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by an external observer).

The task of a transport protocol is to let A and B exchange information in a reliable way.
That is, no information may be lost, duplicated or delivered out of order. Starting with no
status information in A or B, a connection must be opened when either station has some infor-
mation to send. When there is no information left to be sent, the connection must be closed,
that is, status information must be discarded on both sides. Subsequent arrival of messages
(from an earlier connection) may not cause duplication, i.e., information may not be accepted
twice. This opening and closing (which is normally referred to as connection management)
and the subsequent exchange of information (data transfer) must be carried out under the con-
trol of a transport protocol.

We consider information traffic from A to B only and, for the time being, assume that
timer drift is 0. A duplex communication can be set up by using two simplex connections,
whereas the extension to handle timer drift is discussed in section 3. Opening a connection is
implicit in the sending or receipt of a packet. At the same time a timer is set. This timer is
refreshed when subsequent messages are sent or received. The connection is closed when the
timer runs out. An acknowledgement and retransmission mechanism is employed to avoid loss
of information. The sending protocol will ensure that each unit of information is sent only
during a time interval of length U. Because the lifetime of a packet is bounded by MPL, each
unit of information can be in the network only during an interval U +MPL. So, more than
R 2 U +MPL time after the acceptance of a packet there is no risk of accepting the same
packet again, and the receiver can discard status information safely. Only within an interval R
after the acceptance of an element B can send an acknowledgement for this element. The
sender keeps timers also. No acknowledgements for packets can be received more than
2MPL +R after the sending of these packets, so after this time the packets can be reported as
(possibly) lost. When no packets have been sent during an S > 2MPL +R interval, the sender
times out and closes the current connection. The fact that opening and closing a connection

costs no extra messages makes timer-based protocols particularly efficient for small bursts of
communication.

1.2 Details of the protocol

We describe a protocol skeleton rather than a complete protocol. That is, we give a list of
atomic actions, which are allowed to be executed in any arbitrary sequencing. Still, the invari-
ants asserting the correctness can be shown to remain true. It follows that any actual protocol
implementation, based on these atomic actions, is partially correct. Thus, in fact a class of
protocols is validated. The protocol skeleton is designed so as to capture the essence of the A-¢
protocol due to Fletcher and Watson [FW78].
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We call the unit of information an element, and it is not important whether an element is
a bit, a byte, a file, or whatever. Although A and B actually discard status information
between connections, in our skeleton A keeps some. This is not necessary for the correctness
of the skeleton, but we need this for our analysis. The variables of A are: an infinite array
M[1],M][2], - - - of elements, an infinite array Ut[1],Ut{2], - - - of associated timers,
integers Low and High to indicate A’s sending window, an integer Base used for sequence
numbers, and a timer St. It is not essential that A keeps elements in an array: a queue could
do as well. The assumption that A keeps elements in an array only serves to simplify the
correctness proof. The variables of B are: an expected sequence number Next, and a timer Rt.
Timers are a special kind of variable. The value of a timer decreases constantly in time, even
when it is not assigned to. We assume that the speed at which timers decrease is the same for
all timers in the system. Constants are: U, the length of the send interval for packets at A (the
value of U is discussed in section 4), R > U + MPL, the receiver’s time-out value, and

S 2 2MPL +R, the sender’s time-out value. The value of MPL is a constant, depending on
the network.

We now discuss the actions A and B can execute. A accepts a next element for
transmission and increases its sending window by executing the following operation:

Al: begin Ut[High] = U ;
M[High] := "new element" ;
High = High +1
end

When A sends a packet, a connection is implicitly opened (if none exists). The St timer is set,
and when it reaches the value O (and High = Low) the connection is closed again. The for-
mat of a packet sent by A is <SoS,SN,M >, where SoS is a boolean value (Start of Sequence),
SN is a sequence number, and M an element. A sets SoS 1o true iff the packet contains the
first element in A’s sending window, i.e., the packet contains the element with number Low .
For B this means that the element is to be accepted, even if no open connection exists. A uses
consecutive sequence numbers within each connection, but is free to choose new sequence
numbers for each new connection. So, the sequence number of a packet containing M [i] is
i +Base, where Base is constant within a connection. The packet must be within the window
and have a positive timer;

A2: {Low<i<High A Ut[i]1>0}
begin send <(i = Low),i +Base , M [i]> ;
St =38
end

The format of acknowledgements A receives from B is just an expected sequence number.
The acknowledgement serves to acknowledge the receipt of all elements with a smaller
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sequence number within the connection. This is of course the absolute element number plus
Base. Its receipt triggers:

A3: { Receive <ESN> }
begin Low := max (Low,ESN - Base) end

When an element is not acknowledged for a long time, is is reported as possibly lost. It is also
possible, that the element is accepted by B, but only the acknowledgement was not received.
A cannot distinguish between these two cases {Be76]. The moment an element is reported can
be chosen in different ways. In [FW78] all outstanding elements are reported when St runs
out. We chose to report an element 2MPL +R after the end of its transmission interval. Both
possibilities result in a correct protocol skeleton.

A4: { Ut[Low])<—-2MPL —-R }
begin report M [Low] as possibly lost ;
Low = Low +1
end

We allow A to choose new sequence numbers in each connection by adding an operation that
changes Base when no connection exists:

AS: {St<0}
begin Base := random(Z) end

For the receiver B there are only two actions: the receipt of a packet and the sending of an
acknowledgement.

B1: upon receipt of <SoS,SN,M> do
if (Rt <0 A SoS) v (Rt >0 A SN = Next) then
begin accept M ;
Next := SN +1;
Rt =R
end

B2: {Rt>0}
begin send <Next> end

The actions A1 through AS, B1, and B2 together form the protocol skeleton. The actions can
be executed by A and B (respectively) in any desired order and with any desired frequency. A
closes a connection when St runs out, B closes a connection when Rt runs out. B discards all
status information when Rt reaches the value 0. In action B1, B does not need the "old"
values of variables in case Rt < 0. Even Rt can be discarded: if B has no "connection record"
of an incoming connection from A, this is interpreted as Rt < 0.
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2 Correctness proof of the skeleton

In section 2.1 we give the protocol skeleton in a slightly modified form, which we need for the
correctness proof. In section 2.2 we prove that no undetected loss of elements occurs, and in
section 2.3 we prove that no duplicates are accepted, and sequencing is done correctly.

2.1 Modified protocol skeleton

In the correctness proof we need assertions involving not only the variables of A and B, but
also aspects of the system state that are not observable to A and B. Hence we add these as
"auxiliary variables”. We keep boolean arrays accepted|..] and error|..] to indicate what ele-
ments have been accepted by B or reported as error by A. To the packets in the network we
add a field RPL, Remaining Packet Lifetime, to indicate how long the packet can still be in the
network. To packets traveling from A to B we also add the absolute number of the element
included. The format of packets sent by A is now <SoS , SN »M,i,RPL>, where SoS, SN, and
M are as before, i is the absolute element number of M , and RPL is as explained. The for-
mat of packets sent by B is now <ESN,RPL>. The reader should realize that the added vari-
ables are "invisible” to A and B, and should not be there at all in a real implementation. We
refer to the multiset of packets, traveling from A to B as the AB-pool (and vice versa). Ini-
tially, the value of Low, High, Next, Last, St, and Rt is 0, accepted[i] and error[i] are false
for all i, and the pools contain no messages. The actions of the skeleton are modified to:
Al: begin Ut[High] = U ;
M[High] = "new element" ;
High = High +1
end

A2: {Low<i<High AUt[i]>0}
begin send < (i = Low), i +Base M[il,i MPL> :
St=398
end

A3: { Receive <ESN,RPL> }
begin Low = max (Low , ESN - Base) end

A4: {Ut[Low]<-2MPL -R }
begin error [Low] = true ;
Low = Low +1
end



AS: {§t<0}
begin Base := random(Z) end

Bl: upon receipt of <SoS,SN,M,i,RPL> do
if (Rt <O A SoS) v (Rt >0 A SN = Next) then
begin accepted[i] = true ; Last =i ;
Next = SN+1;Rt =R
end

B2: {Rt>0}
begin send <Next, MPL> end

To model the behavior of time we introduce a new atomic action. This action represents what
happens if no other action takes place during a certain time 8. It decreases all timers and
RPL’s of packets by 3, and discards packets whose RPL becomes zero or less. Although this
action involves variable changes all over the system, it is realistic to consider it atomic.

TIME:
begin § := random(R") ;
forall i do Ut[i] .= Ut[i]1- 3 ;
St =8t-95;
Rt = Rt-39;
forall <..,RPL> in pools do
begin RPL = RPL - 3§ ;
if RPL < 0 then discard message
end
end

We want to prove that the protocol skeleton is resilient against loss, duplication, and rese-
quencing of packets. We handle resequencing by modeling pools as sets rather than as queues.
The loss or the duplication of a packet in the network can also be modeled as actions.

LOSS:

{M € pool }
begin discard M from pool end

DUP: { M € pool }
begin insert M to pool end

Here for pool one can read the AB- as well as the BA-pool, and M is any message in this
pool. The formulation of all of our assertions is such that these actions preserve them:



-8 -

Observation 1: An invariant of the form "timer 1 > timer 2 + constant " is preserved by TIME.

Observation 2: An invariant of the form "For all M in pool: P(M)" is preserved by LOSS (or
DUP) if removal (duplication) of M preserves P(M).

Observation 1 holds because TIME decreases all timers by the same amount, observation 2
holds because the conclusion of the invariant remains true. Most of our invariants involving

timers or pools are of these forms. Note that a programmer has control over the execution of
actions Al to AS, B1, and B2, but not over TIME, LOSS, or DUP.

2.2 Loss of elements

In this section we prove a series of invariants, preserved by all actions A1 through AS, B1, B2,
TIME, LOSS and DUP. The last one will be Vi <Low: ok (i), stating that no undetected loss
occurs.

Lemma 2.1: St <S, Rt <R, Vi Ut[i]1<U, V<..,RPL> in pools: 0<RPL <MPL.

Proof: Initially all timers are 0 and there are no packets in the pools. St is assigned to only in
A2 and TIME, A2 sets St to S and TIME decreases St. So St <S invariantly holds. Rt <R

and Ut[i]<U are proven similarly. Packets are sent with RPL = MPL, and TIME decreases
RPL but discards packets when it reaches 0. [J

Lemma 2.2: For all <..,RPL> in the AB-pool, St 2RPL +MPL +R.

Proof: Initially the pool is empty so the lemma holds trivially. Upon sending <.., MPL>, St is
set to S 2 2MPL +R = MPL +MPL +R. The increase of St leaves the relation invariant for
already existing packets. TIME preserves this invariant by observation 1. LOSS and DUP

preserve this invariant by observation 2. Other actions do not involve the variables involved in
the lemma. O

Lemma 2.3: If Rt > O then St > Rt + MPL .

Proof: Initially St = Rt = 0 so the relation holds. A2 increases St so A2 preserves this ine-
quality. Upon receipt of <..,RPL>, B sets Rt to R (action B1). By 2.1, RPL >0, and by
lemma 2.2, St 2 RPL +MPL +R. So after action B1 St > Rt + MPL holds. TIME preserves
this invariant by observation 1. [

Lemma 2.4: For all <ESN,RPL > in the BA-pool, St >RPL.

Proof: Initially the pool is empty so the statement holds trivially. A2 increases Sz, so A2
preserves this assertion. B sends an acknowledgement <ESN,RPL> with RPL = MPL only
when Rt>0 (action B2) and, by the previous lemma, we then have St>MPL. TIME

preserves this invariant by observation 1. LOSS and DUP preserve this invariant by observa-
tion 2. O
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Lemma 2.5: For all <SoS,SN,M,i,RPL> in the AB-pool, SN = i +Base.

Proof: A packet satisfies this relation when it is sent (action A2). For a packet in transit, i
and SN are never changed. When a packet is in transit, St > 0 by lemma 2.2, and hence a

change of Base (action A5) does not occur. LOSS and DUP preserve this relation by observa-
tion2. O

We want to prove, that every element is received or reported as possibly lost. Therefore,
define the predicate ok (i) :¢=>(error[i] vaccepted|[i]).

Lemma 2.6:

(1) Vi<Low: ok(i),

(i) For all <true,SN,M, j,RPL> in the AB-pool: Vi <SN—Base: ok(i),
(iii) If Rt >0 then Vi <Next— Base: ok (i), and

(iv) For all <ESN,RPL> in the BA-pool: Vi <ESN—Base: ok (i).

Proof: The proof goes by simultaneous induction. Observe that nowhere (after initialization)
accepted[i] or error[i] is set to false and hence, once ok (i) is true for some i, it remains
true forever. This assertion holds initially, for (i) Low = 0, (ii) the AB-pool is empty, (iii)
Rt = 0, and (iv) the BA-pool is empty.

(i) Because ok(i) is stable, we only have to consider actions that increase Low. A3 and A4
do so. In A4 error[Low] is set to maintain the invariant. If Low is increased to ESN— Base
in A3, we have Vi <Low: ok(i) by (iv).

(i) A packet is sent with SoS = true only if Low = j and with SN = Base +j, hence
(use i), Vi <SN—Base: ok(i). Base is not changed while a message is under way. LOSS
and DUP preserve this relation by observation 2.

@iii) If Rt<O0, action Bl can set Rt to R and Next to SN +1 upon receipt of
<true,SN,M,j,RPL>. From (ii) Vi <SN—Base: 0k (i), (lemma 2.5) j = SN — Base, and
the fact that accepted[j] is set to true it follows that now Vi <Next—Base: ok (i).

If Rt >0, action B1 can set Next to SN +1 upon receipt of <SoS,Next,M, j,RPL>. From

(i) Vi <Next— Base: ok (i), (lemma 2.5) j = Next — Base, and the fact that accepted[j] is
set to true it follows that now Vi < Next— Base : ok (i ).

(iv) If <Next,MPL> is sent (in action B2) we have Vi <Next—Base: ok(i) by (iii). Base
is not changed while a message is in the BA-pool, because St >0 (lemma 2.5). LOSS and
DUP preserve this relation by observation 2. O

We now make the assumption that action A4 is always executed as soon as it is enabled. The
main result of this section is:

Theorem 2.1: No element is lost undetectedly.
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Proof: If, U +2MPL +R after the delivery of element i to A (action Al), Low >i, the ele-
ment is received by B or already reported by lemma 2.6i. If not, the element will now be
timed out (action A4) and reported. O

2.3 Sequencing and duplicates

In this section we will prove that elements are always accepted in correct order, that is, with
strictly increasing element numbers. Thus, no element is accepted twice or followed by an ele-
ment with lower sequence number.

Lemma 2.7: For all <SoS,EN,M,i,RPL> in the AB-pool: Ut[i] > RPL — MPL.

Proof: The packet is sent with RPL = MPL and Ut [i]1> 0, hence Ut[i] > RPL — MPL holds.

TIME preserves this relation by observation 1. LOSS and DUP preserve this relation by
observation 2. [J

Lemma 2.8: accepted|[i] =>Rt > Ut[i]+MPL.

Proof: An increase of Rt (in action B1) leaves this relation invariant for earlier accepted ele-
ments. For the newly accepted element i we have Ut [i1<U, Rt is set to R, and
R 2 U +MPL, hence Rt > Ut[i]+MPL. TIME preserves this relation by observation 1. OJ

Note in particular that Rt > Ut[Last]+MPL .
Lemma 2.9: Forall i; < i, < High:Ut[i] < Utli,].
Proof: Initially High = 0 so this holds. A1l increments High from, say, h to h +1. Ut[h] is

set to U, and for all i; < h we now have Utli ] < Utlh] by lemma 2.1. For smaller iy the

increase of High of course preserves the relation. TIME preserves this relation by observation
1. O

Lemma 2.10: If accepted[i,) and <SoS,SN,M,i 1,RPL> is in the AB-pool for some i, < iy,
then Rt > 0.

Proof: accepted|i,] implies Rt > Ut [i21+MPL by 2.8. i, <i, implies Ut[i 1] < Ut[iy] by
29. <S0S,SN,M,i{,RPL> in the AB-pool implies Ut[i,] > ~MPL by 2.7 and 2.1. Rt >0

follows.
Lemma 2.11: Rt > 0 => Last = Next — Base — 1.

Proof: Each time Rt is set (upon receipt of a packet <SoS,SN,M,i,RPL>), Last is set to i
and Next to SN +1, and SN = i +Base (lemma 2.5), so Last = Next — Base — 1 follows.
Rt > 0 implies St > 0 (lemma 2.3), so AS is disabled. [

We are now ready to prove the following important result:
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Theorem 2.2: B accepts elements with strictly increasing element numbers.

Proof: Assume <SoS,SN,M,i,RPL> arrives and i < Last. Because accepted [Last] is true,
from 2.10 follows Rt > 0. By 2.5, SN = i +Base. By 2.11, Next = Last +Base +1, and so,
for i < Last, Next >SN. Hence B does not accept M. O

Theorems 2.1 and 2.2 together state that the protocol skeleton guarantees reliable information
exchange and connection management.

3 Timer drift

Until now we have assumed that all timers in the network run at equal speed, but in practice
this will not be the case. Mechanical or electronic clocks tend to suffer a "drift". This drift is
very small: quartz clocks that one can buy for a dollar everywhere show an inaccuracy of
about one part in a million. We will now see how the program is modified to handle any

clock drift, assuming that the drift is p-bounded. That is, in real time § a clock is decreased

lfp < & < 8x(14p). The TIME action can easily be modified to

model this changed behavior of real time. In the following formulation we assumed that all
timers in computer A run at the same speed. In practice, these timers are not implemented by

using a large number of physically independent clocks, but by one hardware clock and addi-
tional software [Ta81, p.157].

TIME-p:
begin & := random(R*") ;
&= . (* = < ¥ < Bx(14p) *)

by an amount &', where

I+p
forall i do Ut[i] .= Ut[i]- & ;
St=8St-8&;
4 8 ({4
— . (K %
& = ..;( T+ < 8” S x(14p) *)
Rt == Rt- 98" ;

forall <..,RPL> in pools do
begin RPL .= RPL - §;
if RPL < 0 then discard message
end
end

Of course, this is not the only possible way to modify the TIME action. It is possible to
assume that timers within A drift independently, and model TIME-p accordingly. If the



-12 -

network uses time stamps and clocks for discarding messages after MPL, the network clocks
may suffer drift also. One can take this drift into account in TIME-p but, on the other hand, it
is easily seen that now MPL’' = (14+4p)MPL is an exact bound on the (real time) life-time of a
packet. It is possible to model a different drift in A and B, etc.

The protocol skeleton remains unchanged, except that the constants have a different value.
Take R 2 (1+p)(14+p)U +(1+p)>MPL), and S 2 (14p)(2MPL +(14p)R). We will now for-
mulate weaker invariants, and show that these weaker invariants are maintained by the
modified actions. The modification of the correctness proof is done in an almost mechanical
manner.  Recall observation 1. We now consider invariants of the form
timer 1 2 (1+p)* timer 2 + constant’. Because in TIME-p fimer1 is decreased by at least

—(ﬂ%’ and timer?2 by at most (1+p)5, TIME-p preserves this new invariant. We use the fact

that, for ¢1, 12, d, d1,d2, r,and c inR,d >0, r > 1, from t12r¥2+c, %SdlSdr,
d

=< d2<dr, follows (t1~-d1) 2 r2(t2-d2)+c.

Observation 3: TIME-p preserves invariants of the form fimer 1 > (1+p)* timer2 + constant’.

The constant in the invariant (and thus, the constants in the protocol skeleton) must be
changed so that the new invariant is also maintained by the actions that set the timers.
Because in TIME-p the RPL-"timers" run accurately, one factor (1+p) suffices if timer1 or
timer2 is the RPL -field of some packet.

3.1 Loss of elements

All lemmas in this section have their counterpart in section 2. By taking p = 0, one finds the
simple version of all constants, lemmas, and actions.

Lemma 3.1: St <S, Rt <R, Vi Ut[i]<U, V<..,RPL> in pool: 0<RPL <MPL.
Proof: As for lemma 2.1. O

Lemma 3.2: For all <..,RPL> in the AB-pool, St 2 (1+p)(RPL +MPL + (1+p)R).

Proof: Initially the pool is empty so the lemma holds trivially. Upon sending <.., MPL>, St is
set to S 2 (14+p)2MPL + (14+p)R) = (1+p)RPL + MPL +(14p)R). The increase of St leaves
the relation invariant for already existing packets. TIME-p preserves this relation by observa-

tion 3. LOSS and DUP preserve this relation by observation 2. Other actions do not involve
the variables involved in the lemma. [J

Lemma 3.3: If Rt > O then St > (14p)((1+p)Rt + MPL).
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Proof: Initially St = Rt = 0 so the relation holds. A2 increases St so A2 preserves this ine-
quality. Upon receipt of <..,RPL>, B sets Rt to R (action B1). By 3.1, RPL >0, and by
lemma 3.2, St 2 (14p)}RPL +MPL +(14+p)R). So after action B1 St > (1+pX(1+p)Rt + MPL)
holds. TIME-p preserves this relation by observation 3. [

Lemma 3.4: For all <ESN, RPL> in the BA-pool, St > (1+p)RPL.

Proof: Initially the pool is empty so the statement holds trivially. A2 increases St, so A2
preserves this assertion. B sends an acknowledgement <ESN,RPL> with RPL = MPL only
when Rt >0 (action B2) and, by the previous lemma, we then have St >(1+p)MPL. TIME-p

preserves this relation by observation 3. LOSS and DUP preserve this relation by observation
2. 0

Lemma 3.5: For all <SoS,SN,M,i,RPL> in the AB-pool, SN = i +Base.
Proof: As for lemma 2.5. O

Lemma 3.6:

(i Vi<Low: ok(i),

(i) For all <true,SN,M, j,RPL> in the AB-pool: Vi <SN—Base: ok (i),
(iii) If Rt >0 then Vi <Next— Base: ok(i), and

(iv) For all <ESN,RPL> in the BA-pool: Vi <ESN—Base: ok (i).

Proof: As for lemma 2.6.

Theorem 3.1: No element is lost undetectedly.
Proof: As for theorem 2.1. O

3.2 Sequencing and duplicates
This section corresponds to section 2.3.

Lemma 3.7: For all <SoS,EN,M,i,RPL> in the AB-pool: Ut[i] > (14pXRPL — MPL).
Proof: The packet is sent with RPL = MPL and Ut[i]>0, hence Ut[i]>

(14+p)(RPL — MPL) holds. TIME-p preserves this relation by observation 3. LOSS and DUP
preserve this relation by observation 2. [J

Lemma 3.8: accepted[i] =Rt 2 (14+p)(1+p)Ut [i1+(14p)* MPL).

Proof: An increase of Rt (in action B1) leaves this relation invariant for earlier accepted ele-
ments. For the newly accepted element i we have Ut[i 1<U, Rt is set to R, and R =
(+pX(1+p)U +(1+p)*MPL), hence Rt 2 (1+p)(1+p)Ut i1+ (1+p)?MPL).  TIME-p
preserves this relation by observation 3. O

Note in particular that Rt 2 (14+p)((1+p)Ut [Last ]+ (1+p)> MPL).
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Lemma 3.9: For all i; < i, < High: Ut[i{] < Utli,).
Proof: As for lemma 2.9. O

Lemma 3.10: If acceptedi,] and <SoS,SN,M,i,,RPL> is in the AB-pool for some i, < i,,
then Rt > 0.

Proof: accepted[i,] implies Rt > (1+pX(14+p)Ut [iz]+ (14+p)*MPL) by 3.8. i 1 S iy implies
Utli\]< Utli;] by 39. <SoS,SN,M,i,,RPL> in the AB-pool implies Ut[i;] >
(1+p)(~MPL) by 3.7 and 3.1. Rt > O follows. [J

Lemma 3.11: Rt > 0 = Last = Next — Base — 1.
Proof: As for lemma 2.11. O

Theorem 3.2: B accepts elements with strictly increasing element numbers.
Proof: As for theorem 2.2. O

4 Extensions

After having proven the correctness of the protocol skeleton in section 2, we will now discuss
some remaining issues and extensions. See also Watson [Wa81].

4.1 The choice of U

The choice of the parameter U has considerable effect on the performance of the protocol. U
must be large enough to allow for a sufficient number of retransmissions, so that an element is
received by B with probability nearly 1. If ARD (Average Round-trip Delay) is the average
time it takes for a packet to be acknowledged, and & is the number of times one wants to try
retransmission, then U = kxARD is a good choice. This choice is made in [FW78]. If U is
large, R and S must be large also. Hence, stations must keep state information longer and, if
an element is lost, this takes longer to be detected.

4.2 Multi-element packets

In the skeleton given in section 1 a packet contains one element only. Efficient protocols pack
more clements in one packet to decrease overhead. The aim of this section is to show that this

more efficient transmission of elements is possible within the given framework, without
modification of the correctness proofs.

Within the restrictions stated explicitly in section 1 (and in the preconditions of the
actions), any scheduling of atomic actions is "safe", i.e., guarantees correct transport of data.
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Therefore it is possible to define larger actions for A and B, consisting of one or more old
actions and (possibly) some control overhead. Any scheduling of the larger actions is also a
possible scheduling of the old actions, and hence preserves correctness. For example, A can
execute a series of A2 actions:

A2: {Low <f <f+L-1<High, Ut[f1>0}
begin for i := f to f +L — 1 do
execute A2 "with i "
end

The result of this action is a burst of L packets <(f=Low),SN,MI[f ]>,
<false , SN+1,M[f +11>, .., <false ,SN+L— LM[f+L—-1]>. We can introduce a single
packet

<(f=Low),SN,L,(M[f1,.M[f +L—1])>

as an abbreviation for this burst. So, the result of A2’ is the sending of this packet. Upon
receipt of this packet B simulates the receipt of the single element packets one by one:

B1’: upon receipt of <SoS,SN,L, Mo, . M;_)>
begin for i .= 0to L — 1 do
execute B1 "with <(SoS Ai=0), SN+i,M;>"
end

It is left to the reader to verify that these new actions are equivalent to

A2: {f 2Low, f +L - 1 < High, Utff1>0}
begin send <(f=Low, f+Base,L ,(M[f,.M[f+L—1])> ;
St=3S§
end

B1’: { Receive <SoS,SN,L,(M0,..,ML_1)> }
ifRt <0
then if SoS then (* Open a connection *)
begin accept My to M; _, ;
Next := SN+L ;Rt = R end
else discard message
else if Next € SN.SN+L~1 then
begin accept My,,,_ v to My _; ;
Next == SN+L ; Rt .= R end

The original A2 and B1 can be replaced by A2’ and B1’ to implement multiple element pack-
ets, without further modification of the correctness proof.
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4.3 Duplex communication

Until now we assumed that only A had elements for B, but in most applications the reverse
will be the case also. We solve this by establishing two connections of the kind we discussed,
where in the second connection the roles of A and B are interchanged. Acknowledgements
can be piggybacked upon data packets to reduce overhead. Packets occur in one format only:
<ESN;SoS,SN,L,(M,..)>. If the packet contains data only, and is not to be interpreted as an
acknowledgement, ESN can take some non sense value like — 1, or an extra boolean field can
indicate this (like in [FW78]). If the packet contains no data, and is to be interpreted as an
acknowledgement only, L is set to 0, and eventually SoS, L, and M are left out.

4.4 Storage of out-of-sequence packets

In the protocol skeleton we gave an early arriving packet will be rejected. It is possible for B
to store these packets temporarily, and accept the elements later when packets with lower
sequence number have arrived, and the stored packets will fit in the receiving window. Pack-
ets must be stored for at most R, and it can be shown that their sequence number is still
correct (i.e., a change of Base did not occur). We do not give details here, but see [FW78].

4.5 Bounded sequence numbers

In the version given, sequence numbers can grow to infinity. In most cases it will be desirable

to use packets with control fields of fixed size, so one wants to use bounded sequence
numbers,

A simple way to do this (without modification of the skeleton) is the following. A
always chooses Base such that the first sequence number in a connection is 1. When the
highest sequence number is reached, A stops sending, so that A and B will time out and close
the connection. After the time-out, A starts a new connection and transmits the remaining ele-
ments, with sequence numbers starting at 1. This solution has the obvious disadvantage that
every now and then communication has to be interrupted for a restart of sequence numbers.

If the creation rate of elements is bounded one can use cyclic sequence numbers within
one connection. Assume a packet is created only if the P™ previous packet is at least
U +MPL +R old (no timer drift here):



-17 -

AY’: { Ut[High— P]<—-R-2MPL }
begin Ut[High] = U ;
M [High] := "new element" ;
High = High +1
end

We will argue that it now suffices to transmit sequence numbers modulo 2P. Suppose B
receives a packet <SoS,SN,M,i,RPL>, and Rt > 0 (so that B really looks at the sequence
number SN).

Lemma 4.1: Next — P < SN < Next +P.

Proof: From action A1’ above it follows that Ut(j1+U +2MPL +R < Ut[j+P] for
J+P < High. Element Last is accepted, so Ut[Last] < U, and Ut[Last—P] < —-MPL.
However, Ut[i] 2 - MPL (lemma 2.7), so i > Last — P (lemma 2.9).

i 2 Last+P implies Last+P < High and hence Ut[Last+P] > Ut[Last]+U +MPL +R.
From Rt > O follows Ut[Last] > -~ MPL —R, hence Ut [Last+P] > U, a contradiction. It fol-

lows that Last— P <i < Last +P. Thus, use lemmas 2.11 and 2.5, Next— P < SN <
Next+P. O

Lemma 4.2: For all <ESN, RPL> in the BA-pool, High — P < ESN — Base < High.

Proof: For all <SoS,SN,M,i,RPL> in the BA-pool we have Ut[i] > RPL —~ MPL > - MPL
(Lemma 2.7). So, Rt > 0 implies Ut[Last] > —MPL +Rt — R > — MPL — R or, equivalently
(lemma 2.11), Ut[Next — Base— 11> - MPL - R. Thus, if <ESN,MLP> is sent,
ESN = Next and hence Ut[ESN — Base — 11> (RPL — MPL)~ MPL — R. This relation is
preserved by TIME, and Ut[ESN - Base — 1] > — 2MPL — R follows. Ut[High- 11 < U, so
Ut[High— P ~ 1] < — 2MPL — R, and ESN - Base > High — P follows. ESN — Base must
be < High because B can not acknowledge unsent packets (use lemma 2.6). O

Theorem 4.1: It suffices to transmit sequence numbers modulo 2P .

Proof: Bl uses the value SN only when Rt > 0. In this case SN = Next is equivalent to

SN = Next (mod 2P) by lemma 4.1. Acknowledgements modulo 2P (in fact, even modulo P)
are unambiguous by lemma 4.2. [

With a changed bound on element creation rate the lemma and theorem hold in the timer drift
case also.
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5 Conclusions, comments

In this paper we have proven the correctness of a skeleton for transport protocols. All proofs
are formalizable. A protocol skeleton can be refined to a complete protocol, allowing the pro-
grammer to tune the protocol to his/her needs. So, in fact a large class of protocols is vali-
dated in this paper. The A-t protocol of Fletcher and Watson [FW78] belongs to this class.
Proving its correctness now reduces to showing that it is a refinement of our protocol skeleton.

Elements for which A does not receive an acknowledgement are reported as possibly lost.
It is possible, however, that B has accepted these elements. If A chooses to time out and send
the elements again in a new connection, this may result in a duplicate accepted by B. If A
chooses not to send the elements again, this may result in a loss of elements. Therefore these
elements must be reported to the higher level protocol. It is impossible to solve this dilemma
in a protocol that guarantees that connections (in which finitely many elements are transmitted)

are closed in finite time. In the protocols of [Sc87] connections may have to remain open for-
ever.

This work has again demonstrated the usefulness of assertional proofs. It is shown that
the method is useful not only for data transfer protocols [Kr78], [SvL85], and other asynchro-
nous distributed algorithms [La82], but also for (definitely more complex) timer-based algo-
rithms. Other well-known methods for protocol verification (Finite State Machines, Petri Net
Models, see [Ta81]) seem to fail at this point. Currently it is investigated how assertional
proofs can be given for fault-tolerant algorithms. We believe that assertional proof methods
can be used in combination with modular design techniques for distributed programs.

Assertional proofs can sometimes be lengthy: for each invariant / and each action A one
must show that A does not violate /. However, the resulting proof consists of many indepen-
dent, small proofs and is thus highly modular. Many of the small proofs are rather trivial, for
example if / and A have no variables in common. In these cases the proofs were left out. For

some actions we could give "classes” of formulas that are not violated by these actions, see the
end of sections 2.1 and 3.1.

The way we modeled time in our proof reveals clearly the importance of the use of
Clocks in distributed programming. An important characteristic of distributed systems is that
atomic actions may not involve variables of different processes. This lack of global control is
one of the fundamental difficulties in distributed programming. We see, however, that when
timers are used, it is realistic to consider atomic actions involving variables of different

processes. Thus, the use of timers gives us a sense of global control in distributed algo-
rithms.
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