Verification of
Connection-Management Protocols

Anneke A. Schoone

RUU-CS-87-14
August 1987

Vakgrotp Informahca

gg;lrapesﬁdn $

3684 CD Utrech
mbm«aoom aseaTAumem
Teletoon 030-83 1484
The Netheriands

Verification of
Connection-Management Protocols

Anneke A. Schoone

Technical Report RUU-CS-87-14
August 1987

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
the Netherlands.

VERIFICATION OF CONNECTION-MANAGEMENT PROTOCOLS

Anneke A. Schoone

Department of Computer Science, University of Utrecht,
P.O.Box 80.012, 3508 TA Utrecht, the Netherlands.

Abstract. It was informally shown by Belsnes that k-way handshakes for connection
management can be reliable only if k24, even in the case that a single message has to be
transmitted reliably during each connection. We give a rigid proof of this fact using the
Krogdahl-Knuth technique of system-wide invariants. The proof leads to a better insight
into the subtleties of connection management, resulting in several shorter handshakes
which are reliable in slightly different models of communication.

1. Introduction. Consider a communication network in which processors want to transmit
many short but independent messages to each other. A processor can incorporate such a mes-
sage in a packet and send the packet over to the destination processor. However, the commun-
ication network can loose packets, delay packets arbitrarily long, and deliver packets in a
different order than the order in which they were sent. Clearly a packet is not delivered before
it is sent.

We consider the problem of designing protocols that handle the communication of mes-
sages correctly, in the sense that there is no loss or duplication of messages (cf. Belsnes [1]).
To specify this more precisely, suppose processor P wants to transmit a message m to Q. m
is said to be lost if P thinks that Q received m while this is not the case. m is said to be
duplicated if Q receives two copies of m from P and thinks they are different messages. If a
processor P has a message or a sequence of messages to send to Q, it sets up a temporary con-
nection with Q, which is closed down as soon as P knows that Q received the message(s) (or
that Q is not in a position to receive them). If only a single message is transmitted during
every connection, we talk about single-message communication. Note that this does not mean
that only a single packet is sent over, as we might very well use a so-called k-way handshake,
i.e., an exchange of k different packets between two processors. If a sequence of messages is
sent over during one connection, we talk .about multiple-message communication. It is
assumed that it is not feasible to maintain any information about previous connections. As a
consequence, it is easier to prevent loss and duplication within one and the same connection,
than to do so between connections. By restricting ourselves for the moment to single-message
communication, the latter problem reduces to the problem of connection management.

Belsnes [1] investigated k-way handshake protocols for connection management. He
showed that it is impossible to have a protocol which ensures correct communication under the
assumptions stated above, when processors can loose their information about current connec-
tions, e.g. because of a crash. He showed also that in the absence of processor failures there

-2-

can be circumstances in which his 1-way, 2-way, and 3-way handshakes can lead to loss or
duplication. Belsnes [1] gave a 4-way and a 5-way handshake for which he showed informally
that they communicate messages correctly.

In this paper we give a rigid proof that any 1-way, 2-way, or 3-way handshake must be
liable to incorrect communication, even in the absence of processor failures. To do this, we
introduce a so-called protocol skeleton which describes only those protocol features that are
concemned with connection management. From this we obtain all the protocols Belsnes con-
sidered in [1] by setting certain parameters and prescribing a certain order of operations. The
protocol skeleton is analyzed with system-wide invariants (Krogdahl [4], Knuth [3]), and builds
on the work done in [5]. Furthermore, we give a class of k-way handshakes (for any k>4)
which ensure correct communication in the absence of processor failures. The connection
management protocols are then extended to ensure correct multiple-message communication.
We proceed by analyzing the necessary changes in the model of communication to achieve
reliable communication with shorter handshakes.

The paper is organized as follows. The protocol skeleton will be presented in section 2,
while the mathematical analysis can be found in section 3. Loss and duplication will be for-
mally defined in section 4. Since Belsnes’ protocols depend critically on the use of error pack-
ets, we will deal with them in section 5. The selection of certain parameters will be discussed
in section 6, resulting in a proof that four-way handshakes are required to achieve reliable
communication of messages. In section 7 it is shown how the basic protocol skeleton can be
extended to handle multiple-message communication. Finally, in section 8 we study what the
effect is on the correctness of the communication, if we weaken several assumptions in the

model. This leads to several shorter handshakes which are reliable for the resulting weaker
models of communication.

2. A protocol skeleton. Careful consideration of the k-way handshakes Belsnes [1] gives
for reliable single-message communication leads to the insight that the short packet exchanges
basicly follow a sliding-window protocol with window size equal to one (see [5]). That is,
inside one connection, a processor sends a packet of a certain type (number), and after receipt
of a packet of the expected type (number), it sends a packet of the next type (number). Note,
however, that the results of [5] do not carry over directly, since we do not make the assump-
tion here that the sending order of packets is preserved. On the other hand, we need not be
concerned now about sequence numbers wrapping around inside one connection, since we only
consider k-way handshakes with k small.

Our main concern is the identification of connections, to prevent confusion with earlier
connections and their packets. A connection between two processors P and Q is identified (in
accordance with Belsnes) by means of two identifiers which originate at P and Q respectively.
For this purpose, each processor has a function ’new value’ which produces a new, unique
value unequal zero each time it is called. Hence the value produced by a call to 'new value’
is different from all previous values and unguessable for any other processor. The connection
management relies heavily on the availability of such a function. (We do not go into the prob-
lem of finding such a function here. See ¢.g. Tomlinson [7].)

-3-

Although in general the communication network contains many processors and many
pairs of processors setting up and closing connections, we restrict our attention to only one pair
of processors which repeatedly want to communicate. Hence we ignore the control information
in the packets pertaining to the processor identities and assume that the packets concerning this
one pair of processors are filtered out correctly. For the moment we are not interested which
packet contains the actual message either, and thus restrict our attention to the three control
fields used for the actual connection management. For our purpose packets thus have the fol-
lowing form: <mci,yci,seq>, where mci is ‘'my connection identifier’ (i.e. the connection
identifier used by the sender of the packet), yci is "your connection identifier’ (the connection
identifier used by the receiver in case of a reply), and seq is the sequence number of the
packet within the connection.

Except that a processor needs to remember mci and yci during a connection, it needs a
constant g and a variable a (local to the connection), see [5]. Since we restrict our attention
to the connections between one pair of processors P and Q, we will only add P and Q as sub-
scripts to denote the processor to which a variable or operation pertains. The protocol skeleton
gives P the possibility to do the atomic operations Sp (send), Rp (receive) and C p (close) in
any order and as often as desired. (It is understood that a close operation has no effect if the

connection is already closed.) Both the send and receive operation provide for the opening of a
(new) connection as required.

Sp: if connection with Q closed then (*open*)

begin mcip:=new value; ycip:=0; gp:=1; ap:=0 end;

send a packet <mcip, ycip, seq> to Q where O<seq <aptgp.
Rp. receive <x,y,z>;

if connection with Q closed
then if z#0 then error (<x,y,z>)

else begin mcip:=new value; ycip:=x; gp:=0; ap:=1 end (*open*)
else if not ((x=ycip or ap=0) (*x valid)
and y=mcip (*y valid*)
and z=ayp) (*z valid*)

then error (<x,y,z>)
else begin ap:=ap+1; if z=0 then ycip:=x end

Cp: if connection with Q is open then (*close*)
begin if ap<cfp then report failure;
if ap=csp then report success;
mcip:=undefined; ycip:=undefined; ap:=undefined; g p:=undefined
end
where
ap the number of packets that P has received from Q during this connection. Thus ap=0.
gp a parameter which encodes the direction of data transfer. gp=1 if P decided to send Q

some information, and gp=0 if P opened the connection on receipt of a packet from Q.
mcip my connection identifier.

Ycip your connection identifier, which P has copied from the packet it received from Q. In

-4-

case P has received no packet yet, ycip=0.

¢fp and csp are values, only depending on gp, which are used to decide whether the connec-
tion being closed was a failure (no message came across), or a success (the message
came across). Necessarily csp>cfp.

error is a procedure which could be *ignore’ or ’send an error packet’. We will discuss what

it should do in section 5. For the moment it suffices to know that it does not change any
of the variables.

new value produces a new unique value (#0) each time it is called, to serve as an identifier of
the new connection.

validp(<x,y,z>) is a shorthand notation for the test whether the packet <x,y,z> should be

considered in the operation Rp. (It could be a retransmission of some old packet.)
Hence it is defined as

validp(<x,y,z>)= if connection with Q is closed then z=0
else (x=ycip or ap=0) (*x valid*)
and y=mcip (xy valid)
and z=ap) (*z valid*)
Sometimes we will need to specify the time when a variable has a certain value: thus ap(t)
will denote the value (possibly undefined) of the variable ap at time ¢,

3. Invariants. Since P and Q use the same operations S, R and C, lemmas that hold for P
hold for Q also, with P and Q interchanged. We will only state and prove them for one pro-
cessor. In order to formulate the invariants, we need some predicates to express events like *a

packet was sent’, *a packet was received’, ’a packet was accepted as valid’, and ’'a connection
was closed’, respectively.

Definition 3.1. An (m,y,g,a) close for P is an operation Cp, invoked at some time ¢ by P,
such that mcip(ty=m, ycip(t)=y, gp(t)=g and ap(t)=a (We consider only meaningful closes,
ie. m=zundefined). The predicate closedp(m,y,g,a) becomes true when P does an
(m,y,g,a) close.

The predicate sentp(<x,y,z>) becomes true when P does an operation Sp in which it sends a
packet <x,y,z>.

The predicate receivedp(<x,y,z>) becomes true when P does an operation Rp in which it
receives a packet <x,y,z>.

The predicate acceptedp(<x,y,z>) becomes true when P does an operation Rp in which the
received packet <x,y,z> is accepted as valid.

Thus for example, closedp(m,y,g,a)(t) is true when P did the (m,y,g,a) close at or
before time ¢.
Lemma 3.1.
¢y closedp(m,y,g,a) = mcipzm.
(2) Let t;<t, and mcip(t,)#undefined. Then
D) mcip(t)=mcip(ty) <> — closedp(mcip(ty), y.8.,a)ty).

-5.

() meipt=mcip(ty) = ((gpt1)=gp(t2) Aap(t)<ap(ty) A
(reip(t)=ycip(ty) v (rcip(t)=ap(t)=0Agp(t)=1))).

Proof. Obvious from the protocol skeleton. MW

Lemma 3.2.
(1) receivedp(<x,y,z>) = senty(<x,y,z>).
(2) acceptedp(<x,y,z>) = receivedp(<x,y,z>).
(3) sentp(<x,y,z>) = ((x=mcipn (y=ycipv(y=2=0Agp=1)) Az<aptgp) v
(closedp(x,Y .8 ,a A 3=y (y=z=0ng' =1)) rz<d’ +g’)).
4@ acceptedp(<x,y,z>) = ((x=ycipr (y=mcipvz=gp=0) AzZ<ap)v
(closedp(m’ ,x,8" ,a' A (y=m'vz=g'=0) rz<a’)).

Proof. (1). We do not allow that packets are received which were not sent. Moreover, we
assume that addressing is done correctly.

(2). Obvious.

(3). sentp(<x,y,z>) becomes true when P does an operation Sp and sends <x,y,z> Hence
at that moment x=mcip, y=ycip, and z<aptgp. If y=0, then gr=1 and ap=0, hence z=0.
Rp can increase ap, which leaves z<ap+gp valid, and change ycip, but only in case ap was 0
before, thus y=z=0agp=1 holds now. Cp invalidates x=mci p but now
closedp(x,y , 8" ,d N =yV(y=2=0ng’=1)) Az<a’+g’ holds.

(4). acceptedp(<x,y,z>) becomes true when P does an operation Rp in which <x,y,z> is
valid and is accepted. There are two cases.

Case 1. P was closed. Thus z=0 and after the opening of the connection by P we have
ycip=x, gp=0 and ap=1. Hence the relation holds.

Case 2. P was open. Thus y=mcip, z=ap+l, x=ycip at the completion of Rp. Hence the
relation holds.

Another operation Rp during the same connection can only increase ap, which keeps the rela-
tion valid. Operations Sp, Sq Cq and Rq do not change any of the variables involved.
Finaly, when P does an operation C p 10 close this connection,
closedp(m’,x,8 &)A(y=m’ v(z=g'=0)) nz<d’ becomes true. This cannot be invalidated
anymore by any of the operations. W

Lemma 3.3.
(1) ap21 & (yeip#0 Ayciprundefined).
(2) ap2l = (acceptedp(<ycip,y,ap—1>) A(y=mcipvap— 1=gp=0)).
(3) ap2l = ((mcig=ycip ngqtrgrslaapSagtgg)v
(closed(ycip,y,g,a) Ag+gp<l napa+g)).

@) (closedp(m' .,y ,g' ,d)rd 21) =

((mcig=y ngqtg' <1 Ad'SagtgQ)Vv (closed(y',y.8,a)Ag+g <1 nd <a+g)).
Proof. (1). Obvious from the protocol skeleton.
(2). Obvious from the protocol skeleton.

(3). Combining lemmas 3.3(2) and 3.2 directly leads to the desired result if we note that the
cases gpt+go=2 and g+gp=2, respectively, lead to a contradiction.

-6 -

(4). The operation Cp which invalidates ap>1, leads to relation (4). All other operations leave
the relation invariant for the same reasons as in 3. m

Lemma 3.4.
(1) (mcip=ycig#undefined A mci Q= yciprundefined) = gp+go=1.
Q) closedp(ycig,mcig, g,a) = g+gq=1.

Proof. (1). Initially the relation holds because P and Q are closed. Sp keeps the relation
invariant, because if P already had an open connection with Q, Sp does not change any vari-
ables, and if P was closed, P puts mcip:= new value, hence mci p=Yciq cannot hold yet. Thus
Sp keeps (1) invariant, as does Sq- Cp and Cq keep (1) invariant because mcip and mcig,
respectively are put to undefined. Rp keeps (1) invariant: If P had an open connection with Q
already, gp nor 8¢ is changed, hence the sum stays the same. However, ycip might change to
some value x, such that mcip=yci QAYcip=mciq now holds. If it does, the packet received
was <x,y,z> with y=mcip, z=ap=0, after which ap was set to 1. Hence gp=1. Thus, if
mcig=ycip, gp+gq<l (lemma 3.3). Hence 8qg=0 and gpt+go=1. If Rp opens the connection
with Q, it puts mcip:=new value, thus mci p=YcCig cannot hold yet. Likewise, R keeps the
relation invariant,

(2). If operation Cp makes closedp(yci Q' Mcig,g,a) true, we know with (1) that the relation
holds. Sp and Rp do not change any variables, nor do S Q and Rqy. Cq invalidates
closedp(yciq, mci Q&.a). M

Lemma 3.5.
(1) aptgp22 = accepted (< yci pMcip,ap—1>).
(2) aptgp2 =>((MCiQ=yCipAyCiQ=MCipAgp‘+gQ=1 AdpsagtgqAaagSaptgp) v
(closed o(ycip, mcip,1~ gp,a) Anap<a+1- gpAasaptgp)).
(3) (closedp(m,y,g,a)na+g22) =
((mcig=y AYCigem Ag+g =1 Aasagtgoragsa+g)v
(closed(y,m,1-g,d') nasd' +1-g Ad <a+g)).

Proof. (1). Follows from lemma 3.3 and the fact that we can exclude the case ap— 1=gp=0.
(2). Follows from the previous lemmas if we note that for example in the case that Q is still

open with mcig=ycip, ag21, and thus lemma 3.3 can be used for Q.
(3). Follows from lemma 3.5 2. =

Lemma 3.6.
(1) closedp(ycig,mciq, g,a) = (—~(ap+gp>2) A—closedo(m’ ,mcip, g’ ,a’)).
(2) (aptgp2na Q+8@22) = (mcip=ycigAycip=mci Q-

Proof. (1). closedp(yci g, mciq, g ,a) implies mci y#undefined, aqQ2l, g+gg=1, and a21. If
P is closed, — closedg(m’ ,mcip, g’ ,a’) holds. Initially the relation holds. If Rq or Sq opens
a connection (and sets mciq), closedy(ycig.mcig, g,a) can not hold yet. It can become true
in two ways: firstly, by an operation C p if mcip=yciq and ycip=mciq. Here after ap and gp
are undefined, hence apt+gp>2 does not hold. Secondly, by an operation R which sets yci Q
to m while closedp(m,mciq, g,a) did hold already. Hence 8g=1. However, after the Cp
operation which led to closedp(m,mciQ,g »a), —(aptgp=2) did hold. The only way

-7.

aptgp22 can become true is by an Rp operation in which the packet <ycip, mcip, 1-gp> is
accepted. However, since we had —(closedo(m’ ,mcip, g’ ,a’) when the connection was
opened by P, and Q either has yci o=0 or ycig=m=mcip, sento(<m’, mcip, z>) does not hold.
Thus —(aptgp>2) as long as Q is open with the current connection. The only way
closed(m’ ,mcip,g’,a’) can become true is by an operation Cq however Cg invalidates
closedp(ycig, mciq, g, a).

(2). Uselemma 3.5 (2) and 3.6 (1). W

We are now ready to state the invariants that relate closes of P to closes of Q.

Lemma 3.7. Let closedp(m,y,g,a) be true. Then

(1) closedo(y,m,g ,d) =(g+g =1r(d'=a+g vad'=a+g-1)).

() (closedo(m’,m,g @) Am’'#y) = (g'=0Ad’=1).

(3) (closedp(m”,y,g”,a”) Am” #m) =

((@a=1rg=0)v(@' =1Ag"=0)v(y=a=a"=0ng=g"=1)).

(4) If connections are always closed eventually and Q never does an (m’,y’,g",a’) close
with y'=m, then a+g=1.

(5) If connections are always closed eventually and Q never does an (m',y g ,a) close
with y=m’, then a=0, g=1 and y=0.

Proof. (1). m#0 and y#0 imply a>1 and «’>1. From lemma 3.4 it easily follows that
g+g'=1. Hence a+g22 or a’+¢’ >2. Thus we can use lemma 3.5 for either P or Q with the
desired result.

(2). Since m#0, a’21. We know a’+g’ 22 would imply m'=y, thus a’=1 and g’ =0. .
(3). Assume a+g22 and @”+g”>2. Then with lemma 3.5 we have (mcig=y A yeig=m)v
closed(y,m,1-¢’,a’) and (mci Q=Y A yeiqg=m”)v closedo(y,m”,1~g',a’). Contradic-
tion. Hence a+g=1 or @”+g”=1. Now if y=0 then a=a’=0 and g=g"=1. If y#0, a>1
and @”21. Thus either g=0Aa=1or g”=0aa"=1.

(4). For a+g2>2, lemma 3.5 tells us that Q must have been open with ycig=m, hence we have
a contradiction and a+g=1.

(5). For a21, lemma 3.3 tells us that Q must have been open with mci Q=Y. hence we have a
contradiction and a=0. Hence g=1 and y=0. W

4. Loss and duplication. In order to derive formal results on the loss and duplication
problems in the protocol skeleton, we need a formal definition of these problems in terms of
the parameters of the protocol skeleton. Informally we talk about "loss" if P sends Q a mes-
sage and thinks it arrived, while Q has not received it. We talk about "duplication" if Q

receives a message from P and treats it as a new message while it really was a retransmission
of an old message.

4.1. Correct communication.

-8-

Definition 4.1. A successful (m,y,g) close for P is an (m,y,g.a) close for P with a2csp.
The predicate sclosedp(m,y,g) becomes true when P does a successful (m Y. 8) close.

Loss is the situation in which P does a successful (m,y,1) close while Q never does a suc-
cessful (m’,y’,g) close with m=y’.

Duplication is the situation in which P does a successful (m ,¥,0) close while Q never does a
successful (m’,y’, g) close with m=y’. :

Correct communication is the situation in which P does a successful (m,y,g) close iff Q does
a successful (y,m,g") close.

The definition of loss is clearly reasonable. Consider the situation in which duplication can
arise. Typically Q sends an opening packet <mci Q(t0), 0, 0> twice. P, upon receipt of the first
one at ¢y, opens with gp(t1)=0, mcip(t;):=new value and ycip(t,)= mcig(to). If P closes suc-
cessfully (possibly after more packets exchanges), and after that, at time ty receives Q’s
retransmission of the original opening packet, it will open with gp(t,)=0,
mcip(ty):=new value, and hence mci p(t)#mcip(ty), and ycip(ty)= mcig(ty). If P closes suc-
cessfully again, we have the duplication problem. Now consider Q. Q can only do a success-
ful (m,y,g) close with m=mci o(to) once since, if it closes and opens again,
mcig:=new value. Thus either P's successful (mcip(t,), yci p(t1), 0) close does not correspond
to a successful (mci Q(to), mcip(ty), g) close or P’s successful (mcip(ty), ycip(ts),0) close does
not correspond to a successful (mci Q(to), mcip(ty), g) close.
Note that correct communication does not mean that the relation
sclosedp(m,y,g) < sclosedo(y,m,g’)
is invariant, e.g. P may close first while Q is still open; thus the relation does not hold without

referring to (possibly different) time moments. However, correct communication means there
is some time that the relation will hold.

Theorem 4.1.

(1) Correct communication implies no loss and no duplication.

(2) If no loss and no duplication occurs during a finite number of successful closes, then we
have correct communication.

(3) Correct communication preserves order.

Proof. (1). Obvious.

(2). Let P do a successful (mg,yq, g¢) close C o- No loss or duplication implies Q does a suc-
cessful (my,y1,81) close C; with y;=m,. Assume Yo#m1. Then (lemma 3.7 (2)) 2;=0. In
general, for i 21, let one processor do a successful (m;_1,¥:-1,8:-1) close C;_;, while the other
processor does a successful (m;,y;,g;) close C; with m; #y;—1. Then g;=0, and because of no
loss and no duplication, the first processor does a successful (m; 11, Y415 8iv1) close C;yy with
Yis1=m;. Since y;,1#y;_,, we have m; ,#m;_, and 8i+1=0. Let ¢; be the time that the connec-
tion with mci=m; is opened. Since £=0, a;(t;)=1 and there exists a time ¢, t<t;, that the
other processor is open with mci=y;. Because Yi=m;_y, t<t; and t;_;<t, we have t;_;<t;.
Since also ¢;<t;,q, C;_#C;,;. Consider the sequence of closes Cg, Cy, ... defined by the con-
dition that there are no losses and duplication. Then we have that for each C;, i2l1, there is a
Cin with y; . ;=m;, £;,,=0, t;41>t; for all j, 0<j<i and thus C;1#C; for all j, 0Sj<i. Hence

-9.

this sequence is infinite. Contradiction. Thus yy=m; and P’s successful (mo,yo0.80) close
implies a successful (yg,mq, ;) close by Q. The same argument holds for the reverse impli-
cation.

(3). Let P do a successful (mg,yg, g¢) close at time ¢4, and a successful (my,y1,89) close at
time ¢;. Correct communication implies that Q does a successful (ro,mo. g) close, and a suc-
cessful (yy,m,,g") close, say at times ¢, and ¢, respectively. Assume without loss of general-
ity that ¢, is the smallest value. From lemmas 3.3 and 3.6 follows that between tg and 2,
closedp(yciq,mciq,g,a) and —closedgy(m” ,mcip,g” ,d’) holds. Thus also
—closed(yy,my, g ,a’) holds. So t3>t,, and as ¢,>t, the order is preserved. W

We note that the condition of a finite number of closes in theorem 4.1 (2) is only neces-
sary in the general case where no assumption is made yet on the value of the parameter ¢s. It
is clear from the proof that this condition can be dropped if it is known that cs>1— g.

4.2. Parameters for closing.

Lemma 4.2. To avoid the loss and duplication problems, without further assumptions on the
order of operations, it is required that

(1) cf p21-gp,
(2) csp>cf otl-gp,
(3) csp22.

Proof. (1). It is clear from lemma 3.7 that if P wants to close while aptgp=1, P had better
do it as a failure, since Q might not have opened the corresponding connection at all. (If P
would not be able to close, deadlock would arise.) Hence cf ptgp2l and cf p21-gp.

(2). If P does an (m,y,g,csp) close, and Q does an (m’,y,g ,a’) close with m=y and
y=m', we know with lemma 3.7 that it might be the case that ¢’ = csptgp—1. Hence we need
¢f g<a’=csp+gp—1 to avoid the loss and duplication problems, and thus csp>cf otl—gp.

(3). Substituting the minimal value for cf Q &ives csp>cf otl-gp2l—go+1-gp21 since
8pt8o<l. Hence csp>2. W

Consider the minimal values we can choose for cfp and csp. ¢fp=1-gp and csp=2.
Now if gp=0, csp=cf p+1, and for each value of ap P knows how to close, as a failure or a
success. But if gp=1, ¢fp=0 and csp=2. What should P report: success or failure, if it closes
with ap=1? If P reports success we have the possibility of loss. If P reports failure, we have
the possibility of duplication. So P had better not close at all if ap=gp=1. But this leaves us
with the following problem: assume ap=gp=1 and P sends a packet with seq=1 to Q. Upon
receipt of this, Q puts aq to 2 and closes successfully. Now P will never get a packet with
right mci and yci fields and seg=1 anymore, hence a p cannot rise to 2. The first idea which
comes to mind to repair this deadlock problem is to forbid Q to close with aqg=2 and wait
with closing until ag=3. Now P is o.k. but Q might have a problem if it does not receive the
valid packet from P to enable it to set aq to 3. But there is one difference: if Q is forced to
close with ag=2, it does know how, namely successfully. Q can use this in the following
way: it keeps on retransmitting its packet with seg=1 (this cannot cause confusion later

-10 -

because it contains a ycig=mcip). Now if P is still open (and the link is still up) P will even-
tually respond with a valid packet with seg=2, so Q can set aq to 3 and close. Note that this
packet exchange is a 5-way handshake. On the other hand, if P had already closed, it will
send an error packet to Q that it is not open any more with the value mcip= yciq (even if P
opened again in the mean time). But if Q receives this error packet, it knows that ap has been
2 and that P closed successfully because P would not have closed when ap=1. Hence Q can
safely close successfully.

Now this works if processors stay up, and if we assume that some packet will eventually
get through if we keep on trying. That it does not work if processors go down should not
bother us too much, since it is not possible to design a protocol that always works correctly in
the presence of processor breakdowns anyway (cf. [1]). The reason we need a five-way
handshake is that P cannot use the same trick as Q does: waiting for an error packet. If P
received an error packet to the effect that Q had already closed while ap=1, it cannot decide
whether Q closed as a failure (with ag=1) or as a success (with ag=2). Note that the extra
information that is used by the processors, except the information deriving from the protocol
skeleton, is information about when a connection is closed and when it is not. But if we want
to use this kind of information, there is no need to restrict it to *P does not close with ap=1if
gp=1". It is more fruitful to demand that no processor closes "arbitrarily’. In order to be able

to define the notion of a nonarbitrary close precisely, we need an analys1s of possible error
packets and their consequences.

S. Error handling. In order to analyze the effect of sending error packets, we will begin
with assuming that error packets are sent whenever the procedure error is called, and that the
actual error packet contains all information the other party might need. Since we will see later
that not all information is used, nor that all error packets sent are meaningful, we can then
decide what fields the error packet should contain and in which circumstances an error packet
should be sent.

We remark that the informal proof given above that the five-way handshake works in the
absence of processor failures, if P and Q know they will not do arbitrary closes, is not water-
tight and in fact contains a flaw, as we will see in the sequel. Unfortunately, Belsnes [1] did
make this mistake in the analysis of his four-way handshake. The problem is the following: Q,
being in a state with aq=2 and receiving an error packet from P stating that P is not open with
mcip, concludes that P has closed. But it might be the case that this error packet was sent
before the packet exchange which led to ag=2 took place. In that case, P might be open still,
even with ap=1, and Q’s conclusion that P closed successfully is not warranted. For the time
being, we define the procedure error as follows.

procedure error (<x,y,z>) = send <error, mcify,ycifx,a/z>

It is understood here that if the processor which sends the error packet is closed, it fills in
‘undefined’ for mci, yci and a. Note that lemmas 3.1 up till 4.2 (1) hold irrespective of the
closing strategy and error procedure used, but that lemmas 4.2 (2) and 4.2 (3) might not hold
any more, since restricting the protocol skeleton gives the processors extra information.

.11 -

5.1. Invalid packets.

Lemma 5.1. Let P receive a packet <x,y,z> from Q which is not valid. Then
(1) y#0 =>(mcip=y vclosedp(y,y g’ ,a)).
(@) z21 = ((mcip=y Aycip=x)vclosedp(y,x,g ,a’)).
(3) mcip=undefined =>z>1.
(4) (mciprundefined Avalidp(y)) =
O=mcipaz<apa((validp(x) nacceptedp(<x,y’ ,z>)) vz=0)).
(5) (mciprundefined Avalidp(x) Ay=gp=0) = accepted p(<x,y,z>).

Proof. By assumption sento(<x,y,z>) and —validp(<x,y,z>) hold.

(1). Use lemma 3.2 and 3.3.

(2). Use lemma 3.2 and 3.5.

(3). If P is closed, every packet with z=0 is accepted as valid, hence z21.

(4). Thus y=mcip. There are two cases.

Case 1. z=0. Let ap=0. Then x is valid and z is valid which leads to a contradiction. Thus
ap21 and ap>z.

Case 2. 221. With lemma 5.1 (2) we have that y=mcip and x=ycip. Thus x is valid and
necessarily, z is not. Using lemma 3.2 and 3.5 we conclude that z<ap. Hence z<ap.

As we know from (4), z<ap(t), hence ap(t)21. Thus x valid implies x=ycip. Since ap(t)
increases one by one and z<ap(t), we have acceptedp(<x,y ,z>) with lemma 3.3.

(5). Since gp=0 we have ap>1, and validp(x) implies x=ycip. As y=0, z=0, too. Use
lemma 3.3. m

Note that in the last case of (4), where mcip#undefined, validp(y), —validp(x) and thus
z=0, it might be the case that Q opened twice with Ycig=mcip=y. Since ap>z, ap21 and
mcig=ycip or closedg(ycip,y .8 .a'). sentq(<x,y,z>) implies (mcig=x Aycig=y) or
closedo(x,y,g ,a’). If =y, Q has opened twice with Ycig=Yy, since x#ycip.

5.2. Error packets. Because of lemma 5.1 (5), we now require that error packets are only
sent upon receipt of an invalid packet in case a copy of this packet was not accepted before
during this connection. In the case it was, P had better retransmit its last packet, because that
probably got lost.

Since P does not know, nor can do anything about previous connections, it is clearly rea-
sonable that P only considers error packets pertaining to its current connection.

Lemma 5.2. Let P receive an error packet <error,m’fy,y /x,d [z> from Q with x=mcip.
Then
(1) m'=y =>@E=¢gp=0Ay=ycipaap=1na —(mcig=ycip Aycig=mcip) A
—closed (ycip,mcip, g ,a)).

2) (M=zyAy#0) = O=ycipaclosedo(y,y” ,g,a)).
(3) (=0Aycip*0) = (m’ #ycip Am’ #undefined A

((mciq=ycipaclosedo(m’,y” ,g,a)) v

(mcig=m’ Aclosed(ycip,y” 8" ,a’))v

(closedo(m’ ,y” ,g,a) nclosedg(ycip,y” , 8" , &’))).

-12-

Proof. (1). Since m’=y, we have valido(y), y#0 and m’#undefined. Since x=mcip and
Y#0, y=ycip=m’. Since error packets are not sent if a copy of the invalid packet was already
accepted during this connection, we know with lemma 5.1 (4) that —walidg(x) Az=0. More-
over, at that time aq21. Thus (mcig=m’ AyciqrO Aycigex) v (closedg(m' .Y , g, a) Ay #x).
The assumption ap+gp22 leads to a contradiction. Thus aptgp=1, and since y=ycip=mciq,
ap=1 and gp=0.

(2). Since x=mcip and y#0, ycip=y and ap>1. At the time <x,y,z> was sent, y#0 already,
thus mcig=ycip v closedg(ycip,y” ,g,a). Since m’#y at the time <x,y,z> was received by
Q, closedo(ycip,y”, g, a) already was true. Hence it still is.

(3). Because y=0, we have gp=1, m’#y and m’ #undefined. Since Q sent an error packet, at
that time —(gg=0Ax= ycig). Assume go=1. Then m’#ycip (otherwise gptgos1l). Assume
x#yciq. Assume also m’=ycip. Then ap>1 and ap+gp>2 and lemma 3.5 leads to a contradic-
tion. Thus m’+#ycip in both cases. Hence relation (3) holds. W

Thus, in case (3) of lemma 5.2, P cannot draw the conclusion that Q already has closed
the connection with mci g=ycip.

Definition §.1. An error (m,y,g,a) close for P is an (m,y,g,a) close for P upon receipt of
an error packet <error,m’fy,y’/m,d’ /z>, i.e. without doing any other operations in between.
The predicate eclosedp(m,y,g,a) becomes true when P does an error (m,y,g,a) close.

The reason that we not only require mcip=m but also ycip=y for a close, is that in the
case where a+g22 (and P knows that Q has been open with mcig=ycip and mcip= ycig), P
would like to conclude 'Q has already closed this connection, so I had better close too’. We
know from lemma 5.2 that this conclusion is only warranted if y=1ycip.

Lemma 5.3. apt+gp>2 = =eclosedo(ycip,y’, g, a’).

Proof. Assume apt+gp>2 and eclosedo(ycip,y' ,g’,a’). Thus closedo(ycip,y’ ,8’,a’) and
with lemma 35 we have y'=mcip and @’>1. Thus Q received the error packet
<error,m” /mcip,y” [ycip,a” [z>. Thus m’” #mcip otherwise P would not have sent the error
packet. With lemma 5.2 (2) we have closedp(mcip,y”’,g”,a”). Since P is open still, we
have a contradiction. W

S.3. Arbitrary closes. In order to be able to define an arbitrary close we introduce a new
variable last which contains the number of different packets which should be received by one
processor during one connection.

Definition 5.2. Let P do an (m,y,g,a) close. The close is called arbitrary if none of the
following hold:

(1) P goes down (break-down close),

(@ eclosedp(m,y,g,a),

3) az2lastp.

-13-

Case (3) corresponds to a 'complete’ packet exchange in this connection. For example,
a 4-way handshake would correspond to last=2 for both sender and receiver. The parameter
lastp possibly depends on gp, or else it is a constant.

It is clear from the above that most information included in error packets is not used at
all. Consider an error packet that P might receive: <error, mci ofysyciglx,aglz>. P needs x
and y to test against mcip and ycip to avoid a nonarbitrary close. ag and z were never used
throughout the analysis, hence we can discard them. Although the values of mciq and yci Q
give some information about the state in which Q was, the decision of P which action to take
should not depend on that information, but its value of ap and gp- The following cases arise.
Case 1. ap+gp22. Then Q has closed the corresponding connection and it is irrelevant for P’s
current connection whether Q has opened again. P should close successfully.

Case 2. ap=1, gp=0. P should close and report failure to avoid duplication.
Case 3. ap=0, gp=1. Then Q is open with another connection and is not ready to reply to
this new one. P could wait and try again or close as a failure.

Hence an error packet of the form <error,y, x> is sufficient, always assuming error pack-
ets are only sent upon invalid packets which were not already accepted during the same con-
nection. Reconsidering the fields in normal packets <x,y,z> and lemma 5.1 (4)-(5), one
might be tempted to include the field x only in packets with z=0, since the receiver knows
that it must be valid if y is valid and z>1. But that does not work because, in case y hap-
pened to be invalid, the error packet must contain x. Thus we redefine the procedure error as
follows.

procedure error (<x,y,z>) =

if connection with Q closed then send <error,y, x>
else if ((x=ycip or ap=0) and (y=mcip) then skip
else send <error,y,x>
Summarizing, we can state the implications of closing upon receipt of an error packet.

Lemma 5.4.
)] (eclosedp(m,y,g,a)/\a+g22) =
(closedo(y,m,g ,d')nd +g' 2a n—eclosedo(y,m,g ,a')).
(2) eclosedp(m,y ,0,1) = (closedo(y,m, g’ ,d)=>d' s1).
(3) eclosedp(m ,0,1,0) = (closedo(m’ ,m g’ ,a')=>a’<1).

Proof. (1). Apply lemmas 3.5, 5.2 and 5.3. (2). Apply lemmas 5.2 and 3.7. (3). Apply
lemma3.7. ®

6. The selection of parameters.

6.1. The four-way handshake. The crucial theorem for k-way handshakes for connection
management can now be formulated as follows:

Theorem 6.1. Let the following four conditions hold:
(1) connections do not stay open indefinitely,

-14 -

(2) there are no processor breakdowns,

(3) there are no arbitrary closes,

4) lastp=2, lastg22.

Then P does an (m,y, g,a) close with a+g22 iff
Q does a (y,m, g’,a’) close with @’ +g’ >2.

Proof. Note that the conditions (3) and (4) ensure that the following relation is invariant;
closedp(m,y,g,a) = (eclosedp(m,y, g ,a))vazlastp).

We first show the "only if" part of the theorem. Suppose P does an (m,y,g,a) close with

a+g22. We have two cases.

Case 1. P closed because ap2lastp. Hence a>2 and with lemma 3.5, mcig=y A Yeig=m A

2saqtgq or closedo(y,m,g ,a’ YA 2<a’ +¢’ . Since Q will not stay open indefinitely, Q will

eventually do a (y,m, g’ , @) close with a’ +g’ >2.

Case 2. eclosedp(m,y,g,a) holds. Hence (lemma 54), closed(y,m,g ,d')A

—eclosedo(y,m,g’,a’). Thus & 2lastq. Hence @22, and thus a’ +g’>2.

Next suppose Q does a (y,m,g’,a’) close with @’ +g’>2. Then we can use the same argu-
ment with P and Q interchanged. W

Thus the Tomlinson handshake [7] does not ensure correct communication, since it is a
special instance of the 3-way handshake from lemma 6.3.

Corollary 6.2. Under the assumptions from theorem 6.1, we can achieve correct communica-
tion by taking cs=2-g.

Proof. Take cf p=1-gp, cfg=1-gq csp=2-gp and csqg=2—-gq. Then every (m,y,g,a)
close with a+g22 is successful and vice versa. Thus theorem 6.1 ensures correct communica-
tion. W

Note that we did not exclude link failures in the requirements for theorem 6.1. Link
failures are handled by just leaving connections open until links come up again. If a processor
cannot see whether a link is temporarily disabled, there is no difference with the case that all
packets sent in a certain time interval are lost.

Lemma 6.3. Let the following three conditions hold:
(1) connections do not stay open indefinitely,

(2) there are no processor breakdowns,

(3) there are no arbitrary closes.

Then it is not possible to avoid loss and duplication problems by taking last= 2—- g, without
further assumptions.

Proof. Let P open with ap=0 and gp=1 and send an opening packet <mcip,0,0> to Q. Q
opens with ag=1 and 8g=0, mcig:=new value and Yeig=mcip. Q replies with
<mciq,ycig,0> and retransmits after some time. Now Q receives an error packet
<error, mciq, ycig> because P has closed in the mean time. What should Q do? Q knows that
P has been open with mcip= ycig and P has not closed arbitrarily. There are three things
which could have happened, and unfortunately Q has no way to decide which did.

-15-

Case 1. P received Q’s packet and closed with ap+gp=2, but P’s reply packet got lost. Since
P closed successfully, Q should close as a success too (otherwise we have a loss).

Case 2. P has closed with aptgp=2, but on a different packet from Q, since this was the
second connection for Q with ycig=mcip. Hence Q should close as a failure, otherwise we
have a duplication.

Case 3. P has closed with ap+gp=1, on receipt of an error packet from Q, sent during an ear-
lier connection, ¢.g. when P and Q tried to start up a connection simultaneously. Since P
closed as a failure, Q should too, otherwise we have a duplication.

Thus there is no way to choose the parameters ¢f and c¢s such that correct communication is
achieved in all three cases. W

Corollary 6.4. For correct communication using k-way handshakes in the absence of proces-
sor breakdowns, it is necessary as well as sufficient that k>4.

6.2. Discussion. The obvious way to choose last is either last=k, leading to a (2k)-way
handshake (an ’even handshake’), or last=k—g, leading to a (2k— 1)-way handshake (an ’odd
handshake’). However, the protocol skeleton would work also with, for example, last=k—2g.
This choice would even lead to correct communication under the conditions of theorem 5.4. It
does however have the drawback that a successful packet exchange now relies more on error
packets which might have to be sent even if no packets get lost. Let k=4, gp=1 and gqg=0.
Then P can close when ap=2, but Q should only close with ag=4. However, Q will never set
aq 1o 4, since it needs a packet for that which P is only allowed to send when ap=3. Hence
Q always needs an error packet for closing, unless P does not close with ap=2. (Although P
is allowed to close in that state, the protocol skeleton does not force P to close.)

There is a difference between even and odd handshakes, as Belsnes [1] already pointed
out, which might be important in practical cases. Both work correctly in the absence of pro-
cessor breakdowns, if last22. If the last packet is lost, it is substituted as it were, with an
error packet. Now the receiver of the error packet concludes that the other processor has
closed successfully and closes successfully too. If however, the last packet was not lost, but
the processor which had to send it went down, we either have a loss or a duplication problem.
For an even handshake, the last packet sent goes from the processor with g=0 to the one with
&=1, hence we might have loss of packets. In the case of an odd handshake, the last packet
goes from the processor with g=1 to the one with £=0, hence we might get duplication.
Hence if, in a practical situation, a loss is more disastrous than a duplication, one might con-
sider whether the loss in efficiency caused by using a 5-way instead of a 4-way handshake is
outweighed by the advantage of avoiding loss instead of duplication.

Up till now, we never considered in which packet during the packet exchange the actual
message which had to be communicated, was incorporated. As we can see from the analysis,
it really does not matter, as long as we do not use the very last packet in case of an odd
handshake. It can only be argued that this might tempt a processor to unfair play.

As we restricted ourselves to a protocol skeleton, it is clear that for an actual implemen-
tation there remains a lot to be specified before getting a working protocol. For example, a
time-out mechanism should be added to control the retransmissions of packets, and some order
of operations should be defined. Note that there is some freedom in the specification of the

- 16 -

protocol skeleton that does not contribute to an efficient correct communication. For example,
the possibility to send packets with a sequence number strictly smaller than a+g—1 does not
contribute to the communication. Nor does it help if closing is postponed when az2last. A
restriction of the protocol skeleton which would reduce the number of erroneous openings is
the following. If a closed processor receives a packet with z=0, it now always opens because
it considers it as a opening packet. However, it also could be a reply to an opening packet.
The latter case can be excluded by testing the y-field: real opening packets contain a y -field
equal 0. The reason we did not incorporate all these restrictions in the protocol skeleton is,
that it is not necessary for the proof and leaves the basic structure visible which is responsible
for the desired property of the protocol, namely reliable connection management.

The advantage of such a general set-up is primarily that the proofs capture all protocols
which can be viewed as instances of the protocol skeleton. The next section contains examples
of extensions of this basic protocol skeleton for multiple message exchanges. Thus we know
how far we can get towards a reliable connection management by a certain setting of parame-
ters. Secondly, if we want more, e.g. reliable communication in the presence of processor
breakdowns, we know that we should either devise a protocol skeleton based on a different
principle, or else relax the assumptions. In section 8 we will investigate the effect of relaxing
several assumptions. Thirdly, we have leared from this analysis that the problem with con-
nection management under these stated assumptions, namely that any last packet in a finite
packet exchange can be lost, is solved partly by allowing that certain error packets are substi-
tuted for the last packet.

Hence we strongly advocate a modular protocol design, to make separate proofs of the
correctness of different aspects of protocol performance possible. As an illustration, we extend
the basic protocol skeleton for use for one and two-sided multiple-message communication.

7. Extensions for multiple-message communication. If we state theorem 6.1 in a
slightly more general version, it is easily seen that this protocol skeleton not only handles
single-message communication correctly, but also multiple-message communication. Let n,
nz1, be the number of messages to be transmitted.

Lemma 7.1. Let the following four conditions hold:

(1) connections do not stay open indefinitely,

(2) there are no processor breakdowns,

(3) there are no arbitrary closes,

(4) lastp2n+1, last2n+1.

Then P does an (m,y,g,a) close with a+gz2n+l1 iff
Q does an (y,m, g’ ,a’) close with @’ +g’2n+1.

Proof. Proof of theorem 6.1 with 2 replaced by n+1. W

7.1. One-sided multiple-message communication. It is usually not the case that n is a
constant, and we would like to be able to choose n different for each connection. It is possible
to incorporate this feature in the protocol skeleton, by including the value of » in the opening
packet of the sender. Thus we formulate an extended protocol skeleton for multiple-message

-17 -

communication, consisting of the three basic operations S!, R! and C!. We include the mes-
sages D[1], ..., D[n] to be sent and the nonarbitrary close. Note that, in contrast to eg. a
sliding-window protocol, we need that the message field and the seq field in a packet are large
enough to contain the value n+1, and that we cannot use sequence numbers modulo some
value. This is due to the assumption that arbitrary delays are possible, while the sliding-
window protocol was designed for links which have the FIFO property.

Sp: if connection with Q closed then (*open%)
begin mcip:=new value; ycip:=0; gp:=1; ap:=0; lastp:=n+1; D[0]:=n end;
if g=1 then send a packet <mciyp, yci pseq,D[seq1> 10 Q
else send a packet <mcip, ycip, seq, D> to Q
where 0Sseq<aptgp.

R}: receive <x,y,z,d>;
if connection with Q closed
then if y#0 then error (<x,y,z,d>)
else begin mcip:=new value; ycip=x; gp:=0; ap:=1; lastp'=d+1 end
else if not ((x=ycip or ap=0) (*x valid*)
and y=mcip (*y valid®)
and z=aqap) (*z valid¥)
then error (<x,y,z,d>)
else begin ap:=ap+1; if z=0 then ycip:=x end

C3: if connection with Q is open then
if <error, ycip, mcip> received or aplastp then
begin if ap<cfp then report failure;
if ap2csp then report success;
mcip:=undefined; ycip:=undefined; ap:=undefined;
gp:=undefined; lastp:=undefined
end

where cf p=1~gp and csp=2-gp.

We remark that all lemmas except lemmas 4.2 (2) and 4.2 (3) still hold for this

multiple-message protocol skeleton. In addition we need the following notation and lemma
about last, which now has become a variable.

Definition 7.1. An (m,y,g,a,l) close for P is an operation C§, invoked at some time ¢ by
P, such that mcip(t)=m, ycip(t)=y, gp(t)=g, ap(t)=a and lastp(t)=1 (We consider only
meaningful closes, i.e. m#undefined.) The predicate closedp(m,y,g,a,l) becomes true when
P does an (m,y, g,a,l) close.

Lemma 7.2. Let P and Q operate with the multiple-message protocol skeleton. Then

(1) If P has an open connection with Q at time ¢ and ty with mcip(t)=mcip(t,), then
lastp(t)=lastp(t,),

2) ap21 = ((mcig=ycipalastp= lastq) v (closedo(ycip,y' .8 . & , lastp)).

Proof. Obvious from the protocol skeleton. W

-18 -

Theorem 7.3. Let P and Q operate with the multiple-message protocol skeleton. Let the fol-
lowing two conditions hold:
(1) connections do not stay open indefinitely,
(2) there are no processor breakdowns,
Then P does an (m,y, g,a,n+1) close with a+g>2 implies
Q does an (y,m,g’,a’,n+1) close with &’ +g’ 2n+1>2.

Proof. Use lemma 7.1 and 7.2. W

Corollary 7.4. Under the assumptions of theorem 7.3 we can correctly communicate finite,

nonempty message sequences with the protocol skeleton consisting of operations S!, R! and
cl,

Proof. The only thing left to check is that inside one connection no loss or duplication of
messages occurs. It is clear from operation R! that message i is accepted when ag is set to
i+1. Since a is increased one by one, all messages D[1]}, ..., D [k] are accepted exactly once

if the processor closes with a=k+1. Since for the receiver g=0, a+g2n+1 implies that all n
messages are accepted. W

Note that, although we need a 4-way handshake to send a single message, we do not
need a 4n-way handshake to send n messages, but only a 2(n +1)-way handshake.

7.2. Two-sided multiple-message communication. Another extension we can immedi-
ately make is to allow the message transfer in a connection to be two sided. In order to decide
how long a packet exchange needs to be in the case that the ’receiver’ has more messages to
send than the *sender’, we need the corresponding version of lemma 7.1 for odd handshakes in
the basic protocol skeleton (lemma 7.1 corresponds to even handshakes).

Lemma 7.5. Let the following four conditions hold:

(1) connections do not stay open indefinitely,

(2) there are no processor breakdowns,

(3) there are no arbitrary closes,

4) lastp2n+2-gp, lastg2n+2-gq.

Then P does an (m,y, g,a) close with a>n+1 iff
Q does an (y,m, g’ ,a’) close with a’ 2n+1.

Proof. Analogous to the proof of lemma 7.1. W

Since an odd handshake is most efficient when the ’sender’ has less to send than the
‘'receiver’, and an even handshake is most efficient when the ’sender’ has more 1o send, we can
let the protocol skeleton decide on the spot. Thus we extend the protocol skeleton as follows.

S 3: if connection with Q closed then (*open*)

begin mcip:=new value; ycip:=0; gp:=1; ap:=0; lastp:= npt+l; D[0}:=np end;
send a packet <mcip, ycip, seq ,D [seq]> to Q where 0<seq<a pHep

-19.

RE: receive <x,y,z,d>;
if connection with Q closed
then if z#0 then error (<x,y,z,d>)
else begin mcip:=new value; ycip:=x; gp:=0; ap:=1;
D [0L:=nyp; lastp:=max(d+1,np+2)

end

else if not ((x=ycip or ap=0) (*x valid»)
and y=mcip (xy valid#)
and z=ap) (*z valid*)

then error (<x,y,z,d>)
else begin ap:=aptl;
if z=0 then begin ycip:=x; lastp:=max(d+1,np+2~- gp) end
end

C3: if connection with Q is open then
if <error, ycip, mcip> received or aplastp then
begin if ap<cfp then report failure;
if ap2csp then report success;
mcip:=undefined; ycip:=undefined; ap:=undefined;
gp-=undefined; lastp:=undefined
end

where np is the number of messages to be sent over by P. Note that, instead of n2>1 for the
one-way case, we now have np2gp, hence the ’sender’ transmits a nonempty sequence, while
the ’receiver’ may transmit an empty sequence of messages. Again, ¢fp=1-gp and
csp=2—gp. We assume D [seq]=D for seq >np. We have the following supplementing nota-
tion and lemma about last.

Definition 7.2. An (m,y,g,a,l,n) close for P is an operation C 2, invoked at some time ¢
by P, such that mcip(t)=m, ycip(t)=y, 8p(t)=g, ap(t)=a, lastp(t)=1 and np(ty=n (We con-
sider only meaningful closes, i.e. mwundefined.) The predicate closedp(m,y,g,a,l,n)
becomes true when P does an (m,y,g,a,l,n) close.

Lemma 7.6. Let P and Q operate with the two-sided multiple-message protocol skeleton.
Then
(1) If P has an open connection with Q at time ty and ¢, ty<t, with mcip(t)=mcip(t,) and
ap(t)21, then lastp(t)=lastp(t;),
(2) mcip*undefined = lastp2npt2—- gp,
(@) aptgp=1 =3 lastp>ap,
(4 aptgp2 =
((mcigq=ycip Aycig=mcip A lastp= lastq) v closed o(ycip,mcip, g’ ,d , lastp,n’)).
Proof. Obvious. W

-20-

Theorem 7.7. Let P and Q operate with the two-sided multiple-message protocol skeleton.
Let the following two conditions hold:
(1) connections do not stay open indefinitely,
(2) there are no processor breakdowns,
Then P does an (m,y, g,a,l,n) close with a+g>2 implies
Q does an (y,m, g’ ,a’,1,n’) close at some time with @’ 2n+1 and a>n’ +1.

Proof. Use lemmas 7.5 and 7.6. W

Corollary 7.8. Under the assumptions of theorem 7.7 we can correctly communicate finite,

nonempty message sequences in both directions at once with the protocol skeleton consisting
of operations S2, R? and C2.

8. Relaxing assumptions. A 4-way handshake might be too high a price for correct com-
munication, especially since correctness is only guaranteed if processors do not go down while
they have an open connection. Therefore we investigate the question how the assumptions can
be relaxed while keeping the communication as reliable as possible. There are basicly four
ways to relax the assumptions.

Firstly, we could allow the processors to remember information about previous connec-
tions. This increases the memory requirements of the processors, and makes communication
more sensitive to processor failures. This is because now at any moment a breakdown could
cause loss of crucial information, while originally this only was the case for connections which
happened to be open. However, depending on the communication environment, this might be
worth the advantage of a 3-way handshake instead of a 4-way handshake. We will show in
the sequel how we can achieve correct communication in the absence of processor breakdowns
with a 3-way handshake.

Secondly, we could be less strict about correctness. For example, we could let a failure
close mean: It is possible that no message came across instead of No message came across,
thus leaving it to the host of the processor to decide whether to try to send it across once
more. This could introduce duplication on a higher level.

Thirdly, we could try to base the protocol on a different principle using something which
is more or less common to all processors, such as time. An example of this are the timer-
based protocols described by Fletcher and Watson [2]. The correctness proof in [6] however,
shows that the communication is less reliable, in the sense described above.

The fourth way out could be to restrict the mistakes the communication network makes.
For example, we still allow loss of packets, but it is assumed that communication over the net-

work has the FIFO property. This almost amounts to defining the problem of connection
management away.

8.1. Correct communication with a 3-way handshake. Reconsider the proof of
lemma 6.3 to see what the problem was in the old model. A processor open with g=0 and
a=1 which receives an error packet, does not have enough information to decide whether to
close with a success or with a failure. Hence error packets will contain one bit of information
extra, and whether a processor closes as a success or as a failure will now depend on this bit

-21-

too, not only on its value of a and g. Remember we allowed processors to maintain informa-
tion about previous connections. Since failure closes in no way contribute to correct communi-
cation, it is perhaps not surprising that we need information about past successful closes. It
tums out that it is enough for a processor to remember its yci value of its last successful close.
The processor will maintain this value in the variable Isc. The information which the extra bit
in error packets carries is whether the x-field in the invalid packet <x,y,z> is equal to the
value in Isc or not. .

Thus in the modified protocol skeleton, consisting of operations S, R3, and C?, only the
error procedure and the closing operation are changed. As nonarbitrary closes still are neces-
sary for correct communication, we incorporate this in C>.

S2: same as Sp

RE: same as Rp, but with procedure error as follows:
procedure error(<x,y,z>) =
begin if Iscp=x then b:=true else b :=false;
if connection with Q closed then send <error,y,x,b>
else if (x=ycip or ap=0) and (y=mcip) then skip
else send <error,y,x,b>
end

C3: if connection with Q is open then
if <error, ycip, mcip, b> received or ap2lastp then
begin if ap<cfp then report failure
else if ap2csp then begin report success; Iscp:=ycip end
else if b=true then begin report success; Iscp:=ycip end
else report failure;
mcip:=undefined; ycip:=undefined; ap:=undefined; g p:=undefined
end
where
lastp equal 2—gp,
csp equal 2— gy,
¢fp equal O,
Iscp initially is undefined (distinct from 0), as long as no successful close has occurred.

Lemma 8.1. Let P and Q use the protocol skeleton consisting of operations $3, R3, and C3.
(1) Let the following two conditions hold:
(1) connections do not stay open indefinitely,
(2) there are no processor breakdowns.
Then closedp(m,y,g,a) = ((sclosedp(m,y,g)na+g22) veclosedp(m,y, g, a)).
2) ap=0=(~ sclosedQ(m ,mcip, g)Alchatmcip).
3) ap2l= (sclosedQ(Ycip,mcip, g) <=)lch= mcip).

Proof. (1). Obvious from the protocol skeleton.

(2). Let ap=0 and sclosedo(m ,mcip,g). Let this close be an (m,mcip, g,a) close. Then
there are two cases (lemma 8.1 (1)).

-22-

Case 1. a+g22. Hence with lemma 3.5, ap>1. Contradiction.

Case 2. eclosedq(m,mcip,0,1). This implies closed(mcip,y ,g ,a’) (lemma 5.2). Contrad-
iction.

Thus ap=0 implies —sclosedg(m,mcip, g). Hence also Isc g#mcip.

(3). The relation holds initially. Sp changes mcip if a connection is opened, however then
ap=0 and thus —sclosedg(m, mcip, g) and Iscg#mcip hold. If Rp opens a connection, Q can-
not know mcip yet, thus — sclosed (m ,mcip, g) and Iscq#mcip hold. If Rp sets ap from O to
1, we also have —sclosedo(m,mcip, g) and Isc g#mcip, because of (2). Other changes of ap
in Rp do not affect the relation. Cp invalidates ap>1, and Rq and Sq do not change the rela-
tion in any way. Consider the operation C Q- Letitresultinan (m’,y,g’,a’) close. Ifitis a
failure close, then the relation is not affected. Let the close be successful. Let ap21 hold (oth-
erwise the relation holds trivially). We have 4 cases.

Case 1. m'=ycipAY =mcip. Then sclosed o(ycip, mcip, g) becomes true and Iscq is set to
mci P-

Case 2. m'=ycipAy #mcip. Then sclosed Q(¥cip, mcip, g) did not hold, nor Isc g=mcip. Nei-
ther holds after this close.

Case 3. m’#ycipAy =mcip. Hence (lemma 3.7), @’=1 and ¢’=0. Thus it was an error close.
However, the corresponding relation for Q also held before this operation Cq: a2l =
(sclosedp(yciq, meiq, g) < Iscp=mci Q- Hence sclosedp(yci Q:Mmciq,g) holds. Since
ycig=y =mcip, we have a contradiction (P has not closed this connection yet). Hence this
case cannot occur.

Case 4. m’#ycip Ay #mcip. If Isc g#mcip before the close, the relation holds afterwards t0o.
Assume Iscq=mcip. Hence sclosed(ycip,mcip, g) holds. Hence (lemma 3.6), agtgg=1,
and the close must be an error close. We also have — closedp(m” ,mciq, g” ,a”), hence
Iscq#mcip. Thus this close cannot be successful. Contradiction.

Summarizing, the relation still holds after an operation C g, which completes the proof. M

Theorem 8.2. Let P and Q use the protocol skeleton consisting of operations S, R3, and C3.
Let the following two conditions hold:
(1) connections do not stay open indefinitely,
(2) there are no processor breakdowns.
Then P does a successful (m,y,g) close iff
Q does a successful (y,m,g’) close.

Proof. Let P do a successful (m,y,g) close, and let it be an (m,y,g,a) close. According
to lemma 8.1 we have two cases.

Case 1. a+g22. Hence with lemma 3.5 (mcig=y Aycig=m) or closedo(m,y,g’ ,a’). Using
lemmas 8.1 and 5.3 we have that closedo(m,y, g ,a’) implies sclosedg(m,y,g’,a’). Let Q
be open still with mci =Y. Then ag21 and hence (lemma 8.1 (3)),
sclosedp(yci o, mci Q 8) & Iscp=mcig). Thus a subsequent error close of Q will be a success-
ful (y,m,g’) close.

Case 2. a=1, g=0, and eclosedp(m,y,g,a). Thus Q had Iscg=mcip when it sent the error
packet to P. As ap=1, we know (lemma 8.1 (3)) that sclosed o(ycip, mcip, g’) holds. Hence a
successful close by P implies that Q does a corresponding successful close. The reverse

-23-

implication can be proved by an analogous argument. MW

Corollary 8.3. For correct communication in the absence of processor breakdowns, a 3-way
handshake is sufficient if processors are allowed to remember one piece of information about a
previous connection.

We remark that, although it is not necessary for the correctness of the protocol skeleton
to test whether an opening packet contains a y-field equal 0, it is necessary now for an efficient
protocol. This is because, in case the last packet of the 3-way handshake is lost, a processor
needs an error reply on its packet <x,y,0> in order to close gracefully. The chance to get that
is small if the other processor (because it already closed) reopens on receipt of <x,y,0>.

Of course this modified protocol skeleton also can be extended to handle a multiple-

message exchange. It makes however no sense to do so, since to transmit 7 messages we still
need last2n+2.

8.2. Less reliable communication. If we are willing to accept communications which are
not always correct, the question still is how far we want to £0. One possibility is to accept

duplication and just require that there is no loss. In that case a 2-way handshake is sufficient
to achieve our goal.

Theorem 8.4. Let ¢f=0, cs=1 and last=1 in the protocol skeleton consisting of operations

S, R, and C. Let connections always be closed eventually. Then we do not have the problem
of loss, i.e.

P does a successful (m,y,1) close implies
Q does a successful (m’,y’, g’) close with y’=m.

Proof. Since P did a successful (m,y,1) close, aptgp22. Hence Q was open with mcig=y,

yeig=m and ag=1. Thus, when Q closes this connection, it does a successful (y,m,g")
close. M

There is however a notion of correctness which lies somewhere in between "no loss” and
“correct communication”. We will call this semi-correct communication, and it is weaker than
correct communication because it does not avoid all duplications. In the literature, semi-
correct is sometimes called correct.

Definition 8.1. Semi-correct communication is the situation in which
P does a successful (m,y,1) close implies
Q does exactly one successful (m’,y’,g’) close with Y=m.

Note that semi-correct communication is strictly weaker than correct communication,
because it allows that P does a failure (m ,¥,1) close while Q does a successful (y,m,0) close,
which is excluded by correct communication.

Could we achieve semi-correct communication with a 2-way handshake? The problem is
of course, how to avoid duplication in the case that the sender closes successfully. The
receiver now cannot wait for the sender to tell it whether it made a duplicate opening, which is
the way the problem was handled in the previous cases. This is because waiting for a packet

-24 .

from the sender tumns the 2-way handshake into a 3-way handshake. One could argue that the
receiver could just wait for an error packet, to tell how to close, but then we have the 3-way
handshake discussed in section 8.1, where the sender just refuses to send his last packet with
seq=1. Since the protocol skeleton does not require the sender to send this packet anyway,
we even have correct communication, but we do not think it is fair to call this a 2-way
handshake if we always (and not only in the case that a packet got lost) need a third (error)
packet. Thus the receiver must decide on its own whether to open upon a packet and to risk a
duplication, or not. Although if the receiver always refuses to open upon receipt of a packet
this trivially satisfies the definition of semi-correct communication, we would hardly like to call
this 'communication’. The receiver needs the yci value of all past successful closes in order to
decide whether opening upon a received packet would introduce duplication or not, because
this received packet could be a retransmission of a packet which led to a successful close arbi-
trarily long ago. We doubt that this is feasible in any practical case.

There is however a semi-correct 2-way handshake which needs only one piece of infor-
mation from a previous connection, if we allow an additional assumption on the magic function
new value. Namely, we require new value to be strictly increasing. This might seem a heavy
condition to put on the function new value, but the two most obvious ways to implement this
function both have this property. The first is, just to number any connections consecutively,
and the other is, to use the current time. Although both implementations in theory use
unbounded numbers, in practice this is not the case, since for example the number of mil-
liseconds in two decades still fit in only 40 bits.

If a processor now receives a packet with an x-field less than or equal to the value it
maintains in Isc, it knows it is an old retransmission and hence can discard it. Since success-
ful closes are now possible with 2=0 and hence yci=0, we should take care not to destroy Isc

then. However, it tuns out to be sufficient to remember the yci-value of the last successful
close with g=0.

S§: same as Sp
R receive <x,y,z>;

if connection with Q closed
then if z#0 or x<iscp then error (<x,y,z>)

else begin mcip:=new value; ycip:=x; gp:=0; ap:=1 end (*open®)
else if not ((x=ycip or ap=0) (*x valid*)
and y=mcip (xy valid*)
and z=ap) (*z valid®)

then error (<x,y,z>)
else begin ap:=ap+1; if z=0 then ycip:=x end
with procedure error as in R3.

-25.

Cp: if connection with Q is open then
if <error, ycip, mcip, b> received or ap>lastp then
begin if ap<cf p then report failure
else if ap2csp then begin report success; Iscp:=ycip end
else if b=true then begin report success; if ycip>0 then Iscp:=ycip end
else report failure;
mcip:=undefined; ycip:=undefined; ap:=undefined; gp:=undefined
end
where
last P equal 1,
csp equal 1,
cfp equal O-gp.

Lemma 8.5. Let P and Q use the protocol skeleton consisting of operations S, R*, and C*.
(1) Let the following two conditions hold:

(1) connections do not stay open indefinitely,

(2) there are no processor breakdowns.

Then closedp(m,y,g,a) = ((sclosedp(m,y,g) na21) veclosedp(m,y,g,a)).
(2) Iscp is increasing.

Proof. (1). Obvious from the protocol skeleton.

(2). Let gp=0. Then it is clear from the protocol skeleton that ycip>Ilscp. Let gp=1 and
ap21. Consider the operation Ré in which Q opened the connection with mci Q= Ycip. At that
moment we had mcip>lscq, otherwise Q would not have opened this connection, and
Iscp<mciq, since mci Q Was put to a new value which is strictly greater than all previous
values. Hence ycip>Iscp as soon as P puts ap to 1. Since P is open still and ycip nor Iscp are

changed, ycip>lscp still holds. Since Iscp is not changed with a successful close if ycip=0,
Iscp is increasing. W

Theorem 8.6. Let P and Q use the protocol skeleton consisting of operations S*, R*, and C*.
Let the following two conditions hold:
(1) connections do not stay open indefinitely,
(2) there are no processor breakdowns.
Then P does a successful (m,y,1) close implies
Q does exactly one successful (m’,y’,g’) close with y’=m.

Proof. Let P do a successful (m,y,1) close. Let it be an (m,y,1,a) close. There can be
two cases (lemma 8.5).

Case 1. a21. Thus a+g22 and lemma 3.5 implies closedo(y,m,0,a’) with @’ 21, and hence
a successful close, or mcig=y, yeig=m, and a1, in which case Q’s close will be success-
ful, too.

Case 2. a=0. Hence it is an error close, and sclosedg(m’ ,m, g’) holds.

Thus in both cases Q does a successful close. Assume Q does two: an (m’,m,g’) close and
an (m”,m,g”) close. With lemma 3.7 we have that g’=g”=0. Let the close with mcig=m”
be the last one. Hence just before the close ycig>Iscq. Since at the other close yci Q Was set

-26 -

to m, and Iscq is increasing, we also have Isc2m just before the close with mci g=m". Con-
tradiction. Thus Q does exactly one successful close. W

Corollary 8.7. For semi-correct communication in the absence of processor breakdowns, a 2-
way handshake is sufficient if processors are allowed to remember one piece of information
about a previous connection and the function new value is strictly increasing.

Again, for an efficient working protocol we need to test whether y=0 in an opening
packet. Further, we can refrain from sending error packets if x<Isc. Since in a 2-way
handshake the seq-field is O always, we can just as well leave this field out too in an imple-
mentation.

Note that the protocol skeleton contains a feature that is not necessary for its semi-
correctness. Namely, if a processor with g=1 and a=0 receives an error packet, the way it
closes depends on the bit in the error packet. This is not necessary since the processor could
close as a failure always, even if the other one closed as a success. This still complies with
the definition of semi-correctness. This suggests two ways to change the protocol skeleton.

Firstly, let a processor with g=1 and a=0 always close as a failure on receipt of an
error packet. Then we do not need the exira bit in the error packets, nor the nonarbitrary
closes, and hence we could refrain from sending error packets altogether. Furthermore, the
mci-value of a processor with g=0 is never used, and only the processor with g=0 needs to
remember Isc, to prevent duplication.

Secondly, consider why a processor with g=1 would want to close with a=0, apart
from the case that the acknowledgement was lost (this case is handled correctly with use of the
bit in the error packet). Originally, this was necessary to prevent deadlock if both processors
happened to open simultaneously. If we can exclude this possibility, we have a correct 2-way
handshake. The obvious way to do so, is to let the processors have a fixed g, say P is always
sender (¢=1) and Q is always receiver (g=0). In general, this clearly is not acceptable, but it
might be inherent to some special application that the message transport is one way.

Theorem 8.8. Let P and Q use the protocol skeleton consisting of operations 4, R*, and C*.
Let the following three conditions hold:
(1) connections do not stay open indefinitely,
(2) there are no processor breakdowns,
(3) gp=1 and gy=0 always.
Then P does a successful (m,y, 1) close iff
Q does a successful (m’,m,0) close.

Proof. Left to the reader. W

Although the equivalence in theorem 8.8 is not sufficient to be correct communication by
definition (P might close successfully with ycip=0), we still feel this communication is correct
(one processor closes successfully if and only if the other processor closes successfully).

Another question is, whether it is perhaps possible to have semi-correct communication
with a 3-way handshake if we are not willing to use the extra memory necessary for a correct
3-way handshake. However, that we only have to avoid duplication when the sender closes

-27.

successfully, tumns out to be not much of a relaxation, as we can see from the proof of lemma
6.3. A receiver of an error packet which is in state g=0 and a=1 still does not have informa-
tion enough to know how to close, and the information it needs, pertains to an already closed
connection. Even the knowledge that new value is increasing is not enough if the processors
are not allowed to remember the highest value seen, after a connection is closed.

8.3. The use of time. The assumptions on which timer-based protocols for connection
management rely differ in two aspects from our original assumptions. The first one is that
packets do not have arbitrary delays: there is some finite time after which we can assume that a
packet is lost, if it has not arrived yet. The second one is that processors can use time: they
have local clocks, and the local clocks are in some way related. The way the first assumption
usually is implemented, uses time, too. Messages are timestamped when sent, and if any pro-
cessor encounters a packet with a timestamp which is older than some fixed lifetime, it is des-
troyed. Thus, if the communication network allows arbitrary delays, we need that the local
clocks all show more or less the same time. That is, the processors’ clocks may drift away
from real time, but the drift of all clocks should remain p-bounded (see e.g. [6]). The way
duplication is avoided in timer-based protocols is basicly the same as in the 2-way handshake
from the previous subsection. Do not open a connection when it is a duplication. More
specifically, do not open a connection upon an old packet. In the previous, ’old’ meant: with
an x-field less than or equal to Isc, now ’old’ means: with a timestamp < local time - packet
lifetime. The way this is handled is that connections are left open until no more packets from
the current connection can arrive. However if, once a connection is opened, processors have to
be able to conclude that no more packets of the current connection can arrive, processors also
must agree upon sending retransmissions for a fixed time only. This has one serious draw-
back: if packets can be sent only for a fixed time, all these packets might be lost in the com-
munication network. In all previous protocol skeletons we had the possibility to just continue
trying to get through and send retransmissions until some answer is received, whether it is the
expected answer or an error packet. This is the reason why timer-based protocols only achieve
semi-correct communication. As an illustration we give the protocol skeleton for a timer-based
semi-correct 2-way handshake for single-message communication, leaving out all features that
facilitate multiple-message flow as in e.g. the protocol given by Fletcher and Watson [2]. We
incorporate the feature of destroying outdated packets in the protocol skeleton to comply with
the assumption of unbounded delays. Apart from the atomic operations S°, R, and C5 for
both processors, we add an atomic action T (time) which increases the local clocks of both
processors with the same amount T. This can be interpreted as: during time T the processors
did no §°, R%, or C* operations. The idea of the atomic action time is due to Tel [6]. Thus
we assume the local clocks show exactly the same time. It is easy to adapt the protocol skele-
ton to clocks which have a drift which is p-bounded, see €.g. [6]. The problem of how to
keep local clocks in a distributed system synchronized is nontrivial, but lies outside the scope
of this paper. In this case it is necessary for the semi-correctness of the protocol skeleton that
a processor can distinguish opening packets from acknowledgements.
T: choose te RY;
clockp:=clockptr; clockg:=clock g+t

-28-

S3: if connection with Q closed then
begin mcip:=clockp; ap=0; gp:=1 end;
if clockp— mci p<mst,,
then send a packet <seq, clockp, D> where seq<apt+gp

R1§: receive <z,¢,d>;
if clockp—t<mpl then
begin if connection with Q closed
then if z#0 or d=ack then error (<z,t,d>)
else begin mcip:=clockp; D = ack; gp:=0; ap:=1 end (*open*)
else if not (((gp=1 and d=ack) or
(gp=0 and d=ack))
and ap=z)
then error (<z,t,d>)
else ap:=ap+l
end
where procedure error could be ’skip’.

C3: if connection with Q is open and clockp—mcip2mct, , then
begin if ap>csp then report success else report failure;
mcip:=undefined; ap:=undefined; g p:=undefined
end
where
mcip now contains the time the current connection was opened. (ycip will not be used any
more.)
csp is 1 for the 2-way handshake,
mstg,, is the maximum time during which a packet may be sent. It may depend on the value of
8p-
mpl is the maximum time during which a packet can live in the communication network,
mcty, is the minimum connection time (to prevent duplication). It may depend on the value of
8p-
Clearly the correctness of the protocol skeleton depends on the way the constants mstg, mst;,
mpl, mcto, and mct, are chosen.

Although the assumptions on which this timer-based protocol skeleton is based are
different from those of the previous protocol skeletons, we will show that it is a restriction of
protocol skeleton 4 from section 8.2. For this purpose we define a timer-based protocol skele-
ton consisting of operations 7, S%, R¥, and C*, where the variables yci and Isc and the
packet fields x and y are added to protocol skeleton 5. Thus we can compare situations in the
protocol skeletons 4 and 5°, and hence in 4 and 5. We will add the number of the protocol

skeleton as a superscript if we need to make this distinction. For example, we will show that
valid*(<x,y,z,t,d>) implies valid%(<x,y,z>).

-29.

choose 17e R*;
clockp:=clockpt; clockg:=clock g+t

if connection with Q closed then

begin mcip:=clockp; ap:=0; gp:=1; ycip:=0 end;

if clockp— mci p<msty,

then send a packet <mcip, ycip, seq, clockp, D> where seq<aptgp

: receive <x,y,z,t,d>;

if clockp—t<mpl then
begin if connection with Q closed
then if z#0 or d=ack then error (<x,y,z,t,d>)
else begin mcip:=clockp; D :=ack; gp:=0; ap:=1; ycip:==x end (*openx*)
else if not (((gp=1 and d=ack) or
(gp=0 and d=ack))
and ap=2)
then error (<x,y,z,t,d>)
else begin ap:=ap+1; if z=0 then ycip:=x end
end
where procedure error could be ’skip’.

: if connection with Q is open and clockp— mci p2mct,, then

begin if ap2csp then begin Iscp:=ycip; report success end

else report failure;

mcip:=undefined; ap:=undefined; gp:=undefined; ycip:=undefined
end

Lemma 8.9. Let P and Q operate with the protocol skeleton consisting of operations T, S°,
R%, and C%. Then

lemmas 3.1, 3.2 (1)-(3), and 3.3 (1) hold,

clockp= clock g,

closedp(m,y,g,a) = (clockp— m2mct, A (mciprundefined =>mcip—m2mct,)),

Isc prundefined =» closedp(m Iscp, g, a),

sentp(<x,y,z,t,ack>) => (0St—x<mstyA ((mcip=x Argp=0)vclosedp(x,y,0,a))),
sentp(<x,y,z,t,d#ack>) = (0St—x<msty A ((mcip=x Agp=1)vclosedp(x,y ,1,a))),
((mcip=x Agp= 0)vclosedp(x,y,0,a)) =

¢y
@
3
C)
)
©
)]

®

((—sentp(<x',y 2,1, ack>) Ax+msto<t<x+mct) A
(—sentp(<X',Y ,z,t,d#ack>) Ax<t<x+mctg),

((mcip=x Agp=1)vclosedp(x,y,1,a)) =

((—sentp(<x .,y ,z, t,ack>) Axst<x+mcty) A
(—sentp(<X,y ,z, t,d#ack>) Ax+mst St<x+mct,).

Proof. Directly from the protocol skeleton. W

-30-

Lemma 8.10. Let P and Q operate with the protocol skeleton consisting of operations T, S°,
R¥, and C%. Let met 1>2mpl+mstgtmst, and mcty>mpl+mst,. Then

(1) gp=0 = 0smcip—ycip<mpl+mst,,

@) (gp=1aap2l) => 0Sycip— mcip<mpl+mst |,

(3) (mcip=undefined A Isc p#undefined A sentq(<x,0,0,t,d>) Aclockp— t<mpl) = x>lsc Ps
() (mciprundefined asento(<x,y,z,t,d>) avalid] (<x,y,z,t,d>)) = y=mcip,

&) (closedp(m,y,g,a) ra21 nap21) = ycipty,

(6) (sentq(<x,y,z,t,d>) avalid§ (<x,y,z,t,d>)) = validf (<x,y,z>).

Proof. (1). Use lemma 8.9 (6) and the fact that the packet upon which P opened the connec-
tion contained a z-field which was tested for clockp—t<mpl.

(2). Use lemmas 8.9 (5) and 8.10 (1).

(3). Iscprundefined implies closedp(m,y,g,a) with y=Iscp and hence clockp—m>mct,. We
have two cases.

Case 1. g=1. With lemma 8.10 (1) we have clockp— Iscp>mct\— mpl—mst,. Using lemma
8.9 (7) for Q we have that t2x>Isc ptmcto, which implies x>Iscp, or that t<Iscp. Using lem-
mas 89 (3) and (7), we have that t<Iscp—mct+mct;. This is a contradiction with
clockp—t<mpl and clockp— Iscp>mct - mpl—mst,.

Case 2. g=0. With lemma 8.10 (2) we have clockp— Iscp>mct. Using lemma 8.9 (8) for Q
we have that t2x>Iscp+mct,, which implies x>lsc p, Or that ¢<Iscp+mst;. This is a contradic-
tion with clockp—t<mpl and clockp— Isc p>mcty,.

(4). We have the following cases.

Case 1. gp=0. Hence d#ack and since ap2l, z21 and y#0. With lemmas 8.9 (6) and 8.10
(2) we have O<sclockp—y<mpl +msty. Since clockp—mcip>0, we have mci p-y<
mpl+mst<mcto,. Hence mcip-y20 implies mci =Y. Assume mcip<y. Since P has not
closed the connection between mci p and clockp, mcip(y)=mcip=y.

Case 2. gp=1. Hence d=ack and with lemmas 8.9 (5) and 8.10 (1) we have mcip~y<
2mpl+mstotmst < mct,. Thus for the same reasons as in the first case, mcip=y.

(5). Assume first that ycip=y. Then mciq=y or closedo(y,y ,g ,a’). This single connec-
tion had only one value of gq or g’, respectively. Hence the case that g#gp cannot occur.
Thus we have two cases left.

Case 1. g=gp=0. Hence mcip—m>mct,. With lemma 8.10 (1) and mcto>mpl+mst, this
leads to ycip>y.

Case 2. g=gp=1. Hence mcip—-m>mct;. With lemma 8.10 (2) and mct>mpl+mst, this
leads to ycip>y.

(6). Note that lemma 8.10 (3) ensures that sentq(<x,0,0,¢,d>) and valid,?'(<x,0, 0,t,d>)
imply validg (<x,0,0>). All other packets are only valid§ if mci prundefined. Hence we can
use lemma 8.10 (4). Since ycip-values unequal O uniquely identify connections (lemma 8.10

(5)), a valid y-value implies a valid x-value. The test whether a z-value is valid is the same in
both protocol skeletons, thus we have proved the conclusion. M

Theorem 8.11. The protocol skeleton consisting of operations T, S5, R, and C5 is a restric-
tion of the protocol skeleton consisting of operations S*, R4, and C*.

-31-

Proof. The only difference between the protocol skeletons 5 and 5’ is that in 5 all those
packet fields and variables which are not used in 5°, are discarded. Since acceptance of a
packet in R® implies acceptance of that packet in operation R*, RY is a restriction of R®. The
operation S contains an extra restriction upon sending compared to 5%, hence operation S¥ is
a restriction of S* Since we saw in the discussion of section 8.2 that sending error packets
and using the information therein for closing is not essential, and that always closing as a
failure in case a=0 and g=1 yields a semi-correct protocol skeleton, too, operation C¥ is a
restriction of C4, Since operation T is a restriction of the function new value, protocol skele-
ton 5 is a restriction of protocol skeleton 4. W

Corollary 8.12. For semi-correct communication in the absence of processor breakdowns, a
2-way handshake is sufficient if processors have access to synchronized local clocks.

We remark that although the straightforward extension of this protocol skeleton for
multiple-message communication as shown in section 7 works, it will greatly improve if there
is not just a constant time available to send the sequence of messages, but some time depen-
dent on the length of the sequence. Hence in the timer-based protocol of Fletcher and Watson
[2] each message in the sequence has its own timer. For a partial correctness proof of this
protocol which also uses system-wide invariants, we refer to [6].

9. References.

[1]1 Belsnes, D., Single-Message Communication, IEEE Trans. Commun. 24 (1976), 190-
194,

[2]1 Fletcher, J.G. and R.W. Watson, Mechanisms for a Reliable Timer-Based Protocol,
Computer Networks 2 (1978), 271-290.

[31 Knuth, D.E., Verification of Link-Level Protocols, BIT 21 (1981), 31-36.

[4] Krogdahl, S., Verification of a Class of Link-Level Protocols, BIT 18 (1978), 436-448.

[5] Schoone, A.A. and J. van Leeuwen, Verification of Balanced Link-Level Protocols,
Techn. Rep. RUU-CS-85-12, Dept. of Computer Science, University of Utrecht, Utrecht,
1985. (Submitted for publication.)

[6] Tel, G., Assertional Verification of a Timer-Based Protocol, Techn. Rep. RUU-CS-87-
15, Dept. of Computer Science, University of Utrecht, Utrecht, 1987.

[7]1 Tomlinson, R.S., Selecting Sequence Numbers, Proc. ACM SIGCOMM/SIGOPS Inter-
process Commun. Workshop, ACM, pp. 11-23, 1975.

