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1. Introduction

The enumeration of certain kinds of subgraphs as well as the enumeration of certain subsets of
the set of vertices or edges of a graph is of interest in many practical applications, for example the
theory of electrical and communication networks, the reliability analysis of networks, and data storage
and retrieval problems. This report surveys a number of algorithms that enumerate all subgraphs or sub-
sets of a certain kind. It is organized as follows. In the next section of this chapter we give some
definitions. In chapters 2 through 7 we discuss algorithms that enumerate all cycles, paths, spanning
trees, cliques, maximal independent sets and cut-sets of a graph respectively.

1.1 Definitions

A graph G = (V, E) consists of a set of vertices V = {v{,v,,...,v,} and a set of edges
E = {e;, ey ...,e,} cV xV. The number of vertices will be denoted by » and the number of
edges by e or m. Two vertices are adjacent if an edge exists between them. An edge and a vertex are
incident if the vertex is a terminal vertex of the edge. A graph G is called undirected if the edges are
unordered pairs of vertices and G is called directed otherwise. A null graph is a graph G = (V, E)
with E empty. A subgraph of a graph G = (V,E)isagraph H = (V,,E) with V' cV and E’ C E.
A walk is a sequence v,evqe, - - Vpe€pV,41 Of vertices and edges such that ¢; is an edge from v; to
visp foreachi = 1,...,p. The length of a walk is its number of edges. A (simple) path is a walk in
which no vertex appears more than once. A (simple) cycle or circuit is a (simple) path of which the in-
itial and terminal vertex coincidence. In case G is directed, a path is sometimes called a dipath and a
circuit is sometimes called a dicircuit. A Hamiltonian cycle (path) is a cycle (path) which contains each
vertex of the graph. If a path exists between each pair of vertices, then G is connected, otherwise G is
disconnected. A connected graph that contains no cycles is called a tree. A spanning tree of a con-
nected graph G is a connected subgraph which is a tree and which contains each vertex of G. Let T be
a spanning tree of a graph G. The edges of G that belong to T are called the branches of G with
respect to T. The edges of G that do not belong to T are called the chords of G with respect to T.
Adding a chord to T creates a cycle in T, called a fundamental cycle of G with respect to T. Each
chord of G creates a different cycle in T, and thus there exists a one-to-one correspondence between
the chords of G and the fundamental cycles of G with respect to T. A cut-set of G is a set C of
edges with the property that the removal of the edges in C from G disconnects G, but the removal of
any proper subset of C from G does not disconnect G. Deleting a branch from a spanning tree T of G
partitions the vertices of G into two disjoint subsets V; and V, such that in T there exists no path from
any vertex of V; to any vertex of V,. Let C be the set of all edges of G that join vertices of V; to ver-
tices of V,. C is a cut-set of G and is called a fundamental cut-set of G with respect to T. There ex-
ists a one-to-one correspondence between the branches of T and the fundamental cut-sets of G with
respect to T. Let s and ¢ be vertices of G. An s—¢ cut-set of G is a cut-set C with the property that
the removal of the edges of C from G results in a graph in which there is no path from s to ¢.



If there exists an edge between each pair of vertices of G, then G is a complete graph. A clique
of G is a complete subgraph that is not contained in any other complete subgraph of G. An
independent set I of G is a subset of V such that no vertex in I is adjacent to any other vertex in /. A
maximal independent set is an independent set to which no vertex can be added without losing the in-
dependency property. Finally we define an operation on sets of subgraphs. Let H, and H, be sets of
subgraphs of a graph G. The Cartesian product Hy X H, of H, and H, is the set of all subgraphs that
are obtained as the union of an element of H, and an element of H,, For definitions not mentioned in
this section we refer to [32] or [21].

1.2 The time complexity of enumeration algorithms and counting problems

If the time complexity of the algorithms discussed is available, then it will be given. The time
complexity generally is expressed as a function of n, e and x, where x is the number of objects that
are listed. This number can be exponentially large in ». In that case, the amount of time required by the
algorithm to list all objects is not polynomial in n, although the time complexity of the algorithm may
be polynomial in x. If we are only interested in the number x, then it is not always necessary to list all
objects. For example, the number of spanning trees of a graph can be obtained by evaluating a deter-
minant. The problem of determining the number of all objects of a certain kind is called an enumera-
tion or counting problem. Some enumeration problems can be solved in polynomial time, even if the
number to be counted is exponential, but many enumeration problems are not solvable in polynomial
time. If an enumeration problem corresponds to a NP —complete problem, then a suitable formulation of
the enumeration problem is NP —hard (for the definitions of NP —complete and NP - hard and for relat-
ed terminology we refer to Garey and Johnson ([28])). For example, the problem of determining the
number of Hamiltonian circuits corresponds to the problem of determining whether a graph has a Ham-
iltonian circuit. If we have computed the number of Hamiltonian éircuits of a graph, then we can easily
decide whether the graph has a Hamiltonian circuit. On the other hand, if we could decide in polynomi-
al time whether a graph has a Hamiltonian circuit, it does not necessarily mean that we are able to
compute the number of all Hamiltonian circuits in polynomial time. Thus, some enumeration problems
may be harder than the corresponding NP —complete problem. In [91] and [92] Valiant introduces a
new class of polynomial time equivalent problems, the #P — complete problems. #P is the class of func-
tions that can be computed by counting the number of accepting computations of a nondeterministic
Turing machine of polynomial time complexity. A function f is called #P — complete if f isin #P and
every function g in #P can be reduced to f by a polynomial time reduction. Valiant ([92]) and Provan
and Ball ([69]) give some counting problems that are #P — complete, such as the problem of determin-
ing the number of all cliques, all s—¢ cut-sets, all Hamiltonian circuits or all (simple) paths from vertex

s to vertex ¢ of a graph. In this report we do not consider the theory of #P —complete problems in any
further detail.



2. Cycles

The algorithms for enumerating all cycles of a graph can be divided into four classes, depending
on their underlying approach. These four classes are the following.

1) search space algorithms

2) backtrack algorithms

3) algorithms using the powers of the adjacency matrix
4) algorithms using the line digraph

Algorithms for directed graphs can also be used for undirected graphs as follows. From an undirected
graph G we obtain a directed version 6 by replacing each edge of G by two edges of opposite direc-
tion. For each cycle of G we have two dicircuits in 6 , one in each direction. In addition we have
created e dicircuits of length 2, so if ¢ (G) is the number of cycles of G then c(a) = 2¢c(G) + e. After

-
we have found all dicircuits of G, we have to do some additional work to get the cycles of G. On the
other hand, algorithms for undirected graphs can not be used for directed graphs by taking the undirect-

—
ed version G of G, for the number of cycles of G can be exponentially larger than the number of dicir-

-y

cuits of G. Consider for example the directed graph in fig. 1. This graph has no dicircuits at all,
whereas its undirected version has 2* cycles.
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In the next four sections we shall discuss the different classes of algorithms. Some of the algorithms
assume that G has no self-loops or parallel edges. These and other simplifications of G can be made in
any case. Self-loops can be listed and then deleted from G, because they are never contained in a cycle

of length greater than 1. Parallel edges can be replaced by one edge, and edges in series can also be re-
placed by one edge.

2.1 Search space algorithms

Algorithms using this approach search for circuits in an appropriate search space containing all
circuits in some representation. The efficiency of such an algorithm, of course, depends on the size of
the search space with respect to the number of circuits, and the effort it takes to decide whether an ele-
ment of the search space is a cycle. The algorithms of LaPatra and Myers ([43]), Char ({13]) and Chan



and Chang ([12]) search for cycles in the set of all permutations of the vertices of a graph. Choosing
this search space does not yield a very efficient algorithm. A more promising search space that has been
studied widely is the cycle vector space of an undirected graph. The cycle vector space C(G) of an un-
directed graph G is defined as the set of all cycles of G together with the empty set and the set of
edge-disjoint unions of cycles. C(G) is a vector space over F,, the field of integers modulo 2, with the
addition of any two elements in C (G) defined as the ring sum of the set of edges of the elements, i.e.,
if Cy and C, are elements of C(G) then the edges of C; @ C, are those edges that are either in C, or
in C, but not in both. Several algorithms which search for cycles in the cycle vector space compute all
the elements of C(G) and test whether an element is a cycle. The algorithms differ in their way of
representing and computing the elements of C (G ). We outline a number of approaches.

Let T be a spanning tree of the undirected graph G. The set of fundamental cycles Cy,...,Cy
of G induced by the set of chords c, . . . ¢y of G with respect to T is a basis of C(G). The circuit
matrix B of G (with respect to T) is the . X e - matrix in which the rows correspond to the fundamen-
tal cycles and the columns correspond to the edges of G, with B;; = 1if edge ¢; is in fundamental cy-
cle C; and B;; = 0 otherwise. Using this circuit matrix Maxwell and Reed ([52]) generate a listing of
all the elements of C(G) by simply enumerating all non-trivial combinations of fundamental cycles in
terms of their edges and store them in a 2"*—1) X e - matrix F. A row of F represents a cycle if and
only if no other row is contained in it. After setting up this matrix F, Maxwell and Reed test which
row is a cycle by comparing each row with every other row. A lower bound on the time for this algo-
rithm is 2% and moreover, it needs O (e.2") space. Rao and Murti ([70),[71]) show that space can be
saved. Let § = ‘_Q:IC,- be an element of C(G) for some index set I < {1, .. ., 1}, Instead of listing the

edges, S can also be represented by a . - vector X with X j = 1if jeI and X; = 0 otherwise. Define
a WX (n—1) - matrix F as follows. The rows of F correspond to the chords ¢, . . . ,cy and the
columns of F correspond to the branches b, . . . yba_y of T. If the unique path in T between the two
vertices incident to edge ¢; contains branch bj then F; = 1, and else F;; = 0. Use the vector represen-
tation of S together with the matrix F to compute the edges of S. We now decide whether S is a cy-

cle as follows. Let the edges of S contain the branches by,....,b, and the chords cy, ... ,c; and let
m=s+k.If § is a cycle then a tree T’ can be obtained from T by adding one of the chords
€1, . ..,c; and deleting a branch that is not an edge of §. This procedure is repeated until a spanning

tree containing m— 1 edges of S is found, or until it is not possible after adding a chord to obtain a new
tree without deleting a branch that is an edge of S. In the last case S is not a cycle. In the first case §
is a cycle, because if § was an edge-disjoint union of cycles, then the m—1 edges of S in the spanning
tree should contain a cycle, which is not possible. Rao and Murti find all cycles of G by applying this
procedure to all linear combinations of fundamental cycles. A lower bound on the time is 2* and the
space required is only O (n. ).

Gibbs ([29]) gives another algorithm that computes all elements of C(G). He uses 4 sets S, O, R
and R", and a set of fundamental cycles Cy, . ..,Cy. The algorithm proceeds in stages. After stage
(i—1) of the algorithm, § contains all cycles found so far, Q contains all linear combinations of



Cy1 ...,Ci_y, and the sets R and R” are empty. In stage i all linear combinations of C; with elements
of O are considered. If TeQ and T N C; = @&, then T & C; is an edge-disjoint union of cycles and is
placedinR*. If T N C; # D, then T @ C; is placed in R. In that case T @ C; is a cycle or an edge-
disjoint union of cycles.

Lemma. If T ® C;eR is a union of two or more edge-disjoint cycles, then there is an UeR with
UcTo C,'.

It follows that every VeR for which there isno UeR with U c V is a cycle, and that all new cycles
"involving" C; are obtained this way. In § are placed C; and all VeR for which there is no UeR with
U < V. All elements of R and R” are placed in Q. Afterwards R and R* are made empty again and
we go to stage i+1. The algorithm ends after stage p. It should be noted that this algorithm is a
modification of an algorithm of Welch ([96]) of which Gibbs shows that it is incorrect. All linear com-
binations of Cy, . ..,C, are formed (and stored) and in each stage all pairs of all elements of R are
tested, so the algorithm has 2% as a lower bound on the running time and requires O (e. 2*) space.

C(G) has 2" elements, which means that algorithms that compute all elements of C (G ) have al-
ways 2" as a lower bound on the time. In most cases however, the number of cycles of G is small com-
pared with the number of elements of C(G). In fact, only the 4 undirected reduced graphs K, K,
K4—x and K35 have all elements # 0 of C(G) as a cycle (Mateti and Deo, [50], [51]). To get a better
time bound it is necessary to reduce the size of the search space. Let C;, .. .,Cy be a cycle basis of
G. The intersection graph G° is defined as follows. The vertices of G¢ (called ’nodes’) are the cycles
Cy ...,Cpof G and two nodes C; and C; (@ # j) are adjacent if C; N C; NE(G) # Q. Mateti and
Deo ([50]) call G° a cycle graph of G .

Lemma. If C = _@IC,- is a cycle of G, then the subgraph of G° induced by the nodes C;,iel, is con-
€

nected.

Using this lemma Mateti and Deo give an algorithm that generates all connected induced subgraphs of
G° and tests whether the ring sum of the cycles corresponding to the nodes of the subgraph found is a
cycle. However, not all connected induced subgraphs of G° necessarily correspond to a cycle of G.
The efficiency of this algorithm depends on how the connected induced subgraphs of G¢ are generated
and on the number of cycles of G with respect to the number of connected induced subgraphs of G¢,
and this depends on the cycle basis chosen. This problem would be solved if we could choose a cycle
basis such that there exists a 1-1 comrespondence between the cycles of G and the connected induced
subgraphs of G°. However, in [83] Syslo shows that there are graphs for which such a cycle basis does
not exist. In [84] Syslo shows that in case G is planar it is possible to modify the algorithm somewhat
and to construct an efficient cycle vector space algorithm. He takes the boundaries of the interior re-
gions of G as a cycle basis. A subgraph of G° that corresponds to a cycle of G is called a ’feasible



subgraph’. If F is a feasible subgraph, veV(F) and the subgraph of G° induced by V(F)-v is also
feasible, then v is called a feasible node’.

Lemma. Let G be biconnected and let F be a feasible subgraph of G, then veV (F) is feasible if and
only if v is an exterior node of F and the cycle C, of G corresponding to v has exactly one nontrival
(i.e. different from a vertex) common path with the cycle Cr = 9(1-‘)(:"'

ve

The algorithm Syslo proposes consists of the following steps. Construct the plane representation of G
and construct G° using the interior regions of G. Mark the nodes of G¢ as feasible or infeasible. Use a
depth-first search to remove the feasible nodes one by one and mark the nodes of the obtained subgraph
again as feasible or infeasible. This algorithm generates all feasible subgraphs of G° (and thus all cy-
cles of G) in O (n) time for each subgraph, and so the overal complexity of the algorithm is O (n.c),
where ¢ is the number of cycles.

2.2 Backtrack algorithms

The basic idea of all algorithms using a backtracking procedure is similar. Consider the vertices
as numbered 1, ... ,n. Choose one vertex v, and build an elementary path with start vertex v,. If we
have build a path v,, ... ,v; and no extension is possible, then delete v; from the path and continue
with extending the path v,,...,v;_; until no unexplored paths with start vertex v; are left. Then
choose another start vertex and repeat the procedure, excluding v;. At given moments we test whether

the path yields a new cycle. The question is how to choose the start vertex, how to choose the exten-
sion of the current path, and at what moment do we test for new cycles. In [87] Tiernan builds paths
Vi, ...,V such that vy <v;, 2 <i < k. When no extension is possible and an edge from v, to v, ex-
ists, then the cycle vy, vy, ..., v, v; is enumerated, v, is deleted and the algorithm continues with
V1, V2, . .., V1. This procedure is repeated with each vertex as start vertex. Since each cycle contains
a smallest vertex v, it is enumerated exactly once, namely when v is the start vertex. The algorithm of
Tiernan uses backtracking without any restriction. Each path vy, ...,vy withv;<v; forall 2<i <k
is generated (although some bookkeeping is performed to avoid a simple path to be generated more
than once), but clearly not every path generated yields a cycle. Tarjan ([86]) gives a worst-case exam-
ple in which the algorithm of Tiernan needs time exponential in n to enumerate 2n cycles. He also
shows that it can be made much more efficient when we store the information about vertices of which
we know that they are not contained in a cycle together with the current path. For this purpose he adds
a marking mechanism to the algorithm of Tiernan. He uses two stacks, a point stack and a marked
stack. The point stack keeps track of the path being build. The marked stack keeps track of vertices v
that are not to be chosen as an extension of the current path, because they are in the current path or it
is known that every path from v to start vertex s intersects the current path in a vertex other than s.
When the current path is extended with vertex v, then v is placed at the top of the point stack and at
the top of the marked stack. The path can only be extended with vertices that are neither on the point



stack nor on the marked stack, and that are not smaller than the start vertex. When no extension from a
vertex v is possible, then v is deleted from the point stack (at this moment v is the top of the point
stack). If no cycle containing v has been found, that means every path from v to s intersects the
current path in a vertex other than s, or if there is no path from v to s at all, then the marked stack
does not change, so vertices that are not contained in a cycle together with the current path are stored
temporarily. As long as they are stored on the marked stack they cannot be chosen as an extension of
the current path, which avoids unnecessary searches. On the other hand, if a cycle containing v has
been found, then all the vertices that are above v on the marked stack, including v, are deleted from
that stack. Even the vertices of which we know that they are not contained in a cycle with s are delet-
ed, so we still have to do unnecessary work if we arrive again at these vertices. Yet the algorithm of
Tarjan has a better time bound than the algorithm of Tiernan. It requires O(n + e) space and
O (n.e.(c + 1)) time, where ¢ is the number of cycles, which means a polynomial time bound per cycle.

As we have seen, Tarjan’s algorithm is not yet optimal. In [39] Johnson gives a better version of
the algorithm of Tarjan, by improving the marking mechanism (called *blocking’ by Johnson). Instead
of using a marked stack, he uses a list B(v) for each vertex v. At each moment, B (v) contains those
vertices w that are blocked and not in the point stack, and for which an edge from w to v exists.
Choose a start vertex s. As in the algorithm of Tarjan, when a vertex is used as an extension of the
current path, it is placed at the top of the point stack and it becomes blocked. When no extension from
vertex v is possible, v is deleted from the stack. If no cycle containing v has been found, then v stays
blocked and is added to the list B(w) for each w for which an edge vw exists. If a cycle containing v
has been found, then a procedure UNBLOCK (v) is called, which *unblocks’ v and recursively calls
UNBLOCK (w) for each we B (v). This means that once a vertex w has been blocked, it stays blocked
until a vertex v is found such that there exists a path from w to v with all vertices blocked and not in
the point stack, and with v contained in a cycle with start vertex s. When such a vertex v is found, w
must be unblocked, because the path from w to v together with a part of the cycle containing v might
be part of a cycle containing w and v, which is not yet enumerated. Another improvement over the al-
gorithms of Tiemnan and Tarjan is the way in which Johnson chooses his start vertex. Both Tiernan and
Tarjan repeat their procedure with each vertex of G as start vertex. Johnson first computes the strongly
connected components of G. The first start vertex s is the smallest vertex of these strong components.
Let K be the component containing 5. The algorithm computes all cycles in X containing s. Then the
strongly connected components of the subgraph of G induced by {s+1,5+2,...,n} are computed and
the next start vertex is the smallest one of these components. This procedure is repeated until s = »n.
The algorithm proposed by Johnson requires O (n + e.(c + 1)) time and O (n + e) space.

The backtrack algorithms decribed so far all choose a start vertex s and then generate all cycles
having s as the smallest vertex. During this computation, other cycles might be discovered but are not
enumerated at this stage because they do not contain s (as the smallest vertex). Szwarcfiter and Lauver
([81]) use a modification of Johnson’s blocking system in an algorithm that enumerates cycles as soon
as they occur during the building of the elementary path. For each vertex v, the list B (v) now contains



those vertices u for which uve E and the exploration of edge uv has not led to a new cycle. In addition
Szwarcfiter and Lauer keep a position vector, with position (v) = j if v is the j* vertex from the bot-
tom of the stack and position (v) = n+1 if v is deleted from the stack. The basic idea is still the same,
namely to build elementary paths by extending the current path with vertices that are not marked. A
vertex becomes marked when it is placed on the point stack. When it is deleted from the stack, vertex
v is unmarked only if a new cycle containing v has been found. Otherwise it stays marked until a ver-
tex z, is deleted from the stack such that a new cycle containing z; was found and there exists a path
Zxzp—y -+ 2y with 2z, = v and z;,,€B(z;) for k <i < 1. Let v,_; be at the top of the stack and let us
explore the edge v;_;v; with v, marked. The current path can not be extended with v;. If v, is not on
the stack then no cycle can be generated. In that case v,_; is inserted in B(v;). If v, is still on the
stack, then a cycle is found but this is not necessarily a new cycle.

Lemma. A cycle is a new cycle if and only if at least one of its vertices has never been deleted from
the stack.

Swarcfiter and Lauer keep a variable ¢ local to the recursive procedure, and ¢ equals the position of
the top-most vertex in the stack that has been deleted. If position (v,) < ¢, then a new cycle is found.
Otherwise a duplicate cycle is found, which means that edge v,_,v; has not led to a new elementary
cycle, 50 v,_, is inserted in B (v,). If no extension can be made from a vertex v, then v is deleted from
the stack and the algorithm backs up one vertex. The algorithm works on the strongly connected com-
ponents of the problem graph. Szwarcfiter and Lauer show that when started with a vertex of maximal
indegree of a strongly connected component, the algorithm generates all cycles of this component in
O (e) time per cycle for any cycle except for the first enumerated, whose time bound is O (n +e). Thus
the overal compexity of the algorithm is O (n + c.e), and it requires O (n + e) space.

Szwarcfiter and Lauer were not the first to generate cycles as soon as they occur somewhere dur-
ing the generation of the elementary paths. In [95] Weinblatt already did so. Vertices and edges of the
current path are stored on a stack. As an extension of the current path we choose an edge that has not
yet been explored. So each edge is explored exactly once. When we arrive at a vertex v where we have
been before, then there are two cases. If v is still in the stack, we have found a new cycle which is then
enumerated. If v is not in the stack anymore, the algorithm starts searching in the cycles that have been
enumerated so far, for a path that starts in v and terminates in a vertex that is still on the stack. All
paths thus found together with a part of the stack form new cycles. In any case we go back to the last
vertex on the stack from which an edge originates that has not yet been explored. The vertices and
edges on the stack that are passed, are deleted from the stack. If the stack is empty, we select another
start vertex by choosing a vertex that has not yet been examined. Although each edge is explored only
once, yet the searching for paths in cycles already enumerated requires much time. Tarjan ([86]) gives
an example in which the algorithm requires time exponential in n to enumerate 2n + 2 cycles.



A slightly different approach was chosen by Read and Tarjan ([74]). First they repeatedly do a
depth-first search, so the graph is divided into a set of depth-first search trees which together span the
vertices of the graph, and a set of non-tree arcs. These non-tree arcs can be cycle arcs, forward arcs,
and cross arcs. During the depth-first searches, the vertices are numbered 1, . . . ,n. Tree edges and for-

ward arcs join smaller to larger numbered vertices, and cycle arcs and cross arcs join larger to smaller
vertices ([85]).

Lemma. Each cycle arc is an edge of at least one cycle and each cycle must end in a cycle arc.

After the depth-first searches, Read and Tarjan divide the graph into strongly connected components,
and delete the edges between the components. Each vertex with an entering cycle arc is marked as a
start vertex. For each start vertex s they repeat the following procedure to build an elementary path.
From the last vertex v in the current path they search for a vertex w such that vweE and a path
W = Wi, Wy, ..., W = s that avoids the current path (except at s) exists. After such a path is found,
the vertices w, wy, - - - are added one by one to the current path, until a vertex w; is entered from
which more than one edge originates. At this moment the whole procedure is called recursively. The
adding of wy, ... ,w;_, is done without recursion. After the recursive procedure is terminated, all ver-
tices after v in the current path are deleted and another vertex w’ is searched such that vw’eE and a
path from w’ to s that avoids the current path exists. If no such path is found, v is deleted from the
current path and the recursive procedure which was called to examine paths starting in v is terminated.
This algorithm has a time bound of O (n + e.(c + 1)) and requires O (n + e) space, which is both the
same as the algorithms of Johnson ([39]) and Szwarcfiter and Lauer ((81D).

2.3 Algorithms using the powers of the adjacency matrix

These algorithms compute the powers of (a modification of) the adjacency matrix. The adjacency
matrix of a graph G isa n X n - matrix A in which A;; is the number of edges joining vertex i to ver-
tex j. If G is undirected, A is a symmetric matrix. It is well known that the element (AP);; of AP is
the number of walks of length p from vertex i to vertex j. However, these walks are not necessarily
simple, it is possible that the same vertex or the same edge appears more than once. Consider the edges
of G to be labeled e,,...,e,. Let Z be the n X n - matrix in which Z;; is the formal sum of the
edges joining vertex i to vertex j. Z is called the variable adjacency matrix of G. (Z? )ij contains the
sum of all walks of length p, but again these walks are not necessarily (simple) paths or (simple) cy-
cles. Enumerating the cycles of G by simply generating the powers of Z is not very efficient because of
these "non-simple” terms. It is more efficient to eliminate non-simple terms as soon as they occur in the
computation of Z?. The difference between the algorithms is the way in which they eliminate the walks
that are not paths or cycles. Let D; be a n X n - diagonal matrix with (D,); = Z; for1<i <n,and
let C; be defined by C; = Z — D;. Then C, contains all paths of length 1 except the self-loops. Sup-
pose C, is a matrix with (C,); is the sum of all paths of length ¢ for i # J and (Cp); = 0 for
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1<i,j<n. Compute C,C,. Let P be a path of length ¢ between the vertices v; and v, and let
there be an edge from v, to v;. If v; is not in P, then the path of length g+1 from v; to v; is a term of
(C4Cij- If v; = v;, then the cycle of length g+1 containing v; is a term of (CoCii. If v; isin P and
v; #v;, then we have neither a cycle nor a path. We call such a walk a flower ([40]). A flower from
v; to v; consists of a path from v; to v; together with a cycle containing v;, where the path and the cy-
cle have no vertex in common except vj. Soif v; isin P and v; # v;, then a flower from v; to v;isa

term of (C,C);;. Defining D; and C, as above, a basic algorithm to enumerate all cycles of a graph
involves the following steps.

step0: ¢ =0

step 1: ¢ = g + 1; compute C,C,

step 2: use the terms of the diagonal elements of C,C, to enumerate all cycles of length g+1

step 3: compute C,,; by setting all diagonal elements of C,C to zero and eliminating the flowers
step 4: if C 4 = 0, then the algorithm terminates, else goto step 1

Ponstein ([67]) and Yau ([99]) both use this basic algorithm to enumerate rooted dicircuits. Each cycle
of length ¢ is enumerated ¢ times. To eliminate the flowers in step 3, Ponstein computes also the ma-
trix C;C,. He shows that a walk from vertex i to vertex j is a path if and only if it occurs as a term
in both (C,C,);; and (C4C1)ij. He computes C¢+1 by taking (C,4;);; as the sum of the terms that occur
in both (C,C,); and (CqCi)yj for i # j, and (Cyu1)i = 0 (1 <4, j <n). Yau eliminates flowers by
testing whether any term in (C,C);; contains as a factor any cycle that has been enumerated so far and
if so, reducing this term to zero. It should be noted that in [99] Yau computes all Hamiltonian cycles,
so his algorithm terminates if C, has been computed. In fact, our basic algorithm certainly terminates if
q = n-1, because there are no cycles of length greater than n. Yau and Ponstein both generate edge-
sequences to enumerate the cycles of G. Kamae ([40]) and Danielson ([20]) use almost the same basic
algorithm, but they generate vertex-sequences. In the definition of D, and C, Kamae uses the adjacency
matrix A instead of the variable adjacency matrix Z. In step 2 he uses a matrix A ., (instead of using
the diagonal elements of C¢C1) to enumerate all cycles of length q+l. A,y is defined by
Agnij = (Cg)u(C 1ij- Since (C,); equals the number of paths from vertex J to vertex i and (Cy);
equals the number of edges from i to j, (Ag+1)i; equals the number of cycles of length g+1 containing
an edge from vertex i to vertex j. Now suppose row i, is the first row of Ag+1 which includes non-zero
entries, and let i, be the first column of row i; which is non-zero. There exists at least one cycle of
length ¢+1 containing edge i,i,. Repeating this procedure with row i, we get a sequence i,i,i; which
might be part of a cycle. Repeating this prbcedure again we finally get a sequence i, - - - ig41. If the
element i i, of A, is non-zero, we have the vertex sequence of a cycle of length g+1. In any case
we delete i,,; from the sequence and look for the next non-zero entry in row i,. Continuing this back-
track procedure we proceed until all cycles of length q+1 containing vertex i, are enumerated. Using
the vertex sequences we can obtain the edge-sequences of the cycles. At last we obtain a new matrix
A’ 4 by decreasing (Ag+1)ij by 1 for each time edge ij occurs in one of the edge-sequences. To
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enumerate all cycles of length q+1, we repeat the whole procedure using A’,, instead of Ag,y, until
we get an all zero matrix. In step 3 of the basic algorithm C,+1 is computed by setting all diagonal ele-
ments of C,C to zero and decreasing (C,C1);; by one for each flower (with ¢+1 edges) from vertex i
to vertex j. Danielson ([20]) defines the internal node product of a path P to be the product of the suc-
cessive vertices of P but without the terminal vertices. For example, if v v,v4v,vs is a path in G, then
the corresponding internal node product is v,v4v,. He also introduces another modification of the adja-
cency matrix by defining a n X n - matrix C, in which (C 1ij = j if an edge connects i to j and
(C1)ij = O otherwise. Danielson assumes the graph to be simple, i.e. without self-loops or parallel
edges, but these restrictions are not necessary (see also the introduction of this chapter). As there are no
self-loops, the main diagonal elements of A and C, are all zero, and as there are no parallel edges, the
entries of A are all zero or one. The meaning of C, in his version of the basic algorithm is a matrix in
which (C,);; contains the sum of all internal node products of (simple) paths of length ¢ from vertex i
to vertex j. In step 0 Danielson sets g to 1 and computes C,A. He uses the terms of the diagonal ele-
ments to enumerate the cycles of length 2. Then he computes C, by setting the main diagonal elements
of C1A to zero. The rest of the algorithm is the same, except that he computes C,;C, instead of C,C.
The order in which the matrices C; and C, appear in the product is important now, because internal
node products are computed. If there is a path of length ¢ from vertex i to vertex k represented by
internal node product /, - - - I,-1 and an edge connects vertex k to vertex j, then there exists a path of
length ¢+1 from i to j with internal node product 1y« - l;_1k. Computing C,C, however, yields the
product /y - - - I,_yj as a term of (C4C1)ij, which is not an internal node product of a path of length
q+1 from i to j. On the other hand, an edge from i to I, must exist just as a path of length q from /,
to j represented by internal node product I, - - - I4-1k, so computing CiC, vyields Iyl -+ 1,1k as a
term of (CyC,);;. To eliminate flowers Danielson tests in step 3 of the basic algorithm whether the
terms of the entries of row i contain vertex i . If so, the term is set to zero.

2.4 Algorithms using the line digraph

Let G be a directed graph without loops or parallel edges, and define the line digraph L (G) of G
as follows. The vertices of L (G) correspond to the edges of G, so if v;v; is an edge of G then v;isa
vertex of L(G). An edge from vij to vy exists in L(G) if j = k, that means if the terminal vertex of
the edge in G corresponding to v;j is the same as the initial vertex of the edge corresponding to vy.
From the definition of L(G) we can see that there is a one-to-one correspondence between the cycles of
length k of G and the cycles of length k of L(G), for 2 < k < n. Since G has no self-loops, each edge
of L(G) corresponds to a simple walk of length 2 in G, to a rooted 2-cycle if it lies on a cycle in
L(G) and to a 2-path otherwise. Enumerate all rooted cycles of length 2. Delete the edges from L(G)
that correspond to a rooted 2-cycle, and call the resulting graph L5(G). Ly(G) has no cycle of length
less than 3. Let L{?(G) be the line digraph of L,(G). There is a one-to-one correspondence between
the k-cycles of G and the k-cycles of L{?(G) for 3<k <n. A simple walk of length 3 in G
corresponds to an edge in L{?(G). A non-simple walk of length 3 in G must contain a cycle of length
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2, which corresponds to a cycle of length 2 in L(G). Since we have deleted all 2-cycles from L(G), an
edge of L§? (G) must correspond to a simple walk of length 3, to a rooted 3-cycle if it lies on a 3-cycle
in L§?(G) and 10 a 3-path otherwise. Enumerate all the rooted cycles of length 3, delete the edges that
correspond to a rooted 3-cycle from L§? (G) and call the resulting graph L3(G). L(G) has no cycles of
length less than 4. To obtain all rooted cycles of G we repeat the procedure until we get some null
graph. This approach to the cycle enumeration problem is due to Cartwright and Gleason ([11]). Note
that instead of searching for cycles in G, they search for cycles of length k in a graph that has no cy-
cles of length less than k.

2.5 Hamiltonian cycles

In this section we describe some algorithms that enumerate Hamiltonian cycles. In section 2.3 we
already discussed an algorithm of Yau ([99]) for enumerating all Hamiltonian cycles using the powers
of the adjacency matrix, but this algorithm also generates all other cycles of the graph. Of course, each
algorithm discussed in chapter 2 can be used to enumerate all Hamiltonian cycles by simply generating
all cycles and testing which cycle is Hamiltonian. We now describe two algorithms that enumerate all
Hamiltonian cycles only. Both are basically backtrack algorithms. Roberts and Flores ({75]) use an un-
restricted backtrack procedure. Consider the vertices as numbered 1, . . . ,n. Roberts and Flores use the
combinatorial matrix M, with the entries iy, i, -+ + in column J representing the vertices at which an
edge terminates that originates in vertex j. The columns of this matrix are recognized as a double
linked adjacency list. Thus the j* column of M can be seen as a list of vertices i for which an edge ji
exists. Choose a start vertex s. As in section 2.2 a path is built, using the combinatorial matrix M. Let
vertex j be the last vertex of the current path, and let i, be the first entry of column j. The path is ex-
tended with vertex i;. This procedure is repeated until a vertex v is entered which is contained in the
current path. If v equals s and the length of the current path equals », then a Hamiltonian cycle is out-
put. The algorithm proceeds with the next entry after v of the column corresponding to the last vertex
of the current path. If the current path can not be extended with an entry of the column corresponding
to the last vertex of the current path, then the algorithm backs up one vertex. This procedure is repeated
until all possibilities are exhausted. As a Hamiltonian cycle contains each vertex of the graph, we can
choose any vertex as the start vertex. This algorithm does not make use of any special property of
Hamiltonian cycles, like for example the property that if a vertex v has only one edge wv entering,
then that edge is required in the cycle. (When we arrive at vertex w we have to choose edge wv as the
extension of the current path.) This and other properties have been used by Rubin ([76]) to reduce the
number of possibilities that are considered. The basic idea of the algorithm is still that of building
paths, starting with vertex s. Each time after the current path has been extended with a vertex, the
edges of the graph are classified into three sets D, R and U. D contains "deleted edges”, i.e. edges
which can not be in any Hamiltonian path containing the current path. R contains "required edges”, i.e.
those edges which must be contained in every Hamiltonian path containing the current path. U contains
the "undecided edges", edges which can not yet be classified. The classification of the edges as "delet-
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ed" or "required" is performed by applying a number of rules, which may be applied in any order and
until no decision can be made about the remaining edges. During this classification two directed edges
vw and wv are considered as an undirected edge. The rules are the following.

- If a vertex has only one directed edge entering (leaving), then that edge is requlred.

- If a vertex has only two edges incident, then both edges are required.

- If a vertex has a required directed edge entering (leaving), then all incident undirected
edges are assigned the direction leaving (entering) that vertex.

- If a vertex has a required undirected edge incident and all other incident edges are
leaving (entering) the vertex, then the required edge is assigned the direction entering
(leaving) the vertex.

- If a vertex has two required edges incident, then all undecided edges incident may be
deleted.

- If a vertex has a required directed edge entering (leaving), then all undecided directed
edges entering (leaving) may be deleted.

- Delete any edge which forms a closed cycle with required edges, unless it completes the
Hamiltonian cycle.

After the classification of the edges into the sets R, D and U a number of failure rules are verified to

decide whether the current path possibly is contained in a Hamiltonian cycle. Those failure rules are the
following,

- Fail if any vertex becomes isolated.

- Fail if any vertex has only one incident edge.

- Fail if any vertex has no directed edge entering (leaving).

- Fail if any vertex has two required edges entering (leaving).

- Fail if any vertex has three required edges incident.

- Fail if any set of required edges forms a closed cycle other than a Hamiltonian cycle.

If no failure rule applies, then the current path possibly is part of a Hamiltonian cycle. The successors
of the last vertex of the path are listed and the path is extended with the first successor listed. If any of
the failure rules applies, then the current path can not be part of a Hamiltonian cycle. In that case, and
in case that all extensions of the last vertex have been examined, the last vertex of the current path is
deleted and the path is extended with the next listed successor of the preceeding vertex. If the current
path contains all vertices of the graph and a successor of the last vertex equals the start vertex, then a
Hamiltonian cycle is enumerated, and the algorithm proceeds as if all extensions of the last vertex have

been examined. The algorithm ends when all possible extensions of the start vertex have been ex-
plored.
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2.6 Algorithms for enumerating cycles of fixed length

In this section we only consider algorithms for enumerating triangles or quadrangles. In [36] Itai
and Rodeh give several methods for finding a triangle in a graph. Some can be used to enumerate all

triangles. The method we discuss here uses rooted spanning trees. Let T be a rooted spanning tree of a
connected graph G.

Lemma. In G exists a triangle which contains an edge of T if and only if in G exists a non-tree edge
(x, y) for which (father (x), y) € E(G).

The algorithm to enumerate triangles consists of the following steps. Find a rooted spanning tree T of
G. For each non-tree edge (x, y) check (in both directions) whether (father (x),y) € E(G). If so, a
triangle (x, y, father(x)) is output. When all triangles containing an edge of T have been found, the
edges of T' are deleted from G. The resulting graph G’ may be disconnected. For each connected com-
ponent of G’ we repeat the above procedure. When each component left has at most two edges, all tri-
angles have been enumerated. However, duplications may arise. If father(x)= father(y) and
(father (x), y) € E then the algorithm outputs the triangles (x, y, father (x)) and (y, x, father (y)),
which are the same. To avoid this problem we number the vertices 1,2, . . . ,n. When we find a trian-
gle (x, y, father (x)), we test whether father(x) = father(y). If father (x) + father(y) then the trian-
gle is output, otherwise the triangle is output only when x <y. Other duplications of the triangle
(x,y, father (x)) must have the form (x, father (x), y), (father(x),x,y), (v, father(x),x) or
(father(x), y, x). The first and the second possibility will not be checked (and thus will not be output)
because the edge (x, father (x)) is a tree-edge. As (x,y, father (x)) is a triangle, (x, y) is a non-tree
edge, so father (y) # x and the third possibility will not occur. As Sfather (father (x)) # x, the fourth

possibility will not occur either. The complexity of the modified algorithm is the same as the complexi-
3
ty of the original algorithm of Itai and Rodeh. It requires O (e 2) time. In [18] Chiba and Nishizeki

present another algorithm for listing all the triangles of a simple undirected graph. The vertices are con-
sidered as numbered 1, ... ,n in such a way that d(vy) 2d(v) 2 - -+ 2d(v,). Observing that each
triangle containing vertex v; corresponds to an edge joining two neighbours of v;, they first mark all the
vertices u adjacent to v; ( for the current index i). For each marked vertex u and each vertex w adja-
cent to u they test whether w is marked. If so, a triangle Vi, U, w is listed. After this test is completed
for each marked vertex u, they delete v; from G and repeat the procedure with v;,;. Starting with v,,
this algorithm lists all triangles without duplication in n—2 steps. To compute the time complexity of
this algorithm, Chiba and Nishizeki use the arboricity of G, defined as the minimum number of edge-
disjoint spanning forests into which G can be decomposed, and denoted with a(G ) ([32)).

Lemma. If G has n vertices and e edges, then Y min{d(u),d(v)} < 2.0G).e
wekE
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Using this lemma they show that the time complexity of the algorithm is O (0(G ).e). If G is planar
then a(G) < 3 ([32]) and e < 3n-6, so the algorithm runs in O(n) time in case G is planar. In [18]
Chiba and Nishizeki also present an algorithm for listing all quadrangles of a simple undirected graph.
The quadrangles are not listed individually, but as triples (v, w, {uy, us, ..., w}, 1 22, where

U1, Uz ... ,u are all adjacent to v and w. A triple (v, w, {uy, . . ., 4 }) represents —;—I(Z-—l) quadran-

gles (v, u;, w,u;) with 1<i,j <l and i #j. As in the case of listing triangles, the vertices are
numbered 1,...,n in such a way that d(v)) 2d(v;)) 2> --- 2 d(v,). For each vertex w within dis-
tance 2 from the current vertex v; the vertices {uy,...,%} are stored in a list U (w). Starting with
i = 1, the algorithm adds vertex u to the list U (w) for each u adjacent to v; and each w # v; adjacent
to u. For each vertex w with 1U(w)| 22 the triple (v;, w, U (w)) is listed. To avoid duplicate qua-
drangles, v; is deleted from G and the procedure is repeated with v;,,. The algorithm ends after the n*
iteration. It requires O (G ).e) time and O (e) space.
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3. Paths

In this chapter we discuss algorithms for enumerating all paths of a graph G or for enumerating
special paths. The simplifications of G mentioned in chapter 2 can also be made in this case. Many of
the algorithms for enumerating all cycles of a graph can be used for listing paths too. Among those al-
gorithms are backtrack algorithms, algorithms using the powers of the adjacency matrix as well as the
algorithm using the line digraph of G.

3.1 Backtrack algorithms

As we have seen in section 2.2, the algorithm of Tiernan ([87]) for enumerating all cycles, builds
all elementary paths vy, vy, . . ., v with v; < v; for 2 <i < k. So if we choose the smallest vertex (of
a given numbering) as v,, the algorithm enumerates all paths of G starting with v;. Instead of choosing
another vertex as the start vertex, (as does the algorithm of Tiernan), we first choose another numbering
of the vertices, such that the smallest vertex of this numbering is different from v,. Repeating this pro-
cedure until each vertex has been the smallest vertex of some numbering and thus start vertex, gives us
all paths of G. The algorithms for enumerating all cycles of Tarjan ([86]), Johnson ([39]) and
Szwarcfiter and Lauer ([81]) are all backtrack algorithms with some kind of restriction to the number of
paths that are build, so they can not be used to enumerate the paths of a graph. The algorithm of Read
and Tarjan ([74]) can be modified to list all paths from a set S of start vertices to some set F of finish
vertices. First a backward search is made to eliminate useless startvertices. For each start vertex s the
same procedure is repeated except that "s” must be replaced by “"a vertex in F ". The time bound of this
modified version of the algorithm is still O(n + e + e.p) where p is the number of paths to be
enumerated. In [42] Kroft presents an unrestricted backtrack algorithm for enumerating all paths from
start vertex s to terminal vartex ¢, which is similar to the algorithm of Roberts and Flores for the
enumeration of all Hamiltonian cycles ([75]). For each vertex v, let A (v) denote the adjacency list of
v. As in section 2.2, the algorithm of Kroft builds elementary paths starting in 5. The path which is
build so far is stored on a stack. The algorithm consists of a recursive procedure. On entering the pro-
cedure, let v be the element at the top of the stack. The procedure searches for the first vertex w of
A(v) which is not on the stack already. (*) If such vertex w is found, then w is added to the stack. If
w = t, then the stack represents a new path from s to ¢. The path is output and w is deleted from the
stack. If w # ¢, then the procedure is called recursively. After returning from this recursive call, and in
case w = t, the procedure searches for the next vertex of A(v) after w which is not in the stack al-
ready. The procedure is repeated from (*) until no such vertex is found. At that moment, v is deleted
from the stack and the procedure terminates. When the procedure is called for the first time, the stack
contains only vertes s. The algorithm terminates when the stack is empty.

3.2 Algorithms using the powers of the adjacency matrix

From the algorithms described in section 2.3, the algorithms of Ponstein ([67]), Yau ([99]) and
Danielson ([20]) can be used to enumerate all paths of any length. In the version of the basic algorithm
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of Ponstein and Yau, the matrix element (C,);; contains all paths of length ¢ from vertex i to vertex j.
In Danielson’s version of the basic algorithm, the matrix element (Cg)ij contains all internal node pro-
ducts of paths of length ¢ from vertex i to vertex j. The algorithm of Kamae ([40]) described in sec-
tion 2.3 can not be used to enumerate the paths of a graph. In his version of the basic algorithm he uses
the adjacency matrix instead of the variable adjacency matrix, and the matrix element (Cp)ij gives us
only the number of paths of length ¢ from vertex i to vertex j.

In [65] Paz already used the same modification C of the adjacency matrix as Danielson. He con-
siders graphs without self-loops (or parallel edges), so C; = O for each i, 1 <i < n. A term of an ele-
ment C{ represents a path P; of length ¢ from vertex i to vertex j, and contains each vertex of Py;
except vertex i. Paz generates all paths of length ¢ by computing C?. If a term of C{ has a vertex ap-
pearing more than once or if it contains vertex i, then the path represented by that term contains a cy-
cle and the term is deleted from C§. Paz shows that if we are only interested in all paths of length ¢
between two vertices i and j, it is not necessary to compute C?. Define D,-}’ to be an 1 X n - matrix
di)i=y, ..., » With d; =i, d;=j and d, = O for all k #i, j. Define recusively D§ = D,-}'I.C for

deleted. The i* entry of D§ contains all paths of length ¢ from vertex j to vertex i, and the j* entry
of D contains all paths of length ¢ from vertex i to vertex j. A term representing a path now contains
all the vertices of the path. Thus, to compute all paths of length ¢ between two vertices i and Jj.we

only have to multiply a 1 X n - matrix with a n X n - matrix q times, instead of multiplying two
n X n - matrices g times.

3.3 Algorithms using the line digraph

In section 2.4 we have seen that an edge of the graph L#*)G) corresponds to a simple walk of
length k in G, to a rooted cycle of length k if it lies on a cycle of length & in L*)(G) and to a path of

length k otherwise. So we can use the algorithm of Cartwright and Gleason ([11]) to enumerate all
paths of G.

3.4 Algorithms using regular expressions or Gaussian elimination

In the theory of automata, regular expressions over an alphabet {50, 81, . .. ,85 } are defined as
follows ([34]).
@ D,A 50, ...,5 are regular expressions, where @ represents the empty set, A represents the set
whose only member is the empty word and s, . . . ,S¢ Tepresent singleton sets containing one
letter of the alphabet.

(®) If P and Q are regular expressions representing the sets p and g then P + Q, PQ and P" are

regular expressions, where P + Q represents the set p U q, PQ represents {ctloep,1eq} and
P" isthe same setas A +P + P2+ - - -,
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(c)  Every regular expression may be constructed from the expressions listed in (a) by a finite number
of applications of the operations listed in (b).

In [79] Sloane gives a description of the McNaughton - Yamada algorithm ([55]), used for the enumera-
tion of the walks of a graph G. The vertices of G are labeled vy, v,, . . . ,v, and the edges are labeled
€, €y ...,6e,. Let (x,’j denote the set of all walks from v; to v; which do not pass through any inter-
mediate vertex v, with p >k, for0<k <nand1<i,j <n. Deﬁne(x,-‘} foralli,j (1<i,j<n)as
follows. If i # j, then o is the (formal) sum of the edges joining v; to v;, and o = @ if there is no
edge from v; to v;. If i = j, then a,-‘,’- is the sum of A and the edges from v; to itself. The a,-‘} are regu-
lar expressions over the alphabet {e}, €5, . . . , e, }. Having defined o) we can compute o} in terms of
regular expressions for each k = 1,2, ... ,n, according to the following rules.

(DIfk #iandk #j, then of = a,-‘;‘l + ok Yok aé‘l.
@Ifi#jandk =i, then of = (i) o L.

(3) Ifi ¢j and k£ = j’ then a‘,.l} = al}—l(a]l:j—l)‘-
@Ifi=j=k,thenol= (i),

Note that this algorithm computes each walk from v; to v ;» that means, an edge can occur any number
of times in the same walk. To avoid this problem we have to leave out the term (o !)" in (1) and we
have to replace (2), (3) and (4) by one rule.

(Y Ifk #i and k # j, then ooy = o' + af okt
@ Ifk=1iork=j,thenal=of"

This reduces the size of the set considerably, but a,-'j still contains walks in which edges or vertices ap-
pear more than once. It is clear that simply comparing elements of 0%~ ! with elements of ab“l to
avoid non-simple walks during the computation of a,-’} requires much time, so this approach does not
yield an efficient algorithm. However, in [25] Fratta and Montanari use the same algorithm to
enumerate all simple paths of a directed graph by Gaussian elimination. The paths are represented by
the sequence of their intemnal vertices. Let §;; be a set of (not necessarily all) simple paths from vertex
i to vertex j, foreach i, j = 1,...,n,i # j. Define the simple multiplication S;; S, of two sets §;;
and S,,, to be the set of paths obtained by concatenating each path of §;; with each path of S,,,, where
non-simple paths are deleted, if j = m, and to be the empty set otherwise. Define a path algebra on the
sets §;; as follows. The addition of sets is defined as the union of sets (with @ as the zero element).
The multiplication of sets is defined as the simple multiplication described above (with {A} as the unity
element, where A is the path of zero length). Define t;; to be the set containing edge ij if an edge from
i to j exists, and to be the empty set otherwise. Let T;; be the set of all simple paths from i to j for
i,j=1,...,n,i # j. Fratta and Montanari show that the sets T;; are the unique solution of the fol-
lowing system of linear equations in the path algebra.
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n
T; = Y taly+t; @G.j=1...,ni#%j) ™)
k=1, ki j

Let T,-’j-” denote the set of all simple paths from i to j, which do not pass through any vertex greater
than k. Then, using this notation, the algorithm consists of the following steps. Set Ti} =t for

i,j=1,...,n,i#j. Compute T5" for eachi, j,k = 1,...,n according to the following rules.

(W Ifk #i#j#k,then T = T + TETE.
(QIfk=iork=j,buti#j,thenT5" = TE,

Finally, set T;; = T2* foreachi, j = 1,...,n,i #j.
Theorem. The above algorithm is the solution by Gaussian elimination of system (*).

The complexity of the algorithm depends on the complexity of the computation of T%*L. For this pur-
pose, Fratta and Montanari use binary trees. To each binary tree B an initial vertex i and a terminal
vertex j is associated, as well as a number £ and two sets V* and V™, where V* U V™ contains all ver-
tices not smaller than k. B represents the set Sp of all paths from i to j passing through V* and possi-
bly passing through some vertices not in V. A leave of B contains a set of paths from i to j passing
through the same set of vertices. If S; = @, then B consists of the root containing NIL. If S # @ and
k =1, then B consists of the root containing all paths in Sp, i.e. all paths from i to j passing through
the vertices in V*. If S3 # @ and k # 1, then B consists recursively of a root havihg a left and a right
subtree. To both subtrees the same vertices i and j are associated, as well as the number k- 1. For the
left subtree, V* is the same as the set V* of B, and k—1 is added to V~. For the right subtree, V™ is
the same as the set V- of B and k-1 is added to V*. Thus the left subtree represents all paths from i
to j passing through the vertices in V* and possibly passing through some vertices not in V=~ U {k—1}.
The right subtree represents all paths from i to J passing through the vertices in V* U {k—1} and pos-
sibly passing through some vertices not in V. Note that if V* = D, then V- contains all vertices [
with [ >k, and thus Sz = T,'j The sum of two trees B and B, is a tree B, defined recursively as fol-
lows. If B, and B, both consists of the root only, then B consists of a root, containing the union of the
sets of B, and B, (or NIL if both B, and B, contain NIL).If By (B,) is NIL and B, (B,) is not NIL,
then B equals B, (B;). Otherwise the left (right) subtree of B is the sum of the left (right) subtrees of
B, and B, Let B, be a tree with corresponding vertices i and 1, and number k. Let B, be a tree with
corresponding vertices [ and j, and number k. The product of B, and B, is a tree B defined recursively
as follows. If B, and B, both consists of the root only, then B consists of a root containing the concate-
nation of the elements of the set represented by B with the elements of the set represented by B, (or
NIL if both B, and B, contain NIL). If i # k and J #k, then the left subtree of B is the product of
the left subtrees of B, and B, and the right subtree of B is the sum of the product of the left subtree of
B, and the right subtree of B, and the product of the right subtree of B; and the left subtree of B, If
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i =k or j =k, then the left subtree of B is the product of the left subtrees of B, and B,, and the
right subtree of B is NIL. Having defined the sum and the product of trees, we now can describe the
computation of T§*!. To represent T;} we create a tree consisting of the root only, with the correspond-
ing sets V'= @ and V™ = V. If an edge from i to J exists, the root contains an empty list (we
represent a path by a list of its internal vertices). If no edge exists, the root contains NIL . To compute
T§*, a new tree is created, where the left subtree is the tree representing T} and the right subtree is the
product of the trees representing T} and T§;. Fratta and Montanari claim that the algorithm can be im-

plemented to run in a time which is output bounded.

3.5 Hamiltonian paths

The algorithm of Roberts and Flores ([75]) decribed in section 2.5 can be used to generate all
Hamiltonian paths of G by repeating the procedure with each vertex as the start vertex. Each path of
length n—1 that is generated by the algorithm is a Hamiltonian path. But, as we have seen before, this
way of searching spends much time in considering possibilities that do not lead to a Hamiltonian path.
Another algorithm discussed in section 2.5 which can be used to enumerate all Hamiltonian paths of G
is the algorithm of Rubin ([76]). Before applying the algorithm we first obtain a graph G’ from the
problem graph G by adding a new vertex to G and connecting this vertex to every other vertex by two
edges of opposite direction. There is a one-to-one correspondence between the Hamiltonian cycles of
G’ and the Hamiltonian paths of G. Applying the algorithm of Rubin to G* gives us all Hamiltonian
cycles of G’ and thus all Hamiltonian paths of G. If we are only interested in the Hamiltonian paths of
G between two specified vertices s and ¢, we change G into a graph G’ by adding a vertex v and two
edges tv and vs to G. Now there is a one-to-one correspondence between the Hamiltonian cycles of G’

and the Hamiltonian paths of G from s to ¢, so applying the algorithm of Rubin gives us all the Hamil-
tonian paths of G from s to ¢.
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4. Spanning trees

Most of the algorithms for the enumeration of all spanning trees of a graph G belong to one of
the three following classes.

1) backtrack algorithms
2) algorithms based on the fusion of vertices
3) algorithms based on the exchange of edges

The three classes will be discussed in section 4.1, 4.2 and 4.3. Some of the algorithms based on the
contraction of vertices or on the exchange of edges also use a backtracking procedure. In section 4.4
through 4.7 we will describe a few algorithms which do not belong to one of these classes: an algo-
rithm using the fundamental cutset matrix, an algorithm using the incidence matrix, an algorithm con-
sidering subgraphs with n—1 edges and an algorithm combining trees of subgraphs. It should be noted
that most of the algorithms enumerate spanning trees of undirected graphs. For this reason, throughout
this chapter, we let G be an undirected graph, unless explicitly stated otherwise. Of course, when we
discuss spanning trees, we consider connected graphs only.

4.1 Backtrack algorithms

The basic idea of the algorithms discussed in this section is to generate all spanning trees contain-
ing a given partial tree T, but not containing any edge of a set A of edges. (A partial tree is a subgraph
that does not contain any cycles, but may be disconnected.) Initially, T is some partial tree Ty and A is
empty. Let e be an edge not in T and not in A that does not create a cycle in T. Add e to T and call
this procedure recursively to generate all spanning trees containing T U e, but not containing A. After
returning from this recursive call, delete ¢ from T and call the procedure again recursively to generate
all spanning trees containing 7', but not containing A U e. After returning from this recursive call, the
algorithm backs up one edge, that means, if f is the last edge that has been added to the partial tree
(which resulted in T'), delete f from T and continue with the enumeration of all the spanning trees con-
taining T—f, but not containing A U f. The procedure terminates when all spanning trees containing
the initial partial tree T have been enumerated. The choice for Ty depends on the algorithm. In [74]
Read and Tarjan choose for T the subgraph of G containing all the bridges of the graph. They keep
two variables e and B local to the recursive procedure. On entering the procedure, e becomes an edge
not in the partial tree and is added to the partial tree T. Then B is computed as the set of edges that are
not in T and that join vertices already connected in T. So B contains the edges that form cycles with
edges already in T'. All edges in B are deleted from G. Now the recursive procedure is called to pro-
duce spanning trees containing T and e. The recursion terminates when the partial tree is a spanning
tree. After returning from the recursive call, the edges of B are added to G and e is deleted from the
partial tree and from G. Now B is computed as the set of bridges which are not yet in the partial tree.
All edges in B are added to the partial tree. Then the recursive procedure is called again to generate



22

spanning trees containing T but not containing e. The recursion terminates when the partial tree is a
spanning tree. After returning from this second call, all edges in B are removed from the partial tree, e
is added to the graph and the procedure terminates. Before calling the recursive procedure for the first
time, the algorithm tests whether G is connected. If G is not connected, then G contains no spanning
trees and the algorithm terminates. This algorithm requires O (n + e + e.t) time, where ¢ is the number
of spanning trees, and it requires O (n + ¢) space.

The same basic idea was used in [27] by Gabow and Myers to enumerate all spanning trees (ar-
borescences) of a directed graph G, rooted in a vertex r. Let T be the partial tree build up so far. To
extend T, Gabow and Myers choose edges in such a way that T grows depth-first. For this purpose they
use a stack F. F contains all edges from vertices in T to vertices not in T. T is extended with the edge
e = zv at the top of the stack. The edge e is added to T and deleted from the stack F. Each edge vw
with weT is placed on the stack and each edge wv on the stack with weT is deleted from that stack
to avoid the creation of cycles, but the locations of these edges in the stack are stored. This procedure
is called recursively to generate all spanning trees containing T U e as described above. The recursion
terminates when the current partial tree is a spanning tree. After returning from the recursive call each
edge vw with we T is deleted from the stack and the edges wv with weT are restored in F using the
old locations. F is now exactly the same as it was just after e was deleted from it. Then e is removed
from T and from G and stored on a stack FF local to the recursive procedure for enumerating all span-
ning trees containing 7. The procedure continues by extending T with the topmost edge f of the stack
F, and is called recursively to enumerate all spanning trees containing T U f, but not containing e.
This is repeated until the edge for extending T that was processed is a bridge of the (current) graph G.
At this moment all spanning trees containing T have been enumerated. Each edge in FF is now deleted
from FF, added to G and placed on the stack F. The algorithm backs up one edge as described above.
Initially, T contains only vertex r, and the algorithm terminates when all spanning trees containing r
have been enumerated. The running time of this algorithm is O (n + e + e.t) and the space required is
O(n + e). This algorithm finds all spanning trees of a directed graph. Gabow and Myers show that if G
is an undirected graph, the algorithm can also be used to enumerate all spanning trees of G by giving

each edge both directions, and so making G directed. The root  can be chosen arbitrarily. The running
time is only O (n + e + n.t).

4.2 Algorithms based on the fusion of vertices

Let b = vyv, be an edge of the graph G. The spanning trees of G can be classified into those
which contain b and those which do not contain b. If b is a bridge, this last class is empty. We define
G to be the graph obtained from G by the fusion of v, and v, into one vertex vy, and G, to be the
graph obtained from G by deleting edge b. Each spanning tree of G containing edge b can be obtained
as a spanning tree of G, in which vertex v, is expanded to edge b. Each spanning tree of G not con-
taining edge b can be obtained as a spanning tree of G,. This procedure is repeated recursively to gen-
erate the spanning trees of G, and G,.
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In [56] Minty uses this basic idea in a rather informal description of an algorithm to enumerate
all maximal forests of a (not necessarily connected) graph G. First all self-loops and all bridges are
deleted from G. Call the resulting graph G’. The maximal forests of G’ are generated by choosing an
edge b (that cannot be a bridge, because G’ has no bridges), obtaining the graphs G, and G,, and re-
peating this procedure with G, and G,. The recursive procedure terminates when only null graphs are
left. After the maximal forests of G, and G, have been found, vertex Vv, is eventually expanded to edge
b as described above, and the bridges of G are added to each maximal forest of G’, which gives us the
maximal forests of G. This algorithm allows G to have parallel edges, but treats them separately. McIl-
roy ([54]) treats parallel edges together. The vertices are numbered 1,...,n.LetS cV(G)and i¢S,
then the attachment set Ag; of vertex i with respect to § is the set of edges connecting i to elements of
§. A;; is the attachment set of the vertices i and J, ie. the set of all edges between them. Let Gi; be
the graph obtained by the deletion of the elements of A;; from G and the fusion of the vertices i and j.
Let T(G) denote the set of all spanning trees of G. Then, following the basic idea, we have

T(G)=T(Gy)x4A; v T(G-A;j.
To generate the spanning trees, Mcllroy gives a recursive procedure with three parameters G, § and B.
G is the current graph. S is the set of vertices that has been fused into one vertex. B contains the ver-
tices that are adjacent to elements of S, but that are not in § itself, Initially, G is the problem graph, §
contains only vertex 1 and B contains all neighbours of vertex 1. Let i, be the first element of B. The
procedure computes Ag, ,» Temoves Ag . from G and removes vertex i; from B. Let G’ denote the graph

G—-Ag, let §” denote S U {i,} and let B’ denote B U {neighbours of i, that are not in S}. The pro-

cedure is called recursively with G, S’ and B’. The recursive procedure terminates when the current
set B is empty or the current set S contains each vertex of the original graph G. In the latter case a
number of spanning trees is output as the Cartesian product of the attachment sets. After returning from
the recursive call of the procedure, the algorithm continues with the next element of B. Note that the
attachment set Ag; , Was removed from G, which avoids duplication of spanning trees. The algorithm re-

peats the procedure for each element of B . In [74] Read and Tarjan give a worst case example in which
the algorithm of Mcllroy has a running time exponential in e.

A better algorithm for the enumeration of all spanning trees based on the fusion of vertices was
presented in [97] by Winter. The vertices of G are labeled as follows. Compute a spanning tree T of
G. Choose a leaf of T, label it n and remove it from T'. Then choose a leaf of the resulting tree T, la-
bel it n—1 and remove it from T”. Repeat this procedure until all vertices are labeled. A labeled graph
is said to be properly labeled if there exists a spanning tree which can be used to generate the given
labeling as described. Let n; be a vertex adjacent to vertex n of the properly labeled graph G. Let G™
denote the graph obtained from G as follows. For each J=n-1,n-2,...,n, all edges from j to n
are removed from G. The remaining edges incident with n are made incident with n; and vertex n is

removed from G. G™ is said to be obtained from G by proper contraction of n into n;. Let T(G) be
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the set of all spanning trees of G. Let A(n) = {n,,...,n} be the set of vertices adjacent to n. For
eachk = 1,...,t, let P™ denote the set of spanning trees of G containing an edge from n to n;, but
not containing any edge from n to nj, for j = k+1, ... ,t. There exists a one-to-one correspondence
between the elements of P™ and the spanning trees of G™. The sets P, P™2, . . . .P™ form a partition
of T(G). Each P™ can be further partitioned using proper contractions of vertex n—1 into a vertex ad-
jacent to n—1 in G™. Proceeding in this manner finally gives us all spanning trees of G. Let ™ be
the graph obtained from G by k consecutive proper contractions, i.e. Be is a sequence of vertices
TaTn—1" " " Fn—k+1, Where n was contracted into 7, to obtain G from G, n—1 was contracted into 7,_,

to obtain G™™* from G™, etc.. G™ is a properly labeled multigraph with n—k vertices. Let E(j, i),

forj=2,...,n—kandi=1,...,j-1, denote the set of edges between j and i in GB". E(,i)is
arranged as a simple list. Let EE(j), for j=2,...,n—k, denote the set of the E(, i),
i=1,...,j—1, that are not empty. The algorithm consists of a recursive procedure. On entering the

procedure, if n—~k # 2, the vertex with the greatest label r - adjacent to n—k in GB‘t is selected. The
graph GP™** is obtained from G™ by a proper contraction of n—k into r,_, as follows. For each
i <rp_ such that E(n—k,i) € EE(n—k), the set E(r —k» i) is examined. If E(r,_;.,i) # @, then the
position of the last element of E (r,_;, i) is stored on a stack and E(n—k,i) is added at the end of
E(ra-x,i). f E(rp_y, i) = O, then E(n—k, i) is adden to it and E(ry_,i)isadded to EE(r,_;). k
is increased by 1 and the procedure is called recursively. After returning from the recursive call, k is
decreased by 1 and GB" is restored as follows. For each i < r,—; such that E(n—k,i) e EE (n-k%),
E(r,_;, i) is examined. If the first element of E(r,_, i) equals the first element of E(n—k, i), that
means E (r,_, i) was empty before E(n—k, i) was added to it, then E(rn-g, i) is made empty again
and is removed from EE(r,_;). Otherwise, the elements of E(n—k, i) are removed from E (r,_;, i),
using the position which is stored on the stack. The top of the stack is deleted. Then the vertex with the
next greatest label adjacent to n—k is selected and the above procedure is repeated until all vertices ad-
jacent to n—k have been processed. At that moment the procedure terminates. If n—k = 2 on entering
the procedure, then the elements of the Cartesian product E(n,r,) X E(n—1,7,_1) X - - - X E(2, 1) are
all spanning trees of G and are output. Before calling the procedure for the first time, the vertices of G
are properly labeled, the sets E (j, i) and EE (j) are generated, and k is set to 0. The time complexity

of this algorithm is O (n + e + n.t), where ¢ is the number of spanning trees, and the space complexity
is 0 (n?.

4.3 Algorithms based on the exchange of edges

In (53] Mayeda and Seshu give an algorithm which, starting from a spanning tree T (called the
reference tree), enumerates all spanning trees by exchanging edges in Ty with edges not in T,. Consider
the edges of G as numbered 1, . . . ,e. For each spanning tree T and edge e;e T, let S;(T) denote the
fundamental cut-set defined by ¢; with respect to T'. Let T, be the reference tree. Without loss of gen-
erality we may assume that the edges of T, are numbered 1, . .. ,n—1. Let e; be an edge of T, Re-
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placing e; by an edge of S;(T,) gives another spanning tree. For i = 1, ...,n—1 define F* to be the
set of all spanning trees obtained by replacing e; by elements of S;(To). The elements of the sets F*,
1<i <n-1, form exactly the set of all spanning trees that differ from T, in one edge. Now let TeF*
and let e; be an edge of T such that 1 < j <n—1. So e; is an edge of T and T,. Replacing e; by an
element of S;(T) gives another spanning tree. Repeating this procedure for each edge e;eT, for every
TeF' and for eachi, 1 <i <n— 1, gives us all spanning trees that differ from T in two edges. How-
ever, generation of duplicate spanning trees is possible with this procedure. Some duplications can be
avoided by replacing e; in Te F* by elements of S;(T) N §;(T,) only. We define F LM recursively
to be the set of all spanning trees that are obtained by replacing edge e;, by the elements of

8., (TY NS, (To) in each spanning tree TeF''* %1 where {iy, i ....i,} is a subset of
lk lk

{1,2,...,n-1}. The algorithm of Mayeda and Seshu consists of the following steps. Generate a span-
ning tree Ty (and assume the edges of G to be numbered such that To= {e1....,e,_1}) . Generate
F' for ij=1,...,n-1. Then, recursively, having obtained the sets F 2 %1 where
1<i;<i;<---<ip_;Sn-1, generate the sets F''2" " for each iy, ig—y <ip S n—1. The algo-
rithm terminates when no new sets can be obtained. Spanning trees in different sets are different, but
within a set duplications may arise. Define an ordered set {e: p €y .-, €,} of edges to be an M-
sequence if for each r, 1 <r <k, the subset {¢; 2 €ip -+ -»€ } is a connected subgraph. Mayeda and
Seshu prove the following theorem.

Theorem. If To= {ey, ey, ...,en_1} is the reference tree in M-sequence form, then the spanning trees
in the set F''2" "% where i, < iz< -+ <ig, generated from F''* "%\ by the algorithm, are all
distinct.

Thus, started with a reference tree in M -sequence form, the algorithm of Mayeda and Seshu generates
all spanning trees without duplication. In [74] Read and Tarjan remark that this algorithm can be imple-
mented to run in O (n + e + n.e.t) time and O (n.e) space, where ¢ is the number of spanning trees. Fi-

nally, Mayeda and Seshu remark that a similar procedure can be obtained by using fundamental circuits
instead of fundamental cut-sets.

A completely different approach was chosen by Gabow in [26] to generate weighted spanning
trees in order of increasing weight. For every edge e of a graph G, let w(e) denote the weight of e.
The weight of a subgraph of G is the sum of the weight of its edges. Let T be a spanning tree of G . A
T- exchange is a pair of edges (e, f) with eeT, feT and T—e U f is a spanning tree of G. The
weight of T-exchange (e, f) is w(f) — w(e). Gabow proves the following theorem.

Theorem. Let T be a minimum weight spanning tree of G and let e be an edge of T. Let (e, f) be a
T-exchange having the smallest weight of all T-exchanges (e, f’). Then T—e U f is a minimum
weight spanning tree of the graph G—e .
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From the theorem it follows that if 7 is a2 minimum weight spanning tree and (e, f) is a minimum
weight T-exchange, then T—-e U f is a spanning tree with the next smallest weight. This observation
is the basis of the algorithm. The spanning trees are represented by a father array F, where a vertex v
has been chosen as root vertex and for each vertex w # v, F(w) is the father of w. The trees are num-
bered in order in which they are generated. The algorithm proceeds in stages. After stage j— 1, the first
j—1 trees T, Ty, ..., T;_, have been enumerated. The remaining trees have been partitioned into
Jj—1 disjoint sets P/™' = [T, 1 k > j~1;e1 e, ...,60€ Ti:eyn, . .. €T}, 1 <i < j—1, where
r and s vary for each set P/~'. Note that we have not labeled or numbered the edges, so with
€1, €2 . ..,6, we mean the edges that have been computed in the previous stages. Each set P/ lis
represented by a tuple (w, X/™!, F;, IN, OUT), where w, X/~!, F;, IN and OUT have the following
meaning. /N represents the set of edges that must be contained in all trees of P/~!, so
IN = {ey,e5 ...,e,}. OUT represents the set of edges that must not be contained in any tree of
P/7', 50 OUT = {e,,,, ... ,e,}. F; is the father array of T;. For each edge geT;—IN, the list X/!
contains the smallest T;-exchange (g, h) with heG— OUT. Finally, w is the weight of the smallest
T;-exchange in X/~'. In stage j, the algorithm finds the index i of the set P/~1 with the smallest
weight w. Then T; is computed by replacing e by £ in T;, where (e, f) is an element of X/~ having
weight w. F; is computed and T; is output. The sets P§, 1 <k < j, are formed as follows.

(1) P{= P{'foreachk #i, 1<k < j-1.
QP/={Tilk>jier....e,eeTyep ... e, eT ).
GVPI={T, lk>jiey...,e,€Ty; ey, . .. e, eeT,}.

Or, written as tuples, P/ = (w’, X/, F;, IN U {e}, OUT), where X/ is computed by removing T;-
exchange (e, f) from X/~', and P = (w’, XJ, F;,IN, OUT U {e}), where X{ is computed by remov-
ing (e, f) from X/~! and adding the smallest T;-exchange (f, k) with he G- OUT U {e} to X/~!. In
both cases w” is computed as the minimum weight of the elements of P/ and P{ respectively. The algo-
rithm ends when each list X is empty. To start the algorithm, we generate a minimum weight spanning
tree T, and we have only one set P}, containing all spanning trees of G, except T;, and represented by
the tuple (w, X{, Fy, @, @). Of course, each bridge of G is contained in every spanning tree of G. If
B is the set of all bridges of G, we can start with the tuple (w, X}, F 1» B, D) representing P} . The
algorithm runs in O (t.e) time and O(t + e) space, where ¢ is the number of spanning trees of G. The
above algorithm is a modification of another algorithm of Gabow, which is also presented in [26] and
enumerates the K smallest weight trees in O (K.e. ofe, n) + e.log e) time, where o. is Tarjan’s inverse
of Ackermann’s function and very slow-growing. In [41] Katoh, Ibaraki and Mine show that the time
required for finding the X smallest weight trees can slightly be reduced. They present an algorithm
which is similar to Gabow’s algorithm, but requires only O (K.e + min (n2, e. loglog n)) time,
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4.4 An algorithm using the fundamental cut-set matrix

Let T, be a spanning tree of a graph G and let ¢; be a branch of Ty. Let S; be the fundamental
cut-set defined by e; with respect to T Define the fundamental cut-set matrix with respect to T to be
a(n—1)xe - matrix Q. The rows of Qy correspond to the branches of T, and the columns of O
correspond to the edges of G, where (Qr)ij = 1 if edge e; is contained in the fundamental cut-set
corresponding to ¢;, and (Qr);j = O otherwise. It is well known ([21]) that Qf can be partitioned into
two submatrices Q, and I,_,, where I,_, is the identity matrix of order n— 1. That is,

o=[ain.]

The rows of Q, correspond to the branches of T and the columns of Q, correspond to the chords of G
with respect to Ty. In [72] Rao and Murti use this matrix Q; to enumerate all spanning trees of G. Let
B be the set of branches of T, and let C be the set of chords of G. Let B, and B, be two disjoint sets

of B such that B; U B, = B. Let C3 be a subset of C such that IC,| = IB,1. Rao and Murti prove
the following theorem.

Theorem. The edges of the set B, U C 2 form a spanning tree of G if and only if the submatrix of Q,

formed by the rows corresponding to elements of B, and the columns corresponding to the elements of
Ca,, is nonsingular.

Let the edges of G be numbered such that the edges 1,2,...,e—(n—1) correspond to the chords of
G and the edges e—n+2, ... ,e correspond to the branches of Ty. To generate all spanning trees, Rao
and Murti compute all possible combinations of n— 1 edges of the graph G. Each combination is
represented as an array M with e entries. The i* entry of M is 1 if ¢; is contained in the combination,
and is O otherwise. The submatrix Q,, of Q: corresponding to M is computed by taking the columns of
O, comresponding to the nonzero entries of the first e — (n—1) positions of M and by taking the rows of
Q; corresponding to the zero elements of the trailing (n— 1) positions of M. After computing Q,, they
test whether combination M is a tree by testing if Q,, is nonsingular.

4.5 An algorithm using the incidence matrix

Let G be a graph without self-loops. Let the vertices of G be numbered 1,...,n and let the
edges of G be numbered 1, . . . ,e. The incidence matrix B of G is a n X e - matrix with By = 1if
vertex v; is incident with edge ej, and B;; = 0 otherwise. Consider each row of B as a vector of an e-
dimensional vector space over F,, the field of integers modulo 2. It is well known ([21]) that the rows
of B are not linearly independent. However, if G is connected, then any combination of n— 1 rows of
B is a linearly independent system. Thus, any (n—1) x e - matrix of B specifies G completely. Such a
submatrix of B is called a reduced incidence matrix of G . Let G be connected and let B; be a reduced
incidence matrix. Fori = 1, ... ,n— 1, let P; denote the i* row of Bf. Foreachj = 1,... e, let E;
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be an e-vector with a 1 at position j and a 0 at position i, i # j. E,, ... ,E, form a basis of the vec-
tor space. Foreachi = 1,...,n-1,P; can be written as P; = E,-1+E,-2+-- -+E,~"_. Define an; xe

- matrix €; in which row j cormesponds to E,~l_. The Cartesian product I, of Q,,...,Q,, for

k=1,...,n~1,is defined as the set of vectors which are obtained as the sum of any possible combi-
nation of k vectors E,, each one taken from a different set Q, . . . » . Clearly, the number of ele-
ments of I1, equals nn, - - - n,. Each element X of I, represents a set of edges. The norm of X is
the number of edges of the set it represents. Define the normalized Cartesian product TI}°™ as the
subset of IT; consisting of the elements of IT, which have norm k£ and which do not appear an even
number of times in the set IT,.

Theorem. I1°T" is a set of vectors representing all possible spanning trees of G.

From the theorem it follows that we can enumerate all spanning trees of G by computing IT*7". This
approach is due to Piekarski ([66]).

4.6 An algorithm considering subgraphs with n-1 edges

To enumerate all spanning trees of a graph G with n vertices, Char ([14]) gives a simple algo-
rithm for generating systematically subgraphs with n— 1 edges and testing which subgraph is a spanning
tree. Consider the vertices as numbered 1, 2, . . . ,n. Although G is undirected, we consider an edge as
starting in v; and terminating in vj, or vice versa, depending upon whether it is written as i j or ji.Let
T be a spanning tree and let v be a vertex of G. In T there exists a unique path from v; to v for each
vertex v;. Vertex v is called a reference vertex. Choosing v, as the reference vertex, a spanning tree
can be represented by an array T with n— 1 elements, where T (i) = j if edge ij is contained in the
path from v; to v,. On the other hand, let T be an array with n—1 elements having the property that

1<T@)<n and an edge from i to T(i) exists for each i, 1 <i < n-1. Char proves the following
theorem.

Theorem. T represents a spanning tree if and only if for each i, 1 <i < n—1, either
(a) T(i) = v,.
(b) T(i) > i.

(c) There exists a path i = iy - Iy = v, such that T{))= lj foreachj, 1<j <k-1.

An edge from i to T(i) is said to pass the test for tree compatibility if a pathi = 1,1, - - - I, = | exists
from i to a vertex greater than i, such that T(l;) = I,y for each j, 1 < j < k—1. To decide whether an
array T as described above is a spanning tree, we scan T from left to right as long as the edges from i
to T(i) pass the test for tree compatibility. T is not a spanning tree if, for some i , the path starting in i
that we are building reaches again vertex i. Now let array T represent a spanning tree. Change the last
k columns of T and let T* be the result, still having the property as described above. Then we have the
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following lemma.

Lemma. To decide whether T’ is a spanning tree, it is sufficient to test the last k columns for tree com-
patibility.

To generate the arrays T, Char first numbers the vertices as follows. The number n is given to a vertex
of maximum degree. Let o be the set of vertices which are not connected to V,. The number n—1 is
given to a vertex not in o, but connected to a maximum number of vertices in o. Let B be the set of
vertices out of o which are not connected to v,_,. Then the number n—2 is given to a vertex not in J3,
but connected to a maximum number of vertices in B. Repeat this procedure until no residue is left and
each vertex is numbered or connected to a numbered vertex. Number the remaining vertices in any way.
For each vertex v;, 1 <i < n-1, a list B; is used, containing the vertices that are adjacent to v;. Those
vertices are stored in cyclic order, starting with the greatest vertex adjacent to v;. Initialize T by giving
T(i) the value of the first element of B; for each i, 1 <i < n—1. Because of the numbering chosen,
T(i) > i for each i, so from the theorem it follows that T is a tree. Commencing with i = n—1, we let
T () pass through the list B;, choosing only the elements B;(j) such that the edge from i to B;(j)
passes the test for tree compatibility. When we arrive again at the first element of B;, T(i—1) becomes
the next vertex in B;_, that is adjacent with vertex i~ 1 such that the corresponding edge passes the test
for tree compatibility, and the rotating recommences with i = n— 1. Each time when T(@) is given a
new value for some i, we have tested the edge involved for tree compatibility. By the lemma, we do
not have to test the elements 1 through i—1 of T. At the same time, T(j) equals the first element of B;
for each j, i+1< j <n-1, and thus T(j) > J- So each time when T'(i) is given a new value for some
i, we have found a new spanning tree. The algorithm terminates when each element T@) of T is again
equal to the first element of B;. This algorithm was analysed by Jayakumar and Thulasiraman ([37]).
The complexity is O(e + n + n.(t + ty)), where ¢ is the number of spanning trees and ¢, is the number
of subgraphs considered that did not correspond to a spanning tree. Jayakumar and Thulasiraman show
that ¢o < n2t, so the complexity of Char’s algorithm is O (e + n + n31). It is interesting that, tested on
a number of randomly generated graphs, they have found that Char’s algorithm is superior to the algo-
rithms of Minty (see section 4.2) and Gabow and Myers (see section 4.1), and that Char’s algorithm be-
comes more and more efficient as the number of spanning trees increases.

4.7 An algorithm combining trees of subgraphs

In this section we describe a rather theoretical method for the enumeration of all spanning trees of
a graph, due to Hakimi and Green ([31]). First we have to go through some definitions. Let # be a sub-

graph of G and let e be an edge of G. We define %’ to be the graph H—e if e is an edge of H, and
0 otherwise. If H(G) is a set of subgraphs Hy, Hy, . . ., H,, then SH&G) is the set of subgraphs

SH;
Tie_‘ »i=1,...,r. ¥ H(G) and F(G) are sets of subgraphs of G, then the ring sum of H(G) and
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F(G), H(G) ® F(G), is defined as the set of subgraphs that are either in H (G) or in F(G), bot not in
both. If F is a subgraph of G and F = eje,- - - ¢,, then we define SH(G) to be the set

&F
8H(G) o BH(G) @...esﬂ&ﬁl, If Fy, Fy ..

., Fs is a set of subgraphs of G, then we define

de; e, D
8F1§;'21-(q-)8F, to be the set 521 [82:11{((8;12‘, ] Let G, and G, be two subgraphs of G, having
sets of vertices V; and V, respectively. Let {vy, v, ..., veleVyand (v, v ..., vV,
Generate a new graph G* by "superimposing” {v, . . . Vel upon {v’,...,v",} as follows. The set
of vertices of G* is the set V; U V- {v'1,...,v",}. The set of edges of G* consists of the edges of
G, the edges of G, that are joining vertices of Vo {v’}, . . . »v'e}, and if e = vw is an edge of G,

with v = v’; for some i,1<i < g (and w = v’; for some j, 1< j <gq), then e = v;w (viv;) is an
edge of G*. Let T(G) denote the set of all spanning trees of the graph G. Represent a spanning tree

by a list of its edges. Let Py Pos, ..., P,_1, be paths in G, between pairs of vertices
VimV2, V2= Vs, ..., Ve 1=V, and let Py, P'y, .. ., P’,_, be paths in G, between pairs of vertices
Vv, Vv . .. ,v'q-1—v’,. Hakimi and Green prove the following theorem.

8 UT(Gy) x TGy
8(P12 U P 18Py U P'33)(Py-1, U P'i_1q)

Theorem. T(G") =

This theorem can be used to compute the spanning trees of a graph G as follows. Generate two sub-
graphs G, and G, of G, such that G can be obtained by superimposing a set of vertices {v, . . . e}
upon the same set of vertices of G, Compute the spanning trees of G; and G, and compute
Piy .. Py ygand Py, ..., P’,_14- Generate all spanning trees of G by applying the theorem. To
compute the spanning trees of G, and G, we can use the same procedure or another algorithm for
enumerating spanning trees. In general, the number of spanning trees of G, and G, will be much small-
er than the number of spanning trees of G. Still we have to store all the spanning trees of at least one
of the subgraphs G, and G, and this may require a lot of space.

4.8 An algorithm for enumerating the subtrees of a tree

In [77] Ruskey presents an algorithm to enumerate all the subtrees of a tree T with oot r, lexico-
graphically with respect to a given ordering of the vertices of T. Define a heap-labeling of a tree T
with root 7 to be a numbering of its vertices with the integers {1, ...,n} such that children receive
larger numbers than their parents. Let T be a heap-labeled tree with root r. T is represented by an ar-
ray par, with par (i) is the parent of vertex i and par(r) = 0. The subtrees are represented by an array
sub, with sub(i) = 1 if vertex i is in the subtree and sub(i) = O otherwise. We generate a subtree T},
by scanning the array sub of the subtree T}_; that lexicographically precedes T}, and so is the last sub-
tree enumerated. We scan the array sub of T,_; from right to left. Each 1 encountered is changed into a
0. If we encounter a 0 in position / and if the parent of [ is in T,_, (i.e. sub(par(l)) = 1), then we
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change sub(!) into a 1. The modified array sub now represents T,. If the parent of / is not in Tj_,, we
continue scanning sub. The algorithm starts with the subtree Ty, containing the root only. As T is
heap-labeled, the array sub of T contains a 1 in position 1, and a 0 in the positions k with 2 < k < n.
The algorithm terminates when sub contains all 1's. It is possible to speed up the algorithm by making
use of information of the previous iteration. Suppose [ is the position of sub that was changed into a 1
and caused us to enumerate T;_;. To generate T, we might start scanning sub in a position L) # n.
Let L(!) be the greatest j such that par(j) = m for some m <1. As T is heap-labeled, par(l) <1, so
L{d)21.Leti >L(l), theni >1 and par(i) > I. Since we know that the positions I+1, . .. ,n of sub
are all 0, it follows that sub(i) = 0 and sub(par (i)) = 0. So we do not have to consider the positions i
with i > L(l), and we start scanning sub in position L(!). Note that the values L(l) for each I,
11 <n can be computed before starting the generation of the subtrees. Better values for L (/) might
be computed, depending on the ordering of the vertices of T.
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5. Cliques and complete subgraphs

In this chapter we describe algorithms for enumerating all cliques of a graph and algorithms for
enumerating all complete subgraphs of order I, for fixed /. The algorithms for enumerating all cliques
of a graph can be divided into the six following classes.

1) algorithms intersecting complete subgraphs with adjacency lists
2) algorithms adding vertices to complete subgraphs

3) an algorithm based on edge addition

4) an algorithm based on edge removal

5) an algorithm testing combinations of vertices

6) an algorithm using the adjacency matrix

The six classes will be discussed in the sections 5.1 through 5.6. In section 5.7 we describe algorithms
for listing all complete subgraphs of fixed order. The problem of enumerating all cliques of a graph is

equivalent to the problem of enumerating all maximal independent sets of a graph. For a discussion see
chapter 6.

5.1 Algorithms intersecting complete subgraphs with adjacency lists

The first algorithm we describe in this section is an algorithm developed by Bierstone ([7]), re-
vised by Augustson and Minker ([4]) and further by Mulligan and Corneil ([58]). The vertices of the
graph are numbered 1,2,...,n. To represent the graph, Bierstone uses a list M; for each vertex
vj» 1< j <n.M; contains all vertices v, adjacent to v; with k > j. A clique is represented by the set
of its vertices. The algorithm builds sets of vertices representing complete subgraphs of G. These sets
of vertices are stored in an array C. Upon termination of the algorithm, all elements of C will represent
cliques. The algorithm proceeds in stages. After completion of each stage, no element of C is contained
in any other element. To initialize, the algorithm finds the greatest index j such that M; is not empty.
For each v,eM ok =n,...,j+1, the set {v, v; } representing a complete subgraph of order 2, is ad-
ded to array C. At each stage the next greatest index J such that M; is not empty, is found. Let I be
the number of complete subgraphs in C after the previous stage. The elements of C are scanned in in-
creasing order. During the scanning of the elements of C, a set W keeps track of all vertices of M; that
have not yet been put into some element of C. So, before starting the processing with C(1), W equals
M;. The processing of the elements C (k). k=1,...,1, consists of the following steps. Compute
T=Ck)n M;. If T contains less than two vertices, the algorithm continues with the next element of
C.If T contains two or more vertices, then all elements of T N W are deleted from W. T uU{vilisa
complete subgraph. We have four possibilities.

) T=Ck)= M;. In this case, redefine C(k)= C(k) u {v;}. Delete from C those elements
C(g) with ¢ > and C(g) c C(k) (if any). We do not have to check the elements C(g) with
q <1, because after the previous stage no element of C was contained in any other element of
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C, and at the current stage no element C(g) with q = k+1, ..., is redefined before the pro-
cessing of C(k) is finished. As T = M j» all complete subgraphs (C(m) " M i) U {v;} for
k <m <1 will be subgraphs of T U {v;}. so the algorithm continues with the next stage.

Q2 T=Cck)y=M ;- This case is processed in the same way as (1), except that the algorithm contin-
ues with the next element of C.

B) T#Ck)and T = M;. Add T U {v;} to C and delete all elements C(g) with ¢ >1 and
C@cTu{vifromC.AsT = M, the algorithm continues with the next stage (see (1)).

@4 T+CEk)and T+M j. If any element of C contains T U {v;}, then the algorithm continues
scanning the array C, otherwise T U {vj} is added to C and all C(g) with ¢ >I and
C(g) =T v {v;} are deleted from C. The algorithm continues with the next element of C.

If the algorithm has scanned the first / elements of C, then for each vertex vieW (if any) the set
{ve, v;} is added to C and the algorithm proceeds with the next stage. If each j with M ; not empty has
been processed, then C contains all cliques of G and the algorithm terminates.

Another algorithm based on the intersection of complete subgraphs with adjacency lists was
presented in [18] by Chiba and Nishizeki. This algorithm consists of a recursive procedure. Consider the
vertices of the graph to be numbered 1, . . . ,n, such that dv) <d(v) <---<d(v,). Let A(i) denote
the adjacency list of v; and let G; denote the subgraph of G induced by v, v,, . . .,v;. The recursive
procedure has two parameters C and i. C is a set of vertices representing a clique of G;_;. When the
procedure is called for the first time, C = {v1} and i = 2. On entering the procedure, if i = n+1, then
C is a clique of G. C is output and the recursive procedure terminates. If i # n+1, then the algorithm
starts searching for cliques of G;. If C N A(i) # C, then C contains vertices that are not adjacent to
vi. In that case, C is also a clique of G; and the procedure is called recursively with C and i+1. After
returning from this call, and in case C N A(i) = C (i.e. v; is adjacent to each vertex of C ), the pro-
cedure continues with computing C’ = (C n A @) v {i}. C" is a complete subgraph. If G; has a ver-
tex v;€A(i), v;¢C, such that j <i and C NA@{) cA(j), then v; is adjacent to all vertices of
C NA()and to i, so C’ is not a maximal complete subgraph of G;. After computing C’, the pro-
cedure tests whether C’ is maximal. If C” is not a clique of G;, the procedure terminates. If C’ is a

clique of G;, then, to avoid duplicates, the algorithm tests whether C is the lexicographically largest
clique of G;_; containing C N A (i).

Lemma. C is the lexicographically largest clique of G;_, containing C N A (i) if and only if there is
no vertex v;€G;_y, v;¢C, such that (C N A()) U C; cA(), where C; = {weC I k > j}.

If C is the lexicographically largest clique of G;_, containing C N A (i), then the procedure is called
recursively with C” and i+1. After returning from this recursive call, and in case C is not the lexico-
graphically largest clique of G;_, containing C N A (i), the recursive procedure terminates. Chiba and
Nishizeki show that this algorithm can be implemented to run in O (0(G).e) time, where a(G) is the
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arboricity of G (see section 2.6). It requires O (e) space. This algorithm is similar to an algorithm of
Tsukiyama et al. ([89]) for listing all maximal independent sets of a graph (see section 6.1).

5.2 Algorithms adding vertices to complete subgraphs

In [4] Augustson and Minker give a description of an algorithm of Bonner ([8]) to enumerate all
cliques of a graph G. The algorithm builds a set of vertices C representing a complete subgraph by ad-
ding one selected vertex at the time. When no vertices can be added and the complete subgraph
represented by C is not contained in another complete subgraph of G, then C is a clique. Let the ver-
tices of G be numbered 1,2, ... ,n and let A (v) denote the set of neighbours of vertex v. The algo-
rithm uses a variable i, indicating the current level of the algorithm, and three arrays C, CAND and L
with the following meaning. At level i, for each k, 1 <k < i ,» C (k) contains a set of vertices represent-
ing a complete subgraph, CAND (k) contains a set of vertices that are candidates to extend C (k), and
L(k) contains the vertex to be considered for addition to C(k). Imitially, i =1, C(1)= @,
CAND (1) = V(G) and L(1) = 1. At level i, the algorithm tests whether L (i) is contained in CAND (i).
If so, then CAND (i+1) is set to CAND (i) NALGE)-{L@E)}, CGE+1) is set to C(i) U {L ()} and
L(E+1) is set to L(i) + 1. If L (i) is not contained in CAND (i), then L (i) is set to L({) + 1. In both
cases, the algorithm tests whether any element of CAND (i) is larger than L (i). If such an element is
found, then the complete subgraph C (i) may not yet be maximal. In that case, the algorithm proceeds
with level k, where k = i if L (i) was not contained in CAND (i), and k = i + 1 otherwise. If no ele-
ment of CAND (i) is larger than L (i), then C (i) can not be extended. A variable T is set to C@.If
CAND (i) is empty, then C(i) is a clique and is output. If CAND (i) is not empty, then either C (i) has
been enumerated before or C (i) is not maximal, Let W} denote the set of all vertices of CAND (k) with
numbers greater than L (k). In both cases the algorithm continues with searching the greatest index
k <i-1 such that W, is not a subset of T. If such k exists, then L (k) is set to L (k) + 1 and the algo-
rithm proceeds with level k. If no such k exists, then all cliques have been enumerated and the algo-
rithm terminates. In [9] Bron and Kerbosch give a backtrack algorithm which is similar to Bonner’s al-
gorithm. They also build a set of vertices C representing a complete subgraph by adding one selected
vertex at the time. When no vertices can be added and the complete subgraph represented by C is not
contained in another complete subgraph of G, the clique C is output. The vertex v that was the last ad-
ded, is deleted from C and the algorithm continues with trying to extend C with vertices other than v.
This backtrack algorithm consists of a recursive procedure with two parameters NOT and CAND . NOT
is the set of vertices that are not to be chosen as an extension of C and CAND is the set of vertices
that are eligible ("candidates”) to extend C. When the procedure is called for the first time, NOT is
empty and CAND contains all vertices of the graph. Initially the set C is empty too. For vertex v let
count (v) be the number of vertices in CAND that are not adjacent to v. On entering the recursive pro-
cedure count(v) is computed for each ve NOT w CAND . Let v ;€NOT U CAND be the vertex with the
minimum count computed. If v;€ CAND , then C is extended with vertex s = v;. If v;eNOT, then C is
extended with a vertex se CAND with s not adjacent to v;. (*) The new sets NOT’ and CAND’ are
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computed. NOT” contains those vertices of NOT that are adjacent to s. CAND’ contains those vertices
of CAND—{s} that are adjacent to s. If NOT’ and CAND’ both are empty, then C is a clique and is
output. If CAND” is not empty, then the recursive procedure is called with NOT’ and CAND’. After re-
turning from the recursive call, and in case the procedure was not called recursively at all, vertex s is
deleted from C and from CAND, and is added to NOT . Then another vertex s CAND with s not adja-
cent to v; (if any) is selected. C is extended with s and the procedure repeats from (*) with the current
sets NOT, CAND and C. The recursive procedure terminates when all vertices in the current set CAND

are adjacent to v;. When the algorithm returns from the initial call of the procedure, all cliques of G
have been enumerated.

A completely different approach is the following. Let v be a vertex of the graph G. Define the
sets C, and D, of vertices as follows. C, is the set containing all neighbours of v and D, is the set of
vertices that are not adjacent to v. Each clique C of G contains either vertex v or at least one element
of D,, so the cliques of G can be classified into those that contain vertex v and those that contain at
least one element of D,. This idea was used by Akkoyunlu ([1]) to enumerate all cliques of G. The
graph is represented by the sets C, and D, for each vertex veV. For § c V,let L(S) denote the set of
all cliques which contain at least one element of § and let E(S) denote the set of all cliques which
contain each element of S. Clearly, L (V) represents the set of all cliques of G. The algorithm divides
sets of cliques into smaller subsets, using the following rules.

M LY = E@D,

@ ES) NESD = EG: U S),

G LE) ALESD = LED, it $; < S

@HL@)= 2,

OEED N QLEN= E@H 0 (0 LS AC)),

©®LS v{vD=E{QvHULE)NLD,)),

S if nSC, # D,

MES)= ES)NL (stC" ;eomemise.

The subsets of cliques which still have to be processed are stored in a stack. Elements of the stack are
expressions representing intersections between one or more L -sets and at most one E -set. Initially the
stack contains only L (V). The algorithm proceeds in stages. At each stage, the topmost element T is
deleted from the stack. T is either of the form iQIL (S;) or the form E(S") N (inL (5;)). In the first case,

a variable W is set to & and in the second case W is set to S’. The index kel such that S, has the
fewest elements is found and a vertex VES, is selected. Let S denote S;—{v}. Using the above rules,
the set .nlL (S;) can be written as follows.

i€
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Q6= €0 L) NE@ U (0 LED A LE) NLEY

where Q = D, if W =@ and Q = D, ( nWCw) otherwise. If § = @ or Q = @, then the second
we

part of the right-hand side is an empty set. Is § # @ and Q # @, then T with L(S) N L(Q) substituted

for L(S;) is placed in the stack. In either case the algorithm continues processing

ES)n(( If‘.‘kL Si)) N E({v}) or just ( p‘kL(S,-)) N E({v}), depending on the form of 7. Let J
iel;i iel;i

be the set {j | jel, v;eS;}. If J # D, then for each je W the set W; = §; n C, is computed. Using
rule (5) and (2) we get the expression EW U {v}) N (nJL (W;). If L(W;) = @ for any j, then this
j€

expression represents an empty set, otherwise it is placed on the stack. In both cases the algorithm
proceeds with the next stage. If J = &, then we have the expression E(W U {v}). Compute the set

P = Wn{ }C,. IfP =@, then W UL {v}is clique and is output. If P # &, then W U {v} is not yet
yeWuiy

maximal and the expression E(W U {v}) N L(P) is placed on the stack. In either case the algorithm
continues with the next stage. The algorithm terminates when the stack is empty.

5.3 An algorithm based on edge addition

Let G = (V, E) be a graph with a pair of non-adjacent vertices x and y,andletG’= (V,E)a
graph with E’ = E U {xy}. In [62] Osteen gives an algorithm that computes the cliques of G’, given
the cliques of G. Let L and L’ denote the set of all cliques of G and G’ respectively. As xy¢E, the
cliques of G can be partitioned into three disjoint sets X, Y, and L, where X is the set of all cliques
containing x but not y, Y is the set of all cliques containing y but not x, and L, is the set of all
cliques containing neither x nor y. Let C, be a clique of G containing x. If each vertex of C,—{x}is
adjacent to y, then C,~{x} is contained in some clique of G containing y, and C, U {y}eL’. Other-
wise C, U {y} is not a complete subgraph of G’ and C,eL’. This observation gives us the following
partition of the sets X and Y. Define X, to be the set {C,eX | for some CyeY,C~C, = {x}}, and
X3 = X-X,. Define Y, to be the set {C,e€Y | for some C,eX, C-C, = {y}},and Y, = Y-Y,. Fi-
nally, define L, as {C, u {y}! C;eX}u {G v ix}l CeY}andLyas X, U Y.

Lemma. Lo UL, UL,cL’.

Note that the sets Lg, L, and L, are mutual disjoint. If CeL’ and C¢Lo U L, U L,, then CelLy, the
set of all maximal elements of {(C, N G)u {x,y} C,eX,, Cy€Y3}. As no element of Ly and L,
contains both x and y, the sets Lo, L, and L,” are mutual disjoint and no element of L’ is contained in
an element of L, or L,. However, it is possible that an element of Ly’ is contained in an element of L,.
Therefore, define L, to be the set of elements of L3’ which are not contained in any element of L,.

Theorem. L’ = Ly U L; ULy U L,
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This theorem is used to compute the set L’ of all cliques of G’= (V, E’), given the set L of all
cliques of G = (V,E), where E c E’. Initialize L’ = L and D = E—E", Choose an edge xyeD and
remove xy from D. Compute X, ¥ and L, by placing each CeL’ in X ifxeC,inY if yeC, and in
Ly otherwise. Compute X, and Y, as follows. For each C;eX and CyeY,if C,—{x} < C, N C, then
place C, in X, and if Cy—{y} = G, n C, then place Cy in Y. Initialize four sets L,", L,”, X, and Y,
to be empty. For each C,€X, if C,eX, then C; v {y} is placed in L,’, otherwise C, is placed in X,
For each C,eY, if C,eY, and Cy is not contained in a member of L,’, then C, U {3} is placed in
L,”, otherwise C, is placed in Y,. The set L, is the union of L," and L,”. For each C,eX, and each
Cy€eY,, place (C, N Cy) U {x,y} in a set A. Remove from A each element that is contained in any
other element of A. Remove from A each element that is contained in any element of L," U L”. Set
L'=LoULyUL”UX,UY,UA. Then choose another edge in D (if any) and repeat the pro-
cedure until no edge in D is left. At that moment, L’ contains all cliques of G’ and the algorithm ter-
minates. An upperbound for the time complexity of the algorithm when only one edge is added, is ap-

proximately -;—(%)4, where r is the number of cliques of G. A lower bound on the time complexity is

approximately r.

5.4 An algorithm based on edge removal

In the preceding section we discussed an algorithm of Osteen for enumerating all cliques of a
graph, based on edge addition. In the same reference Osteen presents a similar algorithm, based on edge
removal. Let G = (V,E) be a graph with a pair of non-adjacent vertices x and y, and let
G'=(V,E)beagraph with E’'= E U {xy}. Osteen computes the set L of all cliques of G, given
the set L’ of all cliques of G’. L’ can be partitioned into four sets X, Y, L, and W, the sets of all
cliques of G’ containing x but not ¥,y but not x, neither x nor y, and both x and ¥ respectively. Each
clique of G’ not containing both x and y is also a clique of G, and as xy<E, each clique of G’ con-
taining both x and y is not a clique of G. Thus X U ¥ ULo= L nL’ It can be shown that if CeL
and C¢L’, then Ce {M - {x}| MeW}u {M-{y} | MeW}. Let W, be a set containing the elements
of {M—{x}| MeW} that are not properly contained in any element of Y, and similary let W, be a set
containing the elements of {M—{y}| Me W} that are not properly contained in any element of X.

Theorem. L = Lou X UYuW, uW,,

This theorem is the basis of the following algorithm to compute all cliques of G = (V, E), given all
cliques of G’ = (V, E”) with E c E”. Initialize L = L’ and D = E-E’. Choose an edge xyeD and
remove xy from D. Compute four sets X, ¥, W and K as follows. For each CeL, if xeC but not
Y€C then place C in X, if yeC but not xeC then place C inY, if xeC and yeC then place C in
W, and place C in K otherwise. For each Ce W, if C—{x} is not contained in any element of Y then
C—-{x} is added to K, and if C-{y} is not contained in any element of X then C-{y}isadded to X.
Set L = K UX U Y. Choose another edge in D (if any) and repeat the procedure until no edge in D
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is left. At that moment L contains all cliques of G and the algorithm terminates. An upper bound for
the time complexity of the algorithm when only one edge is removed, is approximately %(r "2, where

r’ is the number of cliques of G’. A lower bound on the time complexity is approximately r*.

5.5 An algorithm testing combinations of vertices

In [19] Corneil presents an algorithm for generating all cliques of a graph G of order k, with
k= n,...,1 The algorithm described here contains some additions to the original algorithm of Cor-
neil, made by Mulligan ([57]). The algorithm uses an array C of vertices, representing the subgraph
under examination, and a "working” graph G,. Both G and G are represented by its adjacency matrix.
The cliques that are generated have to be stored. When a complete subgraph has been found, it is
necessary to test whether it is not contained in a clique already generated. The algorithm searches for
complete subgraphs of order k£ as follows. First G, is set equal to G. All edges incident to vertices of
degree less than k-1 and all edges contained in less than k—2 triangles in G, are deleted from G,.
This is repeated until no more deletions can be made. If G, is not empty, then choose a vertex v of
minimum degree in G,. All vertices adjacent to v in G, are stored in an array M. Then a subroutine
([15]) is called to compute a combination of k— 1 vertices out of the elements of M. This combination
is placed in C. If C represents a complete subgraph of order k-1, then C U {v} represents a complete
subgraph of order k. Add v to C. C is compared with all cliques of order greater than k to determine
whether C is contained in any of them. If C is not contained in a clique of order greater than k, then
C is a clique and is added to the list of cliques. Edges incident with vertices in C of degree k~1in G
and edges that are contained in k—2 triangles of G are deleted from G . Then, and in case C was not a
clique or even a complete subgraph, a new combination of k—1 vertices out of the elements of M is
computed and examined. This is repeated until all possible combinations have been examined. The
edges incident with v are deleted from G, and v becomes a vertex of minimum degree of the new G;.
Then all cliques of order k containing the new vertex v are generated as described above, and this pro-
cedure is repeated until all cliques of order k have been enumerated. The algorithm enumerates the
cliques of G of order k, with k decreasing. If G has a maximal clique of order k # n, it is useless to
search for cliques of order greater than k. From results by Erdds and Rényi ([23)) it follows that the

number of complete subgraphs of order k in a random graph of n vertices and e edges is approximate-
ly

n\(maxe — maxk
C k) = (k)( e—maxk

(")

where maxe = %n(n-— 1) and maxk = %k(k- 1). If C (k) becomes less than 1.0 as k increases, G has

probably no clique of order greater than k. Let kq be the minimum number & such that C (k) < 1.0. The
algorithm starts with searching for complete subgraphs of order k = ko. If a complete subgraph of ord-
er ko is found, then k is increased by 1 and the algorithm starts searching for larger complete sub-
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graphs. This is repeated until the algorithm finds a number m such that G has a complete subgraph of
order m— 1, but no complete subgraph of order m. Then all cliques of order m— 1 are generated. When
all cliques of order k (for any k) are enumerated as described above or if G has no cliques of order k,
then k is decreased by 1. If the current graph G is empty or k£ <2, then all cliques of G have been
enumerated and the algorithm terminates. Otherwise the algorithm continues with enumerating all
cliques of order k of the current k.

In [57] Mulligan compares the algorithms of Bierstone, Bron and Kerbosch, and Corneil. Based
on practical results, the algorithm of Bron and Kerbosch appears to be the most efficient in most of the
cases.

5.6 An algorithm using the adjacency matrix

In [33] Harary and Ross give the following algorithm to enumerate all cliques of order I >3 of a
graph. Let the vertices of G be numbered 1,2, . .. ,n, and let A denote the adjacency matrix of G.
Throughout this section, a clique is defined as a maximal complete subgraph of order ! > 3. For two
n X n - matrices B and C we define the elementwise product B x C to be the n X n - matrix D with
D = Bj;C;;. Consider the matrix A2 x A. If the entry i, j of A2X A equals 0, then there exists no
clique C such that v; and v; both are contained in C. Otherwise, there exists at least one clique con-
taining both v; and v;. Consequently, if the i* row of A2 x A consists entirely of zeros, then v; is not
contained in any clique. Let M (G) be the submatrix obtained from A2 x A by deleting the rows and
columns corresponding to vertices that are not contained in any clique. Let V be a vertex contained in
at least one clique. Let 7(v) denote the sum of the elements of the row of M (G) corresponding to v,
and let n(v) be the number of non-zero entries of that row (i.e. n(v) is the number of vertices that are

in at least one clique containing v, excluding vertex v). By a result of Festinger ([24]), the following
lemma holds.

Lemma. Vertex v is contained in exactly one clique if and only if r(v) = n(v Yr(v)-1)).

The algorithm of Harary and Ross first computes M(G ) and r(v) and n(v) for each vertex v which is
contained in at least one clique. Using the above lemma, they test whether G has a vertex v which is
contained in exactly one clique. If no such vertices exist, then G is a graph of which each vertex is
contained in at least two cliques. Otherwise, let v be a vertex contained in exactly one clique. The set
C, of vertices corresponding to the non-zero entries of the row of M(G) corresponding to v together
with vertex v is a clique of G and is output. Let C’, denote the set of vertices of C, which are con-
tained in exactly one clique. The algorithm computes C’, and repeats the above procedure with the
graph G’ induced by V(G)-C",, until a graph is obtained of which each vertex is contained in at least
two cliques, or until no vertices are left. Let G now denote a graph of which each vertex is contained
in at least two cliques. For each vertex x of G » let S(x) be the set of vertices containing x and each
vertex v; such that the j* entry of the row of M(G) corresponding to x is non-zero. Let Q (x) denote
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the union of all sets S(w) such that w ¢ S(x). Let v be a vertex of G such that r(v) is minimal. The
sets S(v) and Q (v) are computed. The union of S(v) and Q (v) covers V(G), but S(v) N Q(v) may be
non-empty. Harary and Ross show that there exists no clique C with C " S(v) =@ and
C N Q(v) # @ which does not entirely lie in exactly one of the sets S (v) and Q (v). Thus, the set of
cliques of G can be partitioned into the set of cliques of Gg, the subgraph of G induced by S(v), and
the set of cliques of Gg, the subgraph of G induced by Q(v). The subgraph G is stored and the
whole procedure is repeated with G. If no vertices are left after all vertices that are contained in exact-
ly one clique have been deleted from the subgraph being processed, then the algorithm repeats the
whole procedure with the next subgraph stored. If no subgraphs are left, then the algorithm terminates.

5.7 Algorithms for enumerating complete subgraphs of fixed order

In section 2.6 we already described a few algorithms for enumerating all triangles, i.e. all com-
plete subgraphs of order 3. One of these algorithms is an algorithm of Chiba and Nishizeki ([18]). In
the same reference they presented an algorithm for enumerating all cliques (see section 5.1) and an al-
gorithm for enumerating all complete subgraphs of order !, for fixed . The basic idea of this algorithm
is the following. Select a vertex v, of G. Let G,_; be the subgraph of G induced by the neighbours of
v1. Choose a vertex v, of G;_; and let G,_, be the subgraph induced by the neighbours of v, in G,_;.
If it is possible to repeat this procedure until we have a graph G, with at least one edge, then we have
a complete subgraph of order /, containing the terminal vertices of that edge and the vertices
V1, V2 . .., V-2 Chiba and Nishizeki represent the graph by an adjacency list for each vertex v. In-
stead of computing and storing the induced subgraphs G;, they label the vertices of G, with k. In order
to find the neighbours of a vertex v in G, quickly, the adjacency lists are rearranged such that the
neighbours of v in G, occupy the first entries of the adjacency list of v. To keep track of the vertices
that may be contained in a complete subgraph of order I, the algorithm uses a stack C. At each mo-
ment, the vertices on the stack are all adjacent to each other. Initially, C is empty and all vertices are
labeled /. The algorithm contains a recursive procedure with two parameters k and U. The level of re-
cursion is /—k and U is the vertex set of G,. Let dy(v) denote the degree of a vertex v in G;. On
entering the procedure, if k # 2, dy(v) is computed for each ve U. The vertices of U are numbered in
decreasing order of their degree in G, (so the vertices have a number and a label). Starting with i = 1,
the set U’ of all neighbours of v; in G, is computed. The vertices in U’ are relabeled k— 1. For each
ueU’, the neighbours of u in U’ are placed in the first entries of the adjacency list of u. Vertex v; is
added to C and the procedure is called recursively with k—1 and U’. After returning from the recur-
sive call, v; is deleted from C. All vertices of U’ are relabeled k. To avoid duplication, v; is relabeled
k+1, and v; is moved to the element next to the last vertex with label k in the adjacency list of u, for
each ue U’. This procedure is repeated for each vi,i =1,2,...,1U|. The recursion terminates when
k equals 2 on entering the recursive procedure. In that case, for each edge induced by a vertex pair
{x,y} c U, the set of vertices {x,y} U C isa complete subgraph of order /, and is printed out. The
procedure is called for the first time with k = [ and U = V(G). This algorithm lists all complete sub-
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graphs of order ! in G inO(I.(I(G)"‘z.c)ﬁmcudﬁuumwhma(G)hlhem&cityofG (see
section 2.6).
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6. Maximal independent sets

Let G = (V, E) be an undirected graph and let M be a maximal independent set of G. The com-
plementary graph G of G is defined as G = (V, E), where xyeE if and only if xy¢E. In G there ex-
ist no edges between elements of M, so in G each element of M is connected to every other element
of M and M is a complete subgraph of G. Moreover, since M is maximal as independent set of G, M
is a clique of G. Thus, the enumeration of maximal independent sets of G is equivalent to the
enumeration of cliques of G, and each algorithm for enumerating all cliques of a graph can be used to
enumerate all maximal independent sets of its complement and vice versa. In this chapter we describe
two algorithms for enumerating maximal independent sets of G without using G: algorithms using
maximal independent sets of subgraphs and an algorithm based on Boolean arithmetic.

6.1 Algorithms using maximal independent sets of subgraphs

In [64] Paull and Unger give an algorithm to enumerate all maximal independent sets of G. Let
the vertices of G be numbered 1, .. . ,n. For each j, 1 < J <n, let G; be the subgraph of G induced
by the vertices 1,...,j and let M ; denote the set of all maximal independent sets of G;. Paull and
Unger give a procedure to generate M j+1» given M;. Let M’ be a maximal independent set of G e I
j+l e M’ then M’ is a maximal independent set of G;. If j+1 ¢ M’, then M- {j+1} c M for some
maximal independent set of Gj and M’ = (M—-A(j+1)) U {j+1}, where A (j+1) is the adjacency list of

J+1. Define L;,; to be the set {M’| M’ = (M-A(j+1)) U {j+1}, for some M eM;}, then we have the
following lemma.

Lemma. M;,, ¢ M; UL;,.

The elements of the set M j U Lj, are all independent sets of Gj41, but M; U Lj,; may contain non-
maximal elements or duplications. These non-maximal elements and duplications are eliminated by
comparing each element of M i U Lj, to every other element. Thus, M j+1 is generated from M; in
O(n.m,-z) time, where m; = |M; 1. All maximal independent sets of G are found by applying the algo-
rithm n—1 times, starting with M; = {{1}}. The overall time complexity is 0 (n2m¢), where my is the
number of maximal independent sets of G. The algorithm requires O (e + n.mg) space.

Tsukiyama et al. present in [89] an algorithm which is similar to the algorithm of Paull and
Unger, but has a better time and space bound. Let W < V be a set of vertices of G, let E (W)cE be
the set of edges joining vertices in W and define G(W)= (V,E(W)). Let A(v) denote the adjacency
list of v in G. Let W;, W;_; < V such that Wi = W;_y U {x}, and let M;_, and M; denote the set of
all maximal independent sets of G (W;_,) and G (W;) respectively. Tsukiyama et al. first show how we
can generate M;, given the set M;_;. Let A;(v) denote the adjacency list of v in G(W;), and let
A = A;(x). M;_; can be partitioned into the following two sets.

M;_1(x,A)= {M’eM;_|| M’ " A = O}
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M,-_l(x,A)= {MIEMi_ll M NnA ¢®}

If M’eM;_ (x, A), then since M'NA = @, M’ is also a maximal independent set of G(W;). If
M’eM;_y(x,A), then since M’ NA #@, M’—{x} is a maximal independent set of G(W;). Let
M;(X,A) be the set {M'~{x}| M’eM;_,(x, A)}, then M;_,(x, A) U M; (%, A) c M;. Now let the ad-
jacency list A of x in G(W;) consist of the vertices v, V2, ...,Vp. Tsukiyama et al. prove that
MeM; and MeéM;_;(x,A) U M;(X,A) if and only if M = M’—A for some MeM;_(x,A) and M’
satisfies the following condition.

dition. F A;_ X
Condition. For any v eyebk{J'M i-17)

(i) ifveA, thenv is adjacent to some vertex of M'~A in G(W;_,), or
(ii) if veA and v = v; for some j, 1< j <p, then in G(W;_,) v is adjacent to some vertex of
M’—A or some vieM’ N A withk > j.

Let M’;(x, A) denote the set of all M'—A , with M'eM;_,(x, A) and M’ satisfies the above condition.
Theorem. M; = M;_i(x,A) U M'(x, A) U M;(%, A).

Note that the three sets in the right-hand side of the equation are disjoint. This theorem is the basis of
the algorithm. The vertices of G are numbered 1, . . . ,n. For each i , 1<i <n, W, is defined as the
set of vertices {1, . . . ,i}. The algorithm consists of a recursive procedure with one parameter i, denot-
ing vertex i. The algorithm uses a global variable M. Each time the recursive procedure is called with
actual parameter i, M contains some maximal independent set of G (W;). On entering the recursive pro-
cedure, if i <n and M N A;,4(i+1) = @, then the procedure is called recursively with i+1. After re-
turning from this call, the procedure terminates. Otherwise, if i <n and M N A+ 2D, then M is
set to M—{i+1}, and the procedure is called recursively with i+1. After returning from this call, M is
reset to M U {i+1}, and the procedure tests whether M satisfies the above condition. If M satisfies the
condition, then M is set to M—A;,,(i+1) and the procedure is called recursively with i+1. After return-
ing from this last recursive call, M is reset to M U A;,,(i+1). Then, and in case M did not satisfy the
condition, the procedure terminates. If i = n on entering the procedure, then the recursion terminates.
In that case M contains a maximal independent set of G and is output. Initially, M equals V, the ver-
tex set of G. The recursive procedure is called for the first time with actual parameter 1. Tsukiyama et
al. prove that this algorithm can be implemented to run in O (n.e.my) time and O (n + e) space, where
my is the number of maximal independent sets of G. In [18], Chiba and Nishizeki show that the run-
ning time of the algorithm can be reduced to O (a(G ).e.mg), where o(G) is the arboricity of G (see
section 2.6), by numbering the vertices 1,...,n such that d (v)£d@) <---<d(v,). The algo-

rithms of Paull and Unger and of Tsukiyama et al. are described by Lawler in [45] and by Lawler,
Lenstra and Rinnooy Kan in [46].
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6.2 An algorithm based on Boolean arithmetic

Consider each vertex of a graph G as Boolean variable. Define a Boolean arithmetic on the set of
vertices as follows. The Boolean sum v + w of two vertices denotes the operation of including vertex v
or vertex w or both. The Boolean product v.w denotes the operation of including both v and w. The
complement ¥ of vertex v denotes the operation of not including v. Note that #¥w = v.%w and
W = ¥ +W. An edge between two vertices v and w of G is represented by the product v.w. Define
¢= 3 vw. ¢ represents the operation of including one or more pairs of adjacent vertices. Let ¢

weE
denote the complement of ¢. ¢ can be written asfy+ fa+- -+ fi, where f; is a Boolean product of
the complements of vertices fori = 1,...,k. ¢ denotes the operation of not including any pair of ad-
jacent vertices, and as ¢ = f;+ fo+ - - - + f, this is equal to the operation of including one or more
products f;. Including a product f; = v,.7, - - - V, equals the operation of not including any vertex v;,
1< j <p. Thus, the set V-{v; | ¥; appears in f;} is a maximal independent set for each i, 1<i <k,
and each maximal independent set corresponds to a Boolean product fi forsome i, 1 <i < k. This ap-
proach is due to Deo ([21]).
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7. Cut-sets

Let G be a graph with n vertices. As in the case of cycles, we define the cut-set vector space
S(G) as the set of all cut-sets of G together with the empty set and the set of edge-disjoint unions of
cut-sets. §(G) is a vector space over F,, the field of integers modulo 2, with the addition of any two
elements of §(G) defined as the ring sum of the sets of edges of the elements. Let T be a spanning tree
of G. The set of fundamental cut-sets C;, C, . . . ,C,_; with respect to T is a basis of S(G). All cut-
sets of G can be enumerated by generating a listing of the elements of § (G ) and testing which element
is a cut-set. A listing of the elements of S(G) can be generated by taking all possible combinations of
fundamental cut-sets. This approach is not very efficient. Since S(G) has 2*~! elements, computing all
elements of S (G) requires (2*~!) time. The algorithms we describe in this chapter have a different ap-
proach. In section 7.1 we describe backtrack algorithms, in section 7.2 we describe an algorithm using
Gaussian elimination and in section 7.3 we describe an algorithm using the path matrix.

7.1 Backtrack algorithms

Let G = (V, E) be an undirected, connected graph without self-loops or multiple edges. For
X CV, define E(X) to be the set of all edges of G joining vertices of X, and let G (X) be the sub-
graph of G induced by X. For X, Y cV,wtthX nY = @, define E(X, Y) to be the set of all edges
of G joining vertices of X to vertices of Y. Let s and ¢ be two vertices of G . For each s—¢ cut-set C
there exists a set X Y such that seX, teX = V-X, and C = E(X,X). Let § and T be disjoint
subsets of V with seS and teT. Define A(SIT) as the set of all s—¢ cut-sets E(X,X) such that
S cX and T c X. Clearly, A({s}{t}) is the set of all s—¢ cut-sets of G. The following lemma of
Tsukiyama et al. ([90]) is the basis of the algorithms of this section.

Lemma. For any veV—(S U T), we have A(S IT)= AS U {vHT)+AESIT U {v}.

For each veV, A(v) denotes the adjacency list of v in G. For any W c V, A(W) denotes the set
uWA (v) and A*(W) = A(W)-W. In [90], Tsukiyama et al. prove the following observations. If G (S)
ve

is connected and G (W) is a maximal connected component of G (§) with te W, then A(S IT) is non-
empty if and only if T < W. If G(S) is connected and G (§) is not, and there exists a maximal con-
nected component G (W) of G (S) with T c W, then A(S IT) = A(W IT) and G (W) is connected. Fi-
nally, if G(S) and G (§) are both connected and A*S)-T = @, then A(SIT) = {E(S, §)}. Tsukiyama
et al. give the following algorithm based on these observations. The algorithm consists of a recursive
procedure with two parameters S and T, denoting disjoint subsets of V with s€S and teT. At each
call of the procedure, G(S) and G (S) are connected. On entering the procedure, if A*(S)-T = @, then
a new s—t cut-set E(S,S) is output and the procedure terminates. Otherwise, choose a vertex
veAYS)»-T. EGE-{v} is connected, then the procedure is called with S U {v} and T. After re-
turning from this recursive call, the procedure is called again recursively with S and T U {v}. After re-
turning from this second call, the procedure terminates. If G@§-{v}) is not connected, then the algo-
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rithm computes a set of vertices W such that G (W) is a maximal connected component of G(S—{v})
with teW. If T < W, then the procedure is called recursively with W and T. After returning from this
recursive call, and in case T ¢ W, the procedure is called again with § and T U {v}. After returning
from this call, the procedure terminates. The first time the procedure is called, S equals W, where W is
a set of vertices such that G(W) is a maximal connected component of G (V — {s}) withteW,and T
equals {t}. The time complexity of this algorithm is O ((n + e)n—logc)c), where ¢ is the number of
s—t cut-sets of G. The space complexity is O(n + e). This algorithm of Tsukiyama et al. is an other
implementation of an algorithm of Jensen and Bellmore ([38]). The algorithm of Jensen and Bellmore
builds a rooted tree T. The leaves of T represent cut-sets of G. To make distinction between the
representation of G and the representation of T, the vertices of T are called *nodes’ and the edgesof T
are called "branches’. Let the vertices of G be numbered 1, . . . ,n. During the construction of T, the
nodes are numbered 0, 1,2, - - - and the branches are labeled jT or jF, where J is the number of a
vertex of G and the labels of the branches have the following meaning. If E(X, X) is an s—¢ cut-set of
G, then X consists exactly of the vertices j of G such that branch JT is contained in the unique path
from the root to the leave representing E (X, X). The vertices J of G such that branch jF is contained
in the path from the root to the leave representing E (X, X) are contained in X, but the entire set X
consists of V—X. For each node i of T, let P; be the unique path from the root to i. To node i , four
sets of vertices T;, F;, Y; and Z; are associated. T; contains all vertices J of G such that branch jT is
contained in P;. F; contains all vertices j of G such that branch JF is contained in P;. Y¥; equals the
set V—(T; U F;) and Z; is the set of vertices j € Y; that are adjacent to a vertex of T;. The algorithm
first creates a tree with three nodes 0, 1 and 2, a branch from O to 1 labeled sT and a branch from 1 to
2 labeled ¢tF. The nodes 0 and 1 are marked ’scanned’ and node 2 is marked ’unscanned’. The algo-
rithm proceeds in stages. At each stage, the unscanned node with the greatest index i is chosen and
marked ’scanned’. The sets T;, F;, ¥; and Z are computed. If Z; = @, then a new s—¢ cut-set
E(T;, T;) is output, and the algorithm proceeds with the next stage. Otherwise, a vertex v € Z; is
chosen. If G(T;—{v}) is connected, then two new nodes k and k+1 are created, where k—1 is the
number of nodes in the current tree. The nodes k and k+1 are marked ’unscanned’. A branch from i to
k, labeled vT, and a branch from i to k+1, labeled VF, are added to the tree. Then the algorithm
proceeds with the next stage. If G(T;— {v}) is not connected, then a set of vertices W; is computed
such that G(W;) is a maximal connected component of G(T;~{v}) with t € W;.If F; cW,, then a
new node k and a branch from i to k labeled vT are added to the tree, where k— 1 is the number of
nodes in the current tree. Compute the set W’; = T,~W;-{v}. Let W’; be the set {wy, wo, . .. W}
New nodes k+1, k+2, . .. ,k+p are added to the tree, as well as a branch from k+i—1 to k+i labeled
w;T, for each i, i = 1,...,p. The nodes k+1, k+2, . . . »k+p—1 are marked ’scanned’, and node
k+p is marked ’unscanned’. Finally, a node k+p+1 and a branch from i to k+p+1 labeled vF are ad-
ded to the tree. Node k+p+1 is marked ’unscanned’ and the algorithm proceeds with the next stage. If
F;&W;, then a new node k and a branch labeled vF are added to the tree. Node k& is marked ’un-

scanned’ and the algorithm proceeds with the next stage. If no unscanned vertices are left, then the al-
gorithm terminates.
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Define an edge to be s—t path isolated if it does not belong to any s—~¢ cut-set. Assume that G

has no s—t path isolated edges. In [90] Tsukiyama et al. prove the following lemma, using the above
notation.

Lemma. Let G(S) and G(S) both be connected and let {vi.va ....v;} be the set of vertices of
AY(S)-T which are not an articulation vertex of G(S). Then

ASITY={E(S, )} + t AS O HT U {vy, vy, ..., vi1D) and
i=1

A + v }T + vi,va ... Vio D = D.

This lemma is the basis of another algorithm of Tsukiyama et al., presented in [90] and consisting of a
recursive procedure with two parameters S and T. The procedure has two local variables CAND and
T’. 8, T, T’ and CAND are sets of vertices. On entering the procedure, E(S, S) is a new s—¢ cut-set
and is output. T’ becomes the empty set and CAND becomes the set of vertices of A*(S)-T which are
not an articulation vertex of G (§). Choose a vertex ve CAND (if any) and delete v from CAND . The
procedure is then called recursively with § U {v} and T U T’. After returning from this recursive call,
T’ is set to T’ U {v}. Then another vertex ve CAND is chosen (if any) and this procedure is repeated
until CAND = @. Before calling the procedure for the first time, all s—¢ path isolated edges are delet-
ed from G. Then the procedure is called with § = {s}and T = {t}. The time complexity of this al-
gorithm is O((n + e)(c + 1)) and the space complexity is O (n?). Tsukiyama et al. show that space can
be reduced to O (n + e). To obtain all cut-sets of G without duplication, they give the following algo-
rithm. Choose a vertex veV. Add v to S, a variable representing a set of vertices. Choose a vertex
teA*(S). Let G’ be the graph obtained from G by shrinking § into a vertex s. Using the previous
described algorithm, enumerate all s—¢ cut-sets of G’. After all s—¢ cut-sets of G’ have been
enumerated, add ¢ to §. Choose another vertex te A*(S) and repeat this procedure until § = V. This
algorithm has a time complexity O ((n + e)(c + 1)), where ¢ is the number of all cut-sets of G.

7.2 An algorithm using Gaussian elimination

In [48] Martelli gives a regular algebra which can be used for the enumeration of all cut-sets of a
graph. The algebra C consists of a set R with the operations sum and multiplication. An element s of
R is a set of sets of edges such that no element of s is a superset of some other element of s. If s and
t are elements of R, then s + ¢ is defined as the set containing the union of each element of s with
each element of ¢, where all elements which are a superset of some other element are deleted. The zero
element is the set {@}. The multiplication st is defined as the set obtained by taking the union of s and
t, and deleting all elements which are a superset of some other element, where ¢ = @ is the unity ele-
ment. In [49] Martelli uses this algebra for the following algorithm. Consider the vertices of the graph
as numbered 1,2, ...,n. Define a n X n - matrix A as follows. If an edge from i to j exists, then
Ay = {{ij}}, else A;j = {{D}}. The elements of A belong to the algebra defined above. The closure of



Ais A’ =

A* and can be obtained as the solution of the equation ¥ = AY + U, where U is a
k=0
nXn - mamix with U;; = e if i = j and U;; = {{D}} otherwise. For each i, j,1<i,j <n, A,»'}
represents the set of all i—j cut-sets. Ase +s5 = ¢ inthe algebraC, A" = U + A + A2+ - - - + A™"]
and can be computed by Gaussian elimination as follows. Set A = ¢ if i = j, and A= A; other-
wise. Compute A,-‘f- for each k = 1,2,...,n and each i, j,1<i,j <n according to the following
rules.

()Ifi #k and j #k, then A% = AL + AF 1AL,
QIfi=4%k orj = k,thenA5 = Aif;'—l-

The elements of A} contain all i—j cut-sets. Note that a similar procedure was used by Fratta and
Montanari in [25] to enumerate all simple paths in a graph (see section 3.4). The complexity of the al-
gorithm of Martelli depends upon the complexity of the computation of A,’j A direct implementation of
the operations sum and multiplication as defined above is not very efficient. For the case that G is un-
directed, Martelli gives several theorems which he uses for a more efficient implementation. Define V*
o be the set {1,2,...,k}. Define G, k=1,...,n to be the subgraph of G induced by
VE U i, j}, and define G to be the subgraph of G induced by the vertices i and j. Martelli shows
that every A,—’;, k=0,1,...,n, computed by the algorithm gives the set of all i—j cut-sets of G,-‘}.
Consider the computation of Af. If AY™'= {@} or Ak != {@}, then we have Al = Akl It
Af"' = {@}, then i and j are not connected in G£~! and thus Al = AT U AR Let AN £ (@),
Al # {D} and A} = (@}, then i and j are connected in G}. Rewrite (1) as follows.

() Xfi #kandj #k,then A} = (A%! + AE 1A ! + AEY.

Define Ffj = (V£, EE) as the maximal connected component of G} containing i and j. Let o € Af. o
is a minimal i~ j cut-set of Ff, and divides F} in exactly two connected components with sets of ver-
tices V¢, and V4, where ie Vi, and je Vi . For each edge in o, one terminal vertex is contained in V7,
and the other is contained in V. Define M% and MY as the sets of terminal vertices of edges in o
such that M4 < V¥ and M, < Vi. Now, let o € Al and B € A4!. Martelli proves the following
necessary condition for a set & U B to be an i~ j cut-set: M < Vi and M b VLE ™.

Theorem. If o and B satisfy condition (*) and if the following two conditions hold:
() V& cVhor Vh c Vi,

() Vi N VE # @ or an edge kj exists € G,

then oL B is an i—j cut-set of FF.

Assume the elements oy, &, - - of A} to be ordered such that if Ve, © Va, » then I <m. For

o€ Af~! and B e A%™! we have the following theorem.
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Theorem. If Vo, < V}, then for each y e A%~ with Vy&Vh, o« U B is not ani-j cut-set of F.

Furthermore, if j < k, then A5™! + A§™! can be obtained by simply taking all elements o € A%~ with
j€VE. Assuming the elements of Af and AL to be ordered as described above and using the
theorems, Martelli gives the following algorithm to compute A%~! + A4~ If j <k, then o is set to the
first element of Af™!. If je V%, then o is added at the end of a variable SUM 1. o becomes the next
element of A5, and the procedure is repeated with the current o, until all elements of AL~! have been
examined. If j > k, then o is set to the first element of A%~* and B is set to the first element of A%~
The following conditions are checked.

() My cVhand Mj c Vi,
(i) V& < Vh or Vi < Vi or the subgraph induced by Vi, ~ V§ is connected,
(iii) V4 N V§ # @ or an edge kj exists in G.

If the three conditions hold, then o U P is added at the end of SUM1. If Vﬁ ¢Vi,, then P is deleted
from Af™'. If Vi &V}, then B becomes the next element of A%~!. The procedure is repeated with the
current 8 until all elements Af~! are examined or until Vi, < V§ for some B. In those cases, ot be-
comes the next element of A§™", and the whole procedure is repeated with the current o and A~ until
all elements of A}~" are examined. At that moment, the algorithm terminates and SUM 1 contains all
elements of A}~ +A%™! in order. To compute Af, the same algorithm is repeated to compute
SUM2 = Aj~' + AK"!, and A, is set to SUM1 followed by the reverse of SUM 2. When applied to a

complete graph, this implementation of the algorithm enumerates all cut-sets in O(c) time, where ¢ is
the number of cut-sets.

7.3 An algorithm using the path matrix

Let 5 and ¢ be two vertices of a graph. Let Py, P, . . . , Py be all paths from s to ¢. Let the
edges of G be numbered 1, . . . ,e. The path matrix with respect to s and ¢ isa k X e - matrix Q with
Q;; = 1if edge e; is contained in path P; and Q;; = 0 otherwise. Let C be an s—¢ cut-set of G. The
removal of the edges of C results in a graph in which there is no path from s to t. So, if C is an s~¢
cut-set, then C contains an edge of P; for eachi, 1 <i <k.Let E be a k - vector obtained from C as
follows. For each i, 1 <i Sk, if at least one edge of C is contained in path P;, then E; is set to 1,
otherwise E; is set to 0. If C is an s—¢ cut-set, then each entry of E equals 1. Let {e; P Cipe- .eip}
be a set of edges of G. Let X be a k - vector obtained as the logical sum of the columns of Q
corresponding to ¢; RERRRL/® If each entry of X equals 1, then the removal of €ipp e 06 results in a

graph in which there is no path from s to . However, {ei, e g ,e,-P} is not necessarily a minimal

set having this property. In [60], these observations are used by Nelson, Batts and Beadles in an algo-
rithm for enumerating all s—¢ cut-sets of a graph. The algorithm proceeds in stages. At stage i, all
combinations of i edges are computed. For each combination C, the corresponding vector X is comput-
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ed. If each entry of X equals 1, then the algorithm tests whether any s—¢ cut-set with less than i
edges is contained in C. If so, C is not minimal and thus C is not an s—¢ cut-set. Otherwise, C is an
s—t cut-set and is stored. The algorithm terminates after stage e.
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