The MAXIMUM CuUT and MINIMUM CuT INTO
BOUNDED SETS problems on Cographs

Hans L. Bodlaender

RUU-CS-87-12
August 1987



The MAXIMUM CuUT and MINIMUM CuT INTO
BOUNDED SETS problems on Cographs

Hans L. Bodlaender

Technical Report RUU-CS-87-12
August 1987

Department of Computer Science
University of Utrecht
P.O. Box 80.012
3508 TA Utrecht
the Netherlands






The MAXiMUM CUT and MINIMUM CUT INTO
BOUNDED SETS problems on Cographs*

Hans Bodlaender
Dept. of Computer Science, University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht, the Netherlands

August, 1987

Abstract

In this note we give simple ©(n?) algorithms for the unweighted
Max CuT problem and the unweighted MiNIMUM CUT INTO BOUND-
ED SETS problem on cographs. The algorithms can easily be modified
such that they actually yield the partitions with the desired charac-
teristics. The weighted variants of the problems are shown to be NP-
complete, when restricted to cographs (and even complete graphs),
even when all weights are either 1 or 2.

1 Introduction

As it is generally believed that NP-complete problems are not solvable in
polynomial time, much research has been done on the complexity of NP-
complete problems. In [4] an overview is given of the known complexity
of some well-known NP-complete problems when restricted to a number of
important classes of graphs. It appears that some classes will usually render
a problem to be solvable in polynomial time (e.g., the classes of trees, partial
k-trees, or interval graphs), while other classes will in general not help to
‘ease’ the problem (e.g., the classes of degree k-graphs or planar graphs).
One of the classes which seems to make most NP-complete graph prob-
lems ‘easy’, i.e., solvable in polynomial time, is the class of cographs. A large

*This research was done, while the author was visiting the Lab. for Computer Science
of the Massachusetts Institute of Technology, with financial support by the Netherlands
Organization for the Advancement of Pure Research Z.W.O.



number of NP-complete graph problems has been shown to be solvable effi-
ciently, (i.e., in polynomial time with a very small degree of the polynomial),
when restricted to cographs in [1].

In this note we focus on the MAX CuT and the MiNIMUM CUT INTO
BOUNDED SETS problems on cographs. We give some simple quadratic
algorithms that solve the unweighted variants of these problems, (which
are NP-complete for general graphs) and prove the weighted variant of the
problems to be NP-complete even if all weights are either 1 or 2.

2 Definitions

The MaxX CuT problem is the problem where given a graph G = (V, E), a
weight w(e) € Z* for each edge e € E, and a positive integer K, one asks
whether there exists a partition of V' into disjoint sets Vi, Va, such that the
sum of the weights of the edges from E that have one endpoint in V; and
one endpoint in V; is at least K.

The SIMPLE MAX CuT problem is the variant of the problem where all
weights are 1, i.e., we ask for a partition of V into disjoint sets V;, V,, such
that the number of edges in E that have one endpoint in V; and one endpoint
in V; is at least K. The SIMPLE MAX CUT problem is NP-complete [3].

The MiNiMUM CUT INTO BOUNDED SETS problem is the problem where
given a graph G = (V, E), a weight w(e) € Z+ for each edge e € E, specified
vertices s, t € V, a positive integer B < |V|, and a positive integer K, one
asks whether there exists a partition of V into disjoint sets Vi, Va, such that
s €V, 1€V, [V < B, |V5| < B, and the sum of the weights of the edges
from E that have one endpoint in V; and one endpoint in V; is at most K.

The SIMPLE MINIMUM CUT INTO BOUNDED SETS problem is the variant
of the problem where all weights are 1, i.e., we ask for a partition of V into
disjoint sets Vi, V3, such that s € V4, t € V3, |Vj| < B, |Va| < B, and the
number of edges in E that have one endpoint in V; and one endpoint in V;
is at most K. The SIMPLE MINIMUM CUT INTO BOUNDED SETS problem
is NP-complete, even if B = |V|/2 [3].

We use the following well-known characterization of the class of cographs.

DEFINITION 2.1 A graph G = (V, E) is a co-graph, iff one of the following
conditions hold.

1. [V| =1 (and hence E=0)



2. The complement of G, G = (V,E), with E = {(v,w) | v,w € V,
v# wA(v,w) ¢ E} is a co-graph.

3. There are disjoint cographs Gy = (V, Ey),...,G = (Vi Ex), (i.e.,
t#£J=>VinV; =0 ) and G is the union of Gy,...,Gy, ie, G =
GiU-- UG = (Vlu---qu,Elu---uEk).

To each cograph G one can associate a corresponding rooted tree T,
called the “cotree” of G, in the following manner. Non-leaf nodes in the tree
are labeled either with U (“union”) or with - (“complement”). A complement
node has exactly one child-node in the cotree. To each node of the cotree
one can associate a cograph in the following way. A leaf-node corresponds
to a cotree with one vertex and no edges. A union-node corresponds to
the (disjoint) union of the cographs corresponding to its children in the
tree. A complement-node corresponds to the complement of the cograph
corresponding to its child in the tree. The root-node of the cotree now
corresponds to the cograph G which is represented by this cotree.

In [2] it is shown that in linear time one can recognize whether a graph
is a cograph, and for cographs find the corresponding co-tree.

By noting that G; U---UGr_ UG = (G1U---UGg_1) U Gg it easily
follows that we can restrict ourselves to binary tree, i.e., we may assume that
each union-node has exactly 2 children. By removing all pairs of adjacent
complement-nodes from the tree, one obtains a cotree, with O(|V|) nodes.

3 A quadratic algorithm for SiMPLE MAX CUT on
cotrees

We now will give an informal description of our algorithm for the SIMPLE
Max CuT problem on cotrees. The first step of the algorithm is to calculate
the cotree of G, as indicated in the previous section. Next, recursively, we
will calculate for each node & in the cotree T a table. Let H = (W, F)
be the cograph, corresponding to H. The table will contain for each 7,
0 < i < |W], two numbers maxc(¢, H), and minc(¢, H), with maxc(i, H)
denoting the “maximum cut of H with |V;| = i” and minc(é, H) denoting
the “minimum cut of H with |V;| = 4”, i.e.,

o maxc(i, H) = max {|{(v,w) | v € V1, w € V3}| | iUV = W, V;nV; =

8, [Wa| = i}
e minc(i, H) = min {|{(v,w) | ve Vj, w € V3}| | iUVa = W, V;nV, =
8, V1] = i}



It is obvious that one can calculate the maximum cut of a graph G
in time linear in |V|, after the table with all values of maxc(i, G) has been
calculated. So it remains to show that the tables can be calculated effectively
for each node in the cotree.

It is obvious that the following table must be used for a leaf of the cotree.

i | maxc | minc

For complement-nodes in the cotree, one can use the following lemma in
order to calculate the maxc- and minc-tables.

Lemma 8.1 Let G = (V, E) be a graph with |V| = n. Then
1. maxc(i,G) = i(n — i) — minc(i, G).
2. minc(i, G) = i(n — i) — maxc(i, G).
Proof. Consider a partition V3,V; of V with |[Vj| = i. Note that

Hov,w)e Elve ViAw e WY +{(v,w) e E|v e ViAw € V2H
= [V1| - [Va| = i(n — i). Hence the lemma follows. Q.E.D.

The lemma suggests a procedure to calculate in linear time the table for
a complement-node from the table for its child-node. As there are at most

O(|V]) complement nodes in the cotree, the total work of calculating the
tables for complement nodes is bounded by O(|V[?).
For union-nodes we use the following lemma.

Lemma 3.2 Let G = (V,E), H = (W, F) be disjoint graphs. Then:
1. maxc(i,GUH) = gnazc,(ma.xc(j, G) + maxc(i — j, H)).
St

<5
2. minc({,GUH) = oxéli,g_(minc(j, G) + minc(i — j, H)).
<5<i
Proof. :
1. maxc(i,GU H) = fmax. {{v,w) |veViAw eV} | ViUV, =
<<

VUW, vinV, =4, |V1|=i:|VlﬂV2|=j}=(}2?§..{|{(”,w)|”EVan’

we€VNVH+ {{(v,w) [veVinW,weVanW} |ViuVz=VUW,
inVa =0, V| =i, VinV,| =5} = Qax(maxc(j, G) + maxc(i — j, H)).



2. Similar. Q.E.D.

It follows that one can calculate the table for GU H in O(|V|-|W]) time
from the tables for G = (V, E) and H = (W, F). Let u(G) denote the total
time needed for the calculations of tables in all union nodes in the cotree
of the cograph G. Let u(n) be the maximum of u(G) over all cographs
G = (V, E) with |V] = n. For all cographs G = (V, E), either G = H, U H,
or G = H,U H; or V| = 1. (H, H, disjoint graphs.) In the latter
case u(G) = 0. In the former two cases, let H; = (Wh, 11), Hy = (Wy, E),
Wi = mq, |W,| = m,. It follows that 4(G) < u(Hy)+u(Hz)+c-my-my, for
some constant ¢. Hence for all n > 1, u(n) < lréliagf‘i-(n— 1)+ u(d)+u(n—1);

and u(1) = 0. With induction it follows that ¥n : u(n) < 2c-n2. Hence
the total work needed to calculate the tables for all union nodes takes time,
quadratic in |[V].

Theorem 8.8 There ezists an O(n?) algorithm for SIMPLE MAX CUT on
cographs.

We remark that it is not difficult to modify the algorithm, such that
it actually will yield a partition which gives the maximum cut without in-

creasing the time by more than a small constant factor. We leave the (easy)
details to the reader.

4 Unweighted MiNtMUM CuT INTO BOUNDED SETS
on cographs

In this section we show how the algorithm of section 3 can be modified, such
that it solves the unweighted MINIMUM CUT INTO BOUNDED SETS problem

on cographs. We use the following variant of maxc and minc, for some given
vertices s,t € V.

o maxc'(i, H) = max {|{(v,w) |[veEe Vi, we B} | VauVy = W
Van2=0,|V1|=i,.seV—>se%,teV—>teV2}.

’

e minc'(i, H) = min {{(v,w) | v € Vi, w € V}}| | ViUV = W, Vi NV, =
Q),|Vl|_—_i,seV—>seV1,teV—>teV2}.

The algorithm is very similar to the algorithm of section 3. In fact, the
only changes that have to be made, are in the procedure to calculate the
tables for leaf-nodes, and in the procedure to look up the answer from the



table of the root-node. For union-nodes and complement nodes the same
procedures can be used, as shown by the following lemmas.

Lemma 4.1 Let G = (V, E) be a graph with |V| = n. Then
1. maxc'(i,G) = i(n - i) — minc'(4, G).

2. minc'(4, G) = i(n — i) — maxc'(, G).
Lemma 4.2 Let G = (V,E), H = (W, F) be disjoint graphs. Then:
1. maxc'(i,GUH) = ()rg.agg(ma.xc’(j, G) + maxc'(i — j, H)).
<<t
2. minc'(i, GUH) = 0Iéli_1<1,(minc'(j, G) + minc'(i - j, H)).
<I<i
Hence we have:

Theorem 4.8 There ezists an O(n?) algorithm for SIMPLE MINIMUM CUT
INTO BOUNDED SETS on cographs.

5 NP-completeness for the weighted variants

In this section we will proof that the weighted variants of the problems (on
cographs) are NP-complete, even if all weights are either 1 or 2. To be
precise, we will proof NP-completeness of these problems restricted to the
class of all complete graphs, which clearly is a subclass of the cographs.

Theorem 5.1 Weighted MaX CUT with all weights in {1,2} restricted to
complete graphs is NP-complete.

Proof. It is obvious that the problem is in NP. In order to proof that
the problem is NP-hard, we use a transformation from SIMPLE Max Cut
(without restrictions on the graphs). Consider an unweighted graph G =
(V,E); let |[V| = n. Let ws,...,w, be n new vertices, not in V. Let
W ={wy,...,wn}. Let H = (V UW, F) be the complete graphon VU W,
Now we label each edge € in H with a weight w(e) that is either 1 or 2, as
follows: w(e) = 1,if e  E, and w(e) = 2, ife € E.

Now we claim that there is a partition of V in disjoint sets V;, V3, such
that at least K edges are going from a vertex in V; to a vertex in Vo, if and
only if there is a partition of VU W in disjoint sets V{, V], such that the



sum of the weights of all edges going from a vertex in V{ to a vertex in V
(in H) is at least K + 1n?.

First suppose we have a partition of V in disjoint sets V3, V3, such that
at least K edges are going from a vertex in V; to a vertex in V3. W can
be partitioned into disjoint sets Wi, and W, such that [Vi| = |W;| and
|V2| = |W1| Let w =ViuWjand V! = VoUW,. Note that 'WI = I‘,2l| = %n.
It follows that the sum of the weights of all edges between V{ and V{ is at
least K + |V{| - |V}| = K + in?.

Next, suppose we have a partition of V UW in disjoint sets V{, V4, such
that the sum of the weights of all edges going from a vertex in V{ to a vertex
in V4 (in H) is at least K + in2. LetVi=V{nVand V2 =VJNV. Let L
be the number of edges in E going between a vertex in V; and a vertex in
V2. Note that K + In? < L + |V/| - |V{|. Because |V{| + |[V{| = n, it follows
that [V{| - [V{| < 1n? and hence K < L.

So, we have a polynomial transformation from the SIMPLE MAX CUT
problem (without restrictions on the graphs), to the weighted Max CuT
problem on complete graphs with weights in {1,2}. Hence the latter is
NP-complete. Q.E.D.

In a similar way one obtains the same result for the MINIMUM CUT INTO
BOUNDED SETS problem. Use for instance that the unweighted MINIMUM

CuT INTO BOUNDED SETS problem is NP-complete, even if one requires
that K = |Vl/2

Theorem 5.2 Weighted MINIMUM CUT INTO BOUNDED SETS with all
weights in {1,2} restricted to complete graphs is NP-complete.

6 Some final remarks

In this note we determined the complexity of the weighted and unweighted
variants of the Max CuT problem and the MiNiMuM CUT INTO BOUNDED
SETS problem on cographs. Some open problems are whether better (ie.,
O(n) or O(nlogn)) algorithms exists for the unweighted variants, and
whether polynomial algorithms can be found for larger classes of graphs,
e.g., the permutation graphs.

The technique used in this note seems to be useful also for other problems
on cographs. For instance, with similar means, one can design polynomial
algorithms for DoMATIC NUMBER, MINIMUM MAXIMAL MATCHING, PAR-
TITION INTO TRIANGLES, PARTITION INTO FORESTS, CUBIC SUBGRAPH,
and probably others when restricted to the class of cographs.



References

[1] D. Corneil, H. Lerchs, and L. Stewart. Complement reducible graphs.
Disc. Applied Math., 3:163-174, 1981.

[2] D. G. Corneil, Y. Perl, and L. Stewart. A linear recognition algorithm
for cographs. SIAM J. Comput., 4:926-934, 1985.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide

to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

[4] D. S. Johnson. The NP-completeness column: an ongoing guide. J. of
Algorithms, 6:434-451, 1985,



