d
state~transition with non~-zero probability. So the system will be in a
state si € s o’ then in a state si € S1, then in a state si € 32, ete.
If d=1 then the Markos chain is called regular, else ft is called

cycliec. For all ergodic chains it is valid that the matrix of
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transition probabilities P has a unique eigenvector B = <p1,...,pr> with
r

L P; =1. For this eigenrector P the following will hold:
i=1

o s Py s 1, for all i, 18isr (6)
P(p)=p 7

If the chain is regular (i.e. the period d=1), then P, denotes the
asymptotic probability that the system is in state si after t transi-
tions with t growing arbitrarily large,

Theorem 2.1. [2,4] If d=1, then for all j, 18jsr, 1lim pt =

_p_
o I Je
For cyclic chains a slightly weaker result holds. 1In this case the pro-
babilities pj denote the asymptotic average probability that the system

is in state s‘j (15j$r); again for the number of state transitions grow-
ing arbitrarily large. (The results are also valid for regular chains.)

Theorem 2.2. [2,4] For all J, 18jsr,

t .
lim (2 pi/t) = D. and
t-a i=o Y J
T (g
lim ( L p. ‘/d ) = p. where d denotes the period of the
t>a i=0 Y Js

ergodic Markov chain.

It means that, in order to obtain knowledge over the average asymp-
totic behaviour of an ergodic finite Markov chain, it suffices to find

an eigenvector B = <p1,...,pr> of the matrix of transition probabilities
r

with & p, = 1.
i=1

3. Token-based protocols for load-distribution with tokens going in the

Same direction as records. 1In the first, elementary protocol we propose
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for the load-distribution problem, only one token is used. Initially an
arbitrary processor is given the token. A record is moved forward on
the ring until it arrives at the node holding the token. The record is

stored at this node, and the token is passed on to the next node.

Protocol T-1

Each node v has a boolean variable token(v). Initially for exactly
one node token(v) is set to true, and for every other node token(v)
is set to false.

If v receives a record M either from another node or, at the begin-

ning of a round, from an external source, then v executes:

if token(v) then token(v): = false;
send a message <token> to the next node;
store M

else send M to the next node.

enaif

If v receives a message <{token>, then v executes:

token(v):

true.

By protocol T-1 records are distributed uniformly over the nodes;
each node either has | % JorT % 1 records stored. oOne easily obtains
the following bounds.

Theorem 3.1. For protocol T-1 the following bounds hold:
i) The maximum number of records stored at a node is p;1

+ 1,

ii) The average difference between the maximum number of records stored
at a node and p/n is + (1 - %);

iii) The maximum number of messages sent in a round is n.

iv) The average number of messages sent in a round is 4 (n+1),

One might want to decrease the number of messages sent by the protocol,
by allowing a 1larger maximum number of records stored at a processor
(for a given p). However, while increasing the number of tokens in pro-~
tocol T1 will indeed mainly have the effect of increasing the maximum



number of records stored at a processor, it will not help much to

decrease the (average) number of messages sent by the protocol.

Protocol T-k

Each node v has a counter tokenc(v), which c¢an assume integer

values in the range o..k. The value of tokenc(v) represents the

number of tokens currently held by v. The values tokenc(v) are
n

initialized such that © tokenc(v) = k, (the sum taken over all

v=1
nodes v).

If v receives a record M, either from another node or, at the

beginning of a round, from an external source, then v executes:

if tokenc(v) >o then tokenc(v): = tokenc(v)-1;
send a message <token> to the next node;
store M

else send M to the next node

endif

If a node v receives a message <token>, then it executes:

tokenc(v): = tokenc(v) +1.

The variables tokenc(v) are maintained so as to denote the number of

tokens, present at node v. The total number of tokens will invariantly
n

be k: after each round I tokenc(v)
v=1

processor v will execute tokenc(v):

k. During each round exactly one

tokenc(v)-1, and exactly one pro-
cessor v' will execute tokenc(v'): = tokenc(v')+1.

Consider a certain token in some round t. The token will move to
the next node in this round if one of the nodes on the path from the
node containing the preceding token (this node not included) to and
including the node containing the token receives a record from an out-
side source in this round. The probability of this event is propor-=
tional to the 1length of this path. (See figure 3.1.) This means that
tokens will have the tendency to be at small distances from each other.

(Consider for example the situation in figure 3.1. If tokens are
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"close" like tokens 1 and 2 are; at distance 2 1, then it is more prob-
able that the first token (i.e. token 1) will move, towards the second
one, then that the second token will move away from the first one.) We

will analyze this effect of token4clustering for k=2 and even n. A
similar analysis is possible for odd n, and k=2, For k23 the same
effect can be expected,

= node

= node with a token

Figure 3.1. 1If a node with a * receives a record M from an
external Source, then M is stored in processor A,

and token 1 moves up to B in the round, otherwise
token 2 moves.

Suppose k=2, and n is even. We define the ring to be in state si
(ogig g), if the shortest distance between the nodes with tokenc(v)21 is
i. 1In particular, state S, corresponds to the situation in which there
is a node with tokenc(v) = 2 (meaning that the tokens reside in the same
node). Denote the probability that the ring is in state si after t in-
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sertions (i.e., for a total number of packets p=t) by pg. We also
n/2

assume that for all i, 0sis = 3 p? is given, Naturally I p? =1
i=o

holds. With these definitions the token system on the ring is a finite

Markov chain, In figure 3.2, the state-~transition graph of the finite

Markov chain is given.

o, o4
(i-1)/n i/n g;—- %——
P ~ 7 S ™
o 00 0O
<::;l ,/<::> <::> ﬁi;i_ 3‘2,/ (S’ S
) K a/2¢41 s, 1 s
n—1 n-i—-1 - 2_1 n
n n 2 2

Figure 3.2. The state-transition graph.

The matrix of transition probabilities for this system is the fol-

lowing tridiagonal matrix A:

0 “—;— 0 0. 0
1 0 =2 0
n
0 1 o a3
n n
0 0 2 0
n
i-2 0 o1 0 0.
n n
0 i=1 0 n—-(i+1) 0
hel n
A= 0 0 i o nzli+2)
n n
0 0 0 151 0
0 dn+1 0
n
~in=-2 0 1
n
0 fn-1 0




Lemma 3.2.

t+1  n-1 _t
Dpy = P
t+1  t n-2 t
11) p1 = po * n p2
. t+1  i-1 ¢ n-(i+1) t n_
i) py = Py + T Py, (2815572)
t+1 _ 4n-2 t
iv) Ph = n Pn_*Py
3" 22 3
t n-1 t
v) Ph =" Pn .
2 37!

One easily sees that the Markov chain is ergodic (the graph of figure
3.1. 1s strongly connected); and that it is cyeclic with period 2. We

n
- 2
Will now look for an eigenrector p = (po,...,pn) of A with I Pj =1.
= i=o
2
We have the following equations for the eigenrector 3 :
n-1
Po = n P ()
n-2
Py =P * 4 P ()
i-1 n-(i+1
py= ey PG st ()
n-2
Pin-1 = "1 Pyn-2 * Pyn )
.31
p%n T n p-g-n--1 (5)
We will estimate Py and Pq-
: R : n i-1
Lemma 3.3. For every i with 2 £ i & 5 1, P; = =7 Pioq and (hence) P;

1
=——-————-—-p -
n-2 1
)
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Proof,. Use induction on i. For i=2 the lemma follows directly :

n-2 n-1 _. nh-2 _1 - 1
Py =Po* T Ppandp, = =Py = T Pyt g Py PPyt p5 Py -
Now suppose the lemma holds for a certain i, 2513241.
X - 2
i (i) and L i - n-{i+) ¢ i1,
P17 Pimmn Bin %0COP TRy P T n - PiTTh
P; =7 Py =>pi+1 R TIETSD) Py and the induction step is complete.

second expression for Ps follows likewise., o
Lemma 3.4. For every i,j with 3Si$j$§ Py 2 Py

Proof. The result follows from lemma 3.3. and equation (5). o

Lemma 3.5.
1) p, =4 +0(

i)p, = (L) 3v0(i2).

n
Proof.
n
- izo Py = Eﬁl Py * Py * n12 Py ¥ (H;Z) Py ¥ jg; Py
s(2- ¢+ 75 mormgy )Pyt (3n-3) - p, )
- (2 iy ey 43 e )
= (2+0( %2 )) p,, hence p_ = EIS%EEE -3+0( %2 ) .

ii) Use (i) and equation (1). o

Then

n-i
i-1
The

Lemma 3.5. shows that Py + p1 ( = the probability that the two tokens

are in the same node (po) or in neighbouring nodes (p1)] grows to 1 as n

and p/n become arbitrarily large. For instance, if n=20, then one

can

show (as in lemma 3.3.) that P, > 0.4950 and P, > 0.4702. It means that

in the case that n=20, in the long run; on the average, at least 96%

of



the time the distance between the two tokens is o or 1., This clearly

proves the effect of "token-clustering".

Theorem 3.6. Let n be even. Assume in protocol T-2 that the tokens
o}

start in opposite nodes, i.e. P, = 1. The following bounds are valid
2
for protocol T-2.
i) The maximum number of records stored at a node, in worst-case, is
2
+1-% Ho
ii) The average difference between the maximum number of records stored

Sho

at a node and p/n approaches 14, as n and p/n tend to infinity.
iii) The worst-case number of messages sent in a round is n.
iv) The average number of messages sent in a round approaches 4n + 0(1)

as n and p/n tend to infinity.

Proof.
i) The maximum arises when both tokens are in the same node, that is a
node, neighbouring a node where a token started in round o. Then %
nodes have k records stored, 2*1 nodes have k+1 records stored and
one node (the node where the tokens reside) has k+2 records stored,

for certain constant k. (cf. figure 3.2.). Now p = g-k+(£~1)(k+1)

2
+k+2, and hence the maximum number of records stored at a node is
k+2 = % + 14 - %; With some straightforward analysis one obtains

that no other case gives a larger maximum.

ii) Notice that for our analysis we may assume that the system stays in
the set of states <so; s1>. Suppose the system is in state pO and
the distance between a node where a token started and the node
where the tokens reside is i, witho s1i g g . With an analysis

similar to (i), one obtains that the maximum number of records

stored at a node is g +1 + % +0(=). A similar bound can be

1

n

obtained for the case that the system is in state p1. As 1 will be
uniformly distributed over the range <0,1,;.., Ll—'-1>, the average

difference between the maximum number of records stored at a node
4n-1
2 3

P wiil approach 1+ ¢ 1. o( 4) = 13 + o(L) .

n f=o D n

iii) The worst-case number of messages n is sent in the case that the

and
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A: node where token 1
started

B: node where token 2
started

C: node where both tokens
reside

Each number denotes the
number of records stored

at the corresponding node.

Figure 3.2. The maximum number of records stored at a node

with protocol T-2.

iv)

system is in state sO; and the record arrives in the node following
the node where the two tokens reside. The record must make (n-1)
steps until it arrives in a node with a token; one extra message is

needed to send the token.

Note that the average number of messages needed in a round with the
i n-i
system in state s, is l[ I j+ I j)
i n 3=1 321

.2
= %(%(i+1)i+§(n—i)(n—i+1) = %n+%;—i+l. As n and p/n tend to infin-
ity, the probability that the system is in state‘po approaches 4,
the probability that the system is in state p1 approaches <, and
the probability that the system 1is in a state Py with i22

approaches o. So the average number of messages will approach

Faned) dng-144)=dnel | o
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The case that n is odd can be analyzed similarly, and yields similar
results. Theorem 3.6. indicates that in order to decrease the average
number of messages sent in a round; other approaches to fair load-
distribution must be followed.

L, Token-based protocols for load-distribution with tokens moving in the

opposite direction as packets. The effect of token clustering that

arises in protocol T-k (k22) can be avoided in the following, simple
manner: let tokens move in the opposite direction as packets. Protocols
T'-1 and T'-k are obtained from T-1 and T-k by replacing the statement
"send a message <token> to the next node" by "send a message <token> to
the preceding node". It is easily seen that for protocol T'-1 exactly
the same bounds hold as for protocol T-1 (ef. theorem 3.1.).

The main result of this section concerns the asymptotic analysis of
the average performance of the protocols T'-k for k22, with finite Mar-
kov chain theory. The protocols appear to have a fairly ideal
behaviour. Not only the effect of token-clustering is avoided, but
tokens that have a small distance to each other will have the tendency
of 1increasing the distance to each other. The analysis shows that the
protocols T'-k indeed decrease the (asymptotic) average number of mes-
sages required for load-distribution, while the maximum number of
records stored at a node (by a given p) shows only a very small

increase.

Suppose the records travel in counter-clockwise direction on the
ringQ Thus, tokens are sent in clockwise direction according to the
instructions of protocol T'-k. Number the tokens consequtively, 1in
counter-clockwise direction (i.e. the direction in which records
travel), from 1 to k. Let a? denote the distance of token i to token
(i+1) after t rounds, measured along the ring in the same direction, az
denotes the distance of token k to token 1. Note that always ; af

, i=1
If, after the ¢t'th round, a§=ai for 15isk and certain ai (1isk) with

=n,

~

z a; =n, then the system is said to be in state Sa a

i=1 1 k
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The probability that the system is in state Sa a after t rounds is

denoted by pt S . ! K
a,...a
1 Kk
@ i = token with number i
Q = node
Figure 4.,1. A system in state S : . (k=4, n=8).
0,1,2,5
If the system is in state Sa : with aiz1, then the (i+1)st token can

move if one of the nodes1on the path from the node, next to the node
containing the i'th token, to the node containing the (i+1)st token

receives a record M in this round from an external source. The proba4

a
bility of this event is precisely ;} . As a result of the event aiﬂt+1
- ai+1t+1 and ait+1 - ait41; and the resulting state is
S , . (If 1i=k, then s_ - _ _ denotes
sa1"fai-1?i+1+1"'ak) a,...8y 1ai+1+1...ak

a1+1~ 35008, 43, 4

Theorem 4.1.

k
i) For all a1,;.;ak 2 owith I a, =nand t2o,
i=1
a
t+1 t o . i+
a1...a 1313k Pa....a +la -1...ak n °

k ai+121 1 i i+1
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ii) For all t2 o, Z p: = 1, where the summation is taken over
1’oock
N k
all a1,...,ak 2 owith I a;=n.
i=1

The system of tokens is seen to be a finite Markov chain, which is
ergodic and has period k. For the asymptotic average behaviour of the
system we have to solve the following system of equations characterizing

an eigenvector of the matrix of transition probabilities as required:

-p, 1$§Sk P, R L
Bpevedy o T gy Bqeeedp tla - liia n
i+
for all a,,...,a, 2 owith ¥ a, =n (1)
1 k {=1 i
(%)
-1p, . =1, where the summation is taken over all a yeessd 2
a1...ak 1 k
k -
owith I a, =n, (2)
=1 1

From Markov chain theory it follows that this system of equations will
have exactly one solution, and the p ..a characterized by the system
of equations denote the asymptotic ave}age 5robability that the system
is in state s, - .

1 k

Theorem 4.2. A solution to the system of equations (¥*) is:

D _ n! 1 ’
- —
a1...ak a1....ak! kn
o k ,
for all a,,...,a, 2 owith £ a, = n.
1 k i
=1
. . . 1
Proof. Use the well-known fact that oSa1...ak E_TlL—E—T = kn.
k 1..0. k.
LI a,=n

=1 1
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Now equation (2) follows immediately. Further we have for all a1,;..,a

K Kk
2 owith ai=n
i=1
) a,+1
n! i
18isk -
a,l...(a,+1)!(a, ,-1)!...a 1! n
ai+121 1 i i+ k
; n! 141 _ n! . ; 4141 _ n! 5
] ] 1 ] . ! 1 - 1 [
f=1 a1....ai. ai+1....ak. n a1....ak. i=1 n a1....ak.

Theorem 4.3. The average number of steps a record must go according to
protocol T'-k until it arrives in a node with a token is equal to
1

Ek(n 1).

Proof. If the system is in state s e then the average number of
steps a record must go (in that roun&) un%il it arrives in a node with a
token is
a,-1
Kk i k a,(a,-1)
1 . it7i
o Eo P ods I
i=1  j=o i=1

So the (total) average number of steps a record must go is equal to:

o k aj(aj—1)
8,...8,2 0 p. e I e =
1k k a1...ak j=1 2n
L a,=n
i=1 1
Z k a.(a,~1)
a1.. akz 0 31 n!a : ;% . X J Zg =
K 17"k’ k J=1
Z a,=n
i=1 1
k a,(a,-1
I a,"-é,g fo) ___Ei___ . .J_ ._ii_l__l =
cee ;
j=1 1k k a1...ak. kn 2n
I a,=n



)
. n! 1
S R ) w ern i “n 2n =
k k
k
.Z ai=n
i=1
)
>
3 22 (n-2)! A N S
- [} -
a,. akz o (a1 2)!a.!...a ! K 1 2
k
.Z ai=n
i=1
a1 a 2o a an-2L!' ﬂtl ’ n;1 B
o o0 k 1 L ) k. k
k
.Z ai=n—2
i=1
n-2 1 n-1 1
k otttk (D o

Consider theorem 4,3, for the situation that k|n and the system is in

state Sn n - n° i.e;, the tokens .are equally spread out over the ring
Kk otk
at distance PR In this "best possible case", the average number of

steps a record has to g0 until it arrives in a node with a token
is %(E -1), which differs less than % (1) from the calculated asymptotic
average bound for the algorithm T'-k.

: N i
{r'% T, L E 1} for a1l 1, 1sisk. The following bound are valid for

protocol T'-k:

Theorem 4.4, Assume the system starts in a state S, g » With a e

1) the worst-case maximum number of records stored at a node is % + 4k
+ 0(1).
ii) the worst-case number of messages sent in a round is n.
1ii) the (asymptotic) average number of messages in a round is
5%(n¥1) * 1. (n fixed and p tending to infinity).

The assumption in theorem 4.4. is only necessary for (i). As we start
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in a balanced state, it means that also for small round number t, the
average number of messages sent in a round will be close to -—(n-1) + 1.
It is currently open to give a good estimate for the (asymptotic) aver-

age difference between % and the maximum number of records stored at a

node.

5. Token-based protocols for load4distribution with tokens going in both

directions. In this section we will briefly consider protocols for the
load-distribution problem with two types of tokens: tokens that travel
in the same direction as the records, and tokens that travel in the
opposite direction. We will only analyse the situation Wwith one token
of each type. To obtain the best possible bounds, we assume that the
tokens start in neighbouring nodes, as in figure 5.1,

Figure 5.1, Tokens start in neighbouring nodes and go in
opposite directions.

Protocol TT'.
Each node v has boolean variables left(v), right(v). Initially there is
exactly one node v with left(v) = true, all other nodes have left(v) =
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false, the right neighbour of this node has right(v) = true, all other
nodes have right(v) = false.

If v receives a record M, either from another node or, at the
beginning of a round, from an external source, then v executes:
if left(v) then left(v):=false;

send <left> to left neighbour;

store M
elif right(v) then right(v):=false;

send <right> to right neighbour;

store M
else send M to right neighbour
endif.

If v receives a message <left>, then it executes:
left(v):=true.

If v receives a message <right>, then it executes:
right (v):=true.

Lemma 5.1. After the t'th round the distance of the "left"-token to the
"right"-token is (t+1) mod n (measured in the direction of the packets).

Proof. Use induction on t. For the distance between the tokens it is
unimportant whether the "left"-token moves or the "right"-token

moves. a

Theorem 5.2. The following bounds are valid for protocol TT':
i) The worst-case maximum number of records stored at a node is
B,
ii) The average difference between this maximum and p s +(1 - %).
iii) The worst-case number of messages sent in a round is n.

iv) The average number of messages sent in a round is ln + 2 + 3, in

! 3 3n
the long run.
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1),ii) Each node has either [ % Tor | % 1 packets stored.
iii) Trivial,
iv) If the distance of the left token to the right token is i, then on
the average a record must g0 1(1-1) + (n-1)(n-1-1) steps, in that round,

2n 2n
until it arrives in a node with a token, If i=o then the average dis-

tance is 4(n-1). From lemma 5.1. we have that each of the distances
between the tokens o,1,...,n-1 appears equally often (in the long run).
So the total average number of steps needed until a record arrives in a
node with a token is

n-1 n
i(i- -1 ie(i-
p D GG eI neen) o L p (o) gy
i=0 i=0
_nm+1)(@n+1) 1.1 2 4
= 2 Ttm Pty ot

6n

One extra message is needed to move the token. o
Note that each of the bounds for protocol TT' are equal to or better
than the corresponding bounds for protocol T-1 or T'-1; the average

number of messages is smaller by a factor of about 1.5.

6. Load-distribution by "direct placing". 1In this section we Wwill exam-

ine the trivial protocol that Just stores a record in the node that

receives a record from an external source.

This simple protocol uses no messages; the worst-case number of
records stored at a node is p (if packets always arrive in the same
node). Thus, the main problem in analyzing this protocol is the
expected maximum number of packets stored at a node (for a given p). We

can reformulate the problem as follows:

Suppose we have n urns and p balls. For every ball an urn is
chosen at random (with for each urn a probability 1/n that it
is chosen). What is the expected number of balls that is in
the urn with the largest number of balls?
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We denote this expected number by Ep We know of results on related
problems (see e.g. [1], [2] or [3]) but we do not know of results that
give estimates or even exact expressions for Ep For even p one can

derive an exact expression for Ep (i.e., the case of two urns).

e p_b, ~P_
Theorem 6.1. For p even, Ej = 3 ( 3p ) T

Proof. The probability that the first urn contains i balls and the
second urn contains p-i balls is (f)/2p§ So

p p P,
ED - (E?max (1,p-1) ) = 2. ; (Eli + EiEZ___éE

2 i=o > i=dp+1 2P 2P
2 1 (P1)2 . B ()
i=dpr1 17T TP P p
p‘I( P-1yp P (P ) s+ (P ) p
-1 B - T
jmo I P * 5P*1° 4p LR ¥ oP*1 -

The following results enable us to obtain estimates for Ep for all p and
n.

Theorem 6.2. Let k|n. Then EE S E Eg .

Proof. Simulate the experiment with k urns in the following way: First
carry out the experiment with n urns (and p balls). Then we add
together the balls of the first E urns, the balls of the next E urns,
ete. So urn i in the final experiment contains the balls of urns
E(i—1)+1 to E-i of the first experiment. Now each ball has a proba-
bility % to be in the i'th urn, for all i, 15isk; and the choices of urn
for the balls are independent of each other. So this is a correct way
to simulate the "E£¥experiment";

If the maximum number of balls in an urn in the experiment with n
urns is m, then the maximum number of balls in an urn in the experiment

n, P.n_p
with k urns is at most K m. So Ek < k En . 0
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Theorem 6.3. Let n be even. Then
P

p-E
2 (4n-1)

= Bt n-1

P 5 P
E2

23992; We simulate the experiment with 2 urns as in the proof of
theorem 6,2, First carry out the experiment with n urns and p balls,
Then choose % urns at random; and add the balls of these urns together.
Also add the balls of the remaining urns together. Again each ball has
probabilities 4 to be in the first, or in the second set, respectively,
and the choices for the individual balls do not depend on each other,.
So this is a correct simulation of the experiment with 2 urns and p
balls,

Let the balls be numbered 1...p. There is a unique urn X (after
the first experiment), with the following properties:

- no urn contains more balls than X does

- no urn that contains the same number of balls as X, contains a

ball with a higher number than the highest numbered ball in urn X,
(We need the last constraint to have a unique urn X which contains the
maximum number of balls.) Let X contain m balls. The number of balls
in the set where X belongs to, averaged over all possible choices of g
urns is m + %E% (+ n-1).

(Note that each of the 4 n-1 urns « X in the set contains on the average

p-ED
pm ' p P 2 (3n-
n=7 balls). Hence E; 2E) + - (3n-1). o

Lemma 6.4, Eg + % s Ep;1 < Eg + 1,

. . . 1
Proof. First do the Es-experiment, and then add the (p+1) st ball. The
probability that this ball is in an urn with the maximum number of balls
(so the ball increases the maximum by 1) is at least %; The maximum

will never be increased by more than 1. o
Definition. For all p, n 2 1, let xP = ED - k.

Theorem 6.5. Let n 2 2. Then

n-1 ,p p n+l .p
n xn+1 < xn s n Xn—1
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35295; The experiment with n urns and p balls is simulated as follows:
do the 'E§+1;experiment'; and then take urn n+1 and choose for each of
its balls randomly one of the first n urns (each urn with probability
1/n). The expected total number of balls in an urn now again is Eg.
Number the balls 1...p. Again there is a unique urn X with the
following properties:
- no urn contains more balls than X does,
- no urn that contains the same number of balls as X; contains a
ball with a higher number than the highest numbered ball in urn X,

with regard to the outcome of the first experiment (with n+1 urns).

The probability that X is one of the first n urns is H%T; Suppose
it is one of the first n urns. The expected number of balls in X is
-gP
Eﬁ+1; The expected number of balls in urn (n+1) now is n+l So, the
expected number of extra balls, added to urn X in the last stage of the
p—Efm
experiment #s - . This means that the expected number of balls in
n
P p—E§+1
urn X after the last -stage of the experiment is En+1 + >

n
If urn X is urn (n+1), then note that the maximum number of balls
in an urn after the last stage of the experiment is at least g.

p
p-E
Pl (P)y,._n (.p n+1
So En 2 n+1 ( nJ * n+1 (En+1 * n2 )
- P__ 4P
=1£+n(p+xp +p n+1 Xn+1J__1
n+tl n  n+1 ‘n+ n+1 n2 T n+
_bp n—1_ P - p n-1 .p
=gt - Xn+1, and hence xn 2 o Xn+1 .

P n+l .p
Similarly Xn Y - Xn+1. |
Theorem 6.6. Let p be even,

i) If n is even, then

Ryl (p P¢P,n1lp(p
n g lp ) sE s 5 Up)
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ii) If n is odd, then

P, 1 P (p P<P -1y e (p
n " nH P (%p) SE S n "t (1 n2) P (%pl )

Proof.
1) From theorem 6.3. one derives (by elementary formulamanipulation)
that xfl <2 “—;1 xg; The desired inequality now follows from this

fact and theorems 6.1 and 6.2,

11) Use the previous result and theorem 6.5. o

For odd p, an estimate of Eg follows directly from lemma 6.4, Also,
note that by using Stirling's approximation formula:

1
5P
37v2 <D (P2

Theorem 6.6. shows for the trivial protocol that the maximum number

of records stored at a node will be £ + 0(y/p), on the average.

n

7. Load-distribution under insertions and deletions. An interesting

question is how deletions can be handled. To model this situation we
assume that at the beginning of a round two different types of record
can arrive: records that have to be inserted (stored at a node), and
records that have to be deleted (removed from the node where it was
stored earlier). Clearly; for a deletion, one always needs to find the
node where the record is stored first: this costs n-1 messages in the

worst-case and 4n messages in the average case.

As before we let p denote the total number of records that are
presently stored on the ring; and we let q denote the number of records
that were inserted, but deleted later (and thus are no longer stored).

The total number of insertions that has taken place thus equals p+q.

We will consider two approaches to deletions. First we consider
the trivial protocol that handles a deletion by removing a record from
the node where it is stored, and does nothing further. Next we consider
a protocol that also moves records from one node to another node; in
order to maintain a (more or less) uniform distribution of the records
over the nodes. For the average case analysis we assume that all
records are equally likely to be deleted.
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First assume the trivial deletion protocol is used in combination
with the trivial insertion protocol of section 6. It is obvious that
records that are inserted and later deleted do not influence the number
of records stored at any node after the deletion of the record. So the
maximum number of records stored in a node will be Ep which can be

estimated as in section 6.

Next we consider the case where the trivial deletion protocol 1is
used in combination with one of the protocols of sections 3, 4 and 5
(protocols T-1, T-k, T'-1, T'-k or TT'). For this case wWe observe the
following. Consider the experiment of section 6 and let Fp denote the
expected minimum number of balls in an urn (when n urns and p balls are
used in the experiment). Let f(p,n) denote the average difference
between p/n and the maximum number of packets at a node with the inser-
tion algorithm that is used, if there were only insertions. We fix a
moment t in time, and again let p denote the number of stored records

and q the number of records that were once inserted, but deleted later.

Lemma 7.1. The expected maximum number of records stored at a node is at
most

b+q - pd
Tt f(p+q,n) Fn .

gggg£§ The expected maximum number of records that are inserted at a
node (so are stored presently or were stored previously and were deleted
thereafter) equals ng + f(p+q,n). If for each node the probability
that a record is deleted from that node is equal, then the expected
minimum number of records deleted from that node 1is equal, then the
expected mimimum number of records deleted from a node is Fq However,
this probability is proportional to the number of records stored at a
node, 830 nodes with a larger number of stored records will have a larger
expected number of deleted records. Note that this will result in an
expected maximum number of records which will be (slightly) smaller than

P*q ny - r4
ot f(p+q,n) Fn . o

Fd can be analysed similar to EY, We write F9 - B _ YP,
n n n_ n n
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Theorem 7.2.

o

o
—

o)
—

i) Let p be even. Fg A

2 ,p*1 Y4p
. © SP,n . _p
ii) Let k|n. Fp 2% F -
P ¢ oD PEp
1ii) Let n be even. F2 S Foo+ = (4n-1) .

iv) Let n 2 2. 2ZyP 4P, ntlip
n "n+l n n n-1

p .1 p+1 P ..
v) Frl t o < Fn < Fn +1,

p P_
i1), iii), iv), v) Similar to the analysis in section 6. o

Proof. i) Use F

Theorem 7.3. Let p be even.

P_nlp(p bbb _
i) If n is even then = TP (%p) < Fn < -

i R _ -1y b (p P
ii) If n is odd then n (1 nz) ( ] s Fn s

Slo

__1__19_(9)
n+1 p 4p’t

For odd p, theorem 7.2.(v) shows how ?o obtain extimates for FP with

e -sp v2 D (4P V2 :
theorem 7.3.  Again we note that e 3 75 Vb s 5 (fp) S 75 /p. Now we

have the following result.

Theorem 7.4. The expected maximum number of records stored at a node is

V2 , -
at most g + f(p+q,n) + 7ﬁ-/q.

Proof. Use lemma 7.1.

p+q n) - rd < P*q -(9-4 (4q P
T + f(p+q,n) Fos o * f(p+q,n) (n 2 (%q)) s n * f(p+q,n)

V2
ma.

]

Finally we consider a load-distribution protocol that tries to
maintain a balanced distribution of the records over the nodes after
each deletion by moving a record from some node to the node where the
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record was deleted (in general).

The protocol is used in combination with a protocol T'4k; for some
k21. The tokens used for insertions in algorithm T'-k are also used for
deletions. For a deletion of a record M the algorithm proceeds as fol-
lows. First the node v is found where the record M is stored, and must
be deleted. Then we find the first node preceding v that contains a
token. This token is moved to the next node (i.e., in the direction in
which records move under insertions). From this (next) node, a record
M' is deleted, M' is moved to the node v where M was stored and M' is

inserted at v.

Protocol DT-K.

Each node v has a variable tokenc(v), as in protocol T-k, and a
boolean variable gap(v); which is initually false for all nodes v.

For insertions protocol T-k is used.

If v receives a message <delete; M>, either from another node or,
at the beginning of a round, from an external source, then v exe-
cutes:

if M is stored at v then delete M,

gap(v):=true:

send <find token> to preceding node
else send <delete, M> to next node

endif.

If v receives a message <find token>; then v executes:

if tokenc(v) > o then tokenc(v):= tokenc(v)-1;
send <collect> to next node

else send <find token> to preceding node

endif.

If v recelives a message <collect>, then v executes:
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tokenc(v):=tokenc(v) +1;
if gap(v) then gap(v):=false
else delete a packet M' from v
send <fillgap, M'> to next node

endif.
If v receives a message <fillgap, M'>, then v executes:

if gap(v) then store M' at v;
gap(v):=false
else send <fillgap, M'> to next node

endif.

The following properties are invariants for the protocol after each
completion of a round:
- gap(v)=false for all nodes v,
- the total number of tokens is k () tokenc(v)=k, where the sum is taken
over all nodes v.)
However, to prove thg protocol correct we need to show that always a
packet M' exists when a collect message is generated. To show this,
follow individual tokens as insertions and deletions take place. In
each round, one of the tokens moves to a neighbouring node. For each
node v, let ¥(v) be the number of tokens for which v lies on the path,
starting with the node after the token, upto and including the node
where the token initially started, in the direction in which insertion

records travel. An example; with 2 tokens is given in figure 7.1.

Lemma 7.5. The following property 1is invariant under algorithm DT-k
after each completion of a round:
- there is a j2¥k such that each node v has exactly V¥(v)+j records

stored.

Proof. First we note the property is initially true: note that ¥(v)=k

for all nodes v.

If in a round t a record is inserted in a node v, then there are

two cases:
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A: node where token 1 started
initially

B: node where token 2 started
initially

i: token with number i

Figure 7.1. An illustration of the function ¥(v). With each
node v the number ¥(v) is shown. The arrow shows

the direction in which insertion records move.

= Vv 1s not the node where the (moving) token initially started. Then
the path, starting with the node after the token to the node where the
token initially started, is extended by the node v, hence ¥(v) increases
by 1, and for all other nodes w ¥(w) does not change. The invariant is
again valid after the completion of the round.

- v is the node where the moving token initially started. ?hen the path
contains after the round only the node v, where formerly each node on
the ring was on the path (from the node after the token to the node
where the token initially started.) So ¥(w) drops by 1 for all nodes w
*= v, but ¥(v) does not change. By increasing j by 1, one sees that the
invariant is again valid after completion at the round.

A similar analysis can be given for deletions. 0o

It follows that if a node v does not contain a token, then it has at
least the same number of records stored as the next node. This shows
that if a node v receives a <collect> message and not(gap(v)) holds,
then there is at least one record stored at v (so there exists a record
M' that can be deleted from v.) Without much difficulty one obtains the



;32;
following result.

Theorem 7.6. Assume the system starts in a state Sa o with for all
i, 1sisk, a, € {r'% T, L E 1}, i.e. the distance Betwebn each pair of
'neighbouring' tokens is ['E 1 or | E ]. The following bounds are
valid for protocol DT~k:
i) The worst-case maximum number of records stored at a node 1is
By gk +o(n).
ii) The worst-case number of messages sent in a round with an insertion
is n.
iii) the worst-case number of messages sent in a round with a deletion

is 3n-1.

The average number of messages needed in a round of protocol DT~k can be
estimated in the following way. Suppose that in a certain round t a
record is deleted. The probability that a certain token i moves in that
round (to the next node) is proportional to the total number of records
stored at the nodes on the path from the node with token i to the node,
immediately before the node with token i+1. (So if this total number of
records is p', then the probability is p'/p.) The numbers ¥(v) range
between o and k, so if p/n becomes large, the probability becomes
approximately proportional to the length of the path between the tokens.
If we assume that this probability is exactly the length of this path
divided by n, then the resulting model can be analyzed similar as in
section &, For instance, one can easily derive, that - given that in

round t+1 a deletion occurs - for all a1;:;ak20

) a, .+l
:+1 ‘= 151k p: ..a,-1a, .+1...a i:: .
1°°° %k a,z21 171 i+1 ** %k

i

As in section Y4 one can derive that the average probabilities that the

1

g approach = n.a 7 ; if the number of
1¢uok 1-... ko k ')

insertions (and deletions) becomes arbitrarily large. If follows that

system is in state S

an insertion costs approximately n/k +0(1) messages on the average, and’

a deletion costs #n + %? + 0(1) messages on the average.
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(In our analysis we always assumed that one never tries to delete

records that are not stored in some node.)
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