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2 1 REPRESENTATION.

is embedded in a (3-dimensional) grid: In a 2-dimensional variant one might want to draw
a graph with all nodes on a line and edges drawn as horizontal strips on the grid such that
no two edges in one strip overlap (see figure 2). Define the cutwidth of a layout as the
maximum number of edges that pass over any point of the line, and define the cutwidth
of the graph G as the minimum of these numbers over all linear arrangements of nodes
on a line. It is a simple result of graph theory that the cutwidth of a graph G equals

>
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(a) a graph G (b) a possible layout of G

Figure 2:

the minimum number of horizontal grid lines required to layout the graph as desired (the
MIN-CUT LINEAR ARRANGEMENT PROBLEM). On the other hand, determining the
cutwidth of a graph is an example of a problem in the theory of graph algorithms.

While graph theory concerns itself with general results about the structure of graphs,
the theory of graph algorithms is concerned with the design and analysis of effective
methods to compute in graphs. The overriding concern is the design of graph algorithms
of low complexity. Normally graph algorithms use results from graph theory, but very
often the designer has to delve more deeply into the structure of a problem to arrive at a
practical algorithm. For example, Kuratowski’s characterization of planar graphs would
lead to a highly inefficient planarity test when implemented on a computer, because it
would require testing that no subgraph of the given graph is contractible to K5 or K3 3.
On the other hand, it is known that the planarity of a graph can be tested by an algorithm
that uses only O(n + €) steps, where n =| V | and e =| E|.

The quest for algorithms of low complexity has lead to many intriguing problems in
the study of graph algorithms. For example, no efficient, i.e., polynomial time algorithm
is presently known for the graph layout problem discussed above. In fact, the MIN-CUT
LINEAR ARRANGEMENT problem is known to be NP— complete. It is common in
the theory of graph algorithms to study problems for special classes of graphs also, and
to show that the special graphs are easier to deal with algorithmically. For example, the
MIN-CUT LINEAR ARRANGEMENT problem is solvable by an O(n log n) algorithm for
the case of n—node trees.
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In this survey we will give an overview of the common paradigms and results in graph
algorithms, with a bias towards the more recent developments in the field. We assume

familiarity with elementary graph theory, the usual data structures and the theory of
N P— completeness.

1.2 Computer Representations of Graphs.

In order to compute with a graph G , it must be represented in computer storage somehow.
The particular representation chosen for G can have a profound effect on the complexity

of an algorithm. Thus graph representation is a form of data structuring. We discuss
some representations and their impact.

1.2.1 Edge Query Representation.

The most obvious representations for a graph G use a boolean subroutine $(z, y) with the
property that S(i, j) = 1 if and only if (4,5) € E. There generally is a trade-off between
the time it takes S to respond to a query (i, j) (“is there an edge between i and j ”) and
the data storage it uses. One possibility for S is to use the adjacency matrix A of G , With
A the 2-dimensional 0-1 matrix defined by A(3, 5) = 1(0) if and only if (i, 7) € (not €)E
(see figure 3). It enables query answering in O(1) time but requires O(n?) storage. For
undirected graphs the adjacency matrix is symmetric, and space can be saved by storing
only the in(n — 1) upper-diagonal elements. In so-called loop-free (directed) graphs we
have A(%, j) - A(j,i) = 0 for all 4, j and all information can be comprised in the in(n — 1)
upper-diagonal elements e.g. by setting A(i, j) to -1 when A(f,j) =1 (i < 7).

Lemma. Anyn xn adjacency matrix can be represented in 0(1%,;) storage while
retaining O(1) time access to its elements.
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Proof.

Choose k = ‘/%logn and observe that A can have at most 2¥° different k x k sub-
matrices. Write 4 as a ¥ X ¢ matrix of pointers to k¥ x k submatrices. This requires
f;— + 2K g2 = 0(1%;) storage, while the access time for every element is still O(1).
(Observe that this does not save on the total number of bits needed to represent A.) O

Adjacency matrices are very handy when dealing with path-problems in graphs.

Lemma. Nodes 7,j are connected by a path of length k if and only if A*(i,5) = 1

Proof.

By induction on k. The induction basis (k = 1) is trivial. For k¥ > 1, observe that
Ak(i, §) = (AF1.4)(i, 5) = ¥ A*-1(i,z)- A(z,5) = 1 if and only if there is an z € V with
AFl(i,z) =1 and A(z,j)=1 O

Consider undirected or loop-free directed graphs G with n nodes. Extremely inter-
esting questions arise if we wish to know the minimum number of probes c¢(P) of the
adjacency matrix of a graph required in the worst case, in order to determine whether the
graph possesses a given “non-trivial” property P. A probe is simply the inspection of one
entry of the adjacency matrix (and we assume that an algorithm will forever “remember”
what the entry was after it probed it), and a property is a subclass of the class of all
n—node graphs that is closed under isomorphism. A property P is called “non-trivial” if
P holds for some graphs but not for all. At first sight it may seen that ¢(P) = in(n—1) for
all non-trivial graph properties, but a classical example due to Aanderaa (see Rosenberg)

shows that this is not the case. The following, slightly better result is due to King and
Smith-Thomas.

Lemma. If P is the property of having a sink node (for loop-free directed graphs),
then ¢(P) = 3n — [logn] — 3.
Proof.

(A sink is defined to be a node with in-degree n — 1 and out-degree 0.) We only
show that ¢(P) < 3n — [logn] - 3. Arrange the n nodes at the leaves of a tournament
tree (or heap). Run tournaments, with node i defeating node j when A(4,j) = 0 and
node j defeating node i when A(%,5) = 1. Observe that loosers cannot be sinks. Clearly
it takes » — 1 probes to determine the winner v of the tournament, which is the only
possible candidate for being a sink. By probing the A(v,j) and A(j,v)— values for all
n — 1 nodes j # v it is easily decided whether v is indeed a sink. We don’t have to probe
the > [logn] entries A(w, J) or A(j,v) that were already queried during the tournament.
Thus (n - 1) + 2(n — 1) — [log n] probes suffice. O

Bollobas and Eldridge have established that for all non-trivial graph properties P, ¢(P) >
2n — 4.
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On the other hand there are many graph properties for which ¢(P) is not linear. Define
a graph property P to be “elusive” if all essential entries of the adjacency matrix must
be probed (in the worst case) in order to establish P, i.e., when ¢(P) = zn(n —1). (We
assume here that for loop-free directed graphs the compacted version of the adjacency
matrix is used.) The following theorem combines results of Holt & Reingold, of Best, van
Emde Boas & Lenstra, of Milner & Welsh, of Bollobas, of Kirkpatrick and of Yap.

Theorem. The following graph-properties are elusive: (i) having < k edges (0 < k <
3n(n—1)), (ii) having a vertex of degree > 2(n 2> 3), (iii) being a tree, (iv) having a trian-
gle, (v) having a cycle, (vi) being connected, (vii) being Eulerian, (viii) being Hamiltonian
(n prime), (ix) being bi-connected, (x) being planar (n > 5), (xi) containing a complete
graph of order k(2 < k < n), and (xii) being k—chromatic.

Bollobas and Eldridge have shown that every non-elusive property of graphs must be sat-
isfied by at least three, non-isomorphic graphs. Finally, define a graph-property P to
be “monotone” when every n—node supergraph of an n—node graph G which satisfies
P, also satisfies P. In 1973 Rosenberg formulated “the Aanderaa-Rosenberg conjecture”
asserting that for every non-trivial, monotone property of graphs P, ¢(P) = Q(n?). Much
of the results stated earlier actually arose from attempts to resolve the conjecture. The

Aanderaa-Rosenberg conjecture was settled by Rivest and Vuillemin, who proved the fol-
lowing result.

Theorem. If P is a non-trivial, monotone property of graphs, then ¢(P) > n2/16.

Kleitman and Kwiatkowski improved the bound to ¢(P) > n?/9.

In a different approach one might want to represent S by a combinational circuit with two
log n—bit input lines and a 3-valued output line such that

?ifzgVorygV,
P(z,y)=q oifz,y €V and (z,y) ¢ E,
lifz,y €V and (z,y) € E.

Define a graph to have a small circuit representation if it can be represented by a
combinational circuit of size O(log¥n) for some k. Many simple graph problems are
surprisingly complex for graphs that are given by small circuits (see figure 4),i.e, the
succinctness of the graph encoding saves space but not time.

1.2.2 Node Query Representation.

Another common representation for a graph G was uses a subroutine S (z) which generates
the edges incident to z for any z € V. A typical example is the adjacency list of G in
which for each i € V, §(¢) produces a pointer to the “list” of edges incident to i. An edge
(4,7) is represented by a simple record (or is nil when no next record in the list exists)
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| Problem Upper Bound | Lower Bound |
(1) Has a triangle NP NP
(2) Has a k—cycle NP NP
(3) Has a k—path NP NP
(4) AG)=>k NP NP
(5) 6(G)<k 2 2,
(6) Has a cycle DSPACE(n) NP
(7) Has an Euler circuit | NSPACE(n) NP
(8) Has an s —t path NSPACE(n) I,
(9) Connectivity NSPACE(n) 103
(10) Perfect matching Exp.-DTIME I,
(11) Hamiltonian circuit | Exp.-DTIME II;
(12) Planar Exp.-DTIME >
(13) Bipartite Exp.-DTIME 32
(14) k—colorable Exp.-NTIME 22

Figure 4: Complexity of some graph problems for graphs given by a small circuit rep-
resentation. (Note. G is a simple undirected graph, A and & denote the maximum and
minimum degree, respectively, and % is a fixed integer.)

(see figure 5). The adjacency list of a graph uses O(n + e) storage and thus is usually a
more compact representation than the adjacency matrix. The fact that the adjacency list
produces the edges incident to a node in O(1) time per (next) edge, makes it the primary
representation of graphs in many algorithms. Note that for undirected graphs one can
save space by numbering the nodes from 1 to n, and including in the adjacency list of a
node ¢ only those edges that lead to nodes j > i. Itai and Rodeh show by an information
theoretic argument that in many cases this is about the tightest possible representation of
a graph (in terms of the number of bits used). Sometimes it is already advantageous (from
the algorithmic point of view) to have the edges (i, j ) in the adjacency list of ¢ ordered by
increasing value of j. Call this the “ordered” list representation of G.

Lemma. Given any representation of G by adjacency lists, the ordered list representa-
tion of G can be constructed in O(n + ) time.
Proof.

Use buckets By through B,. Go through the given adjacency lists edge by edge, and
throw edge (4, ) into bucket Bj. Now purge the adjacency lists and build new ones by
emptying the buckets B; through B, in this order, appending any edge (i,7) € B; to the
end of the (current) adjacency list for i. O

Lemma. The representation of G by adjacency lists can be kept within O( 13":—") storage
while retaining the essential properties of the representation.
Proof.
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(a) a graph G (b) an adjacency-list representation of G

Figure 5:

Use the ordered version of representation. Choose k = %log n, and observe that there
can be at most 2% different sub-lists on the adjacency lists involving the nodes ak + 1
through (a+ 1)k fora =0, --, % — 1. Represent the different lists separately, and include
a reference to the proper sublist for every non-empty interval in the adjacency lists. This

requires n- £+ ¢- k2k = -'ii +n2k = O(E":—n) storage, and still allows for a simple traversal
of the lists in O(1) time per edge. O

Given the adjacency list representations of G, one can effectively obtain an adjacency

matrix for G in O(e) time despite the fact that O(n?) storage is required (cf. Aho,
Hopcroft, & Ulman, p.71, exercise 2.12).

1.2.3 Structural Representation.

When a graph G has a particular structure, it may well be exploited for a suitable rep-
resentation in computer storage. For example, an interval graph is defined such that
every node z corresponds to an interval I(z) on the real line and (3,7) € E if and only if
I()NI(j) #£¢. The representation could simply consist of the intervals I(z) for z € V. It
is an example of an “edge query representation” that uses only O(n) storage.

When G is planar it is useful to record the edges in the adjacency list of every node
¢ in counterclockwise order and to include in the record of every edge (¢,7) a pointer to
the record corresponding to (i, J) in the adjacency list of j. This representation has the
added advantage that one can easily traverse the consecutive edges of any face of G in
clockwise order in O(1) time per edge. Itai and Rodeh have devised an ingeneous scheme
to represent every n—node planar graph using only 1.5nlogn 4+ O(n) bits.

Sometimes graphs can be hierarchically defined. In this case some nodes of G can
be “expanded” and replaced by other graphs (again hierarchically defined), with suitable
rules that specify the connection of the edges incident to an expansion node and the nodes
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of the replacement graph. Observe that the complete expansion could lead to a graph of
exponential size. Many basic graph problems like planarity testing and minimum spanning
tree construction for hierarchically defined graphs can be solved in time and space linear
in the size of the hierarchical description.

Acyclic directed graphs can be represented with the nodes linearly arranged in such a
way that all (directed) edges run strictly from left to right. The representation is often
used and known as the topological ordering or topological sort of the graph.

Theorem. A topological ordering of an acyclic directed graph can be computed in
O(n + €) time.
Proof.

By enumerating the edges one by one, one can compute the indegree ¢(%) of all nodes
¢ in linear time. Make one sweep over the list of ¢(%) values to compile the “batch” L
of nodes with c(i)-value 0 (the current sinks). Now execute the following code, using an
auxiliary list L’ that is initially empty.

repeat
output the nodes of L (in any order);
for each node i € I do
for each edge (i,5) do

begin
e(4) = e(4) - 1;
if ¢(j) = 0 then append j to L’
end;
L:=1L"
L' := empty

until L = empty.

Note that in the for-loop the computational effort can be accounted for by charging
O(1) to each node i € L and O(1) to each edge (,7). Because every node (and hence,

every edge) appears precisely once in the process, the computation takes only O(n + e)
time total. O

For general directed graphs, Shiloach has shown that the nodes can be linearly arranged
as 1,...,n such that for every i < j the minimum number of edges blocking every path

from i to j is greater than or equal to the minimum number of edges blocking every path
from j to i. The ordering can be computed in O((n + €)?) time.

1.3 Graph Exploration by Traversal.

Consider the following traversal of a (connected) graph G. Initially all nodes are marked
unvisited and all edges are colorless. Start at a fixed but arbitrary node i, and proceed in
the following way whenever a node i is reached. When i was not reached before, mark it
as visited. If there are no unexplored edges left in the edge-list of 7, then backtrack to the
node from which ¢ was reached. Otherwise traverse the first unexplored edge (i,7) in the
edge-list of ¢ (and mark it explored implicitly by moving some pointer to the next element
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of the list). When j was visited before, color the edge red and backtrack to ;. When J
was not visited before, color the edge green. Now “visit” the node reached in a similar
manner. The algorithm is known as depth-first search (DFS) and is easily implemented
using a stack and suitable pointer moves over the adjacency lists. The algorithm termi-
nates when all edges incident to i, have been explored.

Theorem. Let G be a connected graph.
(i) The edges colored green by DFS form a spanning tree of G, called a DFS tree.

(ii) The edges colored red by DFS always connect two nodes of which one is an ancestor
of the other in the DFS tree.

(iii) DFS takes O(n + €) time.

DF'S trees are very special because of (4%), and normally reveal quite a bit of structure of
a graph. For example, DFS leads to an algorithm for finding the bi-connected components
of a graph in O(n + €) time. Depth-first search can also be applied to directed graphs.
An important application is Tarjan’s algorithm for determining the strongly connected
components of a directed graph in O(n + €) time.

Another popular technique of traversing a (connected) graph G proceeds as follows
and assigns a number L(3) to every node i. Initially all nodes are marked unvisited and all
edges are colorless. Start with {io}, mark i, as visited, setL(i,) = 0, and do the following
whenever a set of nodes I is reached. For every ¢ € I and edge (,) on the edge-list of
i, color the edge red when j was visited before. Otherwise color the edge green, mark j
as visited, set L(j) to L(j)+ 1, and add j to a set I". Repeat the step until the “new” I’
is empty. The algorithm is known as breadth-first search(BFS) and is easily implemented
by maintaining the set I in a queue. All nodes in a set I have the same L—value.

Theorem. Let G be a connected graph.

() The edges colored green by BFS form a spanning tree of G, called a BFS tree.
(ii) For every i € V, L(i) is the shortest distance (in edges) from i, to 1.

(iii) For every green edge (i,7) one has |Z(#) = L(4)| = 1. For all edges (i, 7) one has
|L(#) - L(7)| < 1.

(iv) BFS takes O(n + e) time.

L(i) is called the “level” of i. Observe from (i%) that edges always connect nodes that
are at most one level apart. Define truncated BFS to be the BFS procedure up to and
including the moment that the first red edge is encountered. Truncated BFS finishes in
O(n) time because it traces a tree-like environment of to. (The red edge closes the first
cycle, if there is one). Clearly other forms of truncated BFS can be defined.
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1.4 Transitive Reduction and Transitive Closure.

When one is only interested in representing the path information of a (directed) graph G
two extreme approaches can be followed:

)

(i) (minimum storage representation) determine a “minimal” graph G- =< V,E- >
with the property that there is a (directed) path from i to j in G if and only if there
is a (directed) path from i to j in G~.

(i) (minimum query time representation) determine the (unique) graph G* =< V, E* >
with the property that there is a (directed) path from i to j in G if and only if there
is a (directed) edge (¢,5) € E* in G*. The graph G* is traditionally known as the
transitive closure of G.

We outline the known results for both types of representation. A simple idea for
obtaining a minimum storage representation of G is to delete as many edges as possible
without destroying the existing connections by directed paths. Any graph with the smallest
number of remaining edges that can be obtained in this way, is called a minimum equivalent
graph (or MEG). Moyles and Thompson (see also Hsu) have shown that a MEG for G can
be constructed out of the MEGs of the individual strongly connected components of G
and a MEG of the “condensed ” graph (i-e, the acyclic graph with the strongly connected
components as nodes). Sahni proved that the problem of deciding whether G has a MEG
with at most k edges (for specified k) is N P—complete. If we drop the requirement that
the “reduced” graph be a subgraph of G, then one can sometimes save more edges. Define
a transitive reduction of G to be any graph G- with the smallest possible number of edges,
with the property that there is a directed path from i to J in G if and only if there is a
directed path from ¢ to j in G~. For acyclic graphs the transitive reductions are MEGs
(and vice versa). Aho, Garey and Ullman have shown that each graph has a transitive
reduction that can be computed in polynomial time and that, algorithmically, computing
transitive reductions is of the same time complexity as computing transitive closures and,
hence, of multiplying Boolean matrices (see later).

The problem of computing the transitive closure G* of a (directed) graph was first
considered in 1959 (Roy) and a variety of algorithms have been proposed for it since. One
popular approach is based on the use of the adjacency matrix A of G, considered as a
Boolean matrix. Assume that ordinary matrix multiplication takes O(n*) time and that
the elementary arithmetric operations (no division) on n—bit numbers can be performed
in m(n) “steps”. It is known that one can choose a < 2.4, m(n) = 1 in the uniform model
and m(n) = O(nlognloglogn) if we count bit-operations. Furman observed that the
adjacency matrix A* of G* can be written as A* = IV AV A2...v An-1 — IvAr-1 It
suggests that A* can be computed in O(n®m(logn)log n) time using repeated squaring,
by computing each necessary matrix product over the ring of integers modulo n + 1 and
recovering the true Boolean matrix product by changing nonzero entries to ones. Munro

and Fischer & Meyer proved the following key result. Let M(n) be a function satisfying
M(2n) > 4M(n) and M (3n) < 2TM(n).

Theorem. A* can be computed in O(M(n)) time if and only if the product of two
arbitrary n x n Boolean matrices can be computed in O(M(n)) time.
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It follows that transitive closures can be computed in O(n*m(logn)) time, because two n
x n Boolean matrices can be multiplied within this time bound (by the same technique
as before). Adleman et al. have improved this bound to O(n*logn) bit operations and
even to O(n*logn( 1—"&%’52) #~1) bit operations, by means of modular arithmetic and table
look-up techniques using only O(n?logn) bits of storage. The well-known “four Russians”
algorithm (apparently due to Kronrod) is much less sophisticated and gives a bound of
only O(n3/logn) steps for Boolean matrix multiplication both in the worst case and in
an average sense (van Leeuwen). O’Neill and O’Neill show that the simple technique of
computing every row x column product by stepping through the 1’s in the row (only) and
stopping when the corresponding column position has a 1 (in which case the product will
be 1), yields an algorithm for computing the product of two arbitrary Boolean matrices
in O(n?) expected time.

Other approaches use the adjacency matrix in more direct terms as a problem re-
presentation. The classical algorithm of Warshall computes A* as the “limit” of a series of
matrices A(0) = I'V 4, A(1), A(2),...with a;;(s) = 1if and only if there is a directed path
from ¢ to j passing through intermediate nodes € {1,...,s} only. A(s) can be computed
in O(n?) time from A(s — 1) by observing that aij(8) = aij(s — 1) V ai(s — 1)as4(s — 1).
As A* = A(n), Warshall’s algorithm computes transitive closures in O(n3) time. Several
improvements or Warshall’s algorithm have been proposed that are more efficient when
one analyses the number of rows that must be “paged in” , assuming that matrices are
stored row-wise on disk (Warren, Martynyuk ). An interesting, space-efficient variant was
proposed by Thorelli. Put all directed edges in a queue Q, introduce two pointers o and 3,
and execute the following code. (Suppose that the queue elements are numbered 1,2,...
for presentation and let the edge pointed at by a be (tasJa)-)

for a :=1 to end(Q) do
for 8 :=1 to end(Q) do
if jo =i and iy # j then
if (4, jg)  Q then append (iq,7p) to Q.

Note that @ keeps expanding as the algorithm proceeds, until it contains the full e* = | E*|
edges of the transitive closure. Another interesting variant was considered by Ibaraki and
Katoh. Suppose we have the A* of G and wish to update it when, say, k edges are added.
Clearly no 1’s can change to 0’s, and we can confine ourselves to considering the question
which 0’s of A* must be turned into 1’s. In case an edge (3,7) is added and a*(u,v) =0
then a*(w,v) must only be changed to 1 when a*(u,j) = 0,a*(u,i) = 1 and a*(j,v) = 1.
Process the t* edge as follows. Determine the sets U, = {ula*(u,j) = 0,a*(u,i) = 1}
and V; = {v|a*(j,v) = 1} (always j € V;) by straightforward inspection in O(n) time and,
when U; # 0, set a*(u,v) to 1 for all u € U, and v € V;. Note that the latter costs O(ugve)
time and creates at least u, more 1’s in A* (because all a*(u, j) were 0 for u € U,), with
u¢ = |Vi]. Thus the addition of k edges requires a total of O(kn+ Y% uv:) = O(ne*) time,
using that k < e*, v; < n for all ¢ and 3t u, < e*. The algorithm suggests an interesting,
incremental approach to the construction of transitive closures. Ibaraki and Katoh also

prove that the transitive closure can be updated in O(n3 + n?e) time when any number
of edges is deleted from G.

A considerable number of transitive closure algorithms is based on the following lemma
implicit in the work of Munro and Purdom. Let I(n) denote the time for computing the



12 1 REPRESENTATION.

transitive closure of an acyclic directed graph of n nodes, and let the condensed graph of
G (i.e., the induced graph with the strongly connected components of G as nodes) have
n. nodes and e, edges.

Theorem. The transitive closure of a directed graph can be computed in O(n + e* +
I(n.)) time.

Proof.

Compute the strongly connected components of G and the condensed graph G, in
O(n + €) time, using DFS. The transitive closure of G can be computed in O(n + €*) time
from the strongly connected components and the transitive closure of G by enumerating
all implied pairs, i.e., all pairs (3, j ) with i and j in the same strongly connected component
or in components that are directly connected in G: by an edge from the i—component to

the j—component. Because G, is acyclic, its transitive closure can be computed in i(ne)
time. O

Eve & Kurki-Suonio, Ebert and Schmitz all show that the DFS-algorithm for computing
the strongly connected components of a graph gives enough structural information to
generate the transitive closure directly, typically in O(n? + ne) time. The theorem shows
that this bound may be overly pessimistic, especially when n. is small. Consider any
acyclic directed graph G of n nodes, let G- =< V, E~ > be its minimum equivalent graph
(or transitive reduction) and e~ = |E-| (hence e~ < e). One can compute a topological
ordering of G in O(n+e¢) time (cf. section 1.2), with no additional overhead for having each

adjacency list L(%) sorted (in increasing order). The following result is due to Goralcikova
and Koubek.

Theorem. I(n)=O(n+ e+ ne-).
Proof.

We have spend O(n + €) time to represent G in topological order. Define R(i) = {j|
there is a directed path from i to j}. It is clear that the sets R(%) represent G*. (Observe
that j € R(4) implies j > i.) Compute the sets R(3) inductively as follows for i from n down
to 1. Suppose R(j) has been computed for all j > i. Compute R(z) = {i} U {R(5)|(5,5) €
E} as follows, using an auxiliary bit-vector 7 that is initially empty. Begin by putting ¢
into R(%) and setting the *» bit of ¥ to 1. In fact we will use 7 as the characteristic vector
of R(7) at all times. Now process all edges (4,7) € E (i.e., j € L(4)) in order of increasing j
as follows: when j already appears in R(i) (which we can tell in O(1) time using ) ignore
this edge and proceed, otherwise append the elements of R(j) to R(3) (while updating 7
and, in fact, using v to avoid adding nodes to R(3) that already appear in it). Note that
the edges (i,5) with j € R() are correctly ignored because, when j was added to R(7),
necessarily all nodes reachable from j must have been added to R(%) as well. The edges
(4,7) with j & R(i) necessarily belong to G—. For suppose (¢,5) € G~. Then there would
be a path { - u — ... — j with (i,u) € E and (necessarily) u < j, and j must have been
added to R(i) by the time the edge (%,u) was processed. Contradiction. It follows that
the time complexity of the algorithm is O(n + €) plus (X(i.5ee- |1R(H)]) = O(ne~). O
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It can be argued that for random acyclic directed graphs the expected value of e~ is
O(n'). Jaumard and Minoux have given a slightly different implementation of the same
algorithm, showing that I(n) = O(n + de*) for acyclic directed graphs with indegrees
bounded by d. Mehlhorn and Simon have developed another algorithm showing that
l(n) = O(e+(n+e~)p), where pis the number of chains (paths) in a chain decomposition of
the acyclic directed graph. The expected time complexity of their algorithm is O(n?log n).

Following yet another approach, several algorithms try to construct the transitive
closure of G by progressively searching for the “successors” of every node. Bloniarz et al.
considered the following simple algorithm for determining all nodes j that are reachable
by a directed path from i, for each i. We use the adjacency lists L(j), an auxiliary list
R(%) to accumulate the j’s that are reachable from t, an auxiliary bit-vector 4 that will
serve as the characteristic vector for R(:) (as before), and an auxiliary pushdown list P to
record the nodes which we need to explore further in DFS-like order. For every node 7, the
following code is executed. Let “record(k)” denote the combined operation of appending
k to R(i), setting the k** bit of 4 to 1, and pushing k onto P.

record(?);
count:=1;
while P # 0 & count < n do
begin
pop the top-element of P and assign it to j;
for each node k € L(j) do
if k hasn’t been recorded yet (k** bit of v is 0) then
begin
record(k);
count:=count+1
end
end;

output R(z).

For each i the algorithm may need up to O(n + €) time, and its total runtime will be
O(n? + ne) in worst case. Bloniarz et al. prove that over wide classes of “random” graphs
the algorithm has an average runtime of O(n?logn). A transitive closure algorithm with
an even better expected time complexity has been devised by Schnorr. The algorithm
differs from the preceding one in two ways: the DFS-like search is replaced by a BFS-like
search, and advantage is taken of the fact that the sets R(:) are computed for all i and
thus allow for a combination of effort. More precisely, using a BFS-like search-procedure
on G and G* (the graph G with all edges reversed) respectively, the algorithm determines
sets R, (7) and R_(%) for every i such that R (i) contains the maximum number <[3]+1
of successors of ¢ and R_(i) contains the maximum number < [3]+ 1 of predecessors of .

The following lemma shows that these sets are sufficient to obtain G* in another O(n+e*)
time.

Lemuma.  For each i, R(9) = R4(i) U {ili € B-(3)}U GI1R()] = IR-(3)| = [§) + 1)

Observe that R, (¢) and R_(j) contain all successors of i and predecessors of j, respec-
tively, whenever their cardinality is < [3]+ 1. When they both have cardinality = (5141,
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Ry (?) N R_(j) # 0 by the pidgin hole principle and there must be a node u such that
¢ —* u —* j and (hence) j is reachable from i. O

Schnorr proves that the transitive closure algorithm has an expected time complexity of
O(n + €*) over large classes of random graphs and that the probability that the algorithm
will run for more than cn? steps (some constant c) is exponentially small in n.

1.5 Generating an arbitrary Graph.

One of the most immediate problems in dealing with graphs may be the question of gen-
erating an “arbitrary” graph with a given number of nodes (n). More specifically the
problem is to generate (or select) a graph G uniformly at random from the set of unla-
beled graphs with n nodes. The problem is not entirely straightforward because graphs
may be written down in (usually) many isomorphic forms and different graphs can have
different numbers of isomorphisms. Let G,, be the set of undirected graphs on the node set
1,...,n and let E, = {(4,5)|]1 < 4,5 < n and (i, ;) unordered}. Clearly any G € G, has
an edge set E with E C E,,. Consider the symmetric group S, acting on G,, by permuting
the node labels. The orbits under S, correspond precisely to the isomorphism classes of
graphs on n nodes. Dixon and Wilf have given a simple algorithm for selecting an orbit
uniformly at random for the general case of a group acting on a set, and obtained the

following result by specializing the algorithm to the present situation. Assume that the
value g, = |G,| has been precomputed.

Theorem. There is an algorithm for selecting an n—node graph G uniformly at random
in O(n?) average time.
Proof.

We only sketch the algorithm. For each 7 € S, define the permutation 7* on E,, by
7*((4,4)) = (x(3),7(j)). Considering the action of S, on G,, , one verifies that a graph
G is left fixed by « if and only if #*(E) = E. Thus G € Fiz(r) if and only if for every
cycle C of 7* (as a permutation) either all pairs in C occur as edges of G or none of
them does. Hence |Fiz(r)| = 2", where ¢(7) is the number of cycles of 7*. The value
of ¢(r) can be computed “by formula” from the cycle structure of 7. Let (k1y. ..y kn)
denote the conjugacy class of S, consisting of the permutations having k; cycles of length
i (1 <i<n),and let W ([ky,... kn]) = |[k1,. .., k]| - 260 = ;"T'f% be its “weight”.
The following algorithm will select an n—node graph G uniformly' at random:

1. Choose non-negative integers k;, ..., k, with 3.1 i.k; = n such that the probability
of choosing an n—tuple [k1,...,k,] is W[k, . . ., kn)).

2. Take (any) representative v from the class [k1,...,ks] chosen in step 1, and choose
a graph G uniformly at random from Fiz(r).

3. “Ignore” the node-labels of G and output it.

Steps 2 and 3 are easily implemented in O(n?) time, which is essentially the time needed
for writing down G. Dixon and Wilf show that step 1 can be implemented in O(n?) average
time, provided g,, is known. O
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The Dixon-Wilf algorithm is particularly useful for selecting graphs “fairly”, without the
need for extra storage (i.e., beyond what is needed to represent the selected graph itself).
The integers involved in the computation get very large for n > 10, but this seems inherent
to the problem. Dixon and Wilf also prove that the [g, log( &r)]—fold iteration of the
algorithm, with all choices independently and uniformly at random, leads to a sequence
which with probability > 1 — ¢ includes each n—node graph at least once. This algorithm
seems particularly useful for testing hypotheses for n—node graphs, without having to list
all graphs and go through expensive isomorphism rejection routines.

The approach of Dixon and Wilf can be used, at least in principle, for generating
arbitrary graphs of a more restrictive type as well, but much work remains to be done
here. For selecting a connected n—node graph uniformly at random one could simply
iterate the Dixon-Wilf algorithm until a connected graph is output. (Note that by e.g. a
DFS-based routine, the connectedness of a graph can be checked in O(n+e) time.) On the
average no more than 2 iterations will suffice for this, by known results on the population
of connected graphs among all unlabelled n—node graphs.

1.6 Recognition of Graphs.

Many different types of graphs have been distinguished in the past. This has led to the
important recognition problem for every type X of interest: given a graph, is it of type X.
Related questions (which we do not consider here) are: given a graph G and an integer

k, can one turn G into a graph of type X by adding/deleting k¥ nodes/edges. There are
numerous versions of this question.

Interestingly enough,the recognition problem for classes of graphs can be quite tricky.
Nevertheless, it should probably be required of any class of graphs that is distinguished,
that its recognition problem is of polynomial time bounded complexity. We have listed

the known bounds for a number of classes of graphs that are commonly encountered in
the following table (see Johnson).
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category class of graphs [ complexity of recognition

trees and related graphs Trees/Forests linear

Almost Trees (k) | linear

Partial k—trees | exponential in k£ (Arnborg et al.)
Bandwidth—k polynomial in k (Saxe)

Degree—k linear
planar graphs Planar linear (Hopcroft & Tarjan, Booth & Lueker)
Series Parallel linear (Valdes et al.)
Outerplanar linear (Mitchell)
Halin linear
k—Outerplanar linear
Grid linear
K3 3—Free linear (Asano, Williamson)
Thickness—k NP complete for k > 2
Genus—k O(n°(®) (Filotti et al.)
perfect graphs Perfect in co-NP
Chordal linear (Gavril, Tarjan & Yannakakis)
Split linear (Golumbic)

Strongly Chordal | polynomial (Farber)
Comparability O($.¢) with § = max degree (Golumbic)

Bipartite linear
Permutation 0(n3) (Golumbic)
Cographs linear
intersection graphs Undirected Path | O(n?) (Gavril)
Directed Path O(n*) (Gavril)
Interval linear (Booth & Lueker)
Circular Arc O(n3) (Tucker)
Circle polynomial (Gabor et al.)

Proper Circ. Arc | polynomial (Tucker)
Edge (or line) linear (Lehot, Syslo)
Claw-Free linear

There are many related questions that can be asked: given a graph of type X, is it of
type Y. There is also the following range of questions: given a graph of type X, does it
have property P. (Here a “property” can be any graph-theoretic property that one may
wish to test like planarity, having a Hamiltonian cycle, etc.) Also, many graph-theoretic
constructions can be specialized to graphs of some type X. It appears that the given list
of graphs is natural hierarchy for investigating the complexity of graph problems. There
is a vast body of literature resulting from this “research program”, especially dealing with
the study of problems that are N P—complete for general graphs (see Johnson).
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2 Basic Structure Algorithms.

Graph theory provides us with a wealth of results about the structure op graphs. In graph
algorithms the aim is to identify substructures or properties algorithmically, by a program
that can be run on every admissible input graph. Thus, the theory of graph algorithms will
answer questions like “does a graph G have property P” by providing an algorithm that
tests graphs for property P, instead of by theorems about property P alone. The theory
is sophisticated because of the concern for algorithms of a provably low worst-case or
average (expected) complexity. To reach low complexity, graph algorithms usually exploit
theorems from graph theory (or finds them, when they are lacking). In this Chapter we
review the essential structure algorithms for general, weighted or unweighted graphs.

2.1 Connectivity.

Two nodes ¢, j of G are said to be k—connected if k is the largest integer such that there
exist k node-disjoint paths from i to j in G. We denote the connectivity of ¢ and j by
cn(%,7). By Menger’s theorem cn(i, j) is equal to the minimum size of any set of nodes
S whose removal disconnects ¢ and j. (If i and j are adjacent, we take en(¢,5) = n — 1.)
Define the connectivity en(G) of G by : cn(G) = min; ; en(4, j). It is common to study
the question: given some k, is cn(G) > k. The question is relevant in networks where
one wants to know for each pair of nodes a guaranteed bound on the number of alternate
routes between the nodes.

For k = 1 the problem reduces to the question of whether G is connected. By DFS
this is easily answered in O(n + e) steps. One of the classical results in graph algorithms
is the fact that for £ = 2 and k = 3 the problem can be solved in O(n + e) steps also. We
only look at the case k = 2 and assume without loss of generality that G is connected. Do
DF'S starting at some i, and number nodes consecutively the first time they are visited.
Let (<) be the number assigned to node i, v(i,) = 1. Let T be the DFS tree, with all green
edges (see Section 1.3). For any j , define LOW(j) = min{v(i)|i is reachable from j by a

downward path of green edges followed by at most one red edge}. Clearly LOW(3,) = 1
and LOW(5) < v(j) for all 5 .

Lemma.

(i) i, is a cutpoint of G if and only if the degree of i, in T is at least 2.

(ii) Forall j # 4,, j is a cutpoint of G if and only if it has a son J'in T with LOW(j') >

v(J)-
Proof.

(i) Let i, be a cutpoint and let z,y be two nodes such that every path from z to y
passes through i,. Then z and y cannot be in the same subtree under 1, and i,
has degree > 2. Conversely, take any two nodes z,y in separate subtrees under i,.
Because red edges cannot reach across subtrees (cf. Lemma), every path from z to
Y must pass through i,. Hence i, is a cutpoint.

(i) Let j # i, be a cutpoint, and let z and ¥ be two nodes such that every path from
T to y passes through j. At least one of z,y must belong to a subtree under j, say
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y. If for every subtree under j there is at least one red edge connecting it to some
ancestor of j, then every subtree can be reached from z by a path that avoids j-
As this is impossible, there must be one subtree with no red edges leading to an
ancestor of j. Its root j' is a son of j and satisfies LOW(j’) > v(4). The converse is
easy, as any path connecting %, and j’ must pass through j. O

Observe that the numbers v(i) are easily assigned while DFS proceeds, and LOW(j)
can be computed by the time the last subtree under j has been fully explored and DFS
backtracks to the father of j in T. Using the lemma, all cutpoints can be identified during
DFS at only a small expense of extra work and (hence) cn(G) > 2 if in fact no cutpoint
is found. The algorithm can be modified to find all biconnected components in O(n +e)
steps as well. Stack edges when they are traversed for the first time, and output and pop
whatever edges still are on the stack and were put on it after J was visited as a component,
whenever j is identified as a cutpoint. A more complex modification of DFS generates all
tri-connected components in O(n + €) time as well.

Testing whether en(G) > k for k > 4 is considerably harder. Some algorithms compute
cn(G) exactly using the following observation.

Lemma. For every i,j the value of cn(i, j) can be computed by solving an integer
maximum flow problem on a graph of O(n) nodes and O(e) edges.

Suppose we have an O(ne?) time max-flow algorithm (see Section 3.4). Write ¢ = ¢n(G).
Assume G is not a complete graph, hence ¢ < n—2. Let i, be a node that is not connected

to every other node and let i,,%;, ... be some fixed listing of the nodes. Consider the
following algorithm:

-1 i=102;
t:i=-1;
repeat

t =141 ;

compute cn(i, 1) for every i € {igyq, ..., in-1} and
set 7; equal to the minimum of the computed values
and 7y

until ¢ > v;;

Clearly ¢ < 7¢ < 94—1 < n — 2 for all ¢ 2 0 and, because t increases in every iteration,
the algorithm is guaranteed to terminate. Suppose it terminates when ¢ has value k,
i.e., right after node 45 was considered. Then ¢ < 7 < k. Let 2,y be two nonadjacent
nodes with cn(z,y) = ¢ and S be a set of ¢ nodes whose removal disconnects z and v.
Because k£ > ¢ there must be an 1; with 0 < j < k such that t; € S and, because S
“separates” the graph, there must be a node i such that the removal of the nodes in S in
fact disconnects i; and ¢ as well. It means that en(ij, 1) < ¢ (hence en(ij,i) = ¢) and v;
must have been set to ¢ during the iteration with ¢ = J. Consequently 7; = ¢ when the
algorithm terminates and termination occurs exactly for ¢ with ¢ = ¢. The jth iteration
costs (at most) n maxflow computations and thus takes O(n>*1eP) time. The complete
algorithm computes ¢ = ¢n(G) in O(c.n+1ef) time. (Note that ¢ < 22, because every
node must have degree > ¢.) By a different algorithm the question “is en(G) > k” can be
solved in O(k3 + kne) time, for every fixed k.
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An interesting probabilistic approach to determining ¢ = cn(G) was suggested by
Becker et al. It is based on the following observation.

Lemma. Letc=cen(G)<n-2,¢e>o0andr = 1%:—5;-@- . Draw r random nodes
1,...,tp Of G and determine ¢’ = min; <<, min, cn(é,v), where the inner “min” is taken
over all v not adjacent to i;. Then Prob (¢/ > ¢) < e.

Proof.

Let § be any node separator with [S| = ¢ . For all nodes i € V — § one has
min, cn(i,v) = ¢ . (Note that S separates the graph in at least two components. For
any node v in a component different from the one containing i one has en(i,v) < |S| =,
hence ¢n(7,v) = ¢.) Thus for ¢’ to be strictly greater than ¢, all random nodes that were
drawn must belong to S. It follows that Prob (¢! > ¢) < (&) <e. D

The lemma shows that ¢ can be computed with error probability < € by minimizing over
the values min, cn(s, v) for a sufficiently large random sample of nodes i . By solving O(n)
maximum flow problems (Lemma), each min,, en(i, v) value can be computed in O(nt+1eP)
time. Yet the minimum sample size (r) we need is hard to determine, because we need
¢ itself to compute it. A (poor) upperbound can be obtained by setting ¢’ to n — 2 and
substituting ¢’ for ¢ in the formula for r . Now observe that by increasing the sample size,
the value for ¢’ can only decrease (approaching ¢ with high probability for a sample of size
approaching r ) and the corresponding estimate for r can only decrease as well, approach-
ing the correct value of r with high probability. One can show that the expected number
of random drawings needed for the sample to reach the size estimated as the algorithm
goes on is O(r +¢en). Thus for e < 1 the algorithm computes en(G) with error probability

1
< ein only O(rnot1ef) = O(E%fos—cna*'leﬂ) time, which can be significantly faster than
the O(cn>+1eP) algorithm discussed above.

2.2 Minimum Spanning Tree.

Let G =< V,E,w > be a weighted graph, with w a function that assigns a weight to
every edge. A minimum spanning tree (MST) is a spanning tree of G of which the sum of
all edge weights is minimum, over all spanning trees. The problem of computing a MST
has an interesting history that goes back to 1926. The problem is interesting in many
networking contexts. Weights might be distances, traffic densities, costs, etc.

Definition.

(i) A MST-family in G is a collection of disjoint subtrees F= {Ty,---,T}} for which
there exists a MST T with T; C T for everyi, 1 <i<k, and U{‘ T; spans G.

(ii) Let F = {Ty,---,T%} be a MST-family in G. The shrinking of G modulo F', denoted
by G mod F, is the graph < V/, E/, W' > with V' = {1,---,k}, E' = {(4, )|there is
an edge connecting T; and Tj(i # j)} and for every edge (i,7) € E', w'(i,7) is the
weight of the least weighted edge connecting T; and Tj.

For every MST-family F, G mod F can be constructed in O(n + e) time. All MST-
algorithms start from the trivial MST-family consisting of all single nodes and try to reduce
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it to a one-element MST-family by a suitable process of combining trees and shrinking,
i.e., reducing the problem to G mod F. The known algorithms differ by the organisation
of the combining and shrinking steps, and by the data structures employed to keep the
complexity low. The following two lemmas are essential to all MST-algorithms.

Combining Lemma. Let F = {Ty,-- *, Tt} be a MST-family in G and 1 < i < k, k> 2.
Let the least weighted edge from T; to another member of F be (z,y) with z € T; and
¥ € T; (i # j). Let T;; be the tree obtained by connecting T; and T; by the edge (z,y).
Then the collection F” obtained from F by deleting 7; and T; and adding T;; is another
MST-family in G (with one element less than F).

Shrinking Lemma. Let F = {Ty,---,T}} be a MST-family in G, and T’ a MST of
G mod F. Expand T" by replacing every node i by the subtree T; and every edge (3,5) € T"
by the least weighted edge connecting 7; and T;. The resulting tree T is a MST of G.

Several algorithms only use the Combining Lemma:

(A) Boruvka (1926) : apply the lemma for every 1 < ¢ < k simultaneously (assuming all
edge weights are different),’

(B) Kruskal (1956) : take the least weighted edge connecting two distinct subtrees and
let 4, j be accordingly,

(C) Jarnik (1930), Prim (1957), Dijkstra (1959) : take i = 1 always.

Variant A is of interest for distributed computing. Variant B runs very smoothly after
all edges are sorted by increasing weight, in O(elogn) time. Note that every tree T; can
(also) be represented as a set, and deciding whether (z,y) connects two different subtrees
amounts to comparing the outcome of a FIND(z) and a FIND(y). Combining the two
trees and joining the corresponding sets is a UNION operation. Thus the non-sorting
phase of variant B can be implemented by a sequence of O(e) FINDs and n — 1 UNIONS,
which can be achieved in O(ea(n, €)) time where a(n,e) is a very slowly growing function
(practically a constant). Variant C is usually implemented by maintaining a datastructure
Q which contains for every node # Ty the least weighted edge connecting  to T;. Say
z is joined to Ty, in the combining step. Then the edge for £ must be deleted from Q,
and for every neighbor y of z with y ¢ T1 we must consider whether its entry in @ must
be updated to (y,z) (which leads to at most deg(z) update operations on Q, hence, to e
updates alltogether). Implementing Q by any priority queue, leads to an O(elogn) time
bound for variant C. A more clever priority queue leads to an O(elogn/max{1,log £
algorithm, which is linear in e whenever e = Q(ne).

Now consider the following variant. Keep the subtrees of a MST-family in a queue
with a marker # at the end. Apply the combining lemma to whatever T; appears up
front and pull the desired T} from the row, put the resulting T;; at the end of the queue
and proceed until the # appears up front. Now move the marker to the end of the
queue and continue with another phase, unless there is only one tree left (which must
be a MST). Since every node occurs precisely once before the # at the beginning of a
phase, the process of finding the least cost edge out of T; (for every T; that appears up
front in this phase) inspects every node once. Let the edges incident to every node z



2.3 Shortest Paths. 21

be divided into [d—eﬁgﬂ] groups of size f and sort every group, at a total cost of about

ox.(1+ ‘Eﬁsﬂ)f log f) = O(nflog f + elog f). Clearly this is done before phase 1. The
least weight edge incident to z can now be found by inspecting every group, throwing
away the edges that do not lead out of T}, and minimizing over < 1 + 3%&( edges that do.
This leads to a cost of O(n + %) per phase, and a total term of O(e) for eliminating edges.

By induction one easily proves that in phase I, every T; in the queue has > 2! nodes. Thus
there are (at most) logn phases, and the complexity of the algorithm after s phases is
bounded by O(nflog f + ns + elog f + e.;‘.-). Here is how the Shrinking Lemma comes in.
After loglog n phases we have spend O(eloglogn) time (take f = 1) and the MST-family
F has trees of size > 21°81°8" = Jogn each. Gmod F is a graph of < n/logn nodes and
< e edges, and by running the same algorithm on it for the full O(logn) phases we obtain
a MST for G mod F in O(eloglogn) time as well (take f = log n). Using the Shrinking
Lemma, it follows that a MST is obtained in O(eloglog n) time.

For special graphs a better bound may be obtained. For example, by shrinking after
every phase a MST of a planar graph can be obtained in O(n) steps. Also, there is still a
lot of freedom left in the algorithm for the general case. By using another organization of
the steps and refined data structures, the complexity of the MST problem can be reduced
to O(ef(n,e)) with B(n,e) = min{i|login < £} (a very slowly growing function) and
even to O(elogB(n,e)).

An interesting problem concerns the “maintenance” of minimum spanning trees. Spira
& Pan showed that a minimum spanning tree can be updated in O(n) time when a new
node is inserted in the graph. Chin & Houck developed an O(n?) algorithm for handling
deletions. Frederickson improved the bound to O(y/e), and to O(log? e) for planar graphs.

2.3 Shortest Paths.

Let G =< V, E, w > be a weighted, directed graph. For s,t € V welet I(s, t) be the weight
of a least weight path from s to ¢ and 7,; a path of weight (s, t) from s to ¢, provided such
a path exists. (The weight of a path is the sum of the weights of the edges of the path.)
If w(z,y) = 1 for every (z,y) € E, then a least weight path is a “shortest” path in the
traditional sense, but we will use the phrase for the general case as well. For A,BCV
the (A, B)—shortest path problem asks for the shortest path (and its length) from s to ¢,

for very s € A and t € B. The problem is well-defined if the following assumptions are in
effect:

(*) for every s € A and t € B thereis a path from s to ¢, and
(**) no path from s to ¢ contains a cycle of negative weight (a “negative” cycle).

Traditionally the ({s},V) and (V, V) shortest path problems have received most attention,
and we will restrict ourselves to it here. The problems are known as the “single source”
and the “all pairs” shortest path problem, respectively.

2.3.1 Single Source Shortest Paths.

Let s be a fixed source node and let (), (**) be in effect. Write I(t) for I(s,1), I(s) = o.
Define a shortest path tree (SP tree) to be any spanning tree rooted at s such that the
tree-path from s to ¢ is a shortest path in G, for everyt € V.
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Theorem.  With (#), (+*) in effect, there exist SP—trees for every s. If the values I(t)
are known (t € V), then a SP—tree can be constructed in O(e) time.

The theorem shows that we can restrict the problem to computing the weights I(¢). In
order to do so, it is common to view the I(¢) as solutions to a set of equations, known as
Bellman’s equations:

Us
Ut

0,
minggi{us + w(z,t)} for t # s.

(the u; for ¢ # s are the unknowns). It can be shown that when G has no cycles of weight
< o, then the solution I(¢) to Bellman’s equations is unique. Otherwise it is unique under
the additional assumption that ¥, u, is maximal, over all solutions. Thus the shortest path
lengths are the solution to the following linear programming problem (set w(z,y) = oo for

(z,9) ¢ E):

maximize : 3, u
subject to : wu, = o,
U < ug +w(z,t) fort # s,z

We will not explore this connection to linear programming, but several solution methods
of Bellman’s equation directly fit in with this theory. Nevertheless, the characterization

suggests the following general strategy for computing a solution and a S P—tree (with f(2)
pointing to the father of t):

initialize : set u, = o,u; = oo for ¢t # s, f(¢) = nil for all ¢.
algorithm : while not all inequalities are satisfied do
begin
scan :determine a ¢ # s for which there is an
z # t with u; > ug + w(z, t);
label :set u; to u + w(z,t) and f(t) to z
end

The algorithm is due to Ford and known as the “labeling (and scanning) method”. It
can be shown that the algorithm converges regardless of the choice made in the scanning
step, provided (*) and (**) are in effect. Some scanning orders may be better than
others however, and this distinguishes the various algorithms known for the problem.
(Some scanning orders may lead to exponential time computations.) A simple example
is provided by the acyclic graphs. Let an acyclic graph be given in topologically sorted
order. Considering the nodes ¢ in this order in Ford’s algorithm, must produce the (final)
value of u; when its turn is there. The algorithm will finish in O(e) steps.

Another efficient scanning order exists when w(z,y) > o, although it takes more work
per step to pull the right node t out (i.e, out of a suitable data structure). There will be
a set F' of nodes ¢ for which u, already has a final value, and a set I of nodes ¢ for which
Ut is not known to be final. Initially F = {s} and I = V — {s}. The algorithm is slightly
changed as follows:
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initialize :set u, = 0,u; = w(s,t) for t # s, f(t) = s for all ¢;
algorithm : while 7 is not - @ do
begin
scan :choose t € I for which u; is minimal ;
F:i=Fu{t};I:=1I-{t);
update: for every neighbor z of t, z € I, set u, to
min{uz, u; + w(z,t)} ; set f(z) to ¢
when u; + w(z,t) was smaller than u,
end

The algorithm is due to Dijkstra, and operates on the observation that node closest to
s by a path through the current fragment of the final S P—tree(F) must be exposed in
the scanning step. The algorithm is easily seen to require O(e) steps, except for the
operations for maintaining a priority queue of the u,-values (selection and deletion of an
element in the scanning step, and deg(t) priority updates in the update step). A simple
list will lead to O(n) steps per iteration, thus O(n?) total time, and a standard priority
queue to O(deg(t).logn) steps per iteration, hence O(elogn) steps total. By using a
refined data structure this can be improved to O(elogn/ log max{2, £}) steps, and even
to O(e + nlogn) steps. When the edge-weights all belong to a fixed range o..K, the
algorithm can be implemented to run in O(min{(n + €)loglog M, nM + e}).

Assuming (*) and (), there is a good scanning order for general graphs as well:
assume a fixed ordering of the nodes # s, and make consecutive passes over the list.
Observe that it takes O(deg(t)) time to see if a node ¢ must be selected and its u; updated
accordingly, and one pass takes O(e) time. By induction one sees that in the kth pass all
nodes t for which a shortest path from s exists with k& edges, must get their final u;-value.
Thus in O(n) passes all u—values must converge, and the algorithm finishes in O(ne)
time. Observe that for planar graphs this gives an O(n?) algorithm, because e < 3n — 6
(for n > 3). By a partitioning technique based on the planar separator theorem, this can
be improved to O(n!3logn) time for planar graphs (Mehlhorn & Schmidt). For general

graphs an O(hn?) algorithm has been shown, where A is the minimum of 7 and the number
of edges with negative weight (Yap).

2.3.2 All Pairs Shortest Paths.

The all pairs shortest path problem has been subjected to a wide variety of solution
methods, and illustrates better than any other graph problem the available techniques in
the field. We assume throughout that the conditions (*) and (**) are in effect, in particular
we assume that there are no negative cycles in the graph. One approach to the all pairs
shortest path problem is to solve n single source shortest path problems, one problem for
every possible source. The resulting complexity bounds are O(ne + n?logn) for graphs
with non-negative edges and O(n2e) for general graphs, using the results from the previous
Section. By the Theorem it takes another O(ne) time to construct all §P—trees.

By an ingenious device, Edmonds & Karp observed that the all pairs shortest path
problem for general graphs can be reduced to the problem for graphs with non-negative
edge-weights. Let f: V — R be a function such that for all z,y €V f(z)+w(z,y) > f(y)
and consider the graph G’ =< V, E, w’ > with w'(z,y) = f(z)+w(z,y)— f(y). One easily
verifies that I(s,t) = I(s,t) + f(s) ~ f(t) for s,t € V, where I'(s,t) is the length of a
shortest path from s to ¢ in G’. As G’ has only non-negative weights, the all pairs shortest
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path problem is solved in O(ne + n?logn) steps for G. A suitable function f can be
obtained by considering the graph G” obtained from G by adding a (new) source z and
edges (z,z) for all z € V, and taking f(z) = I"(x) (the length of the shortest path from z
to z in G"). Computing f takes one single source shortest path problem computation on
a general graph, and (thus) no more than O(ne) time. The total computation still takes
no more than O(ne + n?logn) time.

A variety of methodes for the all pairs shortest path problem is based on the use of
a variant of the adjacency matrix Ag defined by Ag(i, J) = w(i,j) for i, € V, with
w(i,i) = 0. (We assume that the nodes are numbered 1,---,n here.) Consider matrices
A = (aij), B = (bi;) over the reals and define A x B = C = (¢ij) to be the matrix with
¢ij = Mini<k<n(@ik+bx;), a term reminiscent of matrix product with operations min and +
for + and - . It can be shown that all algebraic laws for matrix multiplication hold for the
(min, +) product. Observe that A% = Ag x --- x Ag (k times) is the matrix with A%(3, §)
equal to the length of the shortest path from i to j with < k edges. Define the transitive
closure of any matrix 4 as A* = min{I, A, A, A?, A3,. ..} with I the matrix with o on the
main diagonal and oo elsewhere, and min taken component-wise. Clearly Af is the matrix
with A%(4,5) = I(4,) and, in the absence of negative cycles, A% (i, j) = AZ(34, 5).

The conclusions in the preceeding paragraph give rise to several interesting algorithms
and complexity considerations. For example, the Floyd-Warshall algorithm for computing
transitive closures can be adapted to computed the all pairs shortest paths in O(n?) steps.
A beautiful result of Romani shows that every O(n*) matrix multiplication algorithm
(over rings) can be adapted to compute the transitive closure of any Ag in O(n®) steps,
provided Ag has elements from Z U {c0}. Watanabe (with corrections) has shown that in
this case a suitable representation of the actual shortest paths can be computed in O(n®)
time as well. The representation is a matrix Ag with Ag(i,7) equal to a node z #1,7on
a shortest path from ¢ to j.

Several algorithms have been proposed that compute the all pairs shortest path infor-
mation probabilistically fast, over a large class of random graphs. The best complexity
bound so far is O(n?logn) expected time (Moffat and Takaoka).

2.4 Paths and Cycles.

For most of this Section we assume that G is an (unweighted) undirected graph, although
for most problems discussed there also is a “directed” version. Whenever we speak of a path
and a cycle, we shall mean a simple path and a simple cycle (or circuit) respectively. Paths
and cycles have been a predominant issue in the analysis of graphs for ages. Consequently
we can touch only on a number of topics under this category.

2.4.1 Paths of Length k.

Probably the simplest question is, given k, whether there exists a (simple) path of length
k from ¢ and j. Algorithmically the problem can be solved in O(k(n — 2)¥-1) time by
considering all possible choices of k — 1 intermediate nodes, and verifying that a sequence
is a path. An efficient solution is surprisingly hard to obtain. In fact, with k arbitrary the

problem is N P—complete and (thus) probably not polynomial time computable. Monien
has proved the following result.

Theorem. Let G be (directed or undirected) graph, k > o. Then a path of length k
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can be computed for all pairs i, (A for the pairs for which no path of length k exists) in
time O(k!ne).

By applying the theorem, one can find a longest path in G in (u'logu.ne) with u the
length of the longest path: search for paths of length k for k = 1,2,4,--- and use binary
search between 27 and 27+! if k = 2 was the last value for which a path was found.

2.4.2 Disjoint Paths.

We shall only consider vertex-disjoint paths, although the versions for edge-disjoint paths
are interesting as well. The problem of finding a maximum set of vertex-disjoint paths
between two nodes ¢ and j is of obvious interest in many network problems. The (few)
algorithms for the problem make use of the connection to a 0 — 1 maximum flow problem,
which makes it polynomial in n and e.

Lemma. The number of vertex-disjoint paths between i and J may be found as the
maximum flow in an augmented (directed) graph G+ with 2n nodes, 2¢ + n edges, and
edge capacities 1.

Proof.

Let G* =< V+ E* ¢ > be the (directed) graph defined as follows. For every z € V
let there be twonodes z’,2" € V+ and an edge (z",2') € E*. For every (undirected) edge
(z,9) € E let there be two edges (=',9"),(y',2") € E+. All edges a € E+ have capacity
c(@) = 1. If there are k vertex-disjoint paths from i to j in G, then it is seen that there
can be a flow of k£ from i to j in G*. Consider a maximum flow in G*+. By the integer
max-flow theorem there is a maximum flow that is integral on all edges, hence 0 or 1 in this
case. By tracing the 1’s that flow out of i, one necessarily obtains max-flow vertex-disjoint
traces in G*, which translate to vertex-disjoint paths in G. O

Frisch has exploited the Lemma for the construction of a maximum set of vertex-disjoint
paths, see also Steiglitz & Bruno. Clearly the algorithm is too complex e.g. if one only
wants to find k vertex-disjoint paths between i and j for some k (provided they exist), but
by exploiting the connection to integer flow it should be clear that in this case one only
needs to find (and trace) ¥ augmenting paths to get a flow of > k. Suurballe extended the
connection to a minimal cost flow problem (see Section 3.5.2) and derived an algorithm
to find a set of k vertex-disjoint paths with minimal total length. No complexity analysis
was given. Menger’s theorem gives a necessary and sufficient condition for the existence
of k vertex-disjoint paths.

A simple and practical generalisation of the problem is the following. Let I pairs
(%1,51),+ - -, (41, 51) be given. Does G contain ! vertex-disjoint paths, one connecting iz and
Jk for every 1 < k < I. (There are many variants, e.g. one may wish to have more than
one connecting vertex-disjoint path for every pair.) With G and [ arbitrary, the problem
is NP—complete. (It is a very simple instance of the multicommodity flow problem.)
For fixed [ > 2 little is known about the complexity of the problem. For [ = 2 Shiloach
obtained an O(ne) algorithm, by a tedious analysis. The problem is an interesting example
where graph theory is advanced because of the need of an efficient algorithm. Shiloach was
able to conclude that in every 4-connected non-planar graph there always are 2 connecting
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vertex-disjoint paths, for every choice of 7, and j; and i, and Jj2. Seymour observed that
the general problem is equivalent to the following. Define a set of edges E’' C E to be
G—separable if for each a € E’ there is a (simple) cycle C, containing @ and C,NCg =0
for a # B. Under what conditions is a set G—separable. Cypher proved that for [ < 5 the
problem is solvable in polynomial time for graphs that are I + 2- connected.

2.4.3 Cycles.

Throughout this Section we only consider undirected graphs. The cycle structure of graphs
has inspired many studies and analyses, and a variety of types of cycles have been con-
sidered. Every cycle can be expressed as a sum of so-called fundamental cycles in G,
where “addition(@D)” is defined as follows : for Gy =< V;,E; > and Gy =< V2, E; >
yG1@ G2 =< V11UV, (E4UE;)—(EyNEz) > . The cycle space of a graph has dimension
e —n+1, and it is known that for every spanning tree T' the cycles obtained by adding
an arbitrary non-tree edge to T are a fundamental set. A fundamental set of cycles can
be generated easily during a DFS of a graph. Each time a red edge (4,7) is encountered
while exploring node i, another fundamental circuit is closed and can easily be output
(because j is an ancester of i) in O(n) steps. The method is due to Paton and runs in
O(n(e—n+1)) time. Finding specific cycles by enumerating the 27 — 1 non-trivial combi-
nations of fundamental cycles (y = e—n + 1) is usually inefficient. Dixon & Goodman use
a branch-and-bound search in the cycle space to find a longest cycle in the graph. (See
later.)

The most common problem is that of finding cycles with a length constraint : specified
length (k), shortest, longest, odd length, even length. Consider first the simplest case of
all, namely, finding a cycle of length 3 (a triangle). An O(ne) algorithm is obtained by
inspecting every combination of an edge (¢,7) and a node z, and deciding in O(1) time
using the adjacency matrix Ag whether (i,z) and (j,z) are edges. A possibly better worst-
case bound results by observing that triangles of G correspond to off-diagonal ones in the
(boolean) matrix A% A Ag, where A denotes the element-wise “and”. The complexity is
bounded by O(n®), with a the exponent of a fast matrix multiplication algorithm. More
intriguing is the following observation. Let T be any rooted spanning tree of G (or, a
spanning forest in case G is not connected).

Lemma. G has a triangle which contains a tree-edge if and only if G has a non-tree
edge (z,y) for which (father(z),y) € E.

The Lemma suggests the following algorithm : find a spanning tree (forest) of G, test
every non-tree edge in O(1) time per edge, and delete the tree-edge and repeat the same
procedure on the resulting graph if no triangle was found. Itai & Rodeh show that at
most 2./ iterations will lead to a graph of isolated vertices, and (thus) the algorithm is
O(eis') time bounded. Observing that e < 3n — 6 (n > 3) for planar graphs, each iteration
removes at least -13- of the edges of G in the planar case and the total algorithm finishes in
O(n) time (in this case). For planar graphs Richards gives an O(n) algorithm for finding
a 4-cycle, as well as O(nlogn) algorithms for finding a 5-cycle and a 6-cycle.

Algorithms to find a shortest cycle in general, usually rely on a form of “truncated
BFS”. Let ¢ be the first node during BFS from z where a red edge is created. Let the edge
be (4,7) and define L, = L(i). Observe that necessarily L(j) = L(i) or L(j) = L(i) + 1.
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Let l, = min, L, and z, be such that I, = L,,. Let k be the length of a shortest cycle in
G, with k = oo if no cycle exist. I, follows in O(n?) time (when defined).

Lemma. Let k¥ < 0co. The red edge in the truncated BFS started at z, closes a cycle
of length k' with k < k' < k+1 (and 2/, +1 < k' < 2, + 2).

Note that a cycle of length 2/, + 1 containing z, can exist only if level I, of the BFS tree
contains two nodes connected by a (red) edge. Thus it is easily decided within O(e) steps
what the smallest cycle through z, is. If G is bipartite and (thus) has cycles of even length
only, this test can be skipped. Considering all possible choices for Z,, the smallest cycle
of G is found in O(ne) steps. When G is bipartite, O(n?) steps suffice. Monien has shown
that the technique can be modified to find the smallest cycle of odd length in O(ne) time
and the smallest cycle of even length in O(n? min{a(n,n), A\}) where a(m, n) is an “almost
constant” function (cf. UNION-FIND programs) and A the length of the shortest even
cycle.

Note that deciding whether level [, of the truncated BFS tree of z, contains two nodes
¢ and j connected by an edge can be formulated as the problem of finding a triangle
A(Zo,4,5) in a collapsed version of the tree. Itai & Rodeh show that in O(n?) time a
graph G’ of at most 2n nodes can be built with the property that G contains a cycle of
length 2, + 1 (and thus has a shortest cycle of this length) if and only if G’ contains a
triangle. Triangle finding was discussed above.

Little is known about the complexity of finding cycles of a specified length except for
Monien’s result (see 2.4.1). His techniques lead to an algorithm for finding a longest cycle
in O((2u)!ne) time, where y is the length of the longest cycle of G. Note that the longest
cycle problem in graphs is N P—complete. Another problem asks for the existence of a
cycle though k specified vertices. The problem is believed to be polynomial for fixed k%,
but this has been proved only for ¥ = 2 and k = 3 (LaPaugh). In directed graphs the
problem is N P—complete already for k = 2. Yet another problem asks for determining
a set F' of at most k£ nodes such that F contains at least one vertex from every cycle in
G. (F is called a feedback vertex set.) The problem is N P—complete, but for fixed k it
can be solved in O(n*-1¢) time. (Note that an algorithm of O(nke) time results if one
considers every subset of k vertices and tests whether removing these vertices yields an a
cyclic graph.)

2.4.4 Weighted Cycles.

Next we let G =< V,E,w > be a weighted graph and consider the problem of finding
cycles with a length and/or a weight constraint. If all edge weights are > o, then it is not
hard to modify any of the existing shortest path algorithms to find a cycle of least (total)
weight in polynomial time. Monien shows that the least cost cycle of odd length can be
computed in O(n?®) time. If edge weights < o are allowed, the problem of finding a least
weight cycle is N P—complete. However, in this case there are polynomial time algorithms
for finding just a negative cycle (if one exists). The problem of finding a negative cycle
in a graph is interesting e.g. in the context of shortest path finding or applications in
optimization theory. An early heuristic is due to Florian & Robert and based on the
following observation. (We now assume that G is directed.)
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Lemma. Every negative cycle C contains a vertex i such that the partial sums of the
edge weights along the cycle starting and ending at i are all negative.

By applying a branch-and-bound strategy at every node i, one hopes to be able to “guide”
the search quickly to negative cycles (if there are). The method seems to perform well in
practice, but Yen proved that on certain graphs the algorithm does very badly.

More interesting techniques are based on shortest path algorithms for general graphs
(see 3.4). Recall that these algorithms assume that no negative cycles exist only for the
sake of valid termination. Thus, if e.g. in Ford’s algorithm applied to a source s no
termination has occurred after O(ne) steps, then there must be a negative cycle accessible
from s (and vice versa). In fact, a negative cycle is detected as soon as some node z is
added into the (current fragment of the) SP tree that appears to be its own ancestor (i.e.,
2 already occurs earlier on the path towards the root). A direct and (hence) more efficient
approach was developed by Maier, by building a purported S P tree in breadth-first fashion
as follows. Suppose we have a tree T which is an SP tree of paths from s of length < k—1.
In stage k we look for paths of length k to nodes that were visited in earlier stages that
are less costly than the paths of length < k — 1 discovered so far. To this end, consider the
“frontier” nodes ¢ at depth k —1 : if (3, J) € E and u; > u;+w(i, j) then we clearly havea
“better” path via i to j. If j is an ancestor of i, then we have a negative cycle. Otherwise
we purge whatever subtree was attached to j, and make J a son of 1. (The nodes of the
subtree will automatically come in again with better paths at later stages.) Repeat this
for all 4, except those for which a better path was found (they’re moved to the next stage).
The algorithm requires “fast” tree-grafting and ancestor-query techniques. Tsakalidis has
shown that this can all be handled in O(n + ¢) time and O(n + e) space.

2.4.5 Eulerian (and other) Cycles.

Define an Eulerian cycle to be a (non-simple) cycle that contains each edge of G exactly
one. An Eulerian path (or covering trail) is defined to be a (non-simple) path with the same

property. An excellent survey of results was given by Fleischner. The characterization of
Eulerian graphs is classical.

Theorem. Let G be connected. The following conditions are equivalent.
(i) G contains an Eulerian cycle,
(ii) each node of G has even degree,
(iii) G can be covered by (edge-disjoint) simple cycles.

Testing G for the existence of an Eulerian cycle is simple by (ii), but efficient algorithms
to find Eulerian cycles all seem to be based on (iii) and the following observation. Define
a (maximal) random trail of untraversed edges from « to be any trail that starts at z and
takes a previously untraversed edge each time a node is reached, unless no such edge exists
(in which case the trail ends at this node).

Lemma. Let G be connected. The following conditions are equivalent:

(i) G contains an Eulerian cycle,
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(ii) for each node z, every random trail from z ends at z (even if at some nodes an even
number of edges is eliminated at the beginning).

Proof.

(i) = (ii). Because all degrees are even, every node # z that is reached over an edge
can be left again. Thus eventually the trail must return to z. If there are untraversed
edges incident to z, the trail is continued. Eventually the trail must end, necessarily at z.

(i) = (i). It is not hard to argue (by induction on |G|) that (ii) implies that G is
covered by edge-disjoint cycles. Apply theorem (iii). O

The simplest approach to finding an Eulerian cycle is to pick an node z and follow a
random trail. With some luck the trail will be Eulerian, but this need not be so. Ore has
shown that every random trail from z is an Eulerian cycle if and only if z is a feedback
vertex (i.e., ¢ lies on every cycle). He also noted that graphs with this property are
necessarily planar. If the random trail is not Eulerian, it must contain a node y which
still has an (even) number of untraversed edges. One can now enlarge the random trail as
follows: insert a random trail of untraversed edges from y at some point in the random
trail from & where y is reached. Repeating this will eventually yield an Eulerian cycle (or
a proof that none exists). The algorithm is due to Hierholzer, and is easily implemented
in O(n + €) steps by linked list techniques. The algorithm still has the (minor) defect
that it does not produce an Eulerian cycle in traversal order immediately. But a simple
modification of DFS will. Start from a node i, and follow previously untraversed edges
(ie., a random trail) until a node (i,) is reached where one cannot proceed. Backtrack
to the last node visited on the path which still has untraversed edges and proceed again.
Repeat it until one backtracks to the very beginning of the path. One can observe that,
when G is Eulerian, outputting edges in the order in which they are traversed the second
time (i.e., when backtracking) produces an Eulerian cycle in traversal order. Rather similar
results are known for Eulerian paths, and for the case of directed graphs.

In case a graph is not Eulerian, one might ask for a shortest non-simple cycle containing
every edge (necessarily, some edges more than once). Any cycle of this sort is called a

“postman’s walk” and the problem is known as the Chinese postman problem, after Kwan
Mei-Ko.

Theorem. Let G be connected. The following conditions are equivalent:

(i) P is a postman’s walk,

(ii) the set of edges that appear more than once in P contains precisely a minimum
number of edges that need to be doubled in order to obtain an Eulerian graph,

(iii) no edge occurs more than twice in P and for every cycle C, the number of edges of
C that occur twice in P is at most 1|C]|.

More generally one can consider weighted graphs G =< V,E,w > and ask for a

postman’s walk of minimum weight (or “length”). The following result is due to Edmonds
& Johnson. (It is assumed that weights are non-negative.)

Lemma. The Chinese postman problem can be solved by means of an all-pairs shortest
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path computation, solving a minimum weight perfect matching problem, and tracing an
Eulerian cycle in an (Eulerian) graph.
Proof.

In analogy to theorem (ii) the minimum cost set of edges that must be doubled in G to
make G “chinese postman optimal” must be the union of minimum cost paths connecting
nodes of odd degree, and (conversely) any union of this kind added to G will yield an
Eulerian graph. Thus, let A be the set of nodes of odd degree and solve the (4, A)
shortest path problem in G. To select a minimum cost set of paths, design a complete
graph G’ on node-set A with w'(i, j) equal to d(i,5) for i,j € A (the shortest distance
between ¢ and j in G), and determine a minimum weight perfect matching in G'. (Note
that necessarily |A| even.) For every edge (i, ) of the matching, double the edges of the
shortest path from ¢ to j in G. Tracing an Eulerian cycle in the resulting graph will yield
an (optimal) postman walk. O

It follows (see Chapter 3) that the Chinese postman problem is solvable in polynomial
time. A similar result holds in the directed case, but quite surprisingly the problem is
N P—complete for mixed graphs.

Considering theorem (iii) one might wish to approach non-Eulerian graphs as follows.
One problem is to determine a maximum set of edge-disjoint cycles in G (a “cycle pack-
ing”). In the weighted case one asks for a cycle packing of maximum total weight. Meigu
proves that this problem is equivalent to the Chinese postman problem (hence polyno-
mially solvable). Another problem asks for a minimum set of cycles such that each edge
is contained in at least one cycle from the set (a “cycle covering”). In the weighted case
one asks for a cycle covering of minimum total weight. Itai et al. have shown that every
2-connected graph has a cycle covering of total length at most min{3e,6n + e}, and that

this covering can be found in O(n?) time. (No results seem to be known for the weighted
case.)

2.4.6 Hamiltonian (and other) Cycles.

Define a Hamiltonian cycle to be a (simple!) cycle that contains each node of G exactly
once. Define a Hamiltonian path to be any (simple) path with the same property. Unlike
the “Eulerian” case, there appears to be no easily recognised characterisation of Hamil-
tonian graphs. Thus all traditional algorithms to find a Hamiltonian cycle in a graph
are based on exhaustive search from a (random) starting point. When a partial cycle
t0,11,**,%j—1 has been formed and t; (a neighbour of i;_,) is the next node tried, then
the path is extended by i, and one of its neighbours is considered next if i; did not already
occur on the partial cycle. If this neighbour happens to be i, and all nodes have been
visited, then a Hamiltonian cycle is formed. Otherwise we just consider the neighbour
like we did i;. If i; did occur on the partial cycle, then we back-up to ¢;_; and consider
another untried neighbor. If there are no more untried neighbors, then we back-up to i;_,
and repeat. The algorithm ends with a Hamiltonian cycle if one exists, otherwise it ends
with all neighbors of i, “tried”. Rubin discusses a variety of techniques to design a more
efficient branch-and-bound algorithm for the problem.

Lemma. For every graph G there is a graph G’ with n + 1 nodes and e + n edges such
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that G has a Hamiltonian path if and only if G’ has a Hamiltonian cycle.
Proof.

Let s be a new node, and let G' =< V U {s}, EU {(s,i)|i € V} >. The lemma is now
easily verified. O

There is an interesting analogy between the lack of an easily tested criterion for the exis-
tence of a Hamiltonian cycle and the lack of an efficient (viz. polynomial time) algorithm
for finding a Hamiltonian cycle in a graph. In fact, even knowing that a Hamiltonian
cycle exists does not seen to be of much help in finding one. Of course the Hamilto-
nian cycle is a “classical” example of an N P—complete problem. The problem is even
N P—complete for rather restricted classes of graphs and demonstrates the “thin” divid-

ing line that sometimes exists between tractable and untractable problems. We mention
only two examples.

(i) It is not hard to see that the Hamiltonian cycle problem is polynomial for directed
graphs with all out-degrees or all in-degrees at most 1. Plesnik has shown that the

problem is N P—complete already for planar directed graphs with in-degrees and
out-degrees at most 2.

(ii) Garey, Johnson & Tarjan have shown that the Hamiltonian cycle problem is N P—-
complete for 3-connected planar graphs. On the other hand a beautiful theorem of
Tutte asserts that every 4-connected planar graph must be Hamiltonian (although
this does not imply in itself that the cycle is easy to find!). Gouyou - Beauchamps
has shown that in the later case the problem is indeed polynomial-time bounded.

Like in the “Eulerian” case (see Section 2.4.5), several approaches have been considered
for non-Hamiltonian graphs. Define the Hamiltonian completion number he(g) to be the
smallest number of edges that must be added to G to make it Hamiltonian. Goodman,
Hedetniemi, & Slater prove that the Hamiltonian completion number can be computed in
O(n) time for graphs with (at most) one cycle. (Of course the problem is N P—complete in
general.) Rather more interesting perhaps is the approach in which one tries to minimize
the number of “double” visits. Define a Hamiltonian walk (or shortest closed spanning
walk) to be any minimum length cycle that contains each node of G at least once. If G
admits a closed spanning walk of length n+ A, then we say that G has Hamiltonian excess
bounded by k. (Clearly h is equal to the number of nodes visited twice in the walk.) One
can show that h < 2n — |£](2d — 2) — 2 for k—connected graphs of diameter d.

Lemma. Let W be a Hamiltonian walk. Then

(i) no edge of G appears more than twice in W, and

(ii) for every cycle C, the number of edges that appear twice in W is at most zlCl.
Proof.

(i) Suppose (%,j) occurs > 3 times in W. Then there are (possibly empty) sub-
walks Wy, Wy, W3 and W, such that W can be written in one of following forms:
(a)lejW211W3z]W4, (b)W11.]W2]’lW3‘I.]W4, and (C)W11]W2Z]W3]1W4 In case
(a)W1iW,iW3ijW, would be a shorter walk, contradicting the minimality of W.
W, denotes reverse of W2.) Similar contradictions are obtained in the other cases.
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(ii) Let Gw =< V, Ew > be the (multi-)graph obtained from G by only including the
edges traversed by W, taking an edge “twice” if it is doubled by W. Gy is Eulerian.
Suppose C is a cycle such that more than }|C| edges of C appear twice in W (hence
in Gw). Delete one copy of every “doubled” edge of C from G, but add every
non-traversed edge of C to it. Gw is still connected and has all even degrees, and
hence is again connected. The Eulerian cycle in the (modified) graph Gy traces a
closed spanning walk of G that is shorter than W. Contradiction. O

The following result due to Takamizawa, Nishizeki & Saito gives a sufficient condition
for the Hamiltonian excess to be bounded by n — ¢, for given c. (By traversing e.g. a
spanning tree one observes that the Hamiltonian excess is always bounded by n.) The
result is remarkable, because for ¢ = n (excess o, i.e., the case of a Hamiltonian graph) it
subsumes several known sufficient conditions for the existence of Hamiltonian cycles.

Theorem. Let G be connected, n > 3 and 0 < ¢ < n. Suppose there exists a labeling
i1, *,%n of the nodes such that for all j, k:

J <k, (ij,i) € E,deg(i;) < j, and deg(ix) < k — 1= deg(s;) + deg(ix) > ¢
Then G contains a Hamiltonian walk of length < 2n — ¢ (i.e, excess < n — c).

Takamizawa et al. prove that if the conditions of the theorem are satisfied, then a closed
spanning walk of length < 2n — ¢ can be found in O(n?logn) time. (For ¢ = n this would
necessarily be a Hamiltonian cycle.)

While the Hamiltonian cycle problem is N P—complete (thus “hard”) in general, there
may be algorithms for it that do quite well in practice. There are two ways to make
this more precise: (i) by considering the problem for random graphs (with a certain edge
probability) or, (ii) by averaging over all graphs with N edges (taking each graph with
equal probability). The starting point are results of the following form: if N > cnlogn,
then the probability that G is Hamiltonian tends to 1 for n — oo. (The sharpest bound
for which this holds is N > Llnlogn + snloglogn + w(n) for w(n) — oo, cf. Bollobés.)
Angluin & Valiant proposed the following randomized algorithm for finding a Hamiltonian
cycle with high probability (averaged over all graphs with N > enlogn). In the course
of the algorithm explored edges will be deleted (“blocked”) from G. Let s be a specified
starting node and suppose we succeeded building a partial cycle C from s to z, some z. If
the partial cycle contains all nodes of G and if we previously deleted (z,s) from G, then
add the edge (z,s) to C and report success (Cis now a Hamiltonian cycle). Otherwise,
select (and delete) a random edge (z,y) € E. If no edges (z,y) exist, then stop and report
failure. If y # s and y does not already occur on C , then add (z,y) to C and continue
by exploring y by the same algorithm. If y # s but y does occur on C (see figure 6),
then locate the neighbour z of y on C in the direction of z, delete the edge (y,2) from
C and add (y,z), modify the traversal order of the edges so z becomes the “head” of
C, and continue exploring z. (The case y = s is handled as in the opening clause of
the algorithm.) By using suitable data structures each “step” of the algorithm can be
executed in O(logn) time. It can be shown that for N > ¢n log n, the probability that
the algorithm reports success within O(n log n) steps tends to 1 for n — 0o. The result
implies that the randomized algorithm “almost certainly” finds a Hamiltonian cycle within
O(nlog?n) time, for N > ¢n logn (and averaged over all graphs with N edges). More
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Figure 6:

recent results have lowered the threshold for N to inlogn + znloglogn + w(n) while still

guaranteeing a polynomial time algorithm that is successful almost always. Similar results
with rather more complicated algorithms hold for the directed case.

2.5 Decomposition of Graphs.

“Decomposition” is a broad term, and is generally used to indicate a technique for unravel-
ing a graph in terms of simpler (smaller) structures. Traditionally graphs are decomposed
into components with a certain degree of connectivity, or in a (small) number of sub-
graphs of a specified kind. For example, a connected graph can be decomposed as a “tree”
of bi-connected components, and this decomposition can be computed in O(n + €) time
and space. The bi-connected components are the (unique) maximal connected subgraphs
without cutpoints. The bi-connected components can be decomposed further into tri-
connected components (roughly speaking, the components without non-trivial 2-element
separating sets) which can also be computed in O(n + e) time and space by a rather more
complicated DFS-based algorithm. Decompositions can be helpful in reducing problems
for general graphs. As an example we mention Maclane’s result that a graph is planar if
and only if its triconnected components are.

Directed graphs can be decomposed as an “acyclic graph” of strongly connected com-
ponents, again in O(n + e) time by a suitable version of DFS. One can group strongly
connected components into “weak components” W, which have the property that for any
z,y either = and y belong to the same strongly connected component or there is no (di-
rected) path from z to ¥ nor from Y to z. The weak components of a graph can again be
identified in O(n+e€) time in a rather elegant fashion from the topologically sorted arrange-
ment of the strongly connected components. Yet another notion is the following. Define
a unilaterally connected component as a maximal subgraph U with the property that for
any &,y € U there is a path from z to y or from y toz (or both). It is easily seen that the
unilaterally connected components are maximal chains of strongly connected components.
These chains can be identified in O(n + e + nc) time when c¢ is the number of chains
to be output, provided one works with the transitive reduction of the underlying acyclic
graph (otherwise non-maximal chains must be explicitly removed at extra cost). Finally,
strongly connected components can be decomposed into a hierarchy of (sub)components
as follows. In its general form the process assumes that edges have distinct, non-negative
weights. Begin with the isolated nodes of C, and add the edges in order of increasing
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weight one-at-a-time. Gradually strongly connected clusters are formed and merged into
larger strongly connected components, until one strongly connected component (namely
C itself) results. The process is represented by a tree in which every internal node v
corresponds with a strongly connected cluster that is formed, its sons are the strongly
connected clusters of which it is the immediate merge (after a number of edge insertions),
and a label is assigned that is equal to the weight of the “last” edge that formed the
component associated with v. Tarjan shows that strong component decomposition trees
can be constructed in O(elogn) time.

Lemma. Any algorithm for constructing strong component decomposition trees can

be used to construct minimum spanning trees of undirected graphs within the same time
bound.

Proof.

Let G =< V, E,w > be an undirected graph with distinct edge weights. Let G’ be the
directed graph obtained by taking a directed version in both directions of every edge of G.
(G’ is strongly connected.) The internal labels of any strong component decomposition
tree correspond precisely to the edges of a minimum spanning tree of G. [J

Another classical approach to decomposition involves the notion of a factor of a graph.
A factor F is any non-trivial (i.e., not totally disconnected) spanning subgraph of G. If
F is connected, then it is called a connected factor. A decomposition (or, factorization)
of G is any expression of G as the union of a number of factors no two of which have
an edge in common. Tutte proved that G can be decomposed into ¢ connected factors
if and only if ¢- (¢(V, E — E') - 1) < |E/| for every E' C E, where q(V, E) denotes the
number of components of the graph < V, E >. Computational results on factors are few.
Define an H—factor to be any factor that consists of a number of disjoint copies of H.
The question whether G contains an H—factor is N P—complete for any fixed H that is
not a disjoint union of Ks (single nodes) and K}s (complete graphs on 2 nodes). Note
that for the existence of an H—factor it is required that |H| divides |G|. The special case
that H = K, can be recognized as the perfect matching problem, which is solvable in
polynomial time. Define a k-factor (k > 1) to be any factor that is regular of degree k.
The problem of computing a 1-factor is again another formulation of the perfect matching

problem. 2—factors can also be identified by means of the perfect matching algorithm as
follows.

Lemma. For every graph G there exists a (bipartite) graph G’ with 2n nodes and e
edges such that G has a 2—factor if and only if G’ has a perfect matching.
Proof.

Define G' =< VU V', E’ > with (4,5') € E' iff (i,5) € E and no other edges in E'.
(V' consists of nodes i’ for i € V.) Clearly, any 2-factor of G translates into a perfect
matching of G’ and vice versa. O

Note that the problem of finding a connected 2-factor is Jjust the Hamiltonian cycle
problem and (thus) N P—complete. Next, define an odd (even) factor to be any factor in
which all nodes have odd (even) degree. Ebert showed that a maximal odd (even) factor
of a graph (when it exists) can be found in O(n + e) time by an application of DFS.
Finally, a result due to Lovisz asserts that for any k—connected graph G and partition
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of n into ay,--+,ax > 1,G admits a factor with k connected components Cq,--+,Cg and
ICi|l = ai (1 < i < k). For k = 2 an O(ne) algorithm is known to compute a factor of this
form.

In a related approach to decomposition one tries to partition the nodes rather than
the edges of G. Define a (node-disjoint) covering of G by graphs of type X to be any
collection of subgraphs Gy, --,G} that are node-disjoint and of type X and together
contain all nodes of G. (k is called the size of the covering.) In many cases the problem of
determining whether a graph has a covering of size < K is N P—complete, e.g. when G is
a general undirected graph and X is the collection of triangles, circuits or cliques. Some
interesting results are known when X is the collection of (directed) paths. The minimum
size of a covering with node-disjoint paths is known as the path-covering number of G.
The following result is quite straightforward, except part (ii) which is due to Noorvash.

Theorem.

(i) Unless G is Hamiltonian, the path covering number of G is equal to the Hamiltonian
completion number of G.

(i) A path-covering of G has minimum size if and only if it contains the maximum
number of edges among all path-coverings of G.

(iii) I g(n, K) is the smallest number such that every n—node graph with > g(n, K)
edges has a path-covering number < K, then 3(n-K)n-K-1)+1< g(n, K)<
t(n—1)(n-K-1)+1.

One concludes that the path-covering number of a graph is computationally hard to de-
termine in general. Misra and Tarjan prove that it can be computed in O(nlogn) time
for rooted trees (with all edges directed away from the root), even in a weighted version.
The following, more general result is due to Boesch and Gimpel.

Theorem. The path-covering number of a directed acyclic graph can be computed by
means of maximum matching algorithm in a suitable bipartite graph.
Proof.

Construct a graph G’ by replacing each node i by a pair of nodes i’ and " such that
all edges directed into 7 are directed into i’ and all edges directed out of i are directed out

of 7. One easily verifies that a minimum path-covering of G corresponds to a maximum
matching of G/, and vice versa. 01

(In section 3.2 we will see that the maximum matching problem in bipartite graphs is
efficiently solvable in polynomial time.)

The last approach we discuss is based on pulling a graph apart or “separating” it by
cutting a small number of edges (or, deleting a few nodes). The approach is crucial in order
to apply a divide-and-conquer strategy on graphs that admit this kind of decomposition.
One approach is the following. Let’s say G =< V,E > “decomposes” if there is a non-
trivial partition V; U Vo U V3 UV, of V such that for every o € F there is an 7 such that o
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connects two nodes in V; or two nodes in V; and Vit1, and furthermore V, x Vs C E (“all
nodes in V; are connected to all nodes in V3”). When G “decomposes” it is completely
determined by its “components” G/(V;UV,U{iz}) and G/ ({i2}UV3UV,) for some i3 € V3
and some i3 € V;. Clearly one may try to decompose the components again. When a graph
does not decompose this way, it is called “prime”. A decomposition of a graph into prime
components can be computed in O(ne) time. Prime graphs with > 5 nodes have several
useful properties, e.g. they have no cutpoints and every two nodes ¢ and j in it are non-
similar (i.e., there is a node z that is adjacent to one but not to the other). Another
approach is explicitly based on separation. Let G be connected, and define a k—separator
to be any set § C V' with the property that the components of G — S have at most k nodes
each (1 < k < n). The celebrated planar separator theorem asserts that planar graphs have
“small” separators. Ungar proved that for every k there exists a planar k—separator of

size O(j‘;log% k), Lipton & Tarjan proved that there always exists a planar %n-sepa,rator

of size < v8n (which, moreover, can be determined in linear time). Djidjev improved the
result slightly and showed that there always exists a planar %n-sepa,ra.tor of size < v/6n.
Similar separation results exist for node-weighted graphs, in which the “weight” of the
components after separation in bounded. Miller has shown that every 2-connected planar
graph of which every face has at most d edges, has a %n-sepa.ra,tor that is a simple cycle
of size < O(v/dn ). Moreover, this separating cycle can be found in O(n) time. There
are several other classes of graphs besides the planar ones that be separated evenly by
deleting only a “small” number of edges. Chordal graphs admit a %n—separator of size
O(+/€) that can be determined in linear time (Gilbert et al.). Graphs of genus g admit
separators of no more than O(,/g7) edges, which can be completed in O(n + g) time.

2.6 Isomorphism Testing.

In many applications of graphs one or both of the following two problems arise : (i) given
graphs G and H, determine whether G is isomorphic to a subgraph of H (the “subgraph
isomorphism problem”) and (ii) given graphs G and H , determine whether G is isomorphic
to H (the “graph isomorphism problem”). Both problems are notoriously hard in general,

and no polynomial time bounded algorithm is presently known for either of them. We will
outline some of the more recent results.

2.6.1 Subgraph Isomorphism Testing.

The subgraph isomorphism problem is well-known to be N P—complete. Even in the res-
tricted cases that G is an n—node circuit and H an n—node planar graph of degree < 3
or G is a forest and H is a tree, the problem is N Pcomplete. Matula has shown that the
subgraph isomorphism problem can be solved in polynomial time when G is a tree and
H is a forest, by the following simple technique. Assume that G is a tree with n nodes,
H is a tree with m nodes (n < m), and both G and H are rooted (all without loss of
generality). Let the root of G have degree p and the root of H have degree g. Now execute
the following (recursive) procedure TEST.

procedure TEST (G, H):
begin
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1. delete the roots of G and H, and isolate the (rooted) subtrees Gy, - -, Gp of G and
Hy,---,Hgof H. '

2. form a bipartite graph with nodes corresponding to Gy through G, and H; through
Hg, and draw an edge between ”G;” and ” H;” if and only if TEST (Gi, H;) returns
true (meaning that G; is a rooted subtree of H;).

3. compute a maximum matching in the bipartite graph, to determine whether the
rooted subtrees of G can be matched (mapped) to distinct, rooted subtrees of H.

4. if the outcome of step 3 is successful then return true, otherwise return false.

end.

The procedure is easily modified to actually give a concrete isomorphic embedding of G into
H when it returns the value true. Suppose we have an O(nm®) algorithm for computing
@ maximum matching in a (n, m)-bipartite graph (n < m,a > 1). (Such algorithms exists
e.g,. for a = 1.5, see Chapter 3)

Theorem. The subgraph isomorphism problem for rooted trees can be solved in O(nm*)
time.
Proof.
Assume inductively that the problem can be solved in < enm® time for small n
and m (c sufficiently large). The running time of TEST can be estimated by cpg™ +
T Lo enym@, where n; = |G;| and mj = |H;|. (We assume that the linear amount of
time for step 1 of TEST is subsumed by the first term.) Using that P  n; = n— 1 and

4_1mj=m—1, this is easily bounded by enm®. O

By using a faster maximum matching algorithm, the subtree isomorphism test can be
improved as well (Reyner). Lingas has extended the result by showing that for k—trees
G and H with n and m nodes, respectively, the subgraph isomorphism problem can be
solved in O(k - k!n'-5m) time.

For the subgraph isomorphism problem for more general classes of graphs very little
is known. Lingas has studied the problem for classes of graphs that are s(/V)—separable,
for some function s (see section 2.5). A graph is called s(n)—separable if it either consists
of one node or has a Zn—separator of size < s(n) whose removal disconnects the graph
into two parts of (say) n; and n; nodes that are 8(n1)—separable and s(n;)—separable,
respectively. Even for 1—separable graphs the subgraph isomorphism problem remains
N P—complete.

Theorem. If G and H are n—node graphs that are s(n)—separable and have degrees

< d(n), then the subgraph isomorphism problem can be solved in 20(¥(logn+d(n)) {ime for
[logg n] . '
T=Ti,t s((3)n).

By using the planar separator theorem (see section 2.5) it follows, for example, that for
planar graphs that are log n-degree bounded the subgraph isomorphism problem can be
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solved in 20(Vn.log?n) time Lingas has shown that for bi-connected outerplanar graphs
the subgraph isomorphism problem can be solved in O(nm?) time.

In general there is hardly an alternative to the brute-force approach of enumerating all
n—node subgraphs of H and testing for isomorphism with G or enumerating and testing
all feasible embeddings of G into H in some suitable representation (see e.g. Bertziss).
Ullman describes an interesting technique for pruning the systematic enumeration process.

2.6.2 Graph Isomorphism.

The problem of finding an efficient (i.e., polynomial time) algorithm for testing whether
two n—node graphs G and H are isomorphic is of fundamental importance in the theory
of graphs, but has withstood all attempts at a solution to date. The graph asomorphism
problem is especially tantalizing because it is neither known to be N P—complete nor
known to be polynomially solvable. There is at least some theoretical evidence that the
graph isomorphism problem is not N P—complete because, if it were N P—complete, the
Meyer-Stockmeyer polynomial hierarchy would collapse to its second level, which seems an
unlikely event (Schoning). In this section we will sketch the main developments concerning
the graph isomorphism problem only. For more background see Read and Corneil and the
book of Hoffmann.

Let us look first at some “easy” cases. It is well-known that for rooted n—node trees
the isomorphism problem can be solved in O(n) time (see Aho, Hopcroft and Ullman,
theorem 3.3). Weinberg first studied the isomorphism problem for planar graphs and
obtaining an O(n3) algorithm for the case of tri-connected planar graphs, heavily relying
on a theorem of Whitney asserting that a tri-connected graph has a unique embedding on
the sphere. It was eventually shown that any two planar n—node graphs the isomorphism
problem can be solved in O(n) time (Hopcroft & Wong, Fontet). Lueker and Booth give
an O(n + e) algorithm for the isomorphism problem for interval graphs.

For most other classes of graphs the graph isomorphism problem quickly becomes very
hard. It has been shown that the problem is polynomially equivalent to the problem of
deciding for any graph G and a node v of G whether G admits an automorphism that
“moves” v (Lubiw). Interestingly the problem of deciding whether G admits an automor-
phism that moves every node is N P—complete. To solve the general graph isomorphism
problem several approaches have been followed. The older techniques are often based on
a type of brute-force backtracking procedure (see e.g. Schmidt and Druffel, McKay). An
interesting technique has been proposed by Deo et al., using a very natural incremental
approach. Suppose the nodes of G are numbered from 1 to n (based on any reasonable
scheme). At the kth level of the algorithm we always consider the subgraph G(k) of G
induced by the nodes 1 through k and a subgraph H' of H isomorphic to G(k). Essen-
tially the algorithm now proceeds as follows, exploiting a call of the (recursive) procedure
TEST which we describe very informally.

procedure TEST (k, H'):

begin
if £ = n then return true
else
begin
b := false ;

{consider all possible extensions of H’ -}
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while -6 and there is an unexplored node v ¢ H' left do

begin
extend H' by v to obtain an (induced) graph H”;
if the isomorphism between G(k) and H’ can be
extended to an isomorphism between G(k + 1) and
H" then assign to b the value returned by TEST(k + 1, H "
else “try the next v”

end;

return b

end
end

Deo et al. argue that for random graphs the algorithm has an expected computation
time of O(nlogn). Apparently the best worst-case algorithm for the graph isomorphism

problem runs in O(c“]ﬁo(l)) time (Babai, and Luks). For graphs of genus < g the graph
isomorphism problem can be solved in O(n°(9)) time (Filotti & Mayer, Miller).

A second approach that has considerably advanced the understanding of the graph
isomorphism problem has been based on the study of various types of automorphism
groups associated with graphs. The connection has spurred considerably interest in the
aspects of polynomial computability in groups (see e.g. Hoffmann). In fact the graph
isomorphism problem can be reduced entirely to computational problems for suitable

groups. Let Aut(G) denote the automorphism group of G. Consider the following series
of problems.

GRAPH ISOMORPHISM : given two n—node gra,.phs G and H, decide whether they
are isomorphic.

REGULAR GRAPH ISOMORPHISM : given two regular n—node graphs G and
H, decide whether they are isomorphic.

LABELLED GRAPH ISOMORPHISM : given two labelled n—node graphs G and

H, decide whether they are isomorphic by means of a “label-preserving” isomor-
phism.

COMPLEMENT ISOMORPHISM : given an n—node graph G, is G isomorphic to
its complement.

GRAPH ISOMORPHISM CONSTRUCTION : given two n—node graphs G and

H, decide whether they are isomorphic and if so, construct an isomorphism from G
to H.

GRAPH ISOMORPHISM COUNTING : given two n—node graphs G and H, de-
termine the number of isomorphisms from G to H.

GRAPH AUTOMORPHISM WITH RESTRICTION : given an n—node graph
G and a node v, decide whether G has an automorphism that moves v.

GRAPH AUTOMORPHISM GROUP : given an n—node graph G, determine a
generating set for Aut(G).
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GRAPH AUTOMORPHISM GROUP ORDER : given an n—node graph G, de-
termine the order of Aut(G).

GRAPH AUTOMORPHISM PARTITION : given an n—node graph G, determine
the orbits of Aut(G) on G.

The intriguing fact is that when any of these ten problems is solvable in polynomial time,
then so are all the others. Combining results of especially Mathon, Babai, Booth, Lubiw
and Colbourn & Colbourn one has the following fact.

Theorem. GRAPH ISOMORPHISM through GRAPH AUTOMORPHISM PARTI-
TION are all polynomially equivalent.

While the theorem has set the scene for many studies in group-theoretic complexity the-
ory, it does not in itself lead to all the benefits of the study of automorphism groups. A

crucial type of result is the following. Let Aut(G) be the group of automorphisms of G
that leave a particular edge e fixed.

Theorem. The isomorphism problem for trivalent graphs is polynomially reducible
to the problem of determining a set of generators for Aute(X) where X is a trivalent
connected graph and e a distinguished edge.

Luks succeeded in finding a polynomial time algorithm for the group-theoretic problem
mentioned in the theorem, resulting in an O(n®) algorithm for the isomorphism problem for
trivalent grapjs. More generally he proved that for every fixed d, the isomorphism problem
for graphs of degree < d can be solved in polynomial time. Currently an O(n3) probabilistic
algorithm and O(n3logn) deterministic algorithm are known for the isomorphism problem
for trivalent graphs (Galil et al.). Babai et al. have shown that for n—node graphs with
eigenvalues of multiplicities < k, the isomorphism problem can be solved by an O(n#+0(1))
deterministic algorithm and by an O(n?*+0(1)) probabilistic algorithm.

A third, and computationally very intriguing approach to the graph isomorphism pro-
blem is based on the use of “signatures”. A signature is a (partial) mapping s defined on
the set of n—node graphs such that for all graphs G : (i) if 5(G) is defined then so is s(H)
for all graphs H isomorphic to G and 8(G) = s(H), and (ii) if s(H) is defined for some

graph H and s(G) = s(H) then G and H are isomorphic. Assume that all n—node graphs
are defined on a standard node-set {v1,---,v,}.

Lemma. Signature functions which are defined for all graphs exist.
Proof.

A classical example is due to Heap. For each graph G let s(G) be the lexicographically
largest 0 — 1 vector that can be obtained by listing the nodes in some permuted order and
concatenating the rows of the adjacency matrix of G corresponding to this order. O

Clearly Heap’s signature function can be exceedingly hard to compute in general, although
it may be reasonable for small graphs (Proskurowski). An interesting problem is to find

efficiently computable, possibly partial signature functions that apply to large classes of
graphs.
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A number of studies have shown considerable success with signature functions that
merely label the nodes of a given graph in some “canonical” way. Babai, Erdés and
Selkow define an O(n?) time computable canonical labelling scheme s with the property
that for random graphs G, s(G) is defined with probability > 1 — O(n"lr). Karp has given
an O(n?logn) time computable canonical labelling scheme s such that for random graphs
G, 3(G) is even defined with a probability of at least 1 — O(n%2- %). Babai and Kuéera
have shown that there are O(n) time computable labelling schemes s with exponentially
small failure probability. They also show the following remarkable result.

Theorem. There exists a canonical labelling scheme (asignature) defined for all n—node
graphs that is computable in O(n?) expected time for random graphs.

Again group-theoretic considerations have crept into the study of signatures. For any
fixed d, the class of graphs of degree < d has a signature function that is polynomial time
computable. For general graphs the best signature function known to date is computable

in 0(c"#**”) time (Babai & Luks).
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3 Combinatorial Optimization on Graphs.

The richest source of computational problems on graphs probably is the theory of com-
binatorial optimization, where the underlying structures usually are networks. Roughly
speaking, a network is a graph in which the edges are labeled by (positive) edge-weights
or capacities. The labels have a natural interpretation when certain transports are carried

out over the edges of the graph. Traditionally two main areas have manifested themselves
here:

(a) matching problems: determine a (maximum cardinality, maximum weight) set of
edges E' C E such that no two edges of E’ are incident.

(b) flow problems: one or more commodities must be transported through the network,
under constraints of maximum throughput and (perhaps) minimum cost.

Both matching and network flow are important graph-theoretic principles: many other
problems can often be solved by restating ( “reducing”) these problems in terms of matching

or flow problems. In all cases the task consists of maximizing a goal function, under
suitable constraints.

3.1 Maximum Matching.

An edge belonging to a given matching M is called matched, the other edges are called
free. If (z,y) is matched, then 2 and y are called “mates”. A node incident to a matched

edge is called matched as well, the other nodes are free or “exposed”. There are two types
of maximum matching:

(i) maximum cardinality matching, which asks for a matching of maximum size (and
called perfect when all nodes are matched),

(i) maximum weight matching, which asks for a matching of maximum total weight
(assuming that fixed weights > 0 are assigned to the edges).

A useful generalization is the notion of a “b—matching”. Suppose (fixed) integers b; are
assigned to the nodes 7 such that 0 < b; < deg(i). A b—matching is a set of edges E' C E
such that at most b; edges of E’ are incident to node t, for all . (Taking b; = 1 results

in an “ordinary” matching.) One can now ask for maximum cardinality and maximum
weight b—matchings as before.

Lemma. Foreverygraph G thereis a (polynomial-sized) graph G’ such that b—matchings
in G correspond exactly to certain matchings in G’.

Proof.
Construct G’ as follows. For each node i € V, include deg(?) nodes ag"), « -+ corTe-
sponding to the edges (3,7, ), - incident to i and deg(%) — b; nodes ,6,(1), -++. Connect all
(9
o

;) nodes to all ﬂ‘(k) nodes, for every ¢, and connect asj) and agi) for all (¢,j) € E. We
claim that b—matchings in G correspond precisely to matchings in G’ that leave no S-node
exposed. [J

For computational purposes we like to have a “direct” reduction to maximum matching.
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Construct the following graph G”. For each node i € V include b; nodes i(¥), ... i(®) and

for each edge e € E include two nodes z, and Ye. For each e = (i,5) € E connect the
nodes according to the following schema S(e):

i ](1)

2 2

I

(b))

Figure 7:

Theorem. Let E’ be a maximum cardinality b—matching in G, M a maximum cardi-
nality matching in G”.

(a) |M|=|E| +e,

(b) a maximum cardinality b—matching Eo can be obtained from M by including every
edge e for which |S(e) N M| = 2.

Proof.

Observe that a maximum matching M of G” contains 1 or 2 edges from every S(e).
Let Eo = {e € E| |S(e) n M| = 2}. It follows that |M| = |Eq| + e. On the other hand,
if we “choose” the edges from Eo, then we obtain a b—matching, hence |Eo| < |E’| and
|M| < |E'| +e. Conversely, given E’, we can construct a matching My of G” as follows. If
e ¢ E', then (z,ye) € Mo. If e = (4,) € E’ then include (i®, z.) and (e, D) in Mo for
suitable k,[. Because E' is a b—matching, one can always choose k, I such that i(¥) and 30
are still exposed. It follows that |Mo| = |E/| + e. As |Mo| < | M|, we have |[M| = |E'| + e,
and the b—matching Ey was maximum. 0O

A similar reduction applies to the weighted case. (Let all edges in S(e) have weight w(e).)
The theorem shows that the techniques for maximum matching can be used to solve the
more general maximum b—matching problem as well. We will see later that there are
algorithms of low polynomial time complexity for it. (Note that G” has e+ 3T bideg(i) <
2ne edges and 2e 4+ 3 1'b; < 4e nodes.) b—matchings can be computed in linear time when
G is a tree.

An interesting variant of b—matching requires to find a (maximum) set of edges E'
such that at least a; and at most b; edges are incident to node i for a given assignment of
values a; and b; with a; < b; to the nodes. This probably is the most general version of
what is usually called a “degree-constrained subgraph construction problem”. (Note that
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matching is a very special case of this problem.) Again, this general version can be solved
in polynomial time.
b—matching is a useful intermediate step towards the theory of coverings.

Definition. A node(edge-) cover of G is any set of nodes V" (edges E') such that each
edge (node) of G is incident to at least one of the nodes in V"’ (or edges in E’, respectively).

Observe that every edge-covering is the complement (in E) of a b—matching with b; =
deg(i)—1foralli € V. Thus the problem of computing 2 minimum cardinality or minimum
weight edge-cover is equivalent to computing a maximum cardinality or maximum weight
b—matching, respectively, and hence both problems are polynomial time computable. For
the case of bipartite graphs, the correspondence takes a particularly attractive form, known
as the Kénig-Egervary theorem (the “duality theorem” of matching).

Theorem. For any bipartite graph G, the number of edges in a maximum matching is
equal to the number of edges in a minimum edge-covering.

There is an analogous result for general graphs due to Edmonds. We note that the problem
of computing minimum node-covers is NP-complete.

Of related interest is the question what fraction of the nodes is actually covered by
a maximum matching. In general no particular bound can be given, and the following
example shows that the fraction can be arbitrarily close to 0:

Figure 8:

Papadimitriou & Yannakakis proved that in any planar graph with minimum node-
degree > 3, any maximum matching will contain > § edges. (For minimum node-degree
2 4 and > 5 they prove a bound of > Zn and > &n edges, respectively.)

Finally we need the following crucial concept (apparently due to Berge).

Definition.  An alternating path or cycle is a simple path or cycle whose edges are
alternately matched and free. An alternating path is called augmenting if both its end
nodes are exposed. The weight of an alternating path or cycle is equal to the weight of
the free edges minus the weight of the matched edges.

I M admits an augmenting path, then it cannot be maximum: reversing the roles of the
matched and free edges in the path, results in a new matching of size |[M| + 1. A central
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result of matching theory states that repeated augmentation must result in a maximum
matching,.

Theorem.

(i) A matching is of maximum cardinality if and only if it has no augmenting path.

(ii) A matching is of maximum weight if and only if it has no alternating path or cycle
of weight > 0.

Proof.

(i) = is trivial. To prove <, let M not be of maximum cardinality. Let M’ be a
matching with |M’| > |M|. Consider the graph G’ on V with edge set B/ = MAM'
(the symmetric difference of M and M’). Clearly each node of G is incident to at
most one edge of M and at most one edge of M". It easily follows that the connected
components of G’ will be paths or circuits of even length. In all circuits we have the
same number of edges from M as from M’. Because |M I > | M| there must be a

path with more edges from M’ than from M. This path necessarily is an augmenting
path for M.

(ii) = is trivial. (Reversing the roles of matched and free edges in an alternating path or
cycle of weight > 0 would result in a “heavier” matching.) To prove <=, we proceed
as before, by a very similar argument. O

Theorem (ii) does not have the same constructive flavor as (). In 1967, White proved
the following more useful result.

Theorem. Let M be a maximum weight matching of size ¢ = |M| (i.e., maximum
among all matchings of size ¢), and let L be an augmenting path of maximum weight.
Then the matching M’ obtained from M by reversing the roles of the edges along L is of
maximum weight among all matchings of size g + 1.

Proof.

Let M" be a maximum weight matching among all matchings of weight ¢+ 1. Consider
the graph G on V with edge set MAM'. As before, the component of G are paths or
cycles of even length. Any even length path or (even length) cycle must have weight 0
with respect to M: if not, then reversing the roles of the edges would lead to a matching
of larger weight than M or M". Consider the paths of odd length. Because MAM?" has
precisely one more edge in M" than in M, the number of odd length paths is odd and we
can combine all but one of the paths in pairs such that each pair has an equal number of
edges in M and in M". Each pair of paths must have total weight 0 with respect to M
(otherwise the choice of M or M" as maximum weight matchings is contradicted). The one
remaining path must have precisely one more edge in M’ than in M, and is augmenting
with respect to M. Augmenting along this path gives a matching of ¢+ 1 edges necessarily
of the same weight of M”! The theorem now follows. [J

The theorem is intriguing because it shows that in the weighted case the “augmenting
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path method” can be used to construct maximum weight matchings of all possible sizes
(0,1,2,---) if we always augment using maximum weight augmenting paths. While the
theory is strongly suggestive of the types of algorithms we need to use, more details are
needed to show that maximum matchings can be computed in small polynomial time.

In one case maximum matchings can be characterised in another way, namely when G
is a tree.

Definition.  Let G be a tree rooted at r, and let f(i) denote the father of i. A matching

M C E is termed proper if for every exposed node i there is a brother j of i such that
< j,f(i)>e M.

Lemma. Let G be a tree. If M is a proper matching, then it is a maximum matching.

(The easy proof proceeds by showing that no proper matching can have an augmenting
path.) One can show that a proper matching in a tree can be constructed in O(n) time.

3.2 Computing Maximum Matchings.

We consider the simplest case first, namely maximum cardinality matching. All algorithms
are based on the augmenting path idea, with special techniques to find augmenting paths
efficiently. We outline some of the underlying ideas.

Consider the case that G is bipartite. Omne can search for an augmenting path as
follows. (We assume that a matching M is given as a start.) Build a BFS tree starting
from an exposed node ig. (If there is no exposed node, M is a perfect matching.) Because
G is bipartite, there can be no edges connecting nodes within the same level. If an exposed
node j appears for the first time (necessarily in an odd level), then the “green” path from
io to j is an augmenting path. If no odd level contains exposed nodes, then the BFS-
tree is called “Hungarian” and we can forget ig. If the trees from all exposed nodes are
Hungarian, the matching we have built clearly is maximum. Clearly there can be at most
"/2 augmentations (as the number of matched nodes increases by 2 in every round) and
every round takes O(e) time. Thus the algorithm computes a maximum matching in
O(ne) time. A better result can be obtained by doing more augmentations “in one step”.
In particular, the idea is to compute a maximal set of vertex-disjoint augmenting paths
L,,---, L, that are all of equal, shortest length (under the current matching M ), and to
augment along all paths simultaneously. Hopcropt & Karp showed that this must result in
a maximum matching after O(,/n) steps for all graphs, and that for bipartite graphs each
step can be implemented in O(e) time. Thus maximum cardinality matching on bipartite
graphs needs only O(/n.€) time.

There is another way to see this, by observing a simple connection between maximum
matching and flow theory (even in the weighted case).

Theorem. For every bipartite graph G there exists a network G’ with integer edge-
capacities such that maximum matchings in G correspond to maximum flows in G'.
Proof.

Let V= XUY(XUY = @) such that E C X x Y. Design G’ by adding a source
node s, a target node ¢, and edges (s,z) and (y,t) forall z € X,y € Y. Let the edges
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(s,z) and (y,t) have capacity 1 (cost 0), and the other edges (z,y) € E have capacity oo
(cost - w(z,y)). By the integer flow theorem, maximum flows in G’ are integral. Clearly
every flow of size f must identify f matching edges for G and vice versa. Cost —c of a
maximum flow corresponds to weight —c of the corresponding matchings. O

As maximum flows are computable in O(y/n - €) time, so can maximum cardinality match-
ings.

Maximum cardinality matching for general (connected, non-bipartite) graphs is con-
siderably more difficult and requires an additional technique due to Edmonds. Once again
we try to find an augmenting path from an exposed node 19, by building a “tree” of alter-
nating paths starting at ip very much like in the bipartite case. Note that we can assume
that odd level nodes are always extended by a matched edge (otherwise an augmenting
path is found) and, hence, that the “tree” is grown by building on the even level nodes.

The “Hungarian” case (no augmenting path from i, exists) is special, and implies that we
can effectively delete the “tree” from the graph.

Lemma. If there is no augmenting path from node i, (at some stage), then there never
will be an augmenting path from 4.
Proof.

We show that the lemma must hold after every augmentation of a matching M for
which there is no augmenting path from ig. (The lemma then follows by induction.) Let
L be an augmenting path from z to y, necessarily with z and y exposed and z,y # io.
Suppose there is an augmenting path L’ from ip with respect to the matching MAL. If
L and I’ are node-disjoint, then L’ would already have been augmenting in M. Contra-
diction. Thus let LN L’ # @, and let z be the first node on L’ that is also on I, Consider

(after augmentation)

Figure 9:

the situation before augmenting along L. The path from to to z via z (along a section of
L’ and of L) must have been an augmenting path in M, contrary to our assumption. O

Consider the process of building a “tree” of alternating paths from ig. We are especially
interested in what happens when we examine even level nodes z. (It is not necessary to
build the tree from one node, one can just work on matched or exposed nodes, orienting
the incident matched edges such that the nodes are even.) If < z,y >€ E and y is not
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matched, then there is an augmenting path from 4o to y. If y is matched, there are two
cases. If y is odd, there is nothing special happening (like in the bipartite case). If y is
even, there is a special situation. After all, there is an alternating path of even length
from i¢ to = and one from i to y, and the edge < z,y > closes a cycle of odd length. If we

let b be the last node common to both paths (the base node), then the resulting structure
is like this:

The cycle is a special case of a substructure known as a blossom, which can be formed
if we do the building process in a distributed manner over many clusters simultaneously.

Definition. Let M be a matching, B a set of edges connecting nodes in Vg C V, |B| =
2r+1(r > 1). B is called a blossom of M if the following conditions hold:

(i) IM N B| = r (the unique node of B left exposed in M N B is called the base b of the
blossom),

(ii) there is an alternating path L of even length with LN B = @ from an exposed node
(the “root”) to the base of the blossom, and

(iii) for each node i € Vg there is an alternating path of even length from the base of the
blossom to .

Lemma. Let B be a blossom. There exists an augmenting path in G mod B with re-
spect to M — B if and only if there exists an augmenting path in G with respect to M.

The construction of G mod B is known as “blossom-shrinking”. Algorithmically, the
lemma is of crucial importance for finding augmenting paths. The different algorithms
that exist are usually based on (very) efficient techniques of finding and manipulating
blossoms. The algorithm of Micali & Vazirani follows the Hopcroft-Karp strategy, but
succeeds in handling blossoms so a maximal set of augmenting paths is found in each
phase in O(e) time. See figure 3.2 for the known complexity results.

The construction of maximum weight matchings roughly follows similar techniques and
is based on the theorem on page 45.

Once again the bipartite case is the easiest to handle. In this case the problem is also
known as the assignment problem, because it can be interpreted as the problem of finding
an optimal cost assignment of tasks to agents (machines, workers). For an explanation
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Kameda & Munro (1974) O(ne)

Edmonds (1965) O(n*)
Balinski (1967) 0O(n?)
Lawler (1976) O(n?)
Gabow (1976) 0(n3)
Gabow & Tarjan (1983)  O(ne)
Even & Kariv (1975) O(min{n%, /n.e. loglog n})

Micali & Vazirani (1980) O(y/n.e)

Figure 10: Maximum cardinality matching algorithms for general (non-bipartite) graphs.

of the so-called Hungarian method to solve the assignment problem, see Papadimitriou &
Steiglitz. (It runs in O(n3) time.) By theorem (page 58) the problem can be formulated
as a minimum cost maximum flow problem, which can be solved in O(ne.l°8"/ log(2 + 9))
time. The general case is solved by a technique that exploits the formulation as a linear
programming problem (due to Edmonds). Define the variables z;; to mean: z;; = 1 if
<1i,j >€ M, and 0 otherwise. Let By be any set of 2r; + 1 nodes (i.e., an odd set). The
fact that we want the z—variables to represent a matching leads to the constraint

> 2=
‘.1j€Bk

for all k and sets Bx. Now maximum weight matching can be formulated as the following
linear programming problem:

maXximize : E Wi Tij
i,
(*) subject to : E zij<1lforallieV,
<$,5>€kE
E zi; < 7 for all sets By, |Bkl =2rr+1,
",J'GBJ;

z;; 2 0 for all 4, 5.

Theorem. Every solution to the linear programming problem (*) has z;; € {0,1} for
all 4,7 and hence can be interpreted as a matching.

All that is “left” is to solve (*)! It turns out that the dual problem holds important clues
to the efficient solution of (*). The dual problem has a variable u; for every vertex ¢ and
a variable z; for every set By, and reads as follows (by applying the duality theorem of
linear programming):

minimize : Z u; + Z TEZk
i k

subject to : wu;+ u;+ E 2 2> wjj for all 4,5
k:t',jGBk
u; > o for all ¢,

2, > o for all k.
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One can redefine the computational problem as follows. Let T = i +uj+ Ek:i,je By %k —
Wij.

Lemma. A matching M has maximum weight if and only if the following conditions
are satisfied for all nodes 7, edges < 4,5 >€ E, and odd sets By C V with | Bx| = 2rg + 1:

(a) ui,mij, 2k > 0,
(b) if < 4,7 > is matched, then 7;; = 0,
(c) if 7 is exposed, then u; = 0,

(d) if 2z > 0, then By is maximally matched (ie, [{<%,7>|i,j € Bx,<i,j >e M}| =
Ry, and By is a blossom).

Proof.

“Only if” follows from duality. The “if”- part is seen as follows. Let M satisfy (a)
through (d) and let M’ be another matching. Observe

> wy < > (uitui+ > zk)SZui+Erk2k= > wi,
%

<i,j>eM’ <i,j>€EM’ k:i,7€By i <i,j>€EM

by applying known facts for M (and the constraints for M’). O

The algorithms for maximum weight matching start with an empty matching M, z, = 0
for all k, and u; = G for all i and a suitably large G (e.g. G = %ma.x'w;,-). This
satisfies (a), (b) and (d) but not (c). One now tries to make changes such that (a), (b)
and (d) are preserved but the number of violations of (c) is reduced (this is done by
finding augmenting paths between nodes t,J with u; = u; > 0). Again one uses blossom-
shrinking to find the augmenting paths. The further details are explained in Lawler. The
most efficient implementations of maximum weighted matching run in time O(nelogn)
and O(nelogloglogyn + n?logn) for d = max{2,® /n}. For planar graphs, a different
algorithm based on the planar separator theorem yields a maximum weight matching in
O(n*3logn) time.

The maximum matching algorithms are still fairly complex and invite alternative ap-
proaches. One approach is to drop the strict requirement that a matching is maximum,
and to construct a matching that is “approximately” maximum. A simple, but rather
crude bound is obtained as follows: construct a DFS tree T of G (in linear time), and

construct a maximum matching in 7 (in linear time, cf. section 3.1). Let the matching
be M’.

Theorem. |M’'| > L1|M|, for any maximum matching M of G.

A different approach aims at finding f* probabilistic algorithms for maximum match-
ings. The basic starting point is a result of Erdos & Renyi that asserts that the probability
that an n—node graph (n even) with N edges has a perfect matching tends to 1 for n — 00,
provided N > Znlogn + w(n)n (for some w(n) with w(n) — oo for n — o). Angluin
& Valiant proposed the following randomized algorithm for finding a perfect matching
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high probability (averaged over all graphs with N > en logn for ¢ sufficiently large). Sup-
pose we succeeded building a (partial) matching M. If M has ™ /2 edges we can stop and
report success (M is perfect). Otherwise, let = be the least-numbered exposed node in M
and select (and delete) a random edge (z,y) € E. If no edge exists, then stop and report
failure. If y is exposed in M, then (=, ) is added to M and we repeat the entire procedure
for the new matching. If y is matched in M, with mate 2z, then delete (y, 2) from M but
add (z,y) to it, and repeat the procedure at node z. By using a suitable data-structure

Figure 11:

the overhead in each step of the algorithm takes O(1) time. It can be shown that for
N 2 enlogn the probability that the algorithm reports success within O(nlogn) steps

tends to 1 for n — oo. It follows that the algorithm “almost certainly” finds a perfect
matching in O(nlogn) time.

3.3 Maximum Flow.

Let G be a directed graph with a non-negative capacity c(e) assigned to every edge e.
(We shall henceforth refer to G as a “network”.) We are interested in solving the s — ¢
maximum flow problem, normally referred to as “the maximum flow problem”, defined as
follows: determine a maximum (legal) flow f from s to ¢, where s and ¢ are specified nodes
of G called the source and the target of the flow, respectively. The maximum flow problem
is probably one of the most classical problems in combinatorial optimization on graphs.
We will outline the basic theory and some very efficient, polynomial time algorithms for
it. The results are usually refined for special sub-cases of the problem, like

e the network is of a special type (e.g. planar),
e the edge capacities are integral, or

o the edge capacities are all 0 or 1.

We will usually mention the results for these cases, but omit the details. Let E= {(G, )¢, 5) €
E}, and €= (j,i) fore = (3, 5)-

Definition. A flow on G is a function f : EU E—R satisfying the following constraints:

(i) for every e € E,0 < f(e) < ¢(e) and f(€) = —f(e), and
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(ii) for every i # s, t, Zj:(j,i)GE f(.77 7’) = Ej:(i,j)EE f(zaj)

The latter constraint is the basic conservation law, which requires that what flows in
flows out for every node i different from s and ¢. The value |f| of a flow is defined as

Yi(si)eE f(8,%). It is seen to be equal to Yi(igek f(i,t): what flows out of s is precisely
what flows into .

Definition. An s — ¢ cut is a partition X;X of V such that s € X and ¢ € X. The
capacity of an s — ¢ cut X; X is defined to be (X, X) = E(i,j)eE:ieX,jeYC(i’j)’ and the
flow across the cut is defined to be f(X,X) = 2 (i j)eEiex,jex f (i 3)-

The following lemma can be shown by induction on | X|.
Lemma. |f|= f(X,X)- f(X,X)< ¢(X,X) for any s — t cut X; X.

The methods of finding a maximum flow mostly use the basic technique of successively

augmenting a given flow. An augmenting path from s to ¢ is any “path” 7 of edges € EU E
with the following properties:

o for any edge e € 7 (¢ € E), f(e) < c(e)
o for any edge €€ 7 (e € E), f(e) > 0.

The edges € € 7 are sometimes called “forward edges”, and the edges e€ = “backward
edges”. It should be clear why « is called an augmenting path. Define ¢; = min{c(e) —
f(e)le € m(e € E)}, ez = min{f(e)| e€ (e € E)} and ¢ = min{ey,e,}. Adding ¢ flow to
every “edge” in 7 results in a flow f’ with |f/| = |f]+ ¢, i.e., a flow of larger value! (Note
that the process of augmentation effectively increases the flow by € on every forward edge,

and decreases the flow by € on every backward edge.) The following result is crucial and
due to Ford & Fulkerson.

Theorem.

(i) (“the augmenting path theorem”) f is a maximum flow if and only if there is no
augmenting path for f.

(i) (“the max-flow min-cut theorem”) the maximum value of an s — ¢ flow is equal to
the minimum capacity of an s — ¢ cut.

Proof.

(i) Let f be a maximum flow. It is clear that there can be no augmenting path, otherwise
a flow augmentation along the path would yield a larger flow (contradiction). Next
suppose there is no augmenting path from s to t. Any attempt to build a path
of edges € EU E from s to t must end at a node where all next edges ¢ € E are
saturated (i.e., f(e) = ¢(e)) and all next edges e (e € E) have f(e) = 0. Define X
to be the set of nodes v (including s) such that there is an augmenting path from s

to v. It follows that X;X is an s — ¢ cut and |f| = f(X,X) = ¢(X,X). As this is
the largest value a flow can have, f must be maximum.
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(ii) Let f be a maximum s — ¢ flow. By the preceding argument there is an s — ¢ cut
X; X such that |f] = ¢(X,X). As |f| < ¢(Y,Y) for any s—t cut Y; ¥ it follows that
X;X is an s — t cut of minimum capacity. O

From the proof it follows that for any maximum s — ¢ flow and minimum capacity s—1
cut X;X the edges leading “across the cut” from X to X are saturated and the edges
leading from X to X carry flow 0. The max-flow min-cut theorem actually implies that
every network admits a maximum flow.

Corollary.  (“the integral flow theorem”) If all capacities are integers, there is a maxi-
mum flow which is integral (i.e., with an integral flow through every edge).
Proof.

Consider any feasible, integral flow f. If f is not maximum, there must be an aug-
menting path. Augmenting the flow along this path yields another feasible, integral flow f/

with | /| > |f| + 1. By repeating this we must arrive at an integral flow that is maximum.
O

While these are the main theorems on which the construction of maximum flows are
based, the theory can be ramified further. For example, one may want to impose limits
on the capacity of the various nodes and wish to determine a maximum flow f subject
to the (additional) requirement that 2iGiee f(i,5) < ¢, ie., the total flow into every
node ¢ does not exceed its capacity ¢; (i # s,t). This problem can be reduced to an
ordinary maximum flow problem as follows: split each node i # 8,1 into two nodes i’
and i” connected by an edge (¢/,i"), let the edge (#,4") have capacity c;, and lead all
incoming edges of ¢ to #’ and all outgoing edges from i". By virtue of this transformation
the previous theorems go through virtually unchanged.

Another common constraint is to impose a lowerbound on the flow through each edge,
in addition to the upperbound (or: capacity) for each edge. The results here require that
we change our view from flows to circulations. Let I(e) and c(e) denote the lower- and
upperbound, respectively, of the flow through edge e € E.

Definition. A circulation in G is a function (“flow”) f : EU E— R satisfying the
following constraints:

(i) for every edge € € E,0 < f(e) < c(e) and f(€) = —f(e), and
(ii) for every i,3;.(;.0ek f(5,1) = Tji jyer F(6:,9)-

Thus circulations simply are flows that observe the basic conservation law at all nodes.
The maximum flow problem can easily be converted to circulation form as follow: add an
edge (2, s) to the flow network with I(¢,3) = 0 and ¢(¢,8) = 0o, and ask for a circulation
for which f(t, s) is maximum. A typical scenario for determining a maximum flow “with
lowerbounds” is the following: first determine a feasible circulation, next augment the

implicit (feasible) s — ¢ flow to a maximum flow. The following result is due to Hoffman.
A circulation is called feasible if I(e) < f(e) < c(e).

Theorem. (“the circulation theorem”) In a network with lowerbounds and capacities,
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a feasible circulation exists if and and only if Yiev, je?l( Jrt) < Yiev,jev ¢(i, j) for every
cutset Y;Y.
Proof.

Let f be a feasible circulation. One can prove by induction that the effective flow
across any cut must be zero, i.e., f(Y,Y)— f(V,Y) = 0. Now Yievjerl(dii) < FY,Y) =
FY,Y) < Y icv.jev ¢4, j) as claimed, for any cut Y;Y.

Conversely, assume that EieY, je?l( J,1) < ZieY, 7 ¢(i,7) for every cut Y;Y. Suppose
that the network admits no feasible circulation. Consider any circulation f and let u,v
be two nodes with (u,v) € E and f(u,v) < I(u,v). We claim that there must be an
augmenting path from v to , i.e., a path in which each forward edge e has f(e) > I(e)
and each backward edge ‘¢ has f(e) < c(e). For suppose this is not the case. Let ¥ be
the set of nodes which can be reached from » by an augmenting path. Clearly Y;Y is a
v — u cut, every edge from Y to Y must be saturated and every edge e from ¥ to Y must

have f(e) < I(e). Assuming (as we may) that f does satisfy the basic conservation law,
we have

> (L)=fVN)=fT,Y)< Y 1)
i€Y,jeY i€Y,jey
(with strict inequality because of the edge (u,v)). This contradicts the assumption. Thus
consider any augmenting path from v to u, and let § be the smallest surplus on any edge
(ie., f(e) — I(e) on a forward edge and ¢(e) — f(e) on a backward edge). We can now
“augment” f by redistributing flow as follows: add a flow of 6 to edge (u,v) and subtract
a flow of § from the edges in the augmenting path (i.e., subtract § from every forward
edge and add § to every backward edge in it). Apply this procedure to any network

with a circulation f for which mineeg |f(e) — I(e)| is smallest, and it follows that we ob-
tain a circulation for which this minimum is smaller yet unless it is zero. Contradiction. O

In a flow network with lower- and upperbounds, it may be of interest to determine

both a maximum and a minimum flow that satisfy the constraints. The following result
is again due to Ford and Fulkerson.

Theorem. Let G be a flow network with lowerbounds and capacities, which admits a
feasible s—t flow. Define the capacity of a cutset ¥; ¥ as 2iey,jev (6 1)~ Tiey el 9) =

cap(Y; 7). ’

(i) (“the generalized max-flow min cut theorem”) The maximum value of an s — ¢ flow
is equal to the minimum capacity of an s — ¢ cut.

(ii) (“the min-flow max-cut theorem”) The minimum value of an s — ¢ flow is equal to
the maximum of Zieviev (i, i) - Yiey,jey cli,j) overall s—t cuts Y; Y, i.e., minus
the minimum of the capacity of a ¢t — s cut.

Proof.

(i) Convert the flow network into a circulation network by adding an edge (,s) with
I(t,s) = l and ¢(t, s) = oo, for a “parametric” value of . Because G admits a feasible
flow f, the modified network admits a feasible circulation for any ! < |f|. Clearly,
the maximum s — ¢ flow in G has a value equal to the maximum value of ! for which
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the modified network admits a feasible circulation. By the circulation theorem a
feasible circulation exists if and only if I < cap(Y;Y). The result follows.

(i) Similar, by considering the circulation network obtained by adding an edge (t,s)
with I(t,s) =0 and ¢(¢,8) = 1. O

An important type of flow problem arises when a cost (or weight) b(,j) > 0 is in-
volved with each unit of flow through an edge (¢,7). The cost of a flow f is defined as
2 ecg b(e)f(e). The minimum cost flow problem asks for the s — ¢ flow of some value v
and (among all flows of this value) of least cost. Usually the minimum cost flow problem
is understood to be the problem of finding a maximum flow of least cost. The methods for
finding a minimum cost flow typically start with a feasible flow (i.e., a flow of value v or
a maximum flow) and transform it into another flow of some value and e.g. lesser cost by
working on “cost-reducing augmenting paths”. The cost of an augmenting path or cycle
is defined as the sum of the costs of the flow through the forward edges minus the sum of
the costs of the flow through the backward edges.

Theorem. (“the minimum cost flow theorem”)

(i) A flow of value v has minimum cost if and only if it admits no augmenting cycle of
negative cost.

(ii) Given a minimum cost flow of value v, the augmentation by § along an s — ¢ aug-
menting path of minimum cost yields a minimum cost flow of value v + §.

Proof.

(i) Suppose f has value v and minimum cost. Clearly no negative cost augmenting
cycle can exist, otherwise we could introduce a (small) amount of extra flow around
the cycle without changing the value of the flow but reducing its cost. Conversely,
let f have value v and no negative cost augmenting cycle. Suppose f does not have
minimum cost, but let f* be a flow of value v that has minimum cost. Now f*—fis
a “flow” of value 0 and negative cost. The “flow” can be decomposed into cycles of
flow (by reasoning backwards from every edge carrying non-zero flow) at least one
of which apparently must have negative cost. Contradiction.

(ii) Let f be a minimum cost flow of value v, and suppose the augmentation by é along
the minimum cost s — ¢ augmenting path = introduced an augmenting cycle C of
negative cost. Thus C includes one or more edges affected by the augmentation
along 7 in reversed direction, to account for the negative cost of C. Define 1® C
to be the set of edges of # U C except those which occur in 7 and reversed on C.
The set 7 @ C partitions into an s — ¢ path 7’ and a number of cycles, and the
total flow-cost in the edges of 7 @ C is less than the cost of . Clearly 7/ must be
an s — t augmenting path of cost less than the cost of 7, as the cycles cannot have
nonnegative cost by (i) and the assumption on f. Contradiction. O

The minimum cost flow theorem is implicit in the work of Jewell and of Busacker and
Gowen.
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Corollary.  (“the integrality theorem for minimum cost flows”) If all capacities are in-
teger, there is a maximum flow which is integral and has minimum cost (over all maximum
flows).
Proof.

Similar to the proof of the integrality theorem, by using (ii) of the minimum cost flow
theorem. O

In the subsequent sections we will see that many versions of the maximum flow problem
can be solved by polynomial time algorithms. It has been shown that the maximum flow
problem (i.e., the problem to determine whether there exists a flow of value > K for
specified K') is log-space complete for the class P of all polynomially computable problems.

3.4 Computing Maximum Flows.
3.4.1 Augmenting Path Methods

Many algorithms to determine a maximum flow in a network start from Ford and Ful-
kerson’s augmenting path theorem. Given a flow f and an augmenting path =, let the
maximum amount by which we can augment f along 7 be called the residual capacity
res(w) of w. (Thus res(r) = min{res(e)|e € 7} with res(e) = c(e) - f(e) if e € E and
res(e) = —f(e) if e EE) Augmenting path methods are based on the iteration of one of
the following types of steps, starting from any feasible flow (e.g. f=0).

clairvoyant augmentation : augment the flow along some s — ¢ augmenting path = by
an amount < res(r),

Ford-Fulkerson augmentation : find an augmenting path = and augment the flow by
res(w) along «,

maximum capacity augmentation : find an augmenting path 7 of maximum residual
capacity and augment the flow by res(r) along ,

Edmonds-Karp augmentation : find a shortest augmenting path 7 and augment the
flow by res(w) along 7.

Clairvoyant augmentation is only of theoretical interest, but the following observation will
be useful.

Proposition. A maximum flow can be constructed using at most e clairvoyant aug-
mentation steps (along augmenting paths without backward edges).
Proof.

Let f be a (maximum) non-zero flow in G, and let e € E be an edge with the smallest
non-zero amount of flow f(e). One easily verifies that there must be an s — ¢ path 7 con-
taining only forward edges including e. Decrease the flow in every edge along 7 by f(e),
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obtaining a flow f/ with |f’| < |f|. (Note that f is obtained from f’ by a clairvoyant aug-
mentation along 7.) Repeat this process as long as a non-zero flow is obtained. Because
in each step at least one more edge is given a zero flow, the process goes on for at most e
steps (and thus leads to at most e paths) and ends with the zero flow. By reversing the

process and augmenting the flow by the right amount along the paths (taken in reverse
order) one obtains f again. O

The other augmenting path methods are more interesting and will lead us to a variety of
polynomial time algorithms for computing maximum flows. The main problem in a Ford-
Fulkerson augmentation step is finding an augmenting path. The usual procedure for this
is reminiscent of a breadth-first search algorithm and inductively generates for every node
u (beginning with the neighbors of s) a “label” that indicates whether there exists an
augmenting path from s to u. The label will contain a pointer to the predecessor on the
augmenting path, if one exists, in order to be able to trace an augmenting path when the
labeling procedure terminates at . If the labeling procedure gets stuck before ¢ is reached,
then no augmenting path from s to ¢ exists and the flow must be maximum. (Observe
that in this case X; X with X consisting of s and the labeled vertices, must be an s —¢ cut
of minimum capacity.) When suitably implemented a Ford-Fulkerson augmentation step
takes only O(e) time. It follows that in a network with all integer capacities, a maximum
flow can be constructed by Ford-Fulkerson augmentation in O(ef*) time, where f* is the
value of the maximum flow. On the other hand, Ford and Fulkerson have shown that
Ford-Fulkerson augmentation on an arbitrary network does nog necessarily converge to
the maximum flow. (Their example shows that the algorithm may get bogged down on
a never ending sequence of augmenting paths with residual capacity converging to zero,
without ever coming close to the maximum flow.) Thus at each step of an augmenting
path method the augmenting path to work on must be properly chosen in order to obtain
a viable maximum flow algorithm on general networks. We will first look at maximum
capacity augmentation, suggested by Edmonds and Karp.

Theorem.

(i) Maximum capacity augmentation produces a sequence of flows that always converges
to a maximum flow.

(ii) If the capacities are all integers, maximum capacity augmentation finds a maximum
flow in O(min{elogc*,1 + logas/a—1 f*}) iterations where ¢* is the maximum edge
capacity, f* the value of a maximum flow and M > 1 is the maximum number of
edges across any s — t cut.

Proof.

(i) Let f bea flowand f* a maximum flow, chosen such that f* > f (by the augmenting
path theorem). One easily verifies that f* — f is a (maximum) flow of value | f*| — | f]|
in the residual graph, i.e., the graph G in which each edge is given its current
residual capacity. By the lemma there must be an augmenting path over which one
can augment the flow by at least 1(|f*| — | f|), which thus is a lowerbound on the
residual capacity of the current maximum capacity augmenting path. On the other
hand, over the next 2e augmentations (as long as the maximum flow is not reached)
the residual capacity of a maximum augmenting path must go down to (| f*| - |f)
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or less. Thus after 2e or fewer augmentations, the residual capacity of the maximum
augmenting path is reduced by at least a factor of two.

(ii) In the special case that all capacities are integers, the residual capacity of a maxi-
mum augmenting path is initially at most c* and will never be less than 1. Thus a
maximum flow must be obtained after at most O(elogc*) maximum capacity aug-
mentations. To obtain another bound, let fo, fi, -, fc = f* be the sequence of
flows obtained by iterating maximum capacity augmentation and let ¢; = |fi;q| —
|fil(1 < 4 < k) be the i*» flow increment. Let X; consist of s and all points reach-
able from s by an augmenting path of residual capacity > ¢;. Clearly X;; X; is
an s — ¢t cut and all edges across the cut have either a residual capacity < ¢;
(for edges from X; to X;) or capacity < ¢; (for edges from X; to X;). Thus
IF*1=1fil < (X, X) = f(X, D)+ f(X,X) < &M = (|fir1] - | fil)M or, equivalently,
I£*] = 1 firal < (1F* = 1£il)(1 ~ ). By induction we have | f*| — |£;| < |f*|(1 - &)’
and, hence, 1 < |f*|(1 - le)k—x_ The bound on k follows. O

Finding an augmenting path of maximum residual capacity can be done by a procedure
that is reminiscent of Dijkstra’s shortest path algorithm, within O(elogn) or even less
time. Thus, if all capacities are integers, maximum capacity flow augmentation yields a
maximum flow in O(m?logn logc*) or less time. :

Polynomial time algorithms for general networks (with a complexity independent of c*

or f*) require a different approach. A classical starting point is Edmonds-Karp augmen-
tation, in view of the following result.

Theorem. FEdmonds-Karp augmentation yields a maximum flow after no more than

%ne iterations.

As a shortest augmenting path is easily found in O(e) time (by a suitable version of
breadth-first search), Edmonds-Karp augmentation yields an O(ne?) time algorithm for
determining a maximum flow in any network. By extending the idea, Dinic observed that
a more efficient algorithm results if one can construct all shortest augmenting paths first
in one step (or phase) before performing the necessary augmentations on the subgraph.
Define the distance d(u) of a node u as the length of the shortest augmenting path from s
to u. (Set d(u) to oo if no such path exists.) Define the critical graph N as the subgraph

of G containing only the edges ¢ = (u,v) € EU E with d(v) = d(u) + 1, with all nodes not
on a path from s to ¢ omitted. Every edge is assigned the residual capacity with respect
to f. Clearly s € N and, provided f is not maximum, ¢ € N as well. Observe that N
contains precisely the shortest augmenting paths from s to t. N is also called the level
graph or the layered network of f. Finally, let’s call g a blocking flow if every path from
s to t contains an edge of residual capacity zero.

Dinic augmentation : construct the citical graph N, find a blocking flow g in N, and
“augment” f by replacing it by the flow f + g.

Theorem. Dinic augmentation yields a maximum flow after at most n — 1 iterations.
Proof.
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The idea of the proof is that d(t), i.e., the length of the shortest augmenting path from
s to , increases with every Dinic augmentation. Let f be the current flow, d the distance
function, and N the critical graph. Let f’,d’, and N’ be the corresponding entities after
one Dinic augmentation (assuming that f is not maximum). If t € N’, the flow f’ is
maximum, d(¢) = oo and we are done. Thus assume f’ is not maximum (hence t € N').
Consider a path s = ug,u;,---,ux = t from s to ¢t in N’ with d'(u;) = i. We distinguish
two cases:

case I: ;e Nfor0<i<k.

We argue by induction that d’(w;) > d(u;). For i = 0 this is obvious. Suppose
the claim holds for 4, and consider uiy1. If d(uipy) < d(u;) + 1, the induction step
follows immediately. Thus let d(ui+1) > d(u;) + 1. Then the edge (ui, uit1) is not in
N despite the fact that it has a non-zero residual capacity (because it was not affected
by the augmentation and is an edge in N'). Thus contradicts that d(uiy1) > d(u)) + 1,
thus completing the induction. It follows in particular that d'(t) > d(t). Suppose that
d(t') = d(t). Then d'(u;) = d(u;) for 0 < i < k, and the entire path must have been a
path in N. This contradicts the fact that all paths in N were “blocked” after the Dinic
augmentation. Hence d'(t) > d(t).

case II: u; g N, for some j.

Choose u; to be the first node on the path with uj € N. Clearly j > 0 and, by the
preceding argument, d’(u;) > d(u;) for 0 < i < j. Consider the edge (uj_1,u;) € N'. Be-
cause it has non-zero residual capacity now, it must have had so before the augmentation.
The fact that uj_y € N but u; ¢ N implies that necessarily d(u;) = d(t) and (hence)
d(t) < d(uj-1) + 1. We conclude that d'(t) > d'(uj—1) + 1 > d(uje1) +1 > d(t). As the
distance of ¢ is at least one at most n — 1, and increases by at least one with each Dinic

augmentation, the number of Dinic augmentations required to obtain a maximum flow is
at most n — 1. O

approx.year author(s) complexity
1956 Ford and Fulkerson -
1969 Edmonds and Karp 0(ne?)
1970 Dinic 0(n2%e)
1974 Karzanov 0(n3)
1977 Cherkasky 0(n?/e€)
1978 Malhotra, Pramodh Kumar

and Maheshwari 0(n3)
1978 Galil 0(n5/3¢2/3)
1980 Sleator and Tarjan 0(nelogn)
1984 Tarjan 0(n®)
1985 Goldberg 0(n?3)
1986 Goldberg and Tarjan 0(nelog™ /e)

Figure 12: Some maximum flow algorithms and their complexity.

Given a flow f, its critical graph can be determined in 0(e) time by means of breadth-
first search. Thus implementations of Dinic augmentation for computing maximum flows
require 0(ne+nF) time, where F = F(n,e) is a bound on the time to determine a blocking
flow in a network of (at most) n nodes and e edges. Dinic’s original algorithm determines
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a blocking flow by saturating some edges in a path from s to ¢ (in N) path after path, and
achieves F' = 0(ne) and (hence) a total running time of 0(n2e). Later algorithms greatly
improved the efficiency of a Dinic augmentation, by constructing a blocking flow in a dif-
ferent manner and/or using special data structures. The most efficient implementation
to date is due to Sleator and Tarjan and achieves F = 0(elogn), which thus yields an
0(nelogn) time algorithm to determine maximum flows. Figure 3.4.1 shows the inter-
esting sequence of maximum flow algorithms that developed over the years. (Goldberg’s
algorithm will be outlined below.) If all capacities are integers, an approach due to Gabow
yields an O(ne logc*) algorithm.

There are a number of results for more specialized networks that deserve mentioning at
this point. For a network with all edge capacities equal to one, Even and Tarjan prove that
a maximum flow is obtained after no more than 0(min{n?/3,e!/2}) Dinic augmentations.
In a network in which all edge capacities are integers and each node u # s, has either
one single incoming edge, of capacity one, or one single outgoing edge, of capacity one, at
most 2[v/n — 2] Dinic augmentations are needed.

Next observe that for planar (directed) networks the best maximum flow algorithms
we have seen so far still require 0(n?logn) time or more (take e = 0(n)). Using a divide-
and-conquer approach Johnson and Venkatesan have obtained an 0(n%?logn) algorithm
for the problem. But there is at least one case in which the maximum flow in a planar
network can be obtained much easier, by an intuitively appealing technique. Define a flow
network to be s — ¢ planar if it is planar and s and ¢ are nodes on the same face. (The
notion is due to Ford and Fulkerson, on a suggestion of G.B. Dantzig.) Let G be an s — ¢
planar network, and assume without loss of generality that s and ¢ lie on the boundary
of the exterior face. Embed G such that it lies in a vertical strip with s located on the
left bounding line of the strip and b on the right. Let 7 be the topmost path from s to
t, obtained by always choosing the leftmost edge in a node on the way from s to ¢ and
backtracking when one gets stuck. The following result is due to Ford and Fulkerson.

Lemma. The path 7 contains precisely one edge “across the cut” from X to X, for
every s — t cut X; X of minimum capacity.
Proof.

Consider any minimum capacity s — ¢ cut X ; X. Clearly = must contain at least one
edge across the cut from X to X. Suppose it contains more than one edge across the cut,
say €1 = (u1,v1) and e; = (ug,v;), with e; occurring before e; on the path. Because the
8 —t cut has minimum capacity there must be directed paths 71 and w3 from s to ¢ which
contain e; and ey, respectively, as the only edge across the cut from X to X. Let 7, be
the part of 7ri from v to t, 7r; the part of 73 from a to uy. Because 7 runs “above” 'y
and 73, m; and 7, must intersect at a node u. But now the path from s to ¢ obtained

by following 7, from s to u and 7, from u to ¢ has no edge across the cut from X to X!
Contradiction. O

The lemma suggests a simple way of computing a maximum flow due to Dantzig (but
sometimes referred to as Berge’s algorithm).

Dantzig augmentation (for s — ¢ planar networks): find the topmost path = (forward
edges only) with no saturated edges, and augment the flow by res(r) along .
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Theorem. Given an s — ¢ planar network, Dantzig augmentation yields a maximum
flow after at most e = 0(n) iterations.
Proof.

Each Dantzig augmentation saturates at least one more edge, and hence there can be
no more than e iterations. By the lemma it follows that whenever no further Dantzig
augmentation can be carried out, the edges across the cut from X to X for any minimum
capacity s —t cut X; X must all be saturated. By the max-flow min-cut theorem, the flow
must be maximum. OJ

A straightforward implementation of Dantzig augmentation requires a total of 0(e) edge
inspections, and 0(n) time to augment the flow per iteration. Thus one can construct
maximum flows in s — ¢ planar networks in 0(n2) time. Itai and Shiloach have developed
an implementation of the algorithm that requires only 0(nlogn) time. Frederickson claims
an 0(n/Togn ) algorithm for the problem. As an interesting generalization Johnson and
Vekatesan prove that a maximum flow in a planar network can be determined in 0(pnlogn)
time, where p is the fewest number of faces that needs to be traversed to get from s to t.

A closely related problem is the determination of a minimum s — ¢ cut in a planar
(undirected) graph. Itai and Shiloach gave an 0(n?logn) algorithm for it. Reif has shown
an algorithm for it that runs in 0(n lognlog* n) implementation.

3.4.2 Maximum Flow Algorithms Cont’d.

In 1985 A.V. Goldberg presented an entirely new approach to the construction of maximum
8 — t flows in directed networks. The approach uses several insights from the preceding
algorithms, but abandons the idea of flow augmentations along entire paths and of main-
taining legal flows at all times. The generic version of Goldberg’s algorithm consists of two
phases. In phase I an infinite amount of flow is put on s, and an iterative scheme is called
upon to let each node push as much flow as it can according to the residual capacities of
the links “in the direction of the shortest path (in the residual graph)” to t. The result
will be that usually more flow is entering a node than is leaving it, but that eventually all
edges across any minimum cut get saturated. In phase II of the algorithm all excess flow
that is entering the nodes is removed without altering the overal (maximum) value of the
flow, thus resulting in a legal flow that is maximum. We describe the algorithm in more
detail to appreciate some of the underlying mechanisms.

Definition. A preflow on G is a function ¢ : EU E— R satisfying the following con-
straints:

(i) for every e € E,0 < g(e) < ¢(e) and g(&) = —g(e), and

(11) for every ] # S, t, Ej:(j,i)GEg(j’ 2) Z EJ(‘,J)GEQ(Q,])

Throughout phase I of Goldberg’s algorithm, every node v maintains two items of infor-
mation: (i) the current flow excess A(v) defined by A(s) = oo and A(3) = > 5,i)eE 9(J,1)—
2 ii,j)eE 9(3,3) for all 4, and (ii) a lowerbound d(v) on the length of the shortest path
from v to ¢ in the residual graph. For the estimates d(v) we only require that d(t) =0
and d(w) > d(v) — 1 for every residual edge (v, w). At the start of phase I we set out with
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the zero flow for g and the ordinary distance d(v,t) from v to t for d(v). The initialisation
only requires 0(n + ¢) time. In the subsequent algorithm a node v will be called active if
A(v) > 0 and 0 < d(v) < n. The idea of phase I is to let active nodes release as much
flow as possible towards ¢, according to some iterative scheme, until no more active nodes

remain. In the generic version of the algorithm, one of the following actions can be carried
out in every step:

PUSH : Select an active node v and a residual edge (v, w) with d(w) = d(v) — 1. Let
the edge have residual capacity r. Now send a flow of § = min{A(v), } from v to
w, updating g and the flow excesses in v and w accordingly. (The push is called
saturating if § = r and non-saturating otherwise.)

RELABEL : Select a node v with 0 < d(v) < n, and replace d(v) by the minimum value

of d(w) + 1 over all nodes w for which (v, w) is a residual edge (oo if no such nodes
exist).

Of course RELABEL steps are only useful if they actually change (i.e., increase) a d(v)-
value. The following lemma is easily verified.

Lemma. Every step of the generic algorithm maintains the following invariants:
(i) g is a preflow,
(ii) d is a valid labeling, and
(iii) if A(v) > 0 then there is a directed path from s to v in the residual graph.

Furthermore, the d(v)-values never decrease.

We now show that the generic algorithm always terminates within polynomially many
steps regardless of the regime of PUSH and RELABEL instructions, provided we ignore
RELABEL instructions that do not actually change a label (“void relabelings”).

Theorem. Phase I terminates within 0(n%e) steps, provided no void relabelings are
counted.

Proof.

Every counted RELABEL step increments a d(v)-value with v # ¢ and d(v) < n by at
least one. Thus there can be at most n — 1 RELABEL steps that affect a given d(v)-value
for v # t, thus 0(n?) RELABEL steps in all.

Next we estimate the number of saturating pushes involving a given edge (u,v) € E. If
v = t, the edge can be saturated at most once (because d(t) remains 0 forever). For v # ¢,
a saturating PUSH from u to v can only be followed (eventually) by another saturating
PUSH over the same edge, necessarily from v to u, if d(v) has increased by at least 2 in
the meantime. A similar observation holds for d(u) if we start with a saturating PUSH
from v to u. (Note that d(u) and d(v) can only increase.) Thus the edge can be involved
in saturating PUSH steps at most n ~ 2 times, and the total number of saturating PUSH
steps is bounded by 0(ne).

To estimate the number of non-saturating PUSH steps, we use the entropy function
® = 3, active 4(v, t) with distances being measured in the residual graph of the current
preflow. A saturating PUSH causes ® to increase by at most n — 2. A non-saturating
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PUSH causes ® to decrease by at least 1 (because the node sending flow pushes all its
excess flow and thus turns non-active). As the total increase of & is thus bounded by
O(ne) - (n — 2) = 0(n%) and the initial value is bounded by 0(n?), the number of non-
saturating PUSH steps is bounded by 0(n2e). It follows that Phase I terminates within
0(nZe) steps, provided no void relabelings are counted as steps. O

One can implement Phase I to run in 0(n2e) time, using a queue A to maintain the set
of active nodes. It is clear from the theorem that we can do better only if we change the
regime of instructions so as to get by with fewer non-saturating PUSH steps. Note that
RELABEL steps are best executed when we visit an active node, and thus add only 0(1)
overhead to a PUSH step. Assume that at every node the outgoing and incoming edges
are stored in a circular list, with a pointer to the “next” edge that must be considered.
(Initially it is a random first edge.) Consider the following type of step:

DISCHARGE : Select the next active node v from the front of A (and delete it from
A). Consider the edges incident to v in circular order starting from the “current”
edge, and apply PUSH/RELABEL steps until A(v) becomes 0 or d(v) increases.
(Note that at least one of the two must arise before a full cycle around the list is
completed.) If a PUSH from v to some node u causes A(u) > 0 (necessarily implying
that u turns active), then add u to the rear of the queue A. After handling v, add
it to the rear of A also, provided it is still active.

Define a “pulse” as follows. The first pulse consists of applying DISCHARGE to the
initial queue A = {s}. For i > 1, the it® pulse consists of applying the DISCHARGE steps
to all node that were put into the queue during the (i — 1)* pulse. Consider applying
DISCHARGE steps until A =@ .

Lemma. Phase I terminates after at most 0(n2) pulses.
Proof.

Consider the entropy function & = max{d(v)|v active}. If & does not decrease during
a pulse, then the d(v)-value of some node must increase by at least one. Thus there can
be at most (n — 1)? pulses in which ® does not decrease. As 0 < & < 7 until there are
no more active nodes, the total number of pulses in which ® decreases can be no more
than (n~1)?+(n—1). Thus Phase I terminates after 2(n—1)2+(n—1) = 0(n?) pulses. O

Observe that by the way a DISCHARGE step is defined, there can be at most one
non-saturating PUSH step for each node v (namely the one that makes A(v) 0) in every
pulse. Thus the number of non-saturating PUSH steps in this implementation of phase
1is bounded by 0(n?) - (n — 1) = 0(n3). Given that there are at most 0(n2) RELABEL
steps and 0(ne) saturating PUSH steps as proved in the theorem, it easily follows that this
implementation of phase I has a total runtime bounded by 0(n3). Goldberg and Tarjan
have shown that by exploiting very special data structures and yet another regime to cut
down on the number of non-saturating PUSH steps, the complexity of phase I can be
further reduced to O(nelog™ /e).

When phase I terminates, it does not necessarily terminate with a maximum flow!
(Indeed g need not be a legal flow yet.) But the following lemma confirms the intuition that
the current preflow saturates at least one s —t cut. Let X = {u € G |d(u) > n} (the set of
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nodes from which ¢ is not reachable in the residual graph) and X = {v € G|0 < d(v) < n}
(the set of nodes from which ¢ is reachable in the residual graph). Because phase I has

terminated and (thus) no more active nodes exist, it should be clear that X; X indeed is
an s —t cut.

Lemma. The g-flow across the cut X; X equals the capacity of the cut.
Proof.

Consider any edge (u,v) or (v, u) with u € X and v € X. Because d is a valid labeling
w.r.t. the residual graph at all times, we can have d(u) > n only if (u,v) and (v,u) have
no residual capacity left. This means that the flow through (u,v) is maximum and the
flow through (v,u)is 0. O

Phase II of Goldberg’s algorithm consists of eliminating the excess flow in all nodes except
s and t, without affecting the value of the flow across the cut X ; X just defined. It follows
that the resulting legal flow must be maximum and ipso facto that X ; X must have been
a minimum capacity s — ¢ cut.

Algorithmically phase II can be implemented in several ways. In one approach all
circulations are eliminated first by means of an algorithm of Sleator and Tarjan in 0(e logn)
time. (Note that no circulation or “cycle of flow” can go across the X; X cut and that
their elimination does not change the value of the flow.) Next the nodes of G are processed
in reverse topological order, and for every node v with A(v) > 0 the inflow is reduced by
a total of A(v). This increases the flow excess in the predecessors, but they are handled
next anyway. (Note that the nodes in X have flow excess 0 and thus remain unaffected, as
does the flow across the X; X cut.) The entire procedure remains bounded by 0(m logn)
time. Originally Goldberg formulated a very similar algorithm to phase I for taking away
excess flow. Its complexity was again 0(n3).

Goldberg’s approach has led to the most efficient maximum flow algorithm to date,
with a running time of 0(ne log™’ /€) time when a suitable implementation is made. At the
same time his algorithm is ideally suited for parallel or distributed computation models.

3.5 Related Flow Problems.

There is a large variety of optimization problems on graphs that can be formulated in
terms of flows in networks. We briefly review the main results in this direction.

3.56.1 Networks with Lowerbounds.

It is common to also impose a lowerbound on the amount of flow through each edge, in
addition to the given upperbound (“capacity”) of each edge. The main problem now is
to find a feasible flow, i.e., a flow that satisfies the given constraints in each edge. Taking
a feasible flow as the starting point, any of the maximum flow algorithms based on flow
augmentation can be called upon to construct a maximum feasible flow. In a similar way
the minimum feasible flow can be constructed. For both types of flow there are results
relating the value of the flow to the capacity of cuts (see section 3.2).

Lawler describes the following procedure for finding a feasible flow (if one exists).
Add the edge (t,s) with lowerbound 0 and capacity 0o, and start with a suitable initial
circulation f that satisfies the capacity constraints (e.g. f=0). If f is not feasible, there
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will be an edge (u, v) for which f(u,v) < I(u,v). Find a flow augmenting path from v to
in which each backward edge carries an amount of flow strictly larger than its lowerbound.
Now augment the flow from v to u along the path (and, of course, along the edge (u,v))
by the maximum amount é that keeps the flow within the constraints. Repeat this until
f(u,v) > I(u,v) and likewise for every other edge. The procedure will construct a feasible
flow provided the conditions of Hoffman’s circulation theorem are satisfied (see section
3.2). When suitably implemented, the algorithm finds a feasible flow in 0(n3) time or less.

Curiously the problem of finding a feasible flow seems to be much harder for undirected
networks. In this case a (feasible) flow is defined to be any function f : V x V — R
with the following properties:(i) f(,5) # 0 only if (¢,5) € E and f(3,5) = —f(4,4), (ii)
1(i,5) < |£(5>§)| < e(i,5) and (iii) Toev £(u,5) = 0 for all j # s,t. (Interpret £(i, 1) > 0
as the amount of flow from ¢ to j.) It is assumed that (4, 5) = I(j,4) and ¢(i, 7) = (4, ©).
Itai has shown that the problem of determining whether there exists a feasible flow is an
undirected network with lower and upper bounds is NP-complete.

3.5.2 Minimum Cost Flow.

Next suppose that each unit of flow through an edge (4, 7) takes a cost b(i,5) > 0, and
consider the problem of constructing a minimum cost flow of value v (if it exists). The
problem is discussed at length in Ford and Fulkerson. A classical result of Wagner shows
that the minimum cost flow problem is polynomially equivalent to the so-called transporta-
tion problem (or “Hitchcock problem”) in linear programming, which has been extensively
studied. Assuming integer capacities, Edmonds and Karp developed an algorithm for find-
ing a minimum cost maximum flow exploiting this connection, achieving a running time
polynomial in n,e and log|f*| (with f* the value of the maximum flow).

The minimum cost flow theorem suggests the following algorithm for finding a min-
imum cost flow of value v. Set f° equal to the zero flow and construct a sequence of
(minimum cost) flows f1, 2, .- - as follows, for as long as |f¥| < v and f* isn’t maximal:
find an s — ¢ augmenting path 7 of minimum cost for f*, and construct a new flow (f*+1)
by augmenting the flow by min{res(r),v — |f¥|} along x. The algorithm is known as the
minimum cost augmentation algorithm. Zadeh has shown that in general the algorithm is
not polynomially bounded in the parameters of the network. If all capacities are integers,
the algorithm clearly is polynomial, as there can be at most v + 1 stages in the algorithm
(each augmentation increments the flow value by an integer > 1) and each stage requires
the computation of a minimum cost path from s to ¢ in the residual graph (which takes
0(ne) time when a general single source shortest path algorithm is used, where we note
that the residual graph of any minimum cost flow is known to have no negative cost cy-

cles). The shortest path computation in every stage can be considerably simplified by the
following obervation due to Edmonds and Karp.

Lemma. The minimum cost augmenting path computation required in each stage can
be carried out in a network with all weights (costs) non-negative.

Using this fact one can show that for integer capacity networks the minimum cost aug-
mentation algorithm produces a minimum cost flow of value v in about 0(vS(n,€)) time,
with S(n, e) the time needed for solving a single-source shortest path problem in a network
with all weights non-negative. The best bound known to date is S(n,e) = e + nlogn (see
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section 2.3).

For general networks the minimum cost augmentation algorithm may behave very
poorly. Zadeh showed that even convergence of the algorithm is not guaranteed. Consider
the following variant

Edmonds-Karp minimum cost augmentation : find a shortest minimum cost aug-
menting path 7 and augment the flow by min{res(x),v — | f*|} along .

(Here f* denotes the flow in the k** iteration of the algorithm.) Assume that Edmonds-

Karp minimum cost augmentation is used in every stage of the minimum cost flow algo-
rithm.

Theorem. Edmonds-Karp minimum cost augmentation produces a minimum cost flow
of value v in finitely many steps.
Proof.

We need the following property of the general minimum cost augmentation algorithm.
Consider the k** flow (f¥) and let 7*(v) denote the minimum cost of a path from s to
v in the residual graph R*. For (u,v) € R* we have %(u) + b > n*(v), where b is

the cost of the edge (b(u,v) when (u,v) € E and —b(u, v) when (u,v) €E) and equality
holds if (u,v) is on a minimum cost path from s to v. Consider the flow F*+1 obtained
after augmenting the flow along a minimum cost s — ¢ path (in R¥) and its corresponding
residual graph R¥+1, R¥+1 consists of a subset of the edges of R¥ and, possibly, some new
edges. One verifies that the only edges (v, u) € R¥+1 — RF are edges such that (u,v) € R¥
and 7*(u) + b = 7%(v) with b as before (using that the augmentation was done along a
minimum cost path). It easily follows that 7*+1(v) > x¥(v) for all nodes v. Taking v = ¢
this shows that the cost of the successive augmenting paths used in the minimum cost
augmentation algorithm is non-decreasing.

Now consider the Edmonds-Karp minimum cost augmentation algorithm. We know
that 7*(t) is non-decreasing in k. During any period i which #*(¢) remains constant,
Edmonds-Karp minimum cost augmentation behaves exactly like Edmonds-Karp augmen-
tation in a maximum flow algorithm. By theorem (page 58) it follows that 7%(t) remains
constant for at most %ne iterations in a row before it necessarily must increase. But wk(t)
can only increase a finite number of times because, for each k,7¥%(t) is the cost of some
loop-free path from s to t and the number of such paths is finite. O

In 1985 Tardos obtained a polynomial time minimum cost flow algorithm for the general
case, with the additional property that the size of the numbers occurring during the
computation remains polynomially bounded in the size of the problem as well. Fujishige
gave a different approach, leading to an 0(e3logn) algorithm. Galil and Tardos improved

the result further to obtain an 0(n2elogn + n3 log? n) algorithm for the minimum cost flow
problem.

3.5.3 Multiterminal Flow.

The multiterminal flow problem (i.e., the “analysis” version of it) requires that we compute
the maximum flow between every two of P given nodes in a network G, for some p > 1.
Clearly this can be accomplished in polynomial time, by solving %p(p — 1) maximum
flow problems (one for each pair of distinct nodes). Sometimes a much more efficient
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algorithm can be found. A classical case is provided by the “symmetric” networks, which
have (v,u) € E whenever (u,v) € E (i.e., the network is essentially undirected) and
¢(v,u) = c(u,v). We outline the results of Gomory and Hu that show that for symmetric
networks the multiterminal flow problem can be answered by solving only p — 1 maximum
flow problems. Several ramifications of the problem will be discussed afterwards.

Let G be symmetric, and let v;; be the value of the maximum flow from i to j(1<
t,J < n). Let v; = oo for all i, for consistency.

Lemma.
(i) Forall 4,5(1 < 4,5 < n),v;5 = vji.
(if) For all 4,3,k(1 < 4,5,k < n), vip > min{v;j, vjk}.

(iii) There exists a tree 7" on the nodes 1 through n such that for all 4,5(1 < 4,5 < n)v;; =
min{vj, v 5, *, Vs 5}, Where i — j; — -+ —jx — 7 is the (unique) path from i to j in

Proof.
(i) By symmetry of the network.

(ii) Let X;X be a minimum capacity ¢ — k cut saturated by a maximum flow from i to
k,i.e., vir = ¢(X,X). If j € X then necessarily vij L ¢(X,X) = vi. If j € X then
vk < (X, X) = vig.

(iii) Consider the complete graph on n nodes with the edges (%, j) labeled by the “weight”
vij(= vji). Let T be a maximum weight spanning tree. By an inductive argu-
ment using (ii) one verifies that for each pair of nodes i, J1 £ 4,5 < n) vy >
min{vj; , Vj jp, -+, Vj, 5}, Where s — j; — -+ — jr — j is the path from i to j in 7.
Suppose for some i, j there is strict inequality. Then there is an edge (i/,j') on the
path between i and j with vij > vypjp. This means that the tree T’ obtained by

replacing the edge (i, ;') of T by the edge (i, Jj) will have a larger weight than 7.
Contradiction. O

Part (iii) of the lemma has the interesting consequence that among the in(n — 1)
maximum flow values v;; there exist at most n — 1 different values (namely, the values
associated with the edges of T'). It also leads to the intuition that perhaps n — 1 maximum
flow computations suffice to build a tree T with the desired property, in order to determine
all vj-values. An algorithm due to Gomory and Hu indeed achieves this.

The crucial observation of Gomory and Hu is expressed in the following lemma. Given
two nodes #,j and a minimum capacity i — j cut X; X, define the “condensed” network
G° as the network obtained from G by contracting the nodes in X to a single (special)
node uy and replacing all edges leading from a node v € X across the cut by a single edge
between v and uy having the total capacity (for all v € X ).

Lemma. For every two ordinary nodes ', j/ of G¢ (i.e., ¢’ and j’ € X), the maximum

flow from 4’ to j/ in G€ has the same value as the maximum flow from #/ to J' in the original
network.
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(Note that for nodes #’,j' € X a similar statement holds after contracting X in G.) An
important consequence of the lemma is that for every two nodes #’,j' € X (or X) there is
a minimum capacity i’ — j' cut such that all nodes of X (or X, respectively) are on one
side of the cut. Given two nodes 7, j and a minimum capacity i — j cut X; X, we represent
the current situation by a tree with two nodes, one representing X and the other X, and
one edge with label v;;. (Thus the edge “represents” the cut X;X.) Of course we begin
by choosing ¢ and j from among the p nodes between which the maximum flow value must
be computed. We will now show how to expand the tree. For convenience we denote the
nodes of the tree by capital letters. Let A be the set of designated nodes, |A| = p.

Definition. A tree T is called a semi-cut tree if it satisfies the following properties:

(i) every node U of T corresponds to a subset of the nodes in G and contains at least
one node of A,

(ii) every edge (U, V) carries one label v, and there are nodes i,j € A with i € U and
J € V such that the maximum flow between ¢ and j has value v,

(iii) every edge (U,V) represents a minimum capacity i — j cut with i,7 € A and i
contained in one of the nodes of T' in the subtree headed by U and j contained in

one of the nodes of T in the subtree headed by V (and the cut consisting of the two,
collective sets of nodes).

If every node of a semi-cut tree T’ contains precisely one node of A, then T is called a

cut tree for A. (If A consists of all nodes of G, then a cut tree for A is simply called a cut
tree.)

Theorem. Let T be a cut tree for A. Then for every i,j € A one has: vij =
min{vy,- -, vk41}, where v; through Uk4+1 are the edge labels in T on the path from
the (unique) node containing i to the (unique) node containing j.

Proof.

Let ¢—j1 —---—jx—j be the “path” of A-nodes leading from % to j in T (Each A-node
listed is in fact the unique A-node contained in the corresponding node on the path in
T.) By the properties of the cut tree the labels on the edges are simply v;j,,---,v;;. By
the lemma we have v;; > min{v;j,,"--,v;,;}. On the other hand each edge corresponds
to a cutset separating ¢ and j, with a capacity equal to the corresponding v-label. Thus
vij < min{v;;,- -+, v;,;} and the desired equality follows. O

The algorithm of Gomory and Hu simply begins with the 2-node semi-cut tree for A that
we outlined above and shows how it can be transformed in a step-by-step fashion into a
cut tree for A. By the theorem a cut tree for A has precisely the property we want.

Theorem. A cut tree for A exists and can be constructed by means of only p—1
maximum flow computations.
Proof.

Suppose we have a semi-cut tree T for A. (This is certainly true at the beginning of
the algorithm.) Suppose T still has a node U which contains two nodes i,j € A. By the
lemma the maximum flow between i and j in G has the same value as the maximum flow
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between ¢ and j in the condensed graph G¢ obtained by contracting the sets of nodes in
each subtree attached to U to a single (special) node and for each v € U replacing the
edges that lead from v to a node in a particular subtree by one edge with the combined
total capacity between v and the corresponding special node. Let X ; X be a minimum
capacity ¢— j cut in G° (necessarily with capacity v;;). Construct a tree T” as follows: split
U into the nodes X and X, connect X and X by an edge labeled v;;, and (re-) connect
every neighbor V of U to either X or X depending on which side of the cut the special
node corresponding to V's subtree was in G° (with original edge label).

We claim that T" is again a semi-cut tree for A. The only non-trivial property to verify
is part (ii) of the definition. Thus let V' be any neighbor of U in T and let the label on
the edge (U, V) corespond to the maximum flow value between r € U and s € V(r,s€ A).
Assume without loss of generality that j,r € X. Now the following two cases can arise in
the construction:

case L. V gets connected to X.

This trivially preserves the properties of te semi-cut tree.

case II. V gets connected to X.

This situation is more subtle (see figure 13).

Figure 13:

Clearly the label v;; on the edge (X ,X) is appropriate to satisfy the definition for
the new edge. Now consider the label (vrs) on the edge (X,V). We show that, in fact,
Vis = ¥y, The argument is as follows. By the lemma we know Vis > min{v;j, Vjr, Vps }-
Because i and s are on one side of the cut, we know that the flow values between nodes
in X do not affect »;, and we have vis > min{v;j, v,}. On the other hand v;, must be
bounded by the capacity of the minimum cut coresponding to the edge (U,V) € T, i.e.,
Vis < Vrs. By the lemma v;; > min{v;,, v,,}, hence Vij 2> Uys. It follows that vy = v,,, and
the edge (X, V) corresponds to the maximum flow between i and s (with the same value
and the same cut-set corresponding to it as in the original tree T').

By repeating the construction it is clear that a cut tree for A is obtained, at the ex-
pense of a total of p — 1 maximum flow (i.e., minimum cut) computations. [J

The Gomory-Hu construction of a cut tree clearly solves the multiterminal flow problem
in an elegant fashion and saves a large number of computations over the naive algorithm.
Using the maximum flow algorithm of Goldberg and Tarjan, the construction needs essen-
tially O(pnelog™ /e) time. Hu and Shing have shown that a cut tree for a network with
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triconnected components can be computed in 0(-'5‘;- +n? + t) time. For outerplanar graphs

a cut tree can be constructed in linear time, for planar graphs in 0( 1}?5':—") time.

Several ramifications of the multiterminal flow problem can be considered. Gupta has
shown that the results of Gomory and Hu hold for the larger class of so-called pseudosym-
metric networks, which are defined as the networks in which there exists a circulation that
saturates all edges. The multiterminal flow problem can also be studied for e.g. minimum
cost flows, but few results along these lines have been reported. Some attention has been
given to the “synthesis” version of the multiterminal flow problem. In its simplest form the
question is to determine a network (i.e., a graph and suitable capacities for the edges) that
realizes a given set of maximum flow values. For the restriction to symmetric networks
again some results are known. The following result is due to Gomory and Hu.

Theorem. The values v;j(1 < i,j < n) are the maximum flow values of an n-node
symmetric network if and only if the values are non-negative, for all 4,j(1< 4,5 <n)v;; =
v5i and for all 4, 7, k(1 < 4,5,k < ) v > min{v;;, Vjk}.
Proof.

The necessity follows from the lemma on page 67. The sufficiency follows by consider-
ing the tree T' constructed in part (iii) of the same lemma. Let the edge labels in T serve

as edge capacities. One verifies that the vij-values actually arise as maximum flow values
in the network so obtained. OJ

In its more interesting form, the synthesis version of the multiterminal flow problem
asks for a network that realizes a given set of maximum flow values (or a set of flows with
these values as lowerbounds) with minimum total edge capacity. For the symmetric case
Gomory and Hu have again devised an efficient algorithm for this problem. Gusfield has
shown that one can construct an optimal symmetric network G in 0(max{e,nlogn}) time,
where the network G that is obtained has the additional properties that it is planar, has
degrees bounded by 4 and the smallest possible number of edges (in a well-defined sense).

3.5.4 Multicommodity Flow.

In the discussion of (maximum) flow problems we have hitherto assumed that the flow
concerns a single “commodity” that must be transported from a source node s to a target
node t. The m—commodity (maximum) flow problem is the natural generalization in
which there are m commodities (m > 2) and m source-target pairs (3;,t;). The problem
is to simultaneously transport any required number of units of the ith commodity from s;
to t; for 1 < i < m through the same network, i.e., under the constraint that the total
flow of commodities 1 to m through each edge is bounded by the capacity of the edge.
Let f; denote the flow function for the ith commodity (1 < ¢ < m). Traditionally one
seeks to maximize the total flow of commodities 3°J* |f;|, or even to maximize the flow
and at the same minimize the total cost of all flows (assuming that cost-functions are
defined for the edges as in the minimum cost flow problem). Both problems are easily
formulated as linear programming problems, and early studies by Ford and Fulkerson and
by Tomlin have attempted to exploit the special structure of these linear programs to
obtain practical algorithms. Because of the discovery of several polynomial time-bounded
linear programming algorithms (e.g. Khachian’s ellipsoid method), we know that both
the maximum multicommodity flow problem and the minimum cost multicommodity flow
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problem an be solved in polynomial time when all network parameters are rational. Kapoor
and Vaidya have adapted Karmarkar’s linear programming algorithm to show that both
multicommodity flow problems can be solved in 0(m33n?3eL) steps, where each step
involves an arithmetic operation to a precision of 0(L) bits. (L is the size of the network
specifiation in bits.) Assad has given an excellent account of the linear programming
aspects of the many variants of the multicommodity flow problem. Itai has shown that
the maximum m-commodity flow problem is in fact polynomially equivalent to linear
programming, for every m > 2.

In this section we restrict ourselves to the (maximum) m-commodity flow problem
in undirected networks. The ** commodity flow (1 < i < m) is to be a function
fi : V xV — R that satisfies the following properties:(i) fi(,v) # 0 only if (u,v) € E
and fi(u,v) = —fi(u,v), (ii) 0 < |fi(u,v)| < ¢(u,v) and (ii)) T u € V f;(u,v) = 0 for all
v # 8i,t;. It is assumed that ¢(u,v) > 0 only if (u,v) € E and that (u,v) = ¢(v,%)
for all u,v. (Interpret fi(u,v) > 0 as the flow of the it commodity from u to v). The
value of f; is defined to be |fi| = fi(s;,t;). An m-commodity flow is called feasible if all
fi(1 £ i < m) are legal flows and for every (u,v) € E : | fi(u, v)|+- - + | fm (2, v)| < c(u,v).
An m-commodity flow is called maximum if it is feasible and the total flow | fy|+- - -+ | fm|
is maximum (over all feasible flows).

The m-commodity flow problem in undirected networks is especially interesting for
m = 2, because in this case there is an analog to the max-flow min-cut theorem that
leads to a fairly efficient algorithm. Let ¢(sy, 83; t1,%2) be the minimum capacity of any
cut separating s; and #;(1 < i < 2). Let 7(uy, uy; v1,v2) denote the minimum capacity of
any cut X; X such that u;,u; € X and v;,v; € X (i.e., u; and u; are on the same side of
the cut, as are v; and v;). The following fact is due to Hu.

Lemma. In undirected networks c(s1, s2;t1,t2) = min{r(s;, s5; t1,t2), 7(81, t2; 82, %1) }.

Next define c(s;;t;) as the minimum capacity of any s; — ¢; cut (for 1 <7 < 2). Observe
that for every feasibly flow: |fi| < ¢(s;;%)(1 < ¢ < 2), by virtue of the max-flow min-cut

theorem. The theory of the 2-commodity flow problem is governed by the following results
due to Hu and complemented by Itai.

Theorem.

(i) (“the 2-commodity feasible flow theorem”) There exists a feasible 2-commodity flow
with |f;] = vi(1 < i < 2) if and only if v; < c(81;t1),v2 < ¢(s2;82) and vy + v <
(31,823 11, 83).

(ii) (“the 2-commodity max-flow min-cut theorem”) A 2-commodity flow is maximum if

and only if it is feasible and | f1| + | f2| = c(s1, 52; t1,t2).

Theorem.

(i) (“the 2-commodity maximum component flow theorem”) For each i,1 < i < 2, there

exists a maximum 2-commodity flow in which |f;] is maximum as well (as a single
commodity flow).
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(i) (“the even integer theorem”) If all capacities are even integers, there is a maximum
2-commodity flow f;, f2 which is integral (i.e., with all flow values integer).

(iii) (“the half units theorem”) If all capacities are integers, there is a maximum 2-
commodity flow f;, f2 in which all flow values are integer multiples of %

Hu has shown that most of the results do not generalize to maximum m-commodity
flows for m > 2. Rothschild and Whinston have shown that an integral maximum 2-
commodity flow exists also when all capacities are integers and for each node v 3¢y ¢(u, v)
is even.

The proofs of the (maximum) 2-commodity flow theorems essentially all follow from
an algorithm due to Hu for constructing a maximum 2-commodity flow. It will be useful
to keep the analogy with the ordinary maximum flow problem in mind. The idea of
Hu’s algorithm is to start with a maximum flow for the first commodity and a zero flow
for the second, and then to use a suitable augmentation device to increase the flow of
the second commodity while recirculating some flow of the first (without changing its
value). Define a bi-path to be any pair of loop-free paths (74, 7s) such that m, leads
from s; to t; and 75 from t; to s;. Given a feasible 2-commodity flow fi, f; define for
each (directed) edge (u,v) € E : A(u,v) = L{c(u,v) - fi(u,v) — fo(u,v)} and B(u,v) =
3{c(u,v) = fi(u,v) — fa(v,u)}. (Note that A(u,v) is half the “residual capacity” of the
flow from u to v, and that B(u,v) is half the “residual capacity” for augmenting the first
flow from u to v and the second from v to u.) For paths 7, and 75 as above define
A(ma) = min{A(u,v)|(u,v) € 7o} and B(rg) = min{B(u,v)|(u,v) € 7g}. Define the
residual capacity of a bi-path 7 = (7q,7g) as res(r) = min{A(7,), B(75)}. A bi-path =
is called an augmenting bi-path if res(r) > 0. Given an augmenting bi-path 7 = (7,,73)
we can augment the current 2-commodity flow by “bi-augmentation” as follows: increase
the flow of both commodities by res(r) along m, (“going from s, to t,”), and increase
the flow of the first commodity and decrease the flow of the second commodity by res(r)
along 75 (“going from t; to s,”).

Lemma. Bi-augmentation preserves the feasibility of 2-commodity flows.

Theorem. (“the augmenting bi-path theorem”) A 2-commodity flow with f; a maxi-
mum flow is maximum if and only if it is feasible and admits no augmenting bi-path.
Proof.

Let f1, f2 be a maximum 2-commodity flow. Suppose there was an augmenting bi-path
7. Bi-augmentation along 7 leaves the value of f; unchanged but increments the value
of f; by 2res(r). This contradicts that fi, f; is maximum. Next let f;, fo be a feasible
with f; maximum, and suppose there exists no augmenting bi-path. By the nature of the
problem we must have |fi| < ¢(s1;t1), | f2] < e(s2;t2) and |fi| + |fa| < (81,825 11,13). We
show that | fi| +|f2] = ¢(s1, 825 t1, t2), which means that the 2-commodity flow fi, f, must
be maximum. We distinguish two cases:

case L. There exists no “forward” path 7 with A(7,) > 0.

Let X be the set of all nodes reachable from s; by a loop-free path of edges (u, v) with
A(u,v) > 0. Clearly X; X is an s2 —tp cut and for all (u,v) € E with u € X and v € X we
must have A(u,v) = 0, i.e., fi(u,v)+ fo(u,v) = c(u,v). Because |fi(u,v)| + |fa(u,v)| <
c(u, v) by feasibility, it follows that fi(u,v) and f(u,v) are both non-negative and (also)
that (u,v) is “saturated”.
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If fi(u,v) is zero for all edges across the cut, then the cut is entirely saturated by f;
and |f;| = ¢(s2;%2) (by the max-flow min-cut theorem). It follows that f;, f, must be
a maximum 2-commodity flow in this case, with |fi| + |f2| = c(s15t2) > 7(s1, 82511, t2)
and (hence) |fi] + |f2] = ¢(s1,82;t1,t2). Next, consider the case that fi(u,v) > 0 for
some edge (u,v) across the cut. Now s; € X and t; € X, otherwise there would be an
edge across the cut with negative f;-flow (to conserve flow) and this is impossible. Thus
X;X also is an s; — #; cut, and we have |fi| + |fz] = o(X,X) > 7(s1,82;t1,t2). Thus
| f1] + | f2| = ¢(s1, 32511, t2) and the flow is again maximum.

case II. There is no “backward” path w3 with B(wxg) > 0.

Similar to case I, now proving that | fi| +|f2| > 7(s1,%2; 82, #1). Using Hu’s lemma, the
maximality of fi, fo again follows. O

The augmenting bi-path theorem provides exactly the tool we need to construct max-
imum 2-commodity flows, in perfect analogy to the single commodity ase. Augmenting
bi-path methods are based on the iteration of one of the following types of steps, starting
with a maximum flow for f; and any flow f, such that f;, f; is a feasible 2-commodity
flow (e.g. fz = 0). (To obtain a feasible 2-commodity flow with pre-assigned values for
| fi| and | f2| the steps should be suitably modified.)

Hu bi-augmentation : find a bi-augmenting path 7 and augment the 2-commodity flow
by res(=) along .

Itai bi-augmentation : find a bi-augmenting path 7(7,, %) with 74 and 73 of shortest
possible length, and augment the 2-commodity flow by res(r) along .

Both types of bi-augmentation can be implemented in 0(e) time per step.

Clearly Hu bi-augmentation yields a maximum 2-commodity flow with all the desired
properties in finitely many steps in case the capacities are integers. For arbitrary (real)
capacities Hu bi-augmentation may not converge to a maximum 2-commodity flow, very
much like Ford-Fulkerson augmentation may not converge to a maximum flow in the
single commodity flow problem. Itai bi-augmentation is reminiscent of Edmonds-Karp
augmentation in the ordinary maximum flow case, and can be shown tolead to a maximum
2-commodity flow in 0(n2e) time, for general capacities. Itai has shown that an 0(n?)
algorithm can be obtained by suitably adapting Karzanov’s maximum flow algorithm to
the 2-commodity case. Note that the fact that Itai bi-augmentation terminates proves the
2-commodity max-flow min-cut theorem for general undirected networks. (Seymour has
given a proof that does not rely on this fact, solely based on the circulation theorem.)
One easily verifies that the maximum 2-commodity flow obtained satisfies the additional
properties of the theorem. The half-units theorem is perhaps most interesting of all. Even,
Itai and Shamir have shown that the undirected 2-commodity flow problem becomes NP-
complete once we insist on both flows being integral!

Hu’s theory for the 2-commodity flow problem does not seem to generalize for m > 2.
In particular there seems to be no suitable version of an m-commodity max-flow min-
cut theorem. (Okamura and Seymour have shown that such a theorem does exist for
planar graphs with all source and target nodes on the boundary of the infinite face.) Even
the maximum m-commodity integral flow problem with all capacities equal to 1 is NP-
complete: it can be recognized as the problem of finding m pairwise disjoint paths, with
the i** path connecting s; and ti(1 <1< m).
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