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Abstract

With a new technique, using results from extremal graph theory, several new lower-
bounds are derived for distributed extrema finding on rings of processors, where the
ring size n is known in advance to the processors. A lowerbound of (n log n) is shown
for the average number of messages, for unidirectional and bidirectional rings, for any
ring size n, with the size of the index set I as small as cn, for any constant ¢ > 1.

For unidirectional rings, the lowerbound for the average number of messages is
improved to fnlogn — O(n), requiring that n is a power of 2, and {I] > n2. For
bidirectional rings, we show that for all ¢ > 0, there are infinitely many n, such that
the average number of messages sent on rings with fixed size n is at least (;— —e)nH,,
requiring that |I| > n2.

1 Introduction

In this paper we consider the problem of finding a leader in an asynchronous ring of
processors. Each processor is distinguished by a unique identification number, taken from
some index set I. In this paper we assume that the size n of the ring is known in advance
to the processors. There is no central controller. The problem is to design a distributed
algorithm that “elects” a unique processor as leader (e.g. the highest numbered processor),
using a minimum number of messages.

We assume that the processors work fully asynchronous and cannot use clocks or time-
outs. Hence we can assume that the algorithm is message-driven: except for the first
message upon initialization, a processor can only send messages as a result of the receipt
of a message. We also assume that processors and the communication subsystem work
error-free and that links work in a FIFO-manner,

There are basically two variants of the problem: the ring may be unidirectional (all
messages go in one direction) or bidirectional (messages can go in both directions). For
bidirectional algorithms, one has the variant where the ring has “a sense of direction”,
i.e. each processor has the same idea about “left” and “right”, and the variant where

*A large part of this research was done, while the author was visiting the Laboratory of Computer
Science of the Massachusetts Institute of Technology, with a grant from the Netherlands Organization for
the Advancement of Pure Research (Z.w.0.).



processors do not have a sense of direction. We will assume the former case, which only
strengthens the results.

Much work has been done to obtain good upper- and lowerbounds for the different
variants of the problem.

Many bidirectional algorithms, using O(nlogn) messages worst-case have been pro-
posed [6,11,13,14,16,17,20]. Unidirectional algorithms, using O(nlogn) algorithms can be
found in [8,19]. In table 1, the best known upperbounds are summarized. None of these
algorithm requires that processors know the ring size. (Hy is the n’th harmonic number,
ie. Ho=Y1%, 1 ~069nlogn).

| average | worst-case
Unidirectional nH,, [7] 1.356n logn + O(n) [8]
Bidirectional with sense of direction %an n [4,10] | 1.356nlogn + O(n) [8]
Bidirectional without sense of direction 1;—7nH n [4,10] | 1.44nlogn + O(n) [16,17]

Table 1: Overview of upperbounds.

The first ©(n logn) lowerbound for the problem was obtained by Burns [6], for the worst-
case number of messages on bidirectional rings without known ring size. Pachl, Korach
and Rotem [18] obtained ©(n logn) lowerbounds for the average and worst-case number of
messages on unidirectional and bidirectional rings without known ring size, and the worst-
case number of messages on rings with known ring size. Similar lowerbounds, improving
with a constant factor the results in [18], can be found in [2,3] and [12].

It has long been an open problem to determine the average number of messages
on rings with a fixed ring size. Recently, Duris and Galil [9] obtained lowerbounds of
(L -e)nlogn — O(n) for the average number of messages on unidirectional rings with
fixed ring size, and (§—¢e)nlogn — O(n) for the average number of messages on bidirec-
tional rings with fixed ring size. Their proof assumes that n is a power of 2, and requires
that the size of the index set I is exponential in n.

In this paper we prove Q(n log n) lowerbounds for unidirectional and bidirectional rings
with any fixed ring size n, where the index set | may be as small as cn, for any constant
¢ > 1. For unidirectional rings we give an average case lowerbound of %n log n messages for
rings with a fixed size n, with n a power of 2, and index set size |I| > n2. For bidirectional
rings, we show that for all € > 0, there are infinitely many n, such that the average number
of messages sent on rings with fixed size 7 is at least (3 — €)nH,, for |I| > n2.

Note that if |I| — n is very small, then one can design algorithms which use less than
(nlogn) messages. For example, one can turn all processors with an identity, which is one
of the n— 1 smallest in I “inactive”, and then run a variant of Petersons 1.44n logn+0(n)
unidirectional algorithm [19]. This gives an algorithm using O(n log(|I| — n)) messages
(worst-case). (This observation was made by Gerard Tel.)

This paper is organized as follows. In section 2 we give some definitions. Section 3
introduces all necessary definitions and results from extremal graph theory. Some new
results are derived. In section 4 we give a simple lowerbound proof for the average number
of messages on unidirectional rings with fixed size n, with n a power of 2,|I| >en, ca
constant > 1. The lowerbound is improved to snlogn — O(n) for [I] > n2. In section 5
similar results (but with lower constants) are derived for bidirectional rings. In section 6 we
prove an (nlogn) lowerbound for the average number of messages on bidirectional (and



hence, also on unidirectional) rings with fixed ring size n, for arbitrary n, and |I]| > en.

2 Definitions

For an index set I, define D(I) to be the set of finite, non-empty sequences of distinct
elements of I. The concatenation of two strings s = 8y :--sg and £ = #; ---¢; is denoted
by s+t =8y -8kt -+ -;. The I'th element of a string s is denoted by s;. The length of a
string s = s; -+ - 83 is denoted by length(s)= k. The set of finite, non empty sequences of
distinct elements of I with length k is denoted by Di(I) = {s € D(I) | length(s) = k}.

For the sake of analysis, we assume a (clockwise) numbering of the processors
1,2,...,n. (n is the size of the ring; the numbering is not known to the processors).
We say a ring is labeled with s = s;...s, € Dy(I), if for each i, 1 < i < n, processor 4
has identity s;.

Further we denote Xy(I) to be the set of all sets of []élj disjoint strings from Dy([),
le. Xp(I) = {S C Di(1) | IS = || and (Vo,t € S:s t = Vi,j < k: s £ t;N}.

For k|n, we say that a string s € D,(I) is derived from S € Xi(I), if s is formed by
concatenating 2 different elements from S.

3 Definitions and results from extremal graph theory

In this section we review some results from extremal graph theory. The interested reader
is referred to the book of Bollobis (5], for background, proofs, etc.

Define a(m, ) (a(m,!)) to be the maximum number of edges in a directed (undirected)
graph with m vertices, that does not contain a cycle with length I, and let §(m, l) =

1- —((r:r:ln-fltj'
Lemma 8.1
VN,I,3<I< N:o(N,l) < a(N,l)+ FN(N -1).

Proof.

Let G = (V, E) be a directed graph with a(N,1)+ FN(N — 1) + 1 edges. It follows that
there are at least &(N,1)+ 1 pairs of nodes v, w with (v,w) € F and (w,v) € E. Hence G
contains a cycle with length . O

Theorem 3.2 [5]

Let G = (V,E) be an undirected graph with [Vl = N, |E| = M, and let I € N* be a
positive natural number, such that [ > |L(N + 3)|, and M > (3 + (" H?). Then G
contains a cycle with length r, for everyr,3<r <l

Corollary 3.3
Let N > 1> LN + 3. Then

() &, < () + (V.
(i) a(N,0) < () + (V) + LNV - 1).
(iii) BN, 1) > £ - L+ 0($)



Proof.

(i), (ii) follow directly from theorem 3.2 and lemma 3.1.
(iii) can be derived as follows:

I(1-1)+ L (N-14+2)(N=1+1
B(N,I) = l_iL( ) i}\(r(N-l))( )_%
= L_ EN*+EP-IN+3N-31424 k12-ki
- 77 N(N-T)
1 ﬂ(N—1)+i-N+P—IN+3N+3i-I+2
- 77 NINY)
= - N(?lvz:T)' +0(4%)

= F-—fr+oF).

Theorem 3.4 [5]

Let G = (V,E) be an undirected graph with |V| = N, |E| = M. Let k be a natural

number and let M > 90kN1+1/% Then G contains a cycle of length 2! for every integer I,
k <1< knl/k,

Corollary 3.5
Let I be even; 4 < I < 4y/N. Then

(i) a(N,l) < 180NVN.
(i) a(N,!) < 180NVN + LN(N - 1).

(i) B(N,1)> 1 - 180F

Proof.
Use Theorem 3.4 with k = 2. ]

Next we derive some new results for graphs with two types of nodes. These results will
be used in section 6.

Theorem 8.6

Let G = (V, E) be an undirected graph, with [V| = N, [E| = M and let V = V; u Va,
‘/luvv2=07 IVII =N, I%I = N,.

Let l4, I; be natural numbers, such that

h 2> 'I'Nl +3,

I3 > ;N2+3,

FN(N = 1) = M < §Mi(N; — 1) — (457) = (Ma-h+2),
3 1 la=1 Na-3o+2
7N(N—1)—M<5N2(N2—1)_(22)_(223 ).

Let 3< k1 < 11,3 < k3 < I5. Suppose IN(N - 1) = M < Lkyky).
Then G contains a cycle with exactly k; vertices from V1 and k; vertices from V5.



Proof.
First consider the subgraph of G, induced by V1, G[V1]. There are at most IN(N-1)-M <
PNV - 1) - (05 - (M=1+2) _ 1 unordered pairs (v,w), v # w, which correspond to
a non-edge in G. It follows that G[V1] contains at least ("2“ N4 (N1-211+2) + 1 edges, and
hence, by theorem 3.2 it contains a cycle with k; vertices. With a similar argument one
shows that G[V;] contains a cycle with ks vertices.

Now consider two fixed cycles, one in G [V1] with length k; and one in G|[V5] with length
k3. Let the vertices in the cycle in V; be numbered vy, V1,...,Vk-1; and the vertices in
the cycle in V; be numbered WOy Wiy« v vy Whyy.

Suppose now that G does not contain a cycle with exactly k; vertices from Vi and
k3 vertices from V,. Then for all 45, 0<i<k -1,0<j<ky—1: (vi,wj) € E =
(”(t’+l)modk1 » W(i+1)modk,) & E. If this is not the case, then one can construct the desired
circuit, as in figure 3.

Figure 3.1.

It follows that there are at most 3(k1k2) pairs (v;, wj) with (v;, w;) € E. Hence there are
at least 3kqk; pairs (v;,w;) corresponding to a non-edge, so in(n — 1) — |E| > Fkiks.
Contradiction. o

Corollary 8.7
Let G = (V,E) be a directed graph, with [V| = N, |E| = M, and let V = Vi uV,,
inVa =0, [Vi| = Ny, |V3] = N,
Let I, I; be natural numbers, such that
ll > %‘Nl + 3,
la > 3N; + 3,
N(N - 1) -M< %Nl(Nl — 1) — (11;1) - (N1—%l1+2),
NN =1) - M < 3Na(N; - 1) = (257) — (Ma-la+2),

Let 3< ki <13, 3 < k2 < 1,. Suppose N(N ~1) - M < Ykyks).
Then G contains a cycle with exactly k; vertices from Vi and k; vertices from V.
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Proof.
Similar to lemma 3.1. m|

4 Lowerbounds for unidirectional rings with certain ring
sizes

In this section we consider unidirectional rings, and assume that the ring size n is a power
of 2. We prove a lowerbound of (3 = F)nlogn — O(n) messages, for the average case on
unidirectional rings, with index set I, with [I| > ¢n, 1 < ¢ < 2. For 1] > n2, we prove
a lowerbound of inlogn — O(n) messages, which improves a lowerbound of Duris and
Galil [9].

For our analysis we first remark that as links operate in a FIFO-manner, the number
of messages sent does not depend on the relative time it takes to send messages, in the
unidirectional case. So we may as well assume that all processors start simultaneously at
time 1, and each message takes unit time. As a consequence, it only depends on the id’s
of thet — 1 processors, directly preceding a processor ¢, and its own id, whether or not
processor ¢ will send a message on time ¢. (This technique is very similar to techniques
used in [18]).

Now consider some fixed ring size n and index set I. Let A be an asynchronous
unidirectional leader finding algorithm for ring size n and index set I.

We may assume that after completion of the algorithm, every processor knows the
identity of the leader. (Other variants differ in O(n) messages, at most. )

Lemma 4.1

For all r € Dy(I), and t < n — 1, there is at least one processor that sends a message at
time ¢, on a ring labeled with r, when executing A, if Il > n+1.

Proof.

Suppose not. Suppose Processor ¢ becomes the leading processor. At time t, processor i —1
(or n, if i = 1) cannot distinguish the case that processor i has identity r;, or processor 3
has an identity, not in r. Contradiction. ]

For all k < 1n, we now define for each § € Xi(I) the following directed graph G(S) =
(8, E(S)), by E(S) = {(s,?) | s, € S; processor 2k will not send a message between time
k+1 and 2k, on a ring labeled with r € D,(I), with s =7, ---r and ¢ = Thel®* T2k}

Lemma 4.2
Let k|n, k < Ln;let S € Xi(I). Then G(S) does not contain a cycle with length %.

Proof.
Suppose G(S) contains a cycle with length % and let s!,. .., s¥ be the successive nodes
on this cycle. Let r = g1 .52....4%. Now consider an execution of A on a ring labeled

with r. (Note that r € D,(1).)

It follows from lemma 4.1 that there is at least one processor that sends a message
at time 2k. So suppose processor (ik + 7),0 < j < k — 1 sends a message at time 2k.
Then processor ik (or processor n, if i = 0), sends a message between time k + 1 and



2k. It follows that (s-1,s%) = (T(i-2)k41 - - ST (i=1)ks T(i=1)k+1 - - - Tik) € E(S). (Or,if i = 1,
(s%,s!) ¢ E). Contradiction. o

Theorem 4.3

Let k|n, k < in. Then the number of messages, sent on a unidirectional ring with known
ring size n between time k + 1 and 2k, averaged over all ring labelings r € D,([), is at
least A(| 1], 2) - .

Proof.

Consider some S € Xi(I). Since a non-edge in G(S) corresponds to a message, sent by
processor 2k, between time k + 1 and 2k the average number of messages sent by pro-
cessor 2k between time k + 1 and 2k, over all rings, labeled with r € D,(I), which are
derived from S, is at least ,6([1{_1 1, £). Note that each r € Dy(I) is derived from the same
number of S € Xi(I). It follows that the average number of messages, sent by processor

2k between time k + 1 and 2k is at least ﬂ([li-lj, ). The result now follows by symmetry,
because each processor can be taken as processor 2k. O

We are now ready to prove the main results in this section.

Theorem 4.4

Forall ¢, 1 < ¢ < 2, and all leader finding algorithms on unidirectional rings, where
Pprocessors know the ring size n, the average number of messages sent on a ring of size n, n a
power of 2, over all ring labelings r € Dy(I), with |I| > en, is at least (- %)nlogn—-0(n).

Proof.

Denote the average number of messages, sent between time 2‘ + 1 and 2+, over all

7 € Dy(I), by av(2¢ + 1,241). We now have the following lowerbound for the number of
messages which must be estimated:

logn—2 . 1 logn—2 III n
g{ av(2' +1,2%1) > ; Bl o
logn—-2 n n 2 1
2 _ 2| _o=
> &\ (U;.JJ) o)
ST vl EANEEIPYE 2 B
- =1 ITI I—IT (12—{1)2 - ;{
1 1 logn—2 1
> n ;logn-—c—zlogn— Z 0(2—' — O(logn)
=1

1 1
= (; - c—z)nlogn - O(n).

By taking a somewhat larger index set, one can improve the constant by a factor 2.



Theorem 4.5
For all leader finding algorithms on unidirectional rings, where processors know the ring

size n, the average number of messages sent on a ring of size n, n a power of 2, over all
ring labelings r € Dy(I), with |I] > n2, is at least snlogn — O(n).

Proof.
logn—2 III n logn—-2 1 180 ]_{l 1
— . —— -_¢ [ -— .
; nﬂ(l_z'.j,zi)zn ; 5 (12_1'1)_1 2nlogn O(n)

5 Lowerbounds for bidirectional rings for certain fixed ring
sizes

In this section we consider bidirectional rings with fixed ring size n, with n a power of 2,
or of the form 2. 3!

The lowerbounds are of the type, where we average over all rings, labeled with strings
€ Dy(I), but where the delay times may be chosen in any manner, in order to obtain
an as large as possible number of messages. All lowerbounds for the average number of
messages for leaderfinding on asynchronous rings we know of, are of this type. Here we
assume that all message delay times are equal, i.e. each message takes unit time. Further
assume that when a processor receives two messages (from both neighbors) at the same
moment, it handles the left one first. In this way we lose the implicit non-determinism,
associated with asynchronous, bidirectional rings.

So we may assume that we have an asynchronous, message-driven algorithm, running
on a synchronous ring. We again assume that all processors start to send at time 1. Note
that it depends only on the id’s of the processors with distance at most ¢ — 1 to processor
i, whether or not processor i will send a message at time ¢ or not.

Lemma 5.1

Let [I] > n + 1. Then, for all r € D,(I)and t < %n, there is at least one processor that
sends a message at time ¢ on a ring labeled r.

Proof.
Similar to lemma 4.1. 0

Now for all ¥ < %—n, 2|k, ! < 2k and each S € Xi(I) we define the following directed graph
Hi(S) = (8, E(S)), by Ey(S) = {(s,t) | s,t € S; when a ring is labeled with r € D, (1),
With 8 = ry...rg, ¢ = r4y1.. .72k, then none of the processors 1k + 1, tk+2,..., 13k —
1,11k sends a message at time [}.

Lemma 5.2

Let kln, 2|k, 1 < 3k, k< In, S € Xi(I). Then H(S) does not contain a simple directed
cycle with length -



Proof.

Suppose H;(S) contains a cycle with length %, say sy, .. .,s(?. Then on a ring labeled

182 -+ Sn no processor sends a message at time /. Contradiction. O

Theorem 5.3
Let k|n, 2|k, 1 < 3k, k < %—n. Then the average number of messages, sent at time [, over
all rings, labeled with r € D,(I), is at least B-8( l{-l, 2)-

Proof.

Consider some § € Xi(I). Since any non-edge in H;(S) corresponds to a message, sent at
time [, by a processor in Tk+1... 11k, the average number of messages sent by processors
5k +1,...,1}k at time [ is at least ,B(li-l, £). Again we argue that each r € D,(I) is
derived from the same number of S € X k(). It follows that the average number of mes-
sages, sent by processors 1k +1,..., 11k at time I, over all r € Dy (1) is at least §( I-;;-l, o).

The result now follows by symmetry, as every k successive processors can be taken as
processors 1k +1,..., 11k ]

Theorem 5.4

Forall ¢, 1 < ¢ < 2, and all leader finding algorithms on bidirectional rings, where
Processors know the ring size n, the average number of messages sent on a ring of size n, n
a power of 2, over all ring labelings r € D, (I), with |1 | 2 en, is at least (L — L)nlogn -
O(n).

Proof.
It follows from theorem 5.3 that between times 1k+1and 1k, at least ﬂ(]{l, £)-2 messages

are sent, on the average over all ring labelings r € D,,(I). Now the result follows, similar
as in theorem 4.4, 0O

Similar as in theorem 4.5, one can improve the constant by taking [I] > n2. In this way
one obtains basically the same lowerbound as Duris and Galil [9], with the main difference
that |7] is here polynomial instead of exponential in n.

Theorem 5.5
For all leader finding algorithms on bidirectional rings, where processors know the ring

size n, the average number of messages sent on a ring of size n, n a power of 2, over all
ring labelings 7 € Dy(T), with |7] > n2, is at least gnlogn — O(n).

For n of the form 2m!, we can obtain lowerbounds with (asymptotically) a better constant
factor. Define for n even: f(l,n) = min{k > 2! | 2|k and kin}.

Lemma 5.6 .

rﬂ
1 1
= n. —>ZH, - .
Let n = 2(m!) Thengf(l,n) > 2H,, O(m)
Proof.
Write



g me1 i GHO(E) .
Lim < 2% X mw

I=1 =1 j=1
i

m-1 i_n 1

Z((£+ 07 G+ DOaGEI)

i=1 j=1

v

m—1 1

= Z E(H;— 1)

=1

m~1

) %ln(i) - 0(m)

i=1

v

= Hn((m-1)!) - O(m)

= %H,, - O(m).
(In(z) denotes the logarithm of z to the base e) a
Note that Sf% 7o = £4% 7 £ OL).

Theorem 5.7

For every ¢ > 0, there are infinitely many » € N*, such that for all leader finding
algorithms on bidirectional rings, where processors know the ring size n, the average

number of messages sent on a ring with size n, over all ring labelings r € D,(I), with
[I] > n2, is at least (- e)nA,.

Proof.
It follows from theorem 5.3 that one can estimate the desired average by

}n
n_ | n
2 LR ”(f(t,n)’f(z,n))

§ n 1 180\7'}{:&7

rre i B 7
=1 f(l7 n) 2 f(’,ﬂ -1

in 180, /AL
E T&IT = 0(1).

._I.:_
=1 \n)—1

When we take n of the form 2 - (m!), then from lemma 5.6 and the observation that

Note that
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1
mn

E 1 =§ ! -0(1)
= f(,n) i= f(,n) ’

it follows that

1
rﬂ
n 1 1
Z 7 5= o, — O(m).
o fn) 24
The result follows now easily by taking m large enough by given € > 0. 0O

Note that 1nH, ~ 0.173nlogn.

6 Lowerbounds for arbitrary fixed ring sizes

In this section we prove an (nlogn) lowerbound on the average number of messages on
bidirectional rings with any fixed ring size n (so e.g. not only for n a power of 2). The
same result for unidirectional rings follows directly as a corollary. Again |I| may be as
small as en, for any constant ¢ > 1. ’

We will assume that || = cn, with 1 < ¢ < 2,c a constant. For larger index sets, the
result follows easily from the result for smaller index sets.
Now suppose n € Nt ig given. We will use the following lemma, which can be found

in [1].
Lemma 6.1

Let p,q be two positive integers, such that (p, g) = 1, i.e. p and q are relatively prime.
Then, for all n, there exist integers r, s, such that rp + 8¢ =nand |r— g| < Lﬁzﬂ

We use this lemma to derive the following result.

Lemma 6.2 )
Let c! be a constant, with 0 < ¢! < 1. Let ¢ = %53;[%} For all k < cly/n, there are Iy, 5,
such that ljk + lp(k+ 1) = n and (O<h<h<eyoro<iy < L < ).

Proof.
From lemma 6.1 it follows that one can find l4,l;, such that Ik + la(k +1) = n, and
Ill—l2' < 2k+1 , hence 'll_IZI < k. Also it follows that g— > h+l, > k—:—l > ﬁ-\/ﬁz zal-)-yk

Il <1y then by — Iy < (e1)2(ly + Ip), hence I < (%%;p;}) li. 13 < Iy, then similarly
11 S 0212. a

We make the same assumptions on the message delays, etc. as in section 5. Let K <
7lelv/n] be some fixed “time”, and let k = 2K. Let Iy,l, as indicated in lemma 6.2 be

given. Let ¢3 = [_%1 |- Note that ¢3 = O(c), i.e. is bounded by constants.

We now introduce the concept of good string sets. A good string set S is a collection
of strings € Di(I) U Dyy1(I), such that

® S contains exactly ¢3- strings of length k, i.e. € Di(I)

11



® S contains exactly ¢3 -, strings of length k + 1, i.e. € Dy (1)
* All strings in S are disjunct, i.e. Vs, t € S, < length(s), j < length(t) : s # t = s; #
t;.

Let Yi(I) denote the set of all good string sets.

For a good string set S, define a graph Gs = (S, Es), with Eg = {(s,2) |
On a ring, with a consecutive part labeled by s - ¢, no processor with label in
SK+1 - - Slength(s)!1 - - - tiength(t)— K Sends a message at time K }.

Lemma 6.3

G5 does not contain a cycle with /; nodes, representing a string with length k; and I,
nodes, representing a string with length k,.

Proof.

Suppose s;,... »3l,+1, is such a cycle. Then length(s; -.... 8t+1;) = liky + laky = n, and
o processor on a ring labeled with s, -. ... 31, +1, sends a message at time K. O
Lemma 6.4

Let § € Yk(I). Let C4 = ﬂm}w. Then IS’(ISI ot 1) - lE(S)I 2 C4|Sl2.

Proof.

From lemma 6.3 and theorem 3.6 it follows that one of the following 3 cases must hold:
L ISI(IS| = 1) - |E(S)| 2 H(c*h)(c% — 1) — (h51) - (Fhh+2),
2. 151081 = 1) = 1B(S)] 2 }(¥h)(e%h — 1) - (21) — (ls42),
3151081 - 1)~ |ES)| 2 bty

Case 1. |S(1S] - 1) - | E(S)| > H(e31y)(c3 — 1) - (177) - (Phsh+2)

=3((c®?-1—(c3 - 132 + o)
=c3(l)2 + o(h)
> ¢ (clithhs)? > ot)s[2.

Case 2. Similar as case 1.

2
Case 3. |SI(151 - 1) - |E(S)| 2 $hiz > § (4t4)” > c¥512. o

For a good string set S, the set of ring labelings that can be derived from S is defined by

N(S)= {sl.s2., . . .gh+k¢ Dn(I) | st,...,8h+2 € §; exactly I; of the strings
sty --, st have length k; exactly I; of the strings s!,--. sh+2 have
length k + 1}.
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We denote the number of messages sent at time K on a ring, labeled with r € D,.([ ) by

M(K,r). For s € N(S), we denote the i’th string from s, that is used to form s by s, i.e.
s=3sl.g2... .311+12, with s!,82,... shth ¢ g,

Lemma 6.5
Let S € Yi(I), and s € N(S).

Then M(K,s) > jl{i € {1, -, li+1} | (s, s°®1) ¢ E(S)}, where i®1 = i+1, if i < Iy +1q
and (h+5L)®1=1.

Proof.

Let i € {1,---,1; + 13 — 1} be given. (For i = I + I3, the analysis is similar.) Sup-
pose (s',s+1) ¢ E. By definition, there is at least one processor with identity in
{(8) k41, (8 N1ength(si)> (871)1, - - -, (81 lengti(si+1)-k }, that sends a message at time

K on a ring labeled s. Note that each message can be counted at most twice in this way.
O

Denote 4; = {(s,t) | s, € S, s # t,length(s) = length(t) = k},
Az ={(s,t) | s,t€ 5,5 #1, length(s) = k, length(t) = k + 1},

Az ={(s,t) | s,t€ S, #1, length(s) = k + 1, length(t) = k} and
Ags={(s,t) | s,t€ S,s#1, length(s) = length(t) = k + 1}.
Denote F(S) = {(s,t) | s,t € S,s # ¢, (s,t) € E(S)}.

Lemma 6.6

D) Hr € N(8) | (r,72) € 41}| = O(IN(5))).
(i) [{r € N(S) | (r',7?) € 42}| = O(IN(5))).
(i) {r € N(S)| (r*,72) € As}| = O(IN(S))).
(iv) {r € N(S) | (r',7?) € Aq}| = O(IN(S))).

Proof.
(i) Note that | N(S)| = (‘;’11)(‘;':) “(hi+1D)!, and |{r € N(S) | length(r!) = length(r?) = k)|
= 2(%). (01111:22) (7’2’) (h+l-2)! = |N(S)|. Ctlllitlazt) By g 6.9 the result follows.

1{l1—-1

(ii) (iii)(iv) Similar. m]

Lemma 6.7

There exists a constant ¢5, such that for all S € Ya(I): [{r € N(S) | (+1,72) ¢ E(S)}| >
c5|N(S)]. (c® does not depend on k or n.)

Proof.

Observe that |{r € N(5) | (r',r?) € 4; N F(S)H = Hr € N(S) | (r1,72) € A} -
|A1 N F(S)|/|A1]. (The argument here is that every pair (rl,r?), with length(rl) = k

and length(r?) = k will appear as often as “start” of an r, derived from S.) The same
observation is valid for Az, Az and A4. It now follows that

Hre NSO g B = Y l{re N(S)| () € 4, N F(S)}H

=1
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_ s HreN®) | () € A} -14;n F(S)|
2 |4

=1

. O(|N(S
= Lo i o)
= 90N(s))
= @R (41420450 4) N F(S))
= O(IN(5))).

(Use lemma 6.2, 6.4 and 6.6.) ]

Note that, by symmetry, it also follows that for all S € Ya(2), i € {1,---,l; + Ib}:
[{r € N(S) | (r!,r®') ¢ E($)}| > S|N(S)|, where i ® 1 = i+ 1 for i # I; + I3, and
(11+12)GB1= 1.

Now we are ready to prove the main result of this section.

Theorem 6.8

For all ¢ > 1, there exists a C > 0, such that for all n € N*, and all leader finding
algorithms on bidirectional (or unidirectional) rings where processors know the ring size

n, the average number of messages sent, over all ring labelings r € D,(I), with lI| > en,
is at least Cnlogn.

Proof.

Consider a good string set S € Yi(I). The total number of messages sent at time K, over
all s € Dp([) derived from S, is

> MEK,8>3 ¥ Hi€ {1, b+ 1} | (o, 5 ¢ E(5)}|

s€N(S) s€N(S)
L+l Lo
=} 2 Hs e N(S) | (¢,5%) ¢ B(S)}| > (h+b)-5-INS).
i=1

Hence, the average number of messages sent at time K, overall § ¢ D, (I), derived from
Sis Qh+1;) = 9 %) As each S € D,(I) is derived from the same number of good string
sets, it follows that the average number of messages, sent at time K over all s € D,,(I) is

Ug)-
As this is valid for all K < }|c!y/n), the theorem now follows. ]
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