THE DERIVATION OF GRAPH MARKING ALGORITHMS

FROM DISTRIBUTED TERMINATION DETECTION PROTOCOLS

G. Tel, R.B. Tan, J. van Leeuwen

RUU-CS-86—11
August 1986

'Rfuksu'mversitelt Utrecht

Vakgroep mfo’ﬂnaﬂe-a

‘Biidapestiaan 6 35840D Utrechit

.Corr. adres: Postbus 80:012 3508 TA Utrecht
030-53 1454

The Nétherlands

THE DERIVATION OF GRAPH MARKING ALGORITHMS

FROM DISTRIBUTED TERMINATION DETECTION PROTOCOLS

G. Tel, R.B. Tan, J. van Leeuwen

Technical Report RUU-CS—-86-11
August 1986

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
The Netherlands.

THE DERIVATION OF GRAPH MARKING ALGORITHMS
FROM DISTRIBUTED TERMINATION DETECTION PROTOCOLS!

Gerard Te12, Richard B. Tan? and Jan van Leeuwen.

Department of Computer Science, University of Utrecht,
P.O. Box 80.012, 3508 TA Utrecht, The Netherlands.

0. Abstract: we show that on-the-fiy garbage collection algorithms can be obtained by
transforming distributed termination detection protocols. Virtually all known on-the-fly gar-
bage collecting algorithms are obtained by applying the transformation. The approach leads to
a novel and insightful derivation of e.g. the concurrent garbage collection algorithms of Dijk-
stra et. al. [10] and of Hudak and Keller [12). The approach also leads to several new, highly
parallel algorithms for concurrent garbage collection. We also analyse a garbage collecting
system due to Hughes from our current perspective.

1. Introduction.

In the past 10 years several algorithms for so-called "on-the-fly" garbage collection have
been developed, e.g. [3,10,12,14,15]. Early papers concentrated on solutions that are as
“fine-grained" as possible, i.e. solutions that allow a high degree of interleaving of the different
processes at work. However, these papers offer no methodology for the construction of the
various algorithms. Other papers give a detailed overview of an algorithm without trying to
make it finer grained, like e.g. [12,14,15]. It seems that each on-the-fly garbage collection

algorithm has its own privat "ad-hoc" idea and there is hardly any common background in
these algorithms.

(1) This work was carried out while the second author visited the University of Utrecht, supported by a grant
from the Netherlands Organization for the Advancement of Pure Research (ZWO).

(2) The work of this author was supported by the Foundation for Computer Science (SION) of the Nether-
lands Organisation for the Advancement of Pure Research (ZWO).

(3) Author’s address: Dept. of Mathematics and Computer Science, University of Sciences and Arts of Ok-
lahoma, Chickasha, OK 73018, USA.

-2.

In this paper we aim at a general methodology for deriving on-the-fly garbage collection
algorithms. The underlying idea is to start from a simpler "base algorithm" that is correct and
well-understood, and to derive a concurrent garbage collection algorithm by transformation or
by superimposing additional control. According to Dijkstra [7], C.S. Scholten first noticed the
analogy between the problem of concurrent graph marking (the most difficult part of on-the-fly
garbage collection) and a problem in the field of distributed computation known as the distri-
buted termination detection problem [11]. We will show that solutions to the latter problem
can be almost mechanically transformed into solutions to the former, It turns out that virtually
all existing algorithms can be obtained by applying the transformation to a suitable termination

detection protocol. Several new, highly parallel garbage collecting algorithms can also be
derived by following this approach.

The paper is organized as follows. In the remainder of this section we give a brief intro-
duction to the on-the-fly garbage collection problem (see e.g. Cohen [6] for a more extensive
treatment) and the distributed termination detection problem (see e.g. Beilken et. al. [2] for a
more extensive treatment). In section 2 we present the heuristics we use to transform distri-
buted termination detection protocols into graph marking algorithms. In section 3 we apply the
transformation to the termination detection protocol of Dijkstra, Feijen and van Gasteren [8]
and demonstrate that the graph marking phase of the garbage collector due to Dijkstra et. al.
[10] is obtained in this way. In section 4 we do the same with the termination detection proto-
col of Dijkstra and Scholten [9] to obtain the graph marking algorithm of Hudak and Keller
[12]. In sections 5 and 6 we present several new, highly parallel graph marking algorithms,
based on the distributed termination detection protocols by Tan and van Leeuwen [20] and
Dijkstra, Feijen and van Gasteren [8]. In section 7 we outline a two-level "hierarchical” termi-
nation detection protocol and develop the corresponding graph marking algorithm. In the same
section we will point out that the on-the-fly garbage collection algorithm presented by Hughes
[14] is an intricate refinement of this algorithm. In section 8 we offer some final comments.

1.1. On-the-fly garbage collection.

In many applications of computer systems the data is organized as a directed graph of
varying structure. In this graph a fixed set of nodes exists, called the roots, which are the
allowable entry points of the structure. A node is called reachable if it is reachable from at
least one root via a path of edges. We refer to the subset of the reachable nodes as the data
structure. Non-reachable nodes, i.e., nodes not belonging to the data structure, are called gar-
bage nodes. A user program, also called the mutator, can add or delete edges between reach-
able nodes. The mutator never adds edges to garbage nodes, but allocates new nodes from a
list of free nodes called the heap when new nodes are needed. We assume that there is a spe-
cial root pointing to the heap, so heap nodes are always reachable. When an edge is deleted, a

-3-

node may be disconnected from the data structure and become a garbage node. Garbage nodes
can not be made reachable again by the mutator.

We assume that the computer’s memory is organized as an array of cells, each capable of
representing one node of the directed graph. From now on we will use the words cell and
node interchangeably. A cell i can have several fields (representing the data), among which is
a field children(i), containing the set of pointers to nodes to which an edge from i exists.

The task of a garbage collecting system is to identify garbage nodes and recycle them to
the heap. Most garbage collectors are of the so-called "mark-and-sweep” type. Every round
of such a collector consists of two phases. The first is the marking phase, which attempts to
color the reachable nodes different from the garbage nodes. For this purpose an extra field
color is added to each cell. This field can have the value white ("garbage") or black ("reach-
able"). (Later we will introduce some more colors and extra fields.) An algorithm for the
marking phase will also be called a graph marker. The second phase is the appending phase,
in which a sweep through the memory is made and the garbage nodes are appended to the

heap. During the second phase the marking is undone, so that the system is ready for the next
round of garbage collection.

In this paper we focus on the graph marking phase of garbage collecting systems. Mark-
ing algorithms do not really mark the garbage nodes, but rather mark the reachable nodes,
starting from the roots. At the end of the marking phase the unmarked nodes are considered as
garbage. Observe that the reverse is not always true: it will be possible in some on-the-fly gar-
bage collecting systems that garbage nodes have been marked, namely if they turned into gar-
bage after they were visited by the graph marking algorithm. These nodes will consequently
not be collected in the current round of the collector, but they will be in a next round. We
define a collecting system to be safe if no reachable nodes are ever appended to the heap.

Many algorithms for graph marking are based on a traversal algorithm for directed graphs
(see e.g. Schorr and Waite [18] or Wegbreit [22]). These (sequential) algorithms have the
disadvantage that the mutator must be "frozen" during the marking phase. These garbage col-
lectors are often called as an interrupt when the heap is (nearly) empty and can not be used in
real-time applications. In the past ten years several algorithms were developed for on-the-fly
garbage collection, in which the graph marking phase can be run in parallel with the mutator
and yet guarantee that all reachable nodes are being marked. See e.g. Dijkstra et. al [10],
Ben-Ari [3], Hudak and Keller [12] or Hughes [14]. We will be studying on-the-fly garbage
collection in considerable detail in this paper.

It is useful to distinguish several computational models for the on-the-fly garbage collec-
tion problem. In the early papers the problem was considered for the classical von Neumann
type computer (cf fig. 1). There is one central processing unit, having access to one array of
memory cells and this processor runs the mutator program as well as the garbage collection
program. Dijkstra et. al. [10] considered the possibility of using a second, special purpose,

CPU -

Figure 1

processor dedicated to garbage collection only (see fig. 2). In this computational model there
are two processors working on the same data in an "independent” manner. In this model we
want to allow the actions of the two processes to interleave in as small a "grain" as possible, to
minimize exclusion and synchronization overhead. More recently, research has focussed on a
more distributed type of computer system (see fig. 3, cf [12,14]). The underlying motivation
originates from the development of functional programming languages (LISP, SASL, etc).
Functional programs are quite suitable for distributed evaluation and employ the kind of data
structure we defined. Hence it is natural to think of a "pool” of processors, with each proces-
sor having its own array of memory cells. Of course, a child of a cell may now reside in the
memory of another processor (i.e., links may be "interprocessor”).

adl

- GC
/ U P = User's Processor,

G C = Garbage Collecting Processor

Figure 2

UP L) up MP

COMMUNICATION SYSTEM

Figure 3

1.2. Distributed termination detection.

Distributed termination detection is the problem to determine when all activity in a distri-
buted system has ceased. Assume each member of a set of processors is performing a certain
task, which it will eventually finish. During its work, a processor may decide to send new
tasks to other processors. It is possible that in this way a processor is "woken up" again, after
having been idle for a while. It is usually assumed that no new task is created in an idle pro-
cessor after the initialization of the system and that only active processors can wake up idle
ones. Clearly, when all processors have finished their current activities, and no messages are
in transit anymore, the system will have entered a stable state in which all processes are idle.

A more formal definition of the distributed termination detection problem is as follows.
Let IP be a set of processes, each of which can be in one of two states, namely active or pas-
sive. (The passive state will also be called idle.) Only active processes may send so-called
activation messages to other processes. A process may change its state, with the restriction
that a change from passive to active may take place only upon receipt of an activation mes-
sage. We assume that a process can change from active to passive any time it wants to. We
say the system IP is terminated when all processes in IP are in the passive state and there are
no activation messages under way. Again it is obvious that this state is stable: when ter-
minated, /P remains terminated forever. Termination detection can now be formulated as the
problem to determine that this state is reached, and a termination detection protocol is an algo-
rithm that can be superimposed on the processes in P to enable them to do so. A good termi-
nation detection protocol must satisfy the following criteria (see Apt, [1]):

-6 -

(1) Safety: no termination is detected unless there really is termination,
(2) Liveness: if there is termination it will be detected.

Many termination detection protocols are reviewed in [2,4]. As we will be using termination
detection protocols extensively in this paper, we give the idea behind some of them. Suppose
for a while that sending and receiving of a message is instantaneous. We illustrate the
behaviour of the processes in IP by time diagrams (cf fig. 4), in which each horizontal line
represents the behaviour of one process in P. The horizontal axis represents time. By a
"blocked" interval (—BE—) we indicate that a process is active for the duration of the
interval and by an arrow (T,l) we mean the exchange of an activation message.

If every process would send a report about its state at a certain time ¢ to some central
site, these reports would enable one to determine the state of the system at time ¢. For exam-
ple, in figure 4, at ¢; some processes report an active state and hence the system is not ter-
minated. At ¢, however, all processes report a passive state and hence termination can be con-
cluded. The protocol based on this idea would require synchronized clocks (i.e. global time),
see Rana [17]. In systems that do not support synchronized local clocks this simple protocol is
unsafe, as the following scenario shows (see fig. 5): process p,’s clock is fast and p, reports
its passive state somewhat before ¢, Then P2 activates p; and becomes passive. Now the
clocks at p, and p; read ¢ and they report their state as passive. Although the system is not
terminated, all processes reported a passive state and termination is (erroneously) concluded.

It turns out that we must observe each process during a certain interval, rather than at a
single point in time. The following theorem is due to Chandy and Misra [4]:

Theorem 1.1: Observe each process p; during an observation interval (start;,end;) and ensure
that for all i, j: start; <end; and that no p; has an unprocessed message on any incoming link

at time start;. If no p; was active during its observation interval, then the system is ter-
minated.

Proof: There is a time ¢ that is contained in each observation interval. Each process was pas-

sive at ¢ and there were no messages under way. Hence the system was terminated at ¢, and
still is. O

Theorem 1.1 will enable us to give correctness proofs of most of the termination detection pro-
tocols we use in this paper, like the protocols due to Dijkstra, Feijen and van Gasteren [8] and
Tan and van Leeuwen [20] and the variants we use of these protocols.

It is possible to adapt the protocols (and theorem 1.1) to the more realistic situation that
activation messages actually take some time to reach their destination. This is not done here,
but it is for example in Tel [21].

2. Graph marking.

In this section we will develop the heuristics for transforming a termination detection pro-
tocol into an on-the-fly garbage collection algorithm. We will concentrate on the graph mark-
ing phase. Suppose that each cell in the memory contains a field color, and that initially
color(i) = white for all i. The purpose of the marking phase is to color every node black that
is reachable from one of the root nodes. Then, the appending phase will collect the white
nodes and whiten the black ones, so the collecting algorithm can be repeated. To avoid any
reachable cells from being collected, we must ensure that all reachable cells are marked before
the appending phase takes over. In deriving the essential theory, we will first assume that
there is no concurrent mutator activity, meaning that the data structure is fixed. We will subse-
quently adapt the mutator program so as to run concurrently with the marker safely.

2.1. The basic transformation.

For each cell i in the computer’s memory we introduce the (conceptual) process
MARK(1(i), defined as:

MARK1(i):

{wait until activated by external cause}

for all j € children(i) do

if j was not activated before (* i.e. in this round *)
then activate j ;
color(i) := black ;
stop. (* i.e. become passive *)

Let M = {1,2,...M-1} be the set of cells in the computer’s memory and define the set of
processes /P by IP = {MARKI1(i)| ieM}. In the following we will identify a cell and its asso-

ciated process. We will speak of "white processes”, "active cells”, etc. Initially all cells are
passive and white.

Definition: INV is the property that no passive black cell has a passive white child.

Lemma 2.1: INV holds when the system is not activated.

Proof: Obvious, because there are ho black cells. O

Of course, all processes keep waiting until they are activated. We will start the system by
activating the roots. Thus, we execute:

MARK _ROOTS:
for all r € roots do activate r.

Lemma 2.2: INV holds and remains true while processes in IP are active.

Proof: MARK_ROOTS does not introduce any black cells nor passive white cells and there-
fore respects INV. MARKI(i) eventually colors i black, but only after its children have been

activated. So MARKI(i) does not cause i (nor any other node) to be a black passive node
with a white passive child. O

Lemmas 1 and 2 show that INV is an invariant of the system.

Lemma 2.3: The system will terminate in finite time.

Proof: IP contains only a finite number of processes. Each of them is activated at most once
and runs to completion in finite time. [J

Crucial for the correctness of our heuristic is lemma 4.

Lemma 2.4: When the system terminates, all reachable cells are black.

Proof: First note that every node that has ever been activated (during the current round) must
be black, because it has painted itself black before turning passive. It follows that all roots are
black. If there is a reachable node that is still white, it follows that there must be a passive
black node with a passive white child, thus contradicting INV. O

Lemma 2.5: When the system terminates, all black cells are reachable.

Proof: Let cell i be colored black. Then i must have been activated during the current round.
Hence i is either a root (and thus reachable) or i was activated by some process MARKI1()).
By repeating the argument one shows that J is reachable. As i is a child of j, i is reachable. [

Lemmas 1 through 4 prove the following theorem:

Theorem 2.1: Assume that the mutator program does not affect the current graph. When a ter-
mination detection protocol is superimposed on IP = {MARKI(i)| ieM}, a correct graph
marker is obtained.

By lemma 5 the graph marker indeed marks no garbage nodes and hence the resulting collect-
ing algorithm collects all garbage nodes.

-10 -

2.2. The basic transformation with concurrent mutator actions.

Now assume the mutator is active concurrently with the graph marking system. This
implies that edges can be added or removed in an unpredictable way while the graph marker is

busy. This means that the previous lemmas no longer hold. We will show how to overcome
these difficulties.

First consider the deletion of edges. When edges are deleted some cells may become
garbage during the marking phase, even when they were marked already. Obviously, lemma 5
no longer holds. (Its proof implicitly used the fact that no edges are removed.) This implies

that there can be garbage nodes, that will not be collected, However, we can replace lemma 5
by a weaker variant:

Lemma 2.5a: When the marking phase has terminated, all black nodes were reachable at the
beginning of the (current) marking phase.

Proof: Similar to lemma 5. [

So a marked garbage node, that remains uncollected, is guaranteed to remain unmarked in the

next marking phase. This means that any garbage node is guaranteed to be collected within
two rounds of the collector.

A more serious problem is the addition of edges, because it may lead to a violation of
INV. The mutator may decide to add an edge between a passive black cell and a passive white
one! This means that we can no longer rely on INV to prove the system correct. In fact the
system is no longer correct, as can be shown by a straightforward counterexample. Can we
modify the graph marking system so as to cope with concurrent mutator actions?

The following classical example, due to Dijkstra et. al. [10], shows that this is impossi-

ble. Suppose a and b are reachable nodes and ¢ is a node, that is reachable only via a and b.
Let the mutator enter the loop

repeat
remove edge (a,c) ; add edge (a,c) ;
remove edge (b,c) ; add edge (b,c)
until false.

Thus at any moment the data structure is in on of the three shapes shown in figure 6. Now
assume the mutator always brings the graph in state 3 when the marking algorithm is visiting
a, and in state 2 when the marking algorithm is visiting b. Then the collector never "sees" ¢
and ¢ will remain unmarked. The conclusion is, that in order to obtain a correct graph mark-
ing system, it is needed to put overhead on the mutator actions. Thus we will have to require
the mutator to activate nodes also, in order to maintain /NV. When the mutator wants to add

-11 -

Figure 6

an edge from i to j, it executes the following routine as an "indivisible action":

ADD(,j):
children(i) := children(i) + {j} ;
if i is passive black and j is passive white
then activate j.

Lemma 2.6: ADD(i,j) maintains INV.

Proof: Obvious.]

Remember now that termination detection protocols do not allow processes to become active
by themselves. They must be activated by an activation message. Will termination detection
protocols still work in this new situation? The following lemma helps us to answer this ques-
tion in the affirmative.

Lemma 2.7: If the mutator activates a node, there is at least one other active node in the sys-
tem.

Proof: The mutator can only activate a passive, white reachable node. The existence of such a

node implies that the marking phase is not yet terminated and, hence, there is an active
node. O

The lemma implies that a "spontaneous" activation of a cell (process) by the mutator can be
modeled as the activation of the cell by the active node that must exist somewhere, and hence
that a termination detection protocol must be able to handle this situation. As the proof of
lemma 7 is not constructive, protocols that use acknowledgements and/or administration of

-12 -

messages may give difficulties, because for these protocols it is needed that an active node is
explicitly found.

Our discussion results in the following main theorem:

Theorem 2.2: When a termination detection protocol is superimposed on
P = {MARKI1(i)| ieM} and the addition of edges is implemented as in ADD(i,j), a correct
concurrent graph marker is obtained.

A few more remarks can be made.

(1) The system remains correct if the mutator always activates the passive, white targets of
newly added edges, regardless of the state of their source. In fact this will only speed up
the system, because some reachable nodes are activated earlier. This is done in some of
the algorithms in this paper. It makes the primitive for adding edges look like

ADD():
children(i) := children(i) + {j} ;
if j is passive white then activate ;.

(2) The system could also have been proven correct using the following, weaker invariant:
INV®: Each reachable, passive node is reachable via a path in which no passive
white node is the son of a passive black one.

INV? is maintained by the addition of edges, but not by the deletion of edges. However,

it is maintained when we require the mutator to execute the following routine upon the
deletion of an edge:

DELETE(j):
{jis achild of i }
children(i) = children(i) - {j} ;
if j is passive white then activate j.

As in Dijkstra et. al [10] and many other papers we continue with INV as the basis for
our collectors.

(3) Readers interested in fine-grained solutions may object, that between the two statements
in ADD(i,j) or DELETEC(,j) executed by the mutator the invariant is violated, and that
only later it is restored. Does this mean that this solution is not "fine-grained"? For-
tunately it still is. Dijkstra et. al. [10] prove this using a weaker invariant INVD, which
can be informally stated as "INV, except in at most one place". We remark here, that it
can also be proven using a weaker invariant 7, defined as INV v INV,. Informally, we
can say that the mutator violates only one disjunct at a time and restores it immediately

-13 -

after, so the disjunction remains valid. As mentioned in the introduction, we will concen-
trate only on finding algorithms and not on making them fine-grained. Thus, suppose
where necessary that ADD(i,j) and DELETE(i,j) are indivisible mutator actions.

(4) MARKI(i) checks the status of i’s son j before deciding whether to activate j or not. In
some cases it may be more efficient to simply activate j in any case. To avoid that cells
execute their code twice, we change the process code as follows:

MARK2(i):
{ wait until activated by external cause }
if i was never activated before then
begin
for all j € children(i) do
activate j ;
color(i) := black
end
stop.

Theorems 2.1 and 2.2 remain valid when MARK]1 is replaced by MARK2. Where
necessary we will write I, = { MARK2(/) | ieM }.

3. A transformational approach to the marking system
of Dijkstra et. al..

One of the first on-the-fly garbage collecting systems was presented by Dijkstra, Lamport,
Martin, Scholten and Steffens [10] as early as 1975. Suppose that the mutator and the collec-
tor are two processes, that operate together on one array of cells. In this section we show that
the graph marker implicit in the algorithm can be derived by applying theorem 2.2, using the
algorithm of Dijkstra et. al [8] as the underlying distributed termination detection protocol. We
first introduce the distributed termination protocol of Dijkstra et.al. [8], prove a variant of it
correct and transform it into a graph marking system.

-14 -

3.1. The distributed termination detection protocol of [8].

A precise description of the algorithm by Dijkstra, Feijen and van Gasteren (hereafter
called the DFG algorithm) can be found in [8]. It is assumed that processes are arranged in a
logical ring. That is, each process i knows of a process S(i), the successor of i, such that a
path, starting at some node ! and stepping from successor to successor, passes through every
process exactly once and returns to I. Furthermore there must be a communication link from i
to S(i), and it is assumed that there is one unique process [that is a "leader”.

The algorithm is a direct implementation of theorem 1.1. It can be seen as a distributed,
sequential version of the following code:

repeat
success = true ,
for all processes p do

begin
wait until p is not active ;
Vvisit p
end
until success.

Define an observation period of a process to be the time between two subsequent visits.
"visit p" thus means:

if p was active since last visit then success := false.

Distributing this code is easy. The leader repeatedly sends out a token on the ring, containing
the value of success. (This is either Yes or no, corresponding to true and false, respectively.)
To maintain the necessary information between two visits of the token, we introduce a third
state for processes, namely blue. The meaning of this state is "I am passive, but have been
active during my current observation period”. Just being passive now means that the process
has been passive during the entire current observation period. So, active processes that finish
their jobs initially become blue. Only after the token passes the process can become passive.

Active processes do not pass the token, but wait until they have turned blue. Then they pass it
on.

The leader starts sending out a yes token. A passive process passes the token unchanged,
but a blue process passes the token as no to its successor. (This is the way a blue process
reports the fact that it was active in the last observation period.) When the leader receives a yes
token back and is passive itself, termination is concluded. If a no token is received back, a
new yes token is sent out.

-15 -

Lemma 3.1: The DFG protocol satisfies the safety condition.

Proof: Assume the leader concludes termination. No process turned the token into no, so all
processes were passive during the entire last observation period. It is easy to see that the
observation periods satisfy the conditions of theorem 1.1. (I

Lemma 3.2: The DFG protocol satisfies the liveness condition.

Proof: Suppose the system terminates before the token passes the leader for the i™ time. (That
is, during the i tour of the token.) Then all processes are either blue or passive. During the
(i+1)® tour at the latest all processes turn to passive, and at the end of the (i+2)® tour the
leader concludes termination. [1

In the original version of the DFG algorithm only the leader can conclude termination. It is
useful to consider a variant, which we call the floating leader variant. It is based on the fol-
lowing observation:

Lemma 3.3: When the token has visited all processes consecutively without encountering a
blue process, the system is terminated.

Proof: Call the last process in this sequence the leader. Now the proof is as the proof of
lemma 1. O

So, instead of a boolean token (yes/no) we can use an integer token, which has the value k if it
has visited k consecutive processes that were not blue when the token passed it. The only task
of the original leader is now to send a token <0> on the ring, to start the algorithm.

Remark: In this version of the floating leader variant it is necessary that the processes know
the total number of processes in the ring. Another variant uses unique identifiers for the
processes in stead. It operates like this: A process that was blue when it received the token,

stamps it with its identity and passes it on. Termination is concluded by a process that
receives the token, stamped with its own identity.

3.2. Derivation of the graph marking system.

We will superimpose the floating leader variant of the DFG protocol onto the set of
processes {MARKI1(i)lic M}, as outlined in section 2. Each cell can be in one of 3 states as
far as the DFG protocol is concerned (active, blue or passive), and in one of 2 states as far as
the marking is concerned (white or black). This yields a total of 6 states, which we will
represent by 4 colors according to table I.

-16 -

Table 1
marking colors
white black
active gray "blue" (2)
detector states blue . (1) blue
passive | white black

Remember a process colors its associated cell black before turning passive. Hence combina-
tion (1) in table I does never occur. The statement "color(i) := black” in MARK1 and
MARK? is immediately followed by "stop.". State (2) occurs only between the execution of
these two statements. Now, if we replace these statements by "color(i) := blue", we skip this
state. (Note, that the color of a node now indicates not only wether it has been marked or not,
but also the state of its associated process.) The four remaining possible values of color(i) now
have the following meaning:

white : node i is not marked and MARKI(?) is passive.

gray : MARKI(i) has been activated but did not run to completion yet. It is still

‘active, and node i is not yet marked.
blue : node i is marked and MARKI(7) is a blue process.
black : node i is marked and MARKI() is a passive process.

A gray node i can simply run the following transcription of MARK1:

for all j € children(i) do
if color(j) = white then color(j) := gray ;
color(i) := blue.

The leader starts the termination detection algorithm by sending a token <0> on the ring. The
token circulates, and is changed by the processes it passes as follows:

- White or black processes add 1 to the token value.

- Blue processes change the token into <1>, and change themselves to black. (N.b. the
value is changed to 1, because now one black process is "behind the back” of the
token.)

- When the token reaches a gray node, it first waits until it turns blue, then enters it.

A process that increases the value of the token to M may conclude termination.

A natural choice for the successor of i is of course S(i) = (i+1) mod M, and we let the
token start its journey in cell 0. The distributed termination detection algorithm is then

-17 -

simulated by the following program in pseudo PASCAL (foken denotes the value of the token,
cell the cell it is about to visit):

(* Initiate the token *)

token := 0 ;
cell := M-1 ;
repeat

cell := (cell+1) mod M ; (* Travel to next cell *)
if color(cell) = gray then

wait until color(cell) = blue ;
if color(cell) = blue then

begin roken := 0 ;

color(cell) := black

end ;

token := token + 1
until token = M.

Next we will use the same code as a scheduler for the MARK1 processes. A gray process is
allowed to execute when the token is waiting to enter it, and only then. This results in the fol-
lowing code:

token := 0 ; cell := M1 ;
repeat
cell := (cell+1) mod M ;
if color(cell) = gray then
begin (* run MARK 1(cell) *)
for all j € children(cell) do
if color(j) = white then color(j) := gray ;
color(cell) := blue
end ;
if color(cell) = blue then
begin token := 0 ;
color(cell) := black
end ;
token := token + 1
until token = M.

Note that all gray processes will eventually be scheduled and hence the system is still
guaranteed to terminate. Now we observe that a node can be blue only during the very short
time between the completion of MARK]1 in that node and the assignment to color in the

-18 -

subsequent if-statement. In fact, the blue color is used only to "trigger" the second if-statement
in the main loop. Conversely, because processes can turn blue only as a result of the first if-
statement, the second one can not be executed for a node if the first if-statement wasn’t.
Hence the statements are either executed both, or none of them is. The blue color can be elim-
inated when we combine the two if-statements to one. This is done in the next version of the
program, where also the code for MARK_ROOTS is added:

(* MARK_ROQTS *)
for all € roots do color(r) := gray ;
(* initiate the token *)
token := 0 ; cell := M—-1 ;
repeat
cell := (cell+1) mod M ;
if color(cell) = gray then
begin
for all j € children(cell) do
if color(j) = white then color(j) := gray ;
token := 0 ;
color(cell) := black
end ;
token := token + 1
until token = M.

We make a few more minor changes. The clause "if color(j) = white then color(j) := gray"
can be implemented as just setting one bit. (Encode white as 00, gray as 01 and black as 11,
and it is equivalent to "set the second bit to 1".) We call this operation "shade(j)". Further-
more, we can use a decrementing in stead of an incrementing counter. Of course this changes
nothing in the efficiency or the correctness, but this is the method followed in [10]. The entire
marking algorithm is now described by the following algorithm:

MARKING PHASE:
for all » € roots do shade(r) ;
token := M ; cell := M-I ;
repeat
cell := (cell+1) mod M ;
if color(cell) = gray then
begin
for all j € children(cell) do shade(j) ;
token := M-I ;
color(cell) := black

-19 -

end ;
token := token — 1
until token = 0.

The reader is invited to compare this algorithm to the one given in Dijkstra et. al [10]). Finally,
in [10] it is not observed that it is possible to eliminate one arithmetic operation
("token := token—1") from the loop. In stead of using a token with a counter (the first variant
of the floating leader DFG we presented) we can use a token with the id. of the last process
that received the token when it was gray (cf. the remark at the end of section 3.1.). The result-
ing algorithm is:
MARKING_PHASE:
for all r € roots do shade(r) ;
id:=0;cell:=0;

repeat
if color(cell) = gray then
begin
for all j e children(cell) do shade(j) ;
id := cell ;

color(cell) := black
end ;
cell := (cell+1) mod M
until cell = id.

3.3. Concurrent mutator activities.

According to theorem 2.2., the graph marker designed in the preceding subsection will
also work when there is a concurrent mutator program, that executes the following code indi-
visibly when it adds an edge (i,):

ADD(j):
children(i) := children(i) + {j} ;
shade(j).

Deleting an edge can be done without any overhead. This concludes the derivation of the
essential phase of the on-the-fly garbage collection algorithm of Dijkstra et. al. [10].

-20 -

4. A transformational approach to the marking system
by Hudak and Keller.

Hudak and Keller [12] presented a garbage collector that is suitable for a completely dis-
tributed environment. An arbitrary number of mutator and collector processes can be active at
any time. In this section we show that their algorithm is obtained by superimposing the distri-
buted termination detection protocol of Dijkstra and Scholten [9] on the set IP, of processes
MARK2(i). We will discuss the Dijkstra and Scholten protocol, its transformation to the
Hudak and Keller algorithm according to section 2, how concurrent mutator actions can be
allowed using this algorithm, and how more concurrent mutator actions can be supported.

4.1. The distributed termination detection protocol of Dijkstra and
Scholten [9].

Basically the protocol by Dijkstra and Scholten (hereafter called the DS protocol) is an
acknowledgement scheme for activation messages. It is assumed that the source of all activity
in the network is one special proces E. Each process p keeps two counters:

C(p) = the number of activation messages that p has received but not yet ack-
nowledged, and
D(p) = the number of activation messages that p has sent but did not yet receive an
acknowledgement for.
We call a process p engaged iff D(p)>0 or C(p)>0. For an engaged process p, its engagement
message is the message that caused it to become engaged, and p’s activator or father is the
sender of p’s engagement message. p is required to acknowledge all activation messages (this
action is called signaling in [9]), but it is not allowed to acknowledge its engagement message
as long as it is active or D(p)>0. As soon as p is passive and D(p)=0, p is assumed to ack-
nowledge all messages in finite time, its engagement message as the last. Dijkstra and Schol-
ten prove the following facts for this signaling scheme:

Lemma 4.1: (Safety) When E becomes unengaged, the system is terminated.

Lemma 4.2: (Liveness) When the system is terminated, E becomes unengaged within finite
time.

The algorithm is described as a very general, non-deterministic scheme (note that p is free to
decide when it signals the other messages it receives). We quote from [9]:

We can appreciate the study of a single, highly non-deterministic algorithm as an
effective way of studying a whole class of algorithms: the non-deterministic algorithm
emerges when, abstracting from their mutual differences, we concentrate on what the
many algorithms of this class have in common.

-21 -

It is enough for p to maintain the number of ACKs it still has to receive (D(p)), rather than
keep a set of unACKed messages. Also, when p acknowledges a message, p need not mention
the message under concern. A (further meaningless) " acknowledgement signal" suffices.

4.2. Derivation of the graph marking system.

For the purpose of deriving the graph marking system we will assume that each message,
except the engagement message, is acknowledged immediately. Hence the value of C(i) can
only be 0 (for an unengaged process) or 1 (for an engaged process). When running
MARK2(i), a test for earlier activations is necessary anyhow. By the primitive
activate(i, father) we will mean: send an activation message, containing the identity father of
the sender to i. We will denote this message as <ACT, i, father>. Its receipt by i triggers

execution of the following pseudo PASCAL code, which contains the code for MARK2(i) as
well as the code for the DS protocol:

ACTIVATE), father):
if j was not activated before then
begin

C(i):=1;

(* now run MARK?2 *)

for all j € children(i) do
begin activate(j,i) ;

D(i) := D(i)+1

end ;

color(i) := black ;

while D(i)>0 do
begin receive an ACK ;

D(i) := D(i)-1
end ;
signal(father) ;
C(i) := 0
end
else (* i.e., i is or has been engaged already *)
signal(father).

The primitive signal(father) of course means: send an acknowledgement to the node father.

The complete graph marking algorithm that we can now derive is "message driven", i.e.,
something can happen only upon the receipt of a certain message. We can write the algorithm
in "message driven form", i.e., with a piece of code for every possible message that can arrive.

-22 -

This piece of code is run to completion before the next message is accepted. State information
about the process is stored explicitly. So, suppose node i contains yet another extra field
father(i). We present the message driven form:

ACTIVATEC, father): (* executed upon receipt of <ACT, i, father> *)
if i was not activated before then
begin
C@) :=1;
Jather(i) := father ;
for all j € children(i) do
begin activate(j,i) ;
D(i) := D(i)+1
end ;
if D(i)=0 then (* i has no children *)
begin color(i) := black ;
C(i) :=0;
signal(father(i))
end
end
else (* i.e., i was activated before *)
signal(father).

SIGNAL(): (* executed upon receipt of a signal by i ¥)
D(i) := D(i)-1 ;
if D(i)=0 then
begin color(i) := black ;
C(@i) :=0;
signal(father(i))
end.

Note, that we have deferred "color(i) := black" to the time of unengagement of i. It is easy to
see that this minor change does not affect the correctness or termination properties of the algo-
rithm. We do this, so the statements "color(i) := black” and "C(i) := 0" appear always
together. Soon we will replace these two statements by one, similar to what we did in section
3.2. Each node can be in one of three states only (except between the two statements men-
tioned). These states are:

State 1: C(i) = 0, color(i) = white

State 2: C(i) = 1, color(i) = white

State 3: C(i) = 0, color(i) = black.

-23 .

As in section 3 we will use a coding trick and represent C in the color field by using the extra
color gray to represent state 2. The test "i was not activated before" is then replaced by "i is
white". The program for all node processes now becomes:

ACTIVATE(, father):
if color(i) = white then
begin

color(i) := gray ;

father(i) := father ;

for all j € children(i) do
begin activate(j,i) ;

D(i) := D(i)+1

end ;

if D(i)=0 then
begin color(i) := black ;

signal(father(i))
end
end
else
signal(father).
SIGNAL()):
D(i) := D(i)-1 ;

if D(i) = 0 then
begin color(i) := black ;
signal(father(i))
end.

The marking process is elegantly started and controlled by the following transcription of
MARK_ROOTS:

E:

(* MARK_ROOTS *)

for all r € roots do
begin activate(r,E) ;

D(E) := D(E)+1

end ;

while D(E)>0 do
begin receive a signal ;

-24 -

D(E) := D(E)~1
end.

Of course this part of the algorithm can be written in message driven form also. This part is

somewhat underdeveloped in [12]. The original algorithm was suited only for graphs with one
root.

The algorithm can be run on an arbitrary number of processors, each with its own local
memory, and allows an arbitrarily large number of mutator processes to run concurrently with
it (under the restrictions derived in the next subsection). However, exclusive access to cells is
necessary. In [12] suitable "locking machinery” is built in to guarantee exclusive access. This
machinery is ignored here.

4.3. Concurrent mutator activities.

Some difficulties must be overcome when we want to use the graph marker of the preced-
ing subsection as a concurrent graph marker. We now study how the graph marker of [10]
handles it. The invariant INV, defined in section 2, has the following form for the algorithm of
Hudak and Keller:

A) If i is a gray node then activation messages have been sent to all of its children,

B) If i is black, no child of i is white.
The mutator must not violate this invariant and thus it must activate nodes sometimes. How-
ever, in order to enable a node to send an acknowledgement later, it must be given a father.
So the mutator must be able to find a gray node that is willing to "adopt” the node. And,
alltough lemma 2.7 guarantees that such a node exists, it is not trivial to find one. This is why
in [12] the behaviour of the mutator is limited where the addition of edges is concerned. Only
in a small number of specific cases edges may be added.

One of these cases and its solution (cf. [12]) is the following: it is allowed to add an
edge to a grandson by means of a suitable construction add |_grandson(a,b,c), where it is
assumed that edges (a,b) and (b,c) do exist already. See fig. 7. Obviously the operation
add_grandson(a,b,c) does not violate the invariant when a is white (there are no requirements
on c in that case) or b is black (c is non-white already). This is also the case when both @ and

b are gray. By B it is impossible that a is black and b is white. The remaining cases are (1)
and (2) in this table:

-25 .-

Figure 7

Table II

white gray black

white - (1) impossible
b | gray - - 2
black - - -

We consider these cases in turn:

Case 1: Suppose a is gray and b is white. Then an activation message has been sent to b, but
clearly b did not yet send one to c. Hence it is not certain that an activation message has been
sent to ¢ at all. In order to maintain invariant A, we will have to send ¢ an activation message
and here we can make a into ¢’s father, i.e., a adopts c.

Case 2: Suppose a is black. Then a is not allowed to have a white child by B. But, it is also
not allowed to send activation messages because it is not engaged. So in this case we force b
to adopt c. Before we can make the link, we must wait until the activation has resulted in ¢
becoming gray: according to B, it is not enough that an activation message is on its way to c.
(The reader is invited to construct an example to show the unsafety of the system if the link is
made too fast.) The operation add grandson can thus safely be implemented by means of the
following program in pseudo PASCAL:

ADD_GRANDSON(a,b,c)
(* b € children(a) and c € children(b) *)

- 26 -

if color(a)=gray and color(b)=white then
begin actvate(c,a) ;
D(a) := D(a) + 1
end ;
if color(a)=black and color(b)=gray then
begin activate(c,b) ;
D(b) := D(b)+1 ;
wait until ACTIVATE(c,b) is finished in ¢
end ;
children(a) := children(a) + {c}.

Several other mutator primitives can be supported in a similar way, see [12] or Hudak’s thesis
[13].

4.4. Allowing more concurrent mutator activities.

With some effort it is possible to implement a more general ADD operation under the
Hudak/Keller garbage collector. Suppose the mutator wants to add an arbitrary edge (a,c).
Overhead is not always needed. If a is still white, or ¢ is gray or black, nothing needs to be

done. The need for cooperation in implementing a general ADD operation is summarized in
table III:

Table 1T
a
white gray black
white - (1) 2)
c | gray - - -
black - - -

In two cases (see table III) special action is needed:

Case 1: If a is gray and c is white, we can maintain the invariant by having a adopt c.

Case 2: If a is black already, the preceding action is impossible and yet ¢ must be linked and
at least gray before the link can be made. The solution is to find an arbitrary gray node b and
force it to adopt ¢. That is, we send ¢ an activation message bearing b as sender. Next we
have to wait until this message is processed by ¢ and c is (at least) gray.

Concluding, the ADD operation can be implemented by the following program:

-27 -

ADD(a,c):
if color(a)=gray and color(c)=white then
begin activate(c,a) ;
D(a) := D(a)+1
end ;
if color(a)=black and color(c)=white then
begin b := ; (* any gray process, see the discussion below *)
activate(c,b) ;
D(b) := D(b)+1 ;
wait until ACTIVATE(c,b) is finished in ¢
end ;
children(a) := children(a) + {c}.

The key problem of course is finding a suitable gray node b as discussed in case 2. We know
only that there is one. We give several suggestions to find a suitable process b;

1)

2

€))

The root process E is always engaged, as long as there is any engaged node (Lemma
4.1). So one can take b = E always. This solution has some important disadvantages:
~ In most cases E will not reside on the same processor as a and/or ¢, hence this
choice can increase communication complexity considerably.
— When there are many ADD operations E will become a bottle neck. E will be
blocked most of the time, and the processor where it resides will be busy most of
the time handling ADD operations from other processors.

Each processor can keep a pool of cells that are currently gray in its memory. When a
gray cell is needed, the host of a and/or ¢ check their pools for gray cells. If there is no
gray cell, they can ask their neighbors etc.

We can add some "special purpose" nodes to the data structure. Suppose there is one
special root S, on each processor p. S, will never have "natural” children, but will adopt
nodes when such is necessary. S, is a root and will be grayed immediately after the start
of the marking phase. An extra mechanism must be built in to ensure that
— S, will remain engaged as long as the marking phase goes on, so it will be avail-
able when necessary, and
— S, will become unengaged when the marking phase is finished, so it will not
unnecessarily block the garbage colecting process.
This sounds as if we should superimpose yet another termination detection protocol on
the system, which seems undesirable.

-28 -

S. A highly parallel garbage collector.

Recall the collection system from section 3. As in section 3 we will assume here that the
mutator is one sequential process, running on a non-distributed memory. In this section we
will introduce a highly parallel garbage collector for it, i.e. a collector that consists of any
number of garbage collecting processes. The collector and its underlying termination detection
protocol are generalizations of those in section 3.

5.1. A highly parallel termination detection protocol.

The DFG protocol basically consists of sequentially visiting all processes. If all
processes had been passive all the time since the last visit, termination can be concluded by
theorem 1.1. The protocol is described by the following code, where the passing of the token
ensures that the inner loop is in fact executed sequentially.

DFG:
repeat
sSuccess .= true ,;
for all processes p do
begin
wait until p is not active ;
if p is blue then
begin success := false ;
p becomes passive
end
end
until success.

(This is the original version, not the floating leader variant.) The fact that the DFG protocol
executes the inner loop sequentially is not essential, and also is not used in its correctness
proof. Hence any protocol is correct in which all processes are visited exactly once during
each iteration of the main loop. Tan and van Leeuwen [20] exploit this observation and derive
some very nice, general termination detectors.

The basis of the on-the-fly garbage collection algorithms in this section will be the fol-
lowing termination detection protocol skeleton:

repeat
success := true ;
for all i do "visit "
until success.

-29 .

Seen in this light the step to the floating leader version of the DFG protocol is rather intricate.
Only when one uses the fact that the processes are visited sequentially and in the same order
each time, it makes sense to combine the "tail" of one tour with the "head" of the next tour to
obtain a "succesful round". We hope the reader will find this presentation of the floating
leader variant less convincing then the one given in section 3.1., because this proves that the
way in which an algorithm is presented can either help or block the human mind in finding
changes and improvements on it. The "floating leader" variant of the "T—protocol" of Tan and

van Leeuwen [20] is of a totally different nature: it fits in the above skeleton, where the float-
ing leader DFG protocol does not. '

S.2. A highly parallel graph marking system.

In order to turn the protocol skeleton for distributed termination detection into a graph
marking system, three things need be done:
— Add the code for MARK_ROOTS,
~ Specify the code for "visit i", and
— Supply a scheme according to which nodes are visited.

Using the same color and notations as in section 3, the code for MARK_ROOTS is of
course:

MARK_ROOTS:
for all i € roots do shade(r).

A "visit" will have about the same semantics as in section 3. Again we combine the termina-
tion detection protocol with a scheduler, to execute the code for MARK1 in gray nodes. So,
visit(i) becomes the following routine:

VISIT():
if i is gray then MARK1()) ;
"termination detection visit to node i".

or, more explicitly:

VISIT():
if color(i) = gray then
begin
for all j € children(i) do shade(j) ;
color(i) := black ;
success := false
end.

-30 -

We will supply two parallel visiting schemes to complete the garbage collecting systems.
First, assume that there are k processors available for garbage collection. The simplest traver-
sal scheme for the processes is to partition the set M of cells in k parts, and give each garbage
collection processor a part. So, let {S;|1<i<k} be a partition of M. The marking system is
given by:

for all € roots do shade(r) ;
repeat
Success := true ,
for all i e {1,..k} pardo
for all peS; do visit(p)
until success.

This visiting scheme has the disadvantage that the partition of the memory cells must be fixed
in advance. Thus it is not possible here to adapt the work load of a processor to its speed
dynamically. Such an adaption is possible and can be elegantly implemented for a system
consisting of only two garbage collecting processors, as is done in the following visiting
scheme. Let the two processors start at one end of the cell array each, and work towards each
other. When they meet somewhere, the round is completed. Call the two garbage collecting
processes GCA and GCB. We can describe the two processes as follows:

GCA: GCB:
for all r € roots do shade(r) ;
repeat repeat
synchronize ; synchronize ;
success := true ;
=0, b:=M-1;
repeat visit(a) ; repeat visit(b) ;
= a+l b :=b-1
until a>b ; until b<a ;
synchronize synchronize
until success. until success.

Here the statement synchronize is a synchronization primitive: it is assumed that a processor
that comes to this statements waits until the other processor also comes to a statement syn-
chronize. Then they pass this point in the program simultaneously. The reader is invited to

improve on this algorithm in two ways: (1) decrease the synchronization overhead, and (2)
make a dynamic scheme for more than two processors.

-31 -

5.3. Concurrent mutator actions.

According to theorem 2.2, the graph marking algorithms will also work when there is a
concurrently active mutator process that executes the following code when it adds an edge:

ADD(,j):
children(i) := children(i) + {j} ;
shade(j).

No overhead for deletion of edges is needed.

6. On-the-fly garbage collection in a ring of processors.

Suppose the system consists of a number of processors, each with its own local memory.
On each of the processors one or more mutator processes and a garbage collecting process can
be active (i.e., the model is that of section 4). If it is possible to arrange the processors in a
logical ring, the same can be done with the memory cells, see fig. 8. We will show that the
paradigm of section 2 can be used to derive efficient on-the-fly garbage collectors for such sys-
tems. As the underlying distributed termination detection protocol we use the floating leader
DFG protocol, as introduced in section 3.1.

6.1. The graph marking system for a ring of processors.

Like in section 3.2., the circulation of the token around the ring of nodes has a schedul-
ing function as well as a termination detection purpose. But, we want all garbage collecting
processes to do work, and not only the one that keeps the token. So we separate part of the
scheduling of the MARK1 processes from the termination detection process. Each processor
that finds a gray node in its memory can run MARK]1 for this node. Of course it is then
necessary to reintroduce the color blue, to represent nodes that have been active since the last
visit of the token. Assume each processor knows about the total number M of memory cells,
that processor p has M, cells locally addressable as 1.M,, and that shade(j) is done by sending
a "shading message”. We assume that shading messages reach their destination in time 0. A
token traveling along the array of cells in a processor is simulated by a pseudo PASCAL pro-
gram (see module 4 below) much as we did in earlier sections. When it crosses an "interpro-
cessor border” in the node ring the token is actually passed as an interprocessor message. The
complete marking system consists of 4 "modules" (P denotes any garbage collecting

=32 -

Figure 8

processor):

1. (* MARK_ROOTS *)
all P do
for all r € roots do shade(r).

2. (* Local progress of marking *)
all P do
repeat
i := ...; (* a gray node in processor P *)
for all j € children(i) do shade(j) ;
color(i) := blue
until there is termination.

3. (* Start of DFG protocol *)

(* Only one processor, the leader /, executes: *)
send <0> to S(l).

-33.

4. (* Scheduling and termination detection *)
(* Upon receiving the token <v>, P executes: *)

val := v ;
for i:=1 to Mp do
begin
if color(i) = gray then
begin
for all j e children(i) do shade(j) ;
color(i) := blue
end ;
if color(i) = blue then
begin
val := 0 ;
color(i) := black
end ;
val := val+l ;
if val=M then (* there is termination *)
begin (* take appropriate action *) end
end ;

send <val> to S(P).

6.2. Concurrent mutator actions.

Again this marking system allows concurrent mutator activities, as long as the mutator
executes the code for ADD(iy), as defined before, when it adds an edge. Here this code must
be indivisible, it is not safe to allow interleaving in a finer grain. Recall remark 3 at the end of -
section 2.2. When there are 2 (or more) mutator processes active in parallel, each of them can
violate one disjunct, so / becomes violated. Also the correctness proof in [10] is not adaptable
to the case of k22 parallel mutators. It is easy to find an example to show the unsafety of the
system if the ADD operation is not indivisible. The idea to reverse the order of the two opera-
tions in ADD intuitively ensures that "the invariant is restored before it is violated" and hence
"is not violated at all". This however leads to an unsafe algorithm even in the case of only
one sequential mutator process. The system becomes vulnerable to the "Woodger-bug", see

[10]. Putting overhead on the deletion of edges in stead of the insertion will not resolve these
problems.

We therefore suggest to use a locking mechanism that ensures that the ADD operation is
indivisible, at least from the collector’s point of view. The construction of a garbage collector

-34 -

that allows multiple mutator processes to run concurrently with it and has a "grain of action"
as big as single bit operations (like the collectors of Ben-Ari [2] and Dijkstra et.al. [10] have)
remains an interesting subject of further research.

7. On-the-fly garbage collection in an arbitrary net-
work.

In this section we assume the same architecture as in section 6, except that the processes
are arranged in an arbitrary, connected network rather than in a ring. We describe a hierarchi-

cal graph marker and extend the approach to the on-the-fly garbage collector due to Hughes
[14].

7.1. Hierarchical termination detection.

The distributed termination detection problem is usually considered in a totally distributed
environment. There is no global control and processes can communicate by message transfer
only. When, like in e.g. section 6 and some of our other algorithms, a huge number of
processes reside in one physical processor, it is possible to make an extra process in every pro-
cessor that acts as an "operating system" or "supervisor" for the (basic) processes residing in
that processor. This supervisor has a sort of global control over these processes: it can see at
any time whether one of them is active, because everything that happens here is "local" to the
operating system.

This suggests the following notions. Let PP be a set of processes as in section 1.3., and
let P, Q, R,.. be groups (=sets) of processes, such that {P, Q, R,...} is a partition of IP. We
say that a group is active if at least one of its members is active, and passive if none of its
members is active. Note, that activity of a group is decided by observing group members only.

Lemma 7.1: A passive group P can become active only if one of its members receives an
activation message from a member of another group Q that is still active.

Proof: Suppose a passive group P becomes active. This means that one of its members, say x,
was activated. So x received an activation message from some active process y. All processes
in P were passive, s0 y must be a member of some other group Q. (Note: we used that activa-
tion messages, at least within one group, have transmission delay 0.) O

-35.

When the situation of theorem 7.1. arises, we say that P is activated by Q. Representing a

group P by a process Sp, we can formulate a two-level hierarchical termination detection pro-
tocol as follows:

(1) A low-level protocol ensures that
Sp is active <>some x € Sp is active,

(2) A high-level protocol detects when {Sp, Sg ...} is terminated.

7.2. A hierarchical graph marker for generél networks.

The ideas presented in 7.1 can be transformed into a graph marker in many ways. Sup-
pose each garbage collecting processor (i.e., each Sp) maintains a queue of currently active

cells. Passivity of the group is equivalent to the queue being empty. Receipt of a "shade(j)"
message triggers:

if j is white and j not in queue yet
then enqueue j.

(and eventually an acknowledge for the message). Further, Sp executes active MARKI1
processes by the following code:

while queue not empty do
begin
dequeue(i) ;
for all j e children(i) do shade(j) »
color(i) := black
end.

The processors can run any arbitrary termination detection protocol to detect the termination of

the marking phase. For termination detection protocols on arbitrary networks, see e.g. Tan and
van Leeuwen [20] or Tel [21].

7.3. Hughes’ garbage collector.

In [14] Hughes presents a garbage collector for a multiprocessor environment. We now

show that some of its underlying ideas can be derived by applying the techniques presented in
this paper.

Hughes runs infinitely many marking algorithms at the same time, namely one copy of
the marking algorithm for each time ¢ Call this copy F,. The color field in the nodes is

- 36 -

replaced by a timestamp. A node having timestamp ¢, can be thought of as having the follow-
ing color:

- black for all F,, t<t,,

- white for all F,, t>t,.
A node, created at time ¢, gets ¢ as its timestamp and is thus marked for all current marking
phases. Activation messages are also timestamped. An activation message with stamp ¢, is
denoted by <ACT, #,> and means "this is an activation message for all F,, ¢t<t,". Its receipt
triggers the following transcription of MARK?2:

{ i receives <ACT, ¢,> }
if ¢, > timestamp(i) then
begin
for all j € children(i) do
send <ACT, t,>t0j ;
timestamp(i) := t,
end.

In section 7.2 we saw that each processor had to keep track of its active nodes and knew at
any time, whether it was active or not. Here each processor P has to keep track of the smal-
lest t for which it has more work to do for F,. Hughes calls this value redop. He runs an
(infinite) number of classical termination detection protocols to determine which F, can be con-
sidered as terminated. The protocol he uses is Rana’s [17]. In this way he has constructed
one of the first algorithms for approximation of Global Virtual Time (GVT). Rana’s protocol
has some disadvantages, namely that processors must be arranged in a ring (as in section 6)
and that messages must travel instantaneously. For more GVT algorithms on general graphs
and under more general assumptions about communication, see Tel [21].

If P knows minredo, the global minimum of all values redo of all processors, P can col-
lect all cells with a timestamp smaller than minredo. Because many phases overlap, the recy-
cling of cells has become a continuous process rather than a periodical one, like in the previous
garbage collectors, in which a large number of cells is recycled every now and then. Thus, the
system acts an an incremental garbage collector.

-37-

8. Discussion and conclusions.

In this paper we have exploited an observation, originally due to Scholten, that there is an
intimate connection between on-the-fly garbage collection and termination detection. We
demonstrated how concurrent graph marking algorithms, the main ingredient of on-the-fly gar-
bage collectors, can be obtained by a rather mechanical transformation from distributed termi-
nation detection protocols. Using this transformation we have obtained clear and transparant
derivations of several old and new on-the-fly garbage collecting algorithms, and could some-
times even improve on some of the old algorithms. We have not investigated "granularity"
aspects deeply. The case studies show that our approach is useful, and apparently of sufficient
generality to deal with the design of all known on-the-fly garbage collectors.

Our aim has been to contribute to a deeper understanding of what "distributed computa-
tion" means. We think program transformation techniques help us to realize that the number
of essentially different distributed algorithms is not as large as it seems. It might turn out that

distributed algorithms, and the problems they solve, are composed of a relatively small number
of basic "modules".

In this paper we have made the connection between distributed termination detection and
on-the-fly garbage collection concrete. Other researchers have established similar connections
between termination detection and deadlock detection (see Natarajan [16]), election (see Tan
and van Leeuwen [20]) or "Global Virtual Time" (see Tel [21]). Studying the problem of dis-
tributed termination detection has lead to several new models of distributed computations (see
Shavit and Francez [19] or Beilken et. al. [2]). Hence it seems worthwile to make a more
thorough study of the mechanisms underlying distributed termination detection.

Acknowledgement: We thank C.S. Scholten for a number of useful comments on an early ver-
sion of this paper.

-38 -

9. References.

[11K. R. Apt, Correctness proofs of distributed termination algorithms, Rep. 84-51, LITP,
Université paris 7, Paris, 1984.

[2] C. Beilken, F. Mattern, and M. Reinfrank, Verteilte Terminierung - ein wesentlicher Aspekt
der Kontrolle in verteilten Systemen, SFB124 Bericht Nr 41/85, Universitit
Kaiserslauten, dec 1985.

{31 M. Ben-Ari, Algorithms for on-the-fly garbage collection, ACM ToPLa$S 6 (june 1984), pp.
333-344.

[4] K M. Chandy, and J. Misra, A paradigm for detecting quiescence properties in distributed
computations, Report TR—-85-02, Dept of Comp. Sc., University of Texas at Austin,
Austin, Texas, 78712.

[5]1 S. Cohen, and D. Lehmann, Dynamic systems and their distributed termination, in: Proc.

Ist Annual ACM Symp. on Principles of Distributed Computing, Ottawa, 1982,
pp.29-33.

[6] J. Cohen, Garbage collection of linked datastructures, Comp. Surv. 13 (sept. 1981) pp.
341-367.

[7]1 EW. Dijkstra, On making solutions more and more fine-grained, EWD622, in: E.W. Dijk-
stra, Selected writings on computing, a personal perspective, Springer Verlag, Heidel-
berg 1982.

[8] E.W. Dijkstra, W.H.J. Feijen, and A.J.M. van Gasteren, Derivation of a termination detec-
tion algorithm for distributed computations, Inf. Proc. Lett. 16 (june 1983), pp. 217-
219.

[9]1 E.W. Dijkstra, and C.S. Scholten, Termination detection for diffusing computations, Inf,
Proc.Lett. 11 (aug. 1980), pp. 1-4.

[10] E.-W. Dijkstra, L. Lamport, A.J. Martin, C.S. Scholten, and E.F.M. Steffens, On-the-fly

garbage collection : An exercise in cooperation, Comm. ACM 21 (nov 1978), pp.
966-975.

[11] N. Francez, Distributed termination, ACM ToPLa$ 2 (1980), pp. 42-55.

-39 .

[12] P. Hudak, and R.M. Keller, Garbage collection and task detection in distributive applica-
tive processing systems, in : Proceedings of the ACM Symp. on LISP and functional
programming, Pittsburg, 1982,

[13] P. Hudak, Distributed graph marking, Research Report # 268, Dept. of Computer Science,
Yale University, New Haven, 1983.

[14] J. Hughes, A distributed garbage collection algorithm, in : J.P. Jouannaud (ed.), Func-
tional Programming Languages and Computer Architecture, LNCS vol. 201, Springer
Verlag, Heidelberg, 1985, pp. 256-272.

[15] H.T. Kung, and S.W. Song, An efficient parallel garbage collection system and its correct-

ness proof, in: Proceedings 18th Annual IEEE Symp. on Found. of Comp. Sc., 1977,
pp. 120-131.

[16] N. Natarajan, A distributed scheme for detecting communication deadlock, IEEE Trans. on
Softw. Eng. SE 12 (apr. 1986), pp. 531-537.

[17] S.P. Rana, A distributed solution to the distributed termination problem, Inf. Proc. Lett. 17
(1983) pp. 43-46.

[18] H. Schorr, and W.M. Waite, An efficient machine-independant procedure for garbage col-
lection in various list structures, CACM 10 (1967) pp501-506.

[19] N. Shavit, and N. Francez, A new approach to detection of locally indicative stability, in
L. Kott (ed), Proceedings 13th ICALP, Springer Verlag LNCS 226,

[20] R.B. Tan, and J. van Leeuwen, General symmetric distributed termination detection,
Techn. Rep. RUU-CS-86-2, Dept. of Computer Science, University of Utrecht, 1986.
(Submitted to Computers and Artificial Intelligence).

[21] G. Tel, Distributed Infimum Approximation, Techn. Report RUU-CS—-86-12, Dept. of
Computer Science, University of Utrecht, Utrecht, The Netherlands, 1986.

[22] B. Wegbreit, A space efficient list structure tracing algorithm, IEEE Trans. Comput., vol
C21, sept. 1972, pp1009-1010.

