Directed network protocols

G. Tel

RUU-CS-87-6
February 1987
Revised October 1987

Rijksuniversiteit Utrecht

X W %

E 3 Vakgroep informatica
& Ag 4

RS Budapestiaan 6 3584 GD Uwecht

Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53 1 454
The Netherlands

Directed network protocols

G. Tel

Technical Report RUU-CS~-87—6

February 1987
Revised October 1987

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
The Netherlands

g

Directed network protocols

Gerard Tel

Deparmment of Computer Science, University of Utrecht,
P.O. Box 80.012, 3508 TA Utrecht, The Netherlands.

Abstract: We present a uniform approach to the description and validation of several
known and unknown distributed algorithms for solving control problems in computer
networks using unidirectional communication. After introducing two basic protocols,
we use these to build algorithms for Resynch [Fi79], Connectivity, Min Hop Routing
and Distributed Infimum Approximation [Te86]. All protocols are extended in a uni-

form way to cope with changing network topology and the failure of nodes and links.
The protocols are all optimal in time complexity.

1 Introduction

Segall [Se83] has presented a uniform approach to the development and validation of several
distributed algorithms for solving network problems. The protocols Segall develops use that
communication channels in his model of a network are bidirectional. In this paper we will
give a similar approach to the development of protocols, suitable for networks employing uni-
directional communication. In most of our protocols we do not even need the "FIFO" assump-
tion, that is, we allow messages sent over a link to arrive in a different order. We do assume
only that messages arrive in finite time and unchanged.

Basic in the work of Segall are two protocols, for PI (Propagation of Information) and for
PIF (Propagation of Information with Feedback). In the next section we will give protocols,
satisfying the same specifications, that work on directed networks. Starting from there we will
build protocols for many network problems, such as Resynch [Fi79], Election, Distributed
Infimum Approximation [Te86] (thus covering Distributed Termination Detection [Fr80] also),
Connectivity [Se83], and Minimum Hop Routing, all suited for directed networks. The
correctness proofs of the algorithms are highly modular, as advocated by Gafni [Ga86]. This

Teport can be seen as an attempt to prove the usefulness of Gafni’s ideas for this particular
class of networks.

This work was supported by the Foundation for Computer Science (SION) of the Netherlands Organization
for the Advancement of Pure Research (ZWO). The author’s UUCP address is: ..!mcvax!runinfvax!gerard.

-2.

In our model a directed network consists of a set /P of processes, connected by directed
communication channels. A process p € IP knows sets In, and Out,, the incoming and out-
going edges of p. The channels deliver messages in finite time and error free but (unless
stated otherwise) not necessarily in the order sent. Unless stated otherwise we assume the net-
work to be strongly connected. If there is a communication channel from D to g we say p is
a predecessor of q and q is a successor of p. If there is a directed path from p to g we say

D is an ancestor of q and q is a descendant of p- Under the strong connectivity assumption
this is of course the case for all p and q.

2 The basic protocols

We start describing a protocol PI for the propagation of some information M. If a process p
has knowledge of M and wants all processes to know M also, it starts the protocol spontane-
ously. Processes that start the protocol spontaneously are called starters. Process p has a

boolean state variable done,,, with initial value false. All protocols are given for the process
with identity p.

Protocol PI:
Spontaneously or upon receipt of M do:
if not done, then
begin done, = true ;
forall j Out, do send M over j
end.

For this protocol PI we can prove:

Theorem 2.1: Within finite time after one or more processes start the algorithm spontaneously,
all processes will learmn M. All processes will send M exactly once over all outgoing channels.
Proof: Each process sends M at most once over each channel because done is set when the
process sends, and not done is a guard for sending. If a process sends, all successors of this

process will eventually receive M and send also, unless they sent earlier already. By induction
it follows that all descendants of starters will send exactly once. [J

Each process will receive exactly one copy of M over each incoming channel, and thereafter
receive no more messages. Thus, memory space for state information (done,) can be allocated
on first receipt of M, and removed when a copy has been received over all channels. In the
sequel we will abbreviate "forall j e Out, do send M over j" to "shout M".

-3.

It may be the case that the processes in the network must be informed about when all the
processes have leamned M. This is what we call feedback. Segall obtains feedback by modify-
ing PI in a sense similar to Dijkstra and Scholten’s termination detection algorithm for
diffusing computations [DS80]. Processes delay sending of a copy of M to their father (the
process from which they received M for the first time) until copies of M have been received
over all links. To do this, links must be able to carry messages in two directions and also
there must be exactly one starter. The protocol we give here for unidirectional networks is
symmetric.

For conciseness of description we assume that a message that is received is seen immedi-
ately by the receiving process, but not removed from the incoming channel message queue.
This is done by an explicit consume command. Of course it is also possible to remove it from
the channel message queue immediately, and store it in a separate queue. Process p keeps an
integer state variable Phase,, with initial value 0. D is a constant, known to all processes.

We assume D to be an upper bound for the largest distance between two processes in the net-
work.

Protocol PIF:
Spontaneously or upon receipt of M do:
if phase, = 0 then
begin phase, := 1 ; shout M end ;
if all incoming queues contain a message now then
begin consume one message from each queue ;
Phase, = phase, +1 ;
if phase, < D then shout M
else ready

end.

For protocol PIF we have the following:

Lemma 2.1: Within finite time after some processes start the algorithm spontaneously, all
processes will enter the protocol.

Proof: As a result of entering in the protocol (either spontaneously or upon receipt of M) a
process will shout M. It follows as in theorem 2.1 that all processes will eventually do so. [

By d(p.q) we denote the length of the shortest path leading from p to ¢q. Note that by
assumption d(p,q) <D forall p, q.

Lemma 2.2: When some g reaches the statement ready allp € IP know of M.

-4-

Proof: If an edge pq exists then phase, < phase, + 1 because ¢ must have received a mes-
sage from p each time phase, is incremented. It follows that phase, < phase, +d(p.q)
< phase, + D in general. Hence if phase;, > D then phase, >0 and it follows that p has
entered the protocol already. O

Lemma 2.3: All p e IP will reach the statement ready.

Proof: All processes will shout a first time by lemma 2.1. Hence, all message queues will
eventually contain a first message, thus enabling all processes to shout a second time, etc.
Eventually all processes will consume a D™ time and execute ready. O

Theorem 2.2: Within finite time after some processes start the protocol spontaneously, all
processes will be notified that all processes have received M.

Proof: Lemmas 2.3 and 2.2. [

Finally, note that each process shouts and consumes D times. Hence, no messages remain in
the system after the protocol has terminated in each node. Thus, memory space for state infor-
mation (phase,,) can be allocated on first receipt of M, and removed after the D™ consume.

D must be an upper bound for the diameter of the network, ie,D 2maxd(p,g). D
pa

can be loaded at system startup time or computed at runtime (see [SSP85] and section 7).
Denote by D, the relative diameter of p, i.e. the value D, = max d(q,p). The protocol
q

would also work if p stopped after D, phases, although an extra shout would then be neces-
sary to avoid deadlock. Here the property mentioned after theorem 2.2 no longer holds.

The message complexity of the PIF protocol is quite high. As usual we denote by N the
number of processes and by E the number of communication channels, The PI protocol uses
one message on each channel (theorem 2.1) and thus needs E messages, which is proven to be
optimal by Gafni et al. [Ga84]. The PIF protocol sends D messages on each channel and
thus costs D «E messages. Obviously D E is bounded above by O(N3), a simple example
graph (see figure 1) shows it is also Q(N3). The bit complexity of PIF (i.e., the total number

-5.

of bits communicated by the algorithm) can be reduced by shouting M only in the first round,
and sending empty frames in later rounds. If M consists of m bits, this reduces the bit com-
plexity from D «Eem to Esm + D<E. The time complexity of PIF and all derived protocols is
O (D): within time D from the first spontaneous start all processes participate in the algorithm,
and from then on each phase takes time 1. Obviously, a time complexity of O (D) is optimal
for a network of diameter D.

We have assumed strong connectivity of the network. The protocol will not work
correctly on weakly connected networks. If a strongly connected component, containing star-
ters, has descendants that are not ancestors, the algorithm may terminate in the starters’ com-
ponent before the descendants have received the message. If a strongly connected component,
containing starters, has ancestors that are not descendants, these ancestors may never wake up,
thus containing deadlock in the starters’ component,

In fact, algorithms for weakly connected graphs do not exist. Consider a strongly con-
nected graph G, containing a node x with one incoming and one outgoing edge (see figure 2).
Before any node (other than x) can get feedback, x must send a message t0 y, confirming the
receipt of M. Now replace x by two nodes x1 and x, as in figure 2. Unless x, is a starter it
will never send a message t0 y,. The nodes other than X, X1 Or x5 can never determine

whether they are in G or in G’. It follows that any algorithm that works correct in G will
deadlock in G’.

One can "decompose" PIF into an algorithm for synchronous networks and a so-called
synchronizer [Aw85]. Assume the network operates synchronously, each message takes time 1
to arrive and internal computation takes time 0. Then the following would work:

Spontaneously or upon receipt of M :
if not done, then

begin done = true ; shout M ; timer = D end.

The timer is decremented each time unit and when it reaches 0, every process must have
received M. We get our earlier protocol by superimposing on this code a simplified version of
Awerbuch’s a-synchronizer [Aw85]. Awerbuch also gives synchronizers with a lower

Figure 2

-6 -

message complexity, and using these the time complexity of PIF could be decreased also.
However, the time complexity of these synchronizers is higher and they are not as symmetric

as our protocol. Furthermore, their use requires the existence of known special subtopologies,
which we do not want here.

There are altemnatives for the PIF protocol given here. Gafni and Afek [GA84] give an
algorithm that has a lower message complexity and does not require knowledge of D. How-
ever, their algorithm is complex, not symmetric and has a high time complexity. Kutten
[(Ku87] gives a traversal algorithm using which a token, starting in one node, traverses a
directed network an returns in the originator. Its message complexity is even lower than the
complexity of the Gafni and Afek algorithm, but it has the extra drawback that there must be
exactly one starter. This results in the needs for an election algorithm in some cases. Both
algorithms can not be used in some of our applications.

3 Resynch protocols

The resynch problem, as formulated by Finn [Fi79] asks to bring all processes in /P in a spe-
cial state synch and thereafter in a state normal, in such a way that all processes are in synch
before any of them goes back to normal. Finn [Fi79] and Segall [Se83] give complex algo-
rithms for the resynch problem. We argue [TT87], that a resynch protocol can be easily
obtained from any protocol for the PIF problem. Take such an algorithm, and modify it as fol-
lows: as soon as g receives M for the first time (or spontaneously if g is a starter) ¢ sets its
state to synch. A process getting feedback (i.e., receiving enough information to conclude that

every process has received M) goes back to normal. The PIF protocol given earlier thus
transforms to:

Protocol RES:
Spontaneously or upon receipt of M do:
if phase, = 0 then
begin state, = synch ;
phase, = 1;shoutM end;
if all incoming queues contain a message now then
begin consume one message from each queue ;
Phase, = phase, +1 ;
if phase, < D then shout M

else state, := normal
end.

-7.

Theorem 3.1: Within finite time after some processes start RES spontaneously, all processes
will be in state syach. Within finite time thereafter all processes will be in state normal.

Proof: Follows from lemma’s 2.3 and 2.2. O

For the message M we can take a fixed, small message of size O (1) bits, so the bit complexity

of the protocol equals its message complexity, O (D +E). This is considerably less than the
protocols in [Fi79] and [Se83].

4 Infimum computation

We now consider the following problem: given are a partially ordered set (X,<) and a value
T, € X in each process p € IP. We want to compute / = inf{r, :p elP}. We argue
[TT87], that a protocol for the infimum problem can be easily derived from any protocol for
the PIF problem: each p maintains a variable ip, containing the infimum of all X -values p has
seen so far and attaches this value to every message it sends for the PIF protocol. A process p
can get feedback only if for all ¢ € IP there is a chain of messages leading from ¢ to p. (If
there is not such a chain another execution of the PIF protocol can be constructed, in which)/
also gets feedback, but some ¢ did not receive M yet, a contradiction.) It follows that at that
moment i, < r, and hence i, <I. i, 21 can be obtained easily. The PIF protocol from sec-
tion 2 thus transforms to:

Protocol INF:
Spontaneously or upon receipt of <i> do:
if phase, = 0O then .
begin i, := r, ; phase, := 1; shout <i,> end;
if all incoming queues contain a message now then
begin consume one <i> from each queue ;
i, = inf {i, i read in previous statement} ;
Phase, = phase, +1 ;
if phase, < D then shout <i,>
else ready

end.

Lemma 4.1: Within finite time after some processes start the algorithm spontaneously, all
processes will execute ready and no messages remain in the system.

Proof: Theorem 2.2. (]

By ip(") we denote the value, computed by p while phase, = k, ie., ip(o) = r,, and for k > 0,
i) is computed after the ™ consume.

Lemma 4.2: i <r_ fork 2 d(q.p).

Proof: By induction on d(q.p). Note that i*) < i® for ¥ 2k so it suffices to show that

l'p(d(q.P)) <r,.

digp)=0:p=gq and i,,(°)= rp S,

d(q.p) = d+1: There is a predecessor s of p such that d(¢q,s) = d. By induction hypothesis
i¥)<r, for k 2d. p computes i@*) after having consumed d+1 messages
<i,®)>. At least one of them has k = d, so it carries a value < rg» and it follows

. (d+1)
Ip < rq O
Lemma 4.3: i) > 1.

Proof: Again by induction. i\® = r, 21. For k >0 i®) is computed as the infimum of
values, all 2 / by induction, and hence i, 2 1. O

Theorem 4.1: In each process p INF will terminate, and with the correct result ip=1.
Proof: Lemmas 4.1, 4.2, and 4.3. O

Applications of protocol INF are numerous, also due to the Infimum Theory, stating that
infimum operators are generic for a large class of operators:

Theorem 4.2: (Infimum Theory) Let X be a set and W be a commutative, associative, and
idempotent operator on X. Then there is a partial ordering < on X, such that W is just taking
infimum regarding <.

Proof: Let X and M be given. Define < by x <y <>x = xMy. We leave it to the reader to
show that (1) < as defined is a partial ordering (2) W is taking infimum regarding <. O

The following problems can be solved using INF:

Election: Suppose we want to select one process to perform some special, centralized action.
We use the protocol INF, where X is the (totally ordered) set of possible process identities and

r, = p. All processes end with i, = m, the smallest identity in the network. This process is
the elected one.

Distributed Infimum Approximation (DIA): In [Te86] the DIA problem is defined as an
abstraction of several interesting distributed problems, among which are Distributed Termina-
tion Detection [Fr80], and Global Virtual Time [Je85] (Global Cutoff [SL87]). The problem is
to approximate the infimum of changing values x, and [Te86] describes how this can be done,

-9.

when an algorithm for fixed values r, is known. Combining the various constructions in
[Te86] with different algorithms for INF (suitable for a particular class of networks) a large
class of solutions for the DIA problem is described. The Distributed Termination Detection
protocols by Erikson and Skyum [ES85] and Szymanski et al. [SSP85] are both based on the
described INF protocol. Interesting in these protocols is that invocations of the INF algorithm
overlap: in each phase a new INF invocation starts. The messages contain the phase number

of the recentmost invocation whose value (so far) is passive. [SSP85] also provides an algo-
rithm to compute D .

Connectivity: We want the processes to compute P, i.e., determine what processes are in the
system. Note, that set union is commutative, associative and idempotent and hence we can
compute /P = union {{p} : p € IP} using INF. See next section.

Sum: Each process p has a local value r,, and we want to compute the sum § = 2 Tp-

pelP
Note + is not an idempotent operator and hence theorem 4.2 does not apply. However, we can

use INF to compute the set V = {®.,7r,) : pelP} = union {{®.r,)}:pelP} in each process.
From V it is possible to compute S locally as the sum of the second components of V's ele-
ments. In this way it is possible to compute any function of V, like multiplicity of elements,
etc. The INF protocol can thus be used to compute "complete knowledge" of the network. An
interesting question is, whether a sum can be computed as elegantly and efficiently as an
infimum, i.e., without using the unique process identity and with messages of small size. The
PIF algorithms of [GA84], [Se83] and [Ku87] all build spanning trees in the network, directed
towards one special node. Using such a tree, Sum can be done efficiently.

S Connectivity

We want the processes to compute IP. As mentioned in the previous section, this can be done
using a version of INF:

-10 -

Protocol CON1:
Spontaneously or upon receipt of a message do:
if phase, = 0 then
begin i, .= {p} ; phase, = 1;shouti, end;
if all incoming queues contain a message now then
begin consume one message from each queue ;
ip = union {i,, i read in previous statement} ;
phase, = phase, +1 ;
if phase, < D then shout i,
else ready

end.

Several interesting remarks can be made. If a set IP of potential network members is known, a
set S < IP can be represented as a bit vector x[/P], where x[p] <p € S. This gives us a
solution to the connectivity problem, using two-valued vectors, where previous solutions
([Fi79], [Se83]) used three-valued vectors.

If a subset of IP is represented as a list the size of the representation will be linear in the
size of S. The size of a message in the CON1 protocol can be O (NlogN) bits (we will
always assume that an identity is O(logN) bits) and the bit complexity of CONI1 is
O(D+E+NslogN). We can reduce the bit complexity to O (E+N logN) if the communication
is FIFO. In that case p need only shout elements of i, that were new in this phase: old ele-
ments were shouted before and, by the FIFO property, known to the successors of p already
when they consume the new elements. We modify the protocol accordingly:

Protocol CON2 (FIFO):
Spontaneously or upon receipt of a message do:
if phase, = 0 then
begin i, := {p} ; phase, = 1;shouti, end;
if all incoming queues contain a message now then
begin old, = i, ;
consume one message from each queue ;
ip = union {i,, i read in previous statement} ;
new, = i, — old, ;
phase, = phase, +1 ;
if phase, < D then shout new,

else ready

end.

The identity of each process is sent exactly once over each channel, thus the bit complexity is

-11 -

O (E N logN).

The (k+1)™ shout in CON2 of p consists exactly of those processes that have distance k
to p (to be proven later). It follows that if p’s (k+2)® shout is empty (but its (k+1D® is not)
D, = k. We will use this to compute relative diameters and the network diameter later.

6 Minimum Hop Routing

A routing table R, is a table specifying for each process ¢#p an outgoing link R,(qlofp. p
forwards any message, destined for ¢, over this link. The successor r of p that receives the
message can either keep it (if r = ¢) or send it further via R, [¢g]. We always want routing
tables to be loop free, that is, a message handled this way never returns to a node where it has
been before, but reaches its destination eventually. In this case the links R,[q] for all p form

a directed tree routed to g, called the in-tree of qg. The in-tree of ¢ can be described by a
table T, where T, [p] = R,[q].

In this section we will see how to compute the R, such that the routing tables satisfy the
Minimum Hop property: the path, over which a message is sent from p to ¢ is always a shor-
test possible path. This is equivalent to the T, being Minimum Hop in-trees: the path from a
node to the root in the tree is always a shortest possible path in the network.

We will compute the R, in two parts. The first part, Min Hop Tree, computes the T, in
each process g. The second part, Routing Table Routing, distributes this information through
the network in such a way that the R, are constructed.

6.1 Minimum Hop Tree

We compute Min Hop Trees with a refinement of the CON2 protocol. The FIFO property of
channels is essential here. Each occurrence of p in some set ig or new, has an outgoing link
of p attached to it. This will always be the first link of a shortest path from p to q. p sends
{®.,j)} over each link j in its first shout. When ¢ computes the union of sets containing

(.i) and (@, j), it chooses i or j nondeterministically. We obtain the following refinement of
CON2:

-12 -

Protocol MHT (FIFO):
Spontaneously or upon receipt of a message do:
if phase, = 0 then
begin i, := {p}; T,[p]:= "deliver message to host" ;
phase, =1 ; forall j € Out, do send {(p, j)} over j
end ;
if all incoming queues contain a message now then
begin old, = i, ;
consume one message from each queue ;
ip = union {i,, i read in previous statement} ;
new, = i, — old, ;
forall (¢,/) € new, do T, [q] == j ;
phase, = phase, +1 ;
if phase, < D then shout new,
else ready

end.

Theorem 6.1: In phase, = d(q.p) p fills in T,[q] with an outgoing link of ¢ that is the first
link of a path of length d(¢q,p) from q to p.

Proof: Again let i,*) be the set p computes directly after the k™ consume. We first prove by

induction on & that ¢ ¢ i®) for k < d(q p).

k=0:i={plandq ¢ {p}if 0<d(q.p).

k= KkK+1: If d(qp) > K+1 then d(q,r) > ¥ for all predecessors r of p. By induction we
have ¢ ¢ i*) and ¢ ¢ i®). i®*D is computed as the union of these sets and
hence does not contain ¢ also.

By lemma 4.2 we have ¢ € i4@#), 50 ¢ is new for p in phase d(g,p) and p fills in T,[q]

with the attached outgoing link of ¢. It remains to show that this link is the first one of a path

of length d(gp) top.

d(@.,p)= 0:p = q, and p has set T,[p] to "deliver message to host" in phase, = Q.

d(q.p) = 1: In the first phase p receives ¢’s {(q,/)}, sent over link j. j is a path of length
1 from q to p.

d(q.,p) = d+1. p receives (g, j,) from one or more predecessors r with d(q.r) = d and by
induction j, is the first link of a path of length d from ¢ to r. So each of the Jr
is the first link of a path of length d+1 from q to p.

This proves the theorem. [

So T, is a correct Minimum Hop Tree for p. Each identity is sent once over each link
(together with a link label) and thus the bit complexity of MHT is O (E «N slogN).

-13 -

6.2 Routing Table Routing

The MHT protocol computes the information we want correctly, but not in the process where
we want it. The information R, [¢], needed in p, is computed in ¢ as T,[p). We will now

give two ways to distribute the information over the network so that each p constructs its com-
plete R,.

The most obvious way to do this is by using the PI protocol. Each ¢ uses PI to make T,
known to all other processes. p can fill in R, [q] as soon as it receives T,. So, N broadcasts
are active concurrently and p will need an array of N done booleans. Instead, we will assume
that R,[q] = undef initially, so we can inspect Ry[q] to see whether p has shouted T,
already. ¢ starts the protocol spontaneously as soon as it has completed the computation of
T,.

Protocol RTR1:
Upon computation or receipt of T,:
if R,[q] = undef then
begin R,[q] = T [p] ; shout T, end.

By theorem 2.1 it follows that all p will eventually fill in R,[q]. Each T, is sent over each

link exactly once (Theorem 2.1) so RTR1 uses EN messages of O(ENzlogN) bits together.
Protocol RTR1 is time optimal.

For two reasons it seems likely that this can be done using fewer messages or bits. First,
in RTR1 each p receives the entire T, for each g, where it needs only one entry of it, namely
T,[p]. So p could do with less information. Second, remember that the T, contain routing
information. So we will try to use this information to do the rerouting of it more efficiently.
The following protocol makes use of these ideas.

Protocol RTR2:
Step 0: Select a leader /.
Step 1: Broadcast T; using PL
Step 2: All ¢ send T, to I via a shortest path.
Step 3: | computes the R, from the T,.
Step 4: Each R, is sent from [to p via a shortest path.

After running MHT, the first part of the Minimum Hop algorithm, each process knows IP.
Using this information a leader can be elected easily: each p computes ! = max () and plays
the role of the leader iff I = p. So, step O costs no extra messages. Step 1 costs E messages
of size O (N1logN) bits. In step 2, each p forwards T, as soon as it has received the broadcast
of T;. Any T, received before T; must be stored temporarily. Each T,, of size O (NlogN)
bits, travels in at most D hops to I, so step 2 costs at most ND messages of this size. Step 3

-14 -

is an internal computation in / and costs no messages. In step 4, p forwards R, as soon as
Rp [g] is known, i.e., as soon as R, is received. R, arriving earlier than R, must be stored.
The cost of step 4 is again SND messages of size O (NlogN) bits. In this analysis D is the
actual network diameter, not just a known upper bound for it. The complexity of the steps

together is O(E+ND) messages of O(NlogN) bits, so the bit complexity is
O ((E+ND)(NlogN)).

O(DNzlogN) is optimal here: the total amount of information is B(NzlogN) bits, and
each table entry can be computed at distance Q(D) from where it is neceded. Major disadvan-
tages of RTR2 as compared to RTR1 are:

(1) It is centralized, so the system is vulnerable to failure of /. Moreover, ! will have much
work to do.

) O(NzlogN) bits of storage are needed in each node, where O (NlogN) bits suffice in
RTR1.

We presented the algorithm using arrays for the T and R. If [P is not known a priori this is of
course impossible. In stead, the tables could be represented as e.g. hash tables or balanced
trees, containing records (g,j), where ¢ is the search key. R,[q] is undefined if no such a
record is in the structure.

7 Network diameter

In this section we describe in our framework the algorithm by Szymanski, Shy and Prywes
[SSP85] to compute the network diameter. Recall D, = max d(q,p). D = maxd(g,p)=
q rp4

max D,. The algorithm operates in two parts: first, each p computes D, and second, the max-
p

imum of these D, is found by using a variant of INF. Again we assume FIFO channels.
Recall that in CON2 p finds new, = @ for the first time in phase D, +1. So, p knows D,
as soon as it finds new, = . It then shouts & to tell its successors that no further sets will
follow (to avoid deadlock). Incoming messages for the first part are further ignored.

For the second part, p runs INF up to phase2, > D,. By lemmas 4.2 and 4.3 and
Vg:d(gp)< D, we have j, = D, the network diameter. A last shout avoids deadlock in
p’s successors. Again, later incoming messages for the second part are ignored. D, is undef
initially, ready2, signals completion of second part.

-15 -

First part (FIFO):
Spontaneously or upon receipt of a message i < IP do:
if D, # undef then (* First part completed *)
ignore message
else begin
if phase 1, = O then
begin i, = {p} ; phasel, := 1; shout i, end;
if all incoming queues contain a i < /P now then
begin old, = i, ;
consume one message from each queue ;
ip = union {i,, i read in previous statement} ;
new, = i, — old, ;
if new, = O then D, ;= phasel,-1;
phasel, = phasel, +1 ;
shout new,
end
end.

Second part:
Upon computation of D, or receipt of d € IN do:
if not ready?2, then
begin
wait until D, # undef ;
if phase2, = 0 then
begin j, = D, ; phase2, .= 1; shoutM end;
if all incoming queues contain a message d now then
begin consume one message from each queue ;
Jp = max {j, d read};
phase2, = phase2, +1 ;
shout j, ;
if phase2, > D, then ready2, = true
end
end.

From lemma 4.2 and 4.3 it follows that when p sets ready 2, to true j, = D. Message and

bit complexity are O (DE) and O (ENlogN) respectively. It is an interesting and important
question whether algorithms with a lower complexity for this problem exist.

-16 -

8 Topological changes

All algorithms in this paper can be extended to deal with topological changes (i.e., addition or
failure of nodes or links) in the same way as it is done in [Se83]. It is assumed that neighbor-
ing processes are aware of the change, In, and Out, sets are updated automatically and
further, after any topological change that makes the network no longer strongly connected
eventually a new change will follow that makes it strongly connected again.

Let A be any network protocol for strongly connected networks, that can be started by
any number of processes independently. Assume A computes a value fp in each process p,
where f, depends on the network topology G. After a topological change this value may be
no longer correct and a repeated evaluation of A is necessary. The extended protocol proceeds
in levels, where each level is identical to the non-extended protocol. Process p maintains its
active level in L,. p appends L,, the level which is active in p, to every message it sends.

The start of a higher level is triggered by a topological change and the execution overrides all
lower levels:

Protocol EXA: (* Extended A *)
Spontaneously or upon topological change:
L, =L, +1;start A,

Upon receipt of <M ,L>:
if L < L, then discard message
else if L = L, then handle M according to A
else (* join A on higher level *)
begin L, == L ;
Clear all message queues ; (* they contain lower level messages only *)
reset all state variables of A to initial value ;

handle M according to A
end.

Theorem 8.1: After a finite sequence of topological changes the system converges to a state
where all L, are equal and all f, = f,(G), where G is the final configuration.
Proof: See [Se83]. O

All protocols except RES can be described as computing a local value depending on G,

although it is not unique for Min Hop Routing. It is not hard to see that this approach works
for RES also.

[Je85]
[Ku87]

[Se83]

[SL87]

[SSP85]

[Te86]

(TT87]

-18 -

Jefferson, D.R., Virtual time, ACM ToPLaS 7 (1985), 404-423.

Kutten, S., Stepwise construction of an efficient distributed traversing algorithm
for general strongly connected directed graphs, Technion, Haifa, 1987.

Segall, A., Distributed network protocols, IEEE Trans. Inf. Theory IT-29 (1983),
23-35.

Sarin, S.K., and N.A. Lynch, Discarding obsolete information in a replicated
database system, IEEE Trans. Soft. Eng. SE-13 (Jan. 1987), 39-47.

Szymanski, B., Y. Shy, and N. Prywes, Terminating iterative solutions of simul-
taneous equations in distributed message passing systems, Proc. 4th symp. on
Principles of Distr. Comp., Vancouver, Canada, 1984.

Tel, G., Distributed infimum approximation, Techn. Rep. RUU-CS-86-12, Dept. of
Computer Science, University of Utrecht, Utrecht, 1986. ‘

Tel, G., and R.B. Tan, The Equivalence of Some Network Problems, notes July
1987.

