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VERY THIN VLSI-LAYOUTS OF COMPLETE
BINARY TREES*

Jan van Leeuwen and Richard B, Tan¥¥

Department of Computer Science, University of Utrecht
P.0.Box 80.012, 3508 TA Utrecht, the Netherlands

Abstract. We give a minimum area VLSI-layout of a complete binary tree
Tk with all 2k leaves on one edge of a rectangular chip; This layout
has the following additional properties: (i) there are no wire-
crossings, (ii) the root of the tree is accessible and (iii) it has
minimum possible width. It is shown that any minimum area VLSI-layout

of T, with all leaves collinear must have width L§j+1 and length
K42 lk/21 por ¢ even ana 24421%72171 (14 ks2]) for K oda.

1. Introduction. In his Ph.D.Thesis, Thompson developed a simple model

for VLSI-circuit design based on circuit-drawings (embeddings) in the
two-dimensional grid. Ever since, the embedding of a variety of cir-
cuits and graphs in a two-dimensional grid has been studied extensively,
under a variety of further model-constraints. Typically the problem is
to find a VLSI-layout with minimum area, minimum number of edge-

crossings and/or minimum average or maximum edge length;
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University of Utrecht in 1982, and completed in 1986 while supported by
a grant from the Netherlands Organisation for the Advancement of Pure
Research (ZW0).
¥*Author's address: Department of Mathematics and Computer Science,
University of Sciences and Arts of Oklahoma, Chickasha, OK 73018, U.S.A.
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Of particular interest is the layout problem for complete binary
trees, because of the many applications of complete binary trees as com-
putational structures. For instance, a complete binary tree can serve
as a hardware structure for searching [1], databases problems [8] and
general purpose multiprocessing [4]. (See [2] for a survey and refer-

ences to further applications;)

Let Tk be the complete binary tree of depth k and n=2k leaves.

Mead and Rem [7] have shown that one can embed T, in O(n) area using the

well-known "H"-pattern; However, the "H"—layoutkhas only a small number
of leaves on the boundary of the chip. There may be good reasons to put
the leaves on the boundary; for example; when input/output is done
through the leaves. Brent and Kung [3] have shown that it is not possi-
ble to design a complete binary tree layout of O(n) area with all the
leaves on the boundary§ In fact they show that O(nlogn) area is needed

Jjust for accomodating all the wires on the chip:

In this paper we study the question of embedding a complete binary
tree Tk in optimum area with all leaves on one side of the rectangular
boundary. In section 2 we give the exact lower bound for the thinnest
possible width of a chip layout of Tk. An optimum layout when all
leaves of Tk are packed as close as possible on one edge of the chip 1is
also given. In section 3, we develop an optimum layout for a complete
binary tree with all leaves on one edge of the chip with minimum width

and no wire—crossing: The width of the layout of T, is precisely L§J+1,

51~

k

and its area is ([gj+1)(2k+2 ) for k even and ([gj+1)

ts
ky_
(2K+2 2

for embedding any T

(1+L§])) for k odd. Section 4 concludes with the optimum area

K with collinear vertices on a rectangular chip.

2. Minimum area embedding of a complete binary tree with all leaves

packed tight on one edgeQ This section contains preliminary results

that are needed later on.

Let s(k) be the length of the short side and 1(k) the length of the
long side of a rectangular chip containing an embedding of a binary tree

Tk of depth k. We first give an exact lower bound on s(k).
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A lower bound of s(k)2[k/2] is stated by Leiserson [6]. A careful
analysis yields the bound of s(k)2|k/2]|+1, and we show that this bound
is achievable. We prove the result here in detail, as the technique

employed will be used repeatedly;
Theorem 2.1. s(k)2|k/2[+1.

Proof.

We follow the proof by van Leeuwen [5], with a slight modification.

Let the columns of the long side be numbered 1,2,3, ... . Now define

J;ej) with j=0,1,2,
< ' > S i <

» such that (i) do-d1$ eee 5 (11) eo-e12 eee 5 (iil) dj'ej’ (iv)

every vertical line positioned between columns dj and e, cuts through at

inductively a finite sequence of pairs of columns (d

J
least j independent paths in Tk and (v) there is a subtree Tk_2j which
does not contain any of these paths and whose leaves are all located in

columns dj through ej.

Taking do=1 and e0=1(k) gives a correct start. Assuming that dj
and ej have been defined, the next pair is obtained as follows.

Consider the Tk-2j subtree that is associated with the jth pair (in

. \ i
k-2j-2 s. Let dj+1 be the first

column Zdj which contains a leaf of one of these subtrees and 1let e

clause (v)) and split it into four T
J+1
be the 1last column SeJ which contains a leaf from a different one of
these subtrees. The path connecting the two leaves through the root of
Tk-2j (see figure 1) will be a (j+1)St path independent of the previous

J and any one of the two T subtrees that do not contain one of

k-2j-2
these leaves will satisfy clause (v).
A next pair can always be obtained as long as the subtree Tk—2j can
be splitted into another four Tk-2j—2's' Let J be the largest index for

which a pair is obtained. Then k-2J=0 or k-2J=1 depending on whether k
is even or odd, respectively. We thus have J=|k/2| independent paths.
Furthermore, by construction; there is at least a leftover subtree TO
(if k is even) or T1 (if k is odd) which does not contain any of these J
independent paths. The vertical line that cuts through a node of the

leftover To or T1 must pass through at least Lk/21+1 squares of edges



and vertices. o

Figure 1.

Note that the above proof holds whether the leaves of the subtrees are

interleaved or not.

Theorem 2.2. The bound of s(k)=|k/2]+1 is exact.

Proof.

The rather complicated algorithm for generating the actual embed-
ding of T with s(k)=|k/2]+1 will be given in section 3. Figure 2 shows
the embeddings of the first few k. o

T0 (o}

T1 O O——0

T2 e} O —0

T3 Li i 0. i i O
Figure 2.

Note that all the leaves in the minimum width embedding shown are
located on the border as is the root, thus making the root very accessi-
ble. Most of the leaves are on one edge of the long side and can be

arranged so that all the leaves are collinear. Furthermore, the layout
contains no wire-crossing;
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For the remainder of the paper we assume embeddings of Tk have all
the 1leaves on the border of the chip and in fact collinear. Also the

root must be easily accessible and located on the border.

We now ask the question: If the leaves of 'I‘k are packed as tight as
possible on one edge of the chip, what is the optimum layout?

As there are n=2k leaves in T the long side of the chip must

k’
satisfy 1(k)22k. It turns out that the short side s(k) can no longer be

the minimum given in section 2; but it need not be much larger;

Theorem 2.3. If Tk is embedded with collinear leaves in a rectangular

chip of dimensions 2x s(k) then s(k)z|k/2]+2, kz1.

Proof.

By applying the technique in theorem 2.1 of successively splitting
Ty into four Tk—2 subtrees with k22, we arrive at the following. There
are at least |k/2| independent paths with the last remaining subtree
being T, if k is odd or |k/2]-1 independent paths with the last subtree
being T2 if k is even. Now if the leaves are to be packed tight, and

collinearly on one edge of the chip, then T, requires at least 2 more

1

rows and T2 at least 3 more rows (see figure 3). Thus altogether we

must have at least |k/2]+2 rows. o

Figure 3.

The bound on s(k) for this case turns out to be again exact.

Theorem 2.4. Tk can be embedded with collinear leaves in a rectangular
chip of dimensions 2*x s(k), where s(k)=|k/2|+2, k21. Furthermore, the

root of Tk is located on the edge and there are no wire-crossings.

Proof.
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It it easily verified that T1: T._j satisfies the condition. We
proceed by induction on k. Assume we can construct the required embed-
ding with s(k)=|k/2]+2 for T, , k21. If k is odd then s(k+1)=s(k)+1, so

k’
the short side increases, and we can construct Tk+1 as in figure 1.
Note that the root does not lie on the last column of the chip; If k is
even then s(k+1)=s(k) and we cannot increase the short side. Tk+1.can
be constructed as in figure 5 by joining two Tk's constructed for the
case k odd as in figure 4. D -
ok ok 2k ok~
S (k) Tk' Tk i
I;————————l Tk,i I ; I iTE--
Figure 4. Figure 5.

Corollary 2.5. 1If Tk is embedded in a rectangular chip with all the
leaves packed tight on one edge of the chip, then the minimum area is

([ks2]+2) -2K.

3. Minimum area embedding of T, with minimum width and all leaves on one

edge of the chip; We now concentrate on the construction of embeddings

of T, with the thinnest possible width, i.e., with s(k)=|k/2|+1. The

leaves of Tk are assumed to lie on the border of the chip and can be

made collinear, but are no 1longer required to be packed "tightly".
First we shall compute the minimum 1length 1(k) and then provide an

optimum layout;

It is convenient to distinguish two cases and to settle the ques-

tion for even k first.
Case I. k is even.

Theorem 3.1. If k is even and s(k) is minimum then 1(k)22k+2lk/21—1,
k22,

Proof.
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By applying the technique in theorem 2.1 and succesively splitting
Tk into four Tk_2 subtrees we eventually obtain Lk/21-1 independent
paths with the last remaining subtrees being T2. Each time we split a

Tk; we obtain two more T subtrees that are left untouched by the pre-

vious independent paths.k Se can apply the splitting technique recur-
sively to both of the remaining subtrees. Thus at the end of |k/2]-1
splittings; we have 21-k/21_1 T2 subtrees that are obtained in this
recursive process; Now there are two more rows left to accomodate these
T2's§ The thinnest embedding of T2 that uses two rows requires an extra
column to accomodate the root of T2 (see figure 2).

Thus altogether we have 2k leaves plus 21-k/2l_1 extra columns for
the roots of the remaining T2's; n]

Theorem 3.2. For k22 and even, there is an embedding of Tk with col-
linear leaves in a rectangular chip of dimensions s(k)x 1(k), where s(k)
is the minimum width |k/2|+1 and 1(k) is the minimum length 2"+2Lk/21'1.
Furthermore, this embedding has no wire-crossings and has the root on an

edge of the ohip;

Proof.

We construct the layout inductively on k. For k=2, 1(2)=5 and

figure 2 provides a correct layout. Assume we can embed Tk for even

k22. Then Tk+2 can be constructed as in figure 6.

2k 1(k)  1(k) ok,
T T | k-
T 1: k Ty s (k) +1=s (k+2) =} |+2
Figure 6.

The two middle Tk's are obtained from the induction hypothesis, with no

Wwire-crossings and the root located on the edge, and the two outer Tk's
are the subtrees derived from theorem 2.4 where the leaves are packed

tight. Note that in the construction of the embedding for Tk in theorem
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2.4 (cf. figure 4) the root node is accessible to the left or right.
Finally, observe that l(k+2)%2-2k+2-(2Lk/21—1+2k) =2k+2=2L(k+2)/21'1, as

claimed. o

Corollary 3;3; For k22 and even, an embedding of Tk with collinear

leaves in a rectangular chip with minimum width has minimum area
(/2] +1)x(2Xs2 k72115

Case II. k is odd.

We now settle the case for odd k. Unfortunately; a proof and con-
struction similar to the preceding case will not work for odd k. This
is because the root of Tk for odd k is not accessible to the 1left or
right as we will show below (compare the construction in theorem 2.4,
ef. figure 5). Thus we cannot apply a similar construction as in
theorem 3.2 (ef. figure 6), and apparently the outer two Tk subtrees can
afford to have all their leaves packed tight. We formalize this notion

precisely in the following proposition.

Proposition 3.4. For k23 and odd, in any embedding of T, with all the
leaves packed tight on one edge of the chip, i.e., l(k)=2k and s(k)=

|k/2|+2, the root of T, is not accessible to the left or right.

Proof.

Note that the dimensions stated are minimum for embeddings with
tightly packed 1leaves on one edge; as given in corollary 2.5. Suppose
by way of contradiction that there is an embedding of T for some k23

k
and odd which has the root accessible to the left or right, say as in

figure 7.
2k 2k 1 2k
s(k) | Root | o fpads }s(k)
Figure 7. Figure 8.

We can now construct an embedding of Tk+1 by joining two of these odd
Tk's together and adding an extra column for the root of Tk+1’ as in
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figure 8. Note that s(k)=|k/2]+2=| (k+1)/2]+1, as k is odd. This is the
. But theorem 3.1

k+1 [ (k+1)/2]-1" k!
claims that 1(k+1)22 +2 , Wwhereas the constructed embedding

has 1(k+1)=2+142K0K*1,

minimum short side required for any embedding of T

1. Contradiction. o

The proposition implies that we definitely have to follow a dif-
ferent construction. As the width s(k) is minimum and fixed, we must

increase the length 1(k).

Theorem 3.5. If k23 and odd, and s(k) is minimum, i.e., s(k)=|k/2|+1,

then 10022%+2%21" (14 |k/2]) for any embedding of T, with all leaves

on one edge.

Proof.
By successively splitting Tk into four Tk_2's we obtain a sequence
1 3 i 1
of Tk—2j s for j from 1 to |k/2], where the inner pair of the Tk_2j s

occupy space of minimum width and the outside pair have one extra row

space.

We first count the number of extra columns (columns that contain no
leaves) needed in the embedding.

Claim 1. There are at least ZLk/Zl extra columns needed in the embed-
ding.

We get this by successively splitting the two inner Tk_zj's for j

from 1 to |k/2| until we have only T,'s left. This requires |k/2| steps

and thus we have at the end 2]-k/21 T1's obtained from the inner sub-

trees. Now there 1is only one row space left to accomodate these T1's

and thus T, must be 0—o0—o. In other words, one of the column spaces

must be taken up by the root of T1; Hence the claim.
Next, we proceed to count the extra columns needed in the outer

t 3 -

Tk_2j s for j from 1 to |k/2]-1, where the last one is T3.
. |k/72] -1

Claim 2. There are at least 2 *(|k/2]|-1) extra columns needed to

accomodate the outer subtrees. Note that the above extra columns are in

addition to the ones in claim 1.
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According to proposition 3.4, even though each outer Tk—2j for j
from 1 to |k/2|-1 has an extra row space, the root of the subtree is not
accessible to the left or right; Split each of the outer Tk_zj's for J
from 1 to [k/2]-1 into two T ,s 4 subtrees. At least one of the T, _
pj-1'8 for j from 1 to |k/2|-1 must have one less row space on account
of the accessibility of the root to the left or right. Thus the short
side available for this Tk—2j—1 is the minimum width. As k-2j-1 1is

even, the extra columns needed to accomodate this Tk—2j—1 is at least

2L(k'23'1)/21’1 - 21k/21=371 by theorem 3.1. At each splitting of the
Tk-2j subtrees for j from 1 to |k/2]-1 there are 2J outer Tk—Zj's’ thus
we have 2Lk/21-1 extra columns for each splitting and the claim follows.

Summing the extra columns in claim 1 and claim 2; we obtain
21-‘(/2-l+21-k/21—1(l_k/2‘[--1)=21-k/21"1 (1+|k/2]). Adding 2% columns for the

leaves we have the theorem. O

Theorem 3.6. For k odd, there is a minimum embedding of 'I‘k with col-
linear leaves in a rectangular chip of dimensions s(k)x 1(k), where s(k)
is the minimum width |k/2]+1 and 1(k) is the minimum length. Further-
more; this embedding has no wire-crossings and has the root on an edge
of the chip.

Proof.

We construct the embedding inductively on k. For k=1, T1: 0—0—0 is

minimum. An optimal embedding of T3 is formed as in figure 9.
G N

Figure 9.

Observe that the length 1(3)=10, which is the minimum required by

theor em 3.5;

Assume we can construct an embedding of Tk as desired for some odd

k23. Then Tk+2 can be constructed as shown in figure 10.
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¢
<
S

Figure 10.
The B and B' parts are embeddings of Tk obtained by induction. The A

and A' parts are embeddings of Tk formed by using the following figure

1. -
k-1

2 1(k-1)

F k-1 Ti-1

j X i j
Figure 11.

In figure 11, the left Tk-1 subtree is constructed by wusing the con-

struction of theorem 2.4 (cf. figure 4) and has all the leaves packed
tight with length 2“"'. The right T _,
theorem 3.2 (cf.figure 6) and has length 1(k-1)=2

Thus the total length of the A part as given in figure 11 1is
Ko k72| -1

subtree is constructed by using
L(k-1)72]-1,, k-1

Observe that the length of Tk+2 is twice that of part A and B, so
that
1(k+2) = 2-(2k+2Lk/21'1)+2-(2k+2Lk/21'1(1+Lk/21))
_ 2k+2+2Lk/21+1+2Lk/2lLk/21
. 2k+2+2L(k+2)/2j—1(1+L(k+2)/21)'

which is minimum by theorem 3.5. O

Corollary 3.7. For k23 and odd, an embedding of Tk with all leaves
along one edge of the rectangular chip and with minimum width has
minimum area (Lk/21+1)x(2k+2Lk/21-1(1+Lk/21)).

4, Minimum area embedding of T, with minimum width and all leaves col-

linear.
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Let A(k) be the minimum area of a rectangular embedding of Tk with
all 1leaves collinear. Brent and Kuné [3] have shown that the area
needed to accomodate the wires of T, 1is %%ka. Thus A(k)Z%ka. In this

section we give the exact minimum area required for such a layout.

To ease our subsequent analysis, we let A1(k)=s1(k)xl1(k) be the
area of the rectangular embedding given in corollaries 3.3 and 3.7 with
minimum width s1(k)=Lk/21+1 and all leaves on one edge of the chip.
Also let Az(k)usz(k)xlz(k) be the area of an embedding with all the
leaves packed tight, where 12(k)=2k and sz(k)=Lk/21+2, as given in

corollary 2.5,
Lemma 4.1, A1(k)<A2(k), for all kz21.

Proof.

We distinguish between k even and k odd.
Case I: k is even.
Then A= A_(k)-A (k)=
2 1k k,,|k/2]-1
([k/2]+2) 2= (|k/2]+1) «(2"+2 )=

- oKHTKK2=T oty -

2k/2—1(2k/2+1-(k/2+1)),
and A >0 as 2™m for all m2o.
Case II: k is odd.
If k=1 then A2(k)=u and A1(k)=3 (ef., figure 2 and figure 4), so
A1(k)<A2(k). Assume k23,
Then A= A2(k)-A1(‘k)= .
- (lk/2]s2-25(lrr2) +1) -2 7211 (2] )
- 2K (kr2) +1) 2ealk/2l-1
- 2]_k/2j-1(2|_1</2_[+.2_(L k/21+1)2),

as k odd, k = |k/2]-1+|k/2]+2.

Again A >0 as 2m+1>m2 for all m2o. o

We can now give the exact value for the minimum area A(k).

Theorem 4.2. The minimum area of any rectangular embedding of Tk with
all leaves collinear is A(k)-A1(k).
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Proof.

Suppose A(k)=s(k)xl(k) is the minimum area. Then by theorem 2.1,
the width s(k)sz/21+1=s1(k), so that s(k)=s1(k)+x where x20. Also, the
Length 1(k)22¥=1,(k), thus 1(k)=1,(k)+y, for some yZo.

If x>0 then A(k) 2 (51(k)+x)-12(k)
A2(k), since sz(k)=s1(k)+x
A1(k), by lemma 4.1.

As A(k) is minimum, this is a contradiction. So x=0 and s(k)=s1(k), the

w

v

minimum width. But then corollaries 3.3 and 3.7 state that 1(k)=11(k).
o

Thus the minimum rectangular area embedding of Tk with collinear
leaves is actually the one with the minimum width. Furthermore,
theorems 3.2 and 3.6 give recursive layouts for such an embedding and
the 1layouts can be made with no wire-crossings. In fact the layouts
given can be rearranged such that there are leaves on all three edges of

the rectangle with the root accessible on the edge of the remaining
side.
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