Linked Allocation for
Parallel Data Structures

Marinus Veldhorst

RUU-CS-87-18
October 1987

Rijksuniversiteit Utrecht

Vakgroep informatica

Budapestiaan6 3584 CD Utrecht +-
Corr. adres: Postbus 80.012 3508 TA Utrecht
Telefoon 030-53 1454

The Netherlands

Linked Allocation for Parallel Data Structures

Marinus Veldhorst

Technical Report RUU-CS-87-18
October 1987

Department of Computer Science
University of Utrecht
P.O. Box 80.012, 3508 TA Utrecht
The Netherlands

LINKED ALLOCATION FOR PARALLEL DATA STRUCTURES

Marinus Veldhorst

Department of Computer Science, University of Utrecht
P.O.Box 80.012, 3508 TA Utrecht, The Netherlands.

ABSTRACT. It will be shown that by using linked allocation a P-RAM of K processors can

maintain J stacks of total size S in space O (JK +S§) while each simultaneous update of the J

stacks takes O (logK + logmax|S;|) time where ;| is the size of the j* stack. Thus, the
J

use of linked allocation in PRAM algorithms is not necessarily more expensive than the use of
array allocation.

1. Introduction. In the area of the design of efficient sequential algorithms, the use of
linked allocation is essential. One reason for its success is that it allows for the postponement
of the decision for which purpose a memory cell will be used: this decision can be taken on
the very moment the memory cell is needed. This may lead to a lower upper bound of the
memory used, compared with array allocation. For example, suppose J stacks S; (15j<J) are
to be maintained; let it be given (by theoretical arguments) that the length of stack S; is
bounded by B; and that the total length of all J stacks is bounded by a number B such that
B< ZB . In case of array allocation stack S; would be maintained in an array of size B; and
j=1

J
each stack operation requires constant time. Thus, array allocation requires O(X.B;) space.

j=1
On the other hand, with linked allocation stack S; can be maintained in O (IS;) space, without

an increase in the order of the time bound for a stack operation. Thus, with linked allocation a

space bound O (B) is obtained. This is especially important when B is an order of magnitude
J

smaller than 3’B;. Clearly we assume that arrays cannot be enlarged unless their contents is
Jj=1

copied into a larger part of memory.

As for parallel algorithms, array allocation dominates in the literature, even for data
structures like stacks (cf. [5], [3]). Using array allocation in the example mentioned above,
stack S; can be maintained in O (K+B ;) space while each simultaneous update of J stacks by
at most X' processors takes O (logK) time (cf. [S]). The cooperation of processors leads to a

Marinus Veldhorst

term K in the space bound and a term logK in the time bound (compared with the case of
J
sequential algorithms). Thus the total memory bound is O (JK + 2. B)).
j=1

In this paper we will prove that a lower space bound of O (K +|S;|) for each stack S; is
possible while a simultanecous update of J stacks by at most K processors takes
O (logK +log max]Sj |) ime. This is a slight increase in the time bound (compared with array

J

allocation), but the order of magnitude is not changed provided that the size of each stack is
bounded by a polynomial in the number of processors.

Our main result can be applied in the parallel maximum flow algorithm of Shiloach and Vish-
kin (cf. [5]). Their use of array allocation for n stacks leads to an O (mn) space bound (for an
n-node graph with m edges) while theoretically only O (n?) of it is actually used. In [7] the
space bound has been reduced to O (n2) by a rather ad-hoc method, still using array allocation.
Incorporating our main result in the algorithm of Shiloach and Vishkin gives an O (n?) space
bound and no increase in the order of magnitude of the time bound, provided that the number
of processors is bounded from below by a power of the number of vertices of the graph under
consideration.

The data structure we use for our main result is a generalization of the tree data structure that

Leiserson and Maggs (cf. [2]) use for list contraction. We can use it for linked allocation of
stacks, queues and double ended queues.

2. Machine model and maintenance of unused space. The machine model used in
this paper is the P-RAM in which processors may be enabled and disabled. At each moment
all enabled processors execute the same instruction (possibly on different data). All processors
have access to a shared memory, but a simultaneous write to the same location by several pro-
cessors is not allowed. The algorithm under consideration is incorrect in case a simultaneous

write occurs. The amount of time to access one memory location is assumed to be bounded by
a constant.

With the use of linked allocation it is necessary to provide tools for the maintenance of
unused space. Processors may simultaneously ask for or return unused space. We do not
assume that one processor is in charge of unused space; thus processors have to cooperate to
establish a good maintenance of unused space. Actually, unused space can be considered as a
stack, but because of its special character we will implement it by a combination of array and
linked allocation: it consists initially of an array of pointers to objects that can serve as nodes
for user defined stacks (see fig. 1). With the array is associated a stackpointer sp , which indi-
cates the left most array element pointing to an object.

As for the request or return of unused space, enabled processors must be scheduled in
order to prevent that different processors receive the same object, respectively, objects are lost.
For this purpose we use a partial sums tree as introduced by Shiloach and Vishkin (cf. [5]).

2

parallel data structures

00860

Initial configuration of set of unused space.

sp

sp

]nillnillnill\r/

100

Arbitrary configuration of the set of unused space.
Figure 1. Data structure for unused space.

DEFINITION 1. An access tree for K processors is a complete binary tree of 28X jeaves:
the K leftmost leaves are called active and leaf i is associated with processor PE;. Each inter-
nal node x is the root of a complete subtree T, and contains the sum of the leaves of T, (we
call this the partial sums property).

Because X is fixed, an access tree can be implemented in an array of size 2K—1. We use the
following operations (precise descriptions of the first three of them can be found in [5]):

CLEAR (i) sets leaf i to value 0 and restores the partial sums property;
UPDATE (i ,a;) sets leaf i to value a; and restores the partial sums property;
SUM (i) returns the sum of the values of the i leftmost leaves;
RANK (i) retumns the size of the set {j<i : leaf j has value 1 }.

NEXTRANK (i) retumns the smallest integer j such that SUM (j)= RANK (i }+2.

Marinus Veldhorst

LEMMA 1. The operations CLEAR , UPDATE, SUM , RANK and NEXTRANK use O(logK)
time, both in the sequential as well as in the parallel model.

The data structure for unused space consists of three parts:
(1) an array unused of pointers to objects that can serve as nodes for user defined stacks;

(2) a stackpointer sp which indicates the left most unused entree pointing to an object;
(3) an access tree SPACCESS.

Requesting and returning space can be done as follows:

OPERATION RETURN for enabled processors PE;:
(* PE; has a pointer p; to the object to be returned *)
All enabled processors PE; execute the following algorithm:
begin
(1) UPDATE(,1) in SPACCESS
(2) rl[i] :== RANK (i) in SPACCESS
(3) unused([sp+1+r(i]] := p;
(4) if r[i}=0 then sp := sp+ value in root of SPACCESS endif
(5) CLEAR(i) in SPACCESS
end

OPERATION REQUEST for enabled processors PE;:
(* PE; has a pointer p; to which must be assigned an unused object *)
All enabled processors PE; execute the following algorithm:
begin
(1) UPDATE(,1) in SPACCESS
(2) rli] := RANK (i) in SPACCESS
(3) pi = unused[sp—r(il); unused(sp—r[i]] := nil;
4) if r[i]1=0 then sp :=sp— value in root of SPACCESS endif
(5) CLEAR(i) in SPACCESS
end

In lines (1), PE; states that it wants to access unused space; in line (2) it computes how many
PEs with smaller index wants to access also; in line (3) the actual access occurs; in line (4) the
stack pointer of unused space is updated and in line (5) the access tree SPACCESS is cleared

for correct use in the future. We assume that at the start of any call of REQUEST or
RETURN , all leaves of SPACCESS have value 0.

parallel data structures

LEMMA 2. If, with the above mentioned organization of unused space, at most K processors
call simultaneously REQUEST, respectively, RETURN, then they are finished in time
O (logK).

Proof. Follows immediately from the algorithms and the previous lemma. Q.ED.

Observe that we do not state that the P-RAM consists of at most K processors. It might have
more processors but only X of them will ever call REQUEST and RETURN.

3. Implementation of parallel stacks with linked allocation. Suppose there are K
processors PEy, . .. ,PEg_, and J stacks Sy, ...,S;. At time ¢ each processor PE; has a
number s (i) (0<i<K, 1<s(i)</) and either each active PE; wants to push an element g; on
stack S;(;) or each active PE; wants to pop a number from stack S, () into memory location a;.
The effect of a (simultaneous) pop or push is considered to be correct if it could be obtained
by sequentializing the processors involved (this is in accordance with the sequentializing princi-
ple as explained in {4]). Thus, if PE;,PE,, . .. ,PE, (ksK) want to push onto stack S, then
the numbers ;»4;, . . . ,a; must be added to S, in some order but the precise order is imma-
terial.

Obviously, a pushing operation is done by first allocating space, assigning to it the
numbers to be pushed and finally incorporating this space in the data structure of the appropri-

ate stack. Similarly, a pop operation runs in reverse order and returns the space that is not
needed anymore.

DEFINITION 2. A 2-3 tree T is called enriched if with T is associated a spare node

spare(T) and with each internal node u of T with 3 sons is also associated a unique spare
node spare (u).

Observe that spare (T) must be different from spare (root(T)) if the latter exists. Moreover, a
proper subtree of an enriched 2-3 tree is not enriched.

PROPOSITION 3. Let T be an enriched 2-3 tree. Then the number of intenal and spare
nodes equals the number of leaves.
Proof. By induction. Q.E.D.

LEMMA 4. The standard operations INSERT, DELETE, SPLIT and CONCATENATE on
enriched 2-3 trees with N leaves can be done sequentially in O (logN) time with O (1) addi-
tional space.

Marinus Veldhorst

Proof. Modify the operations (cf. [1]) such that spare nodes change into internal nodes and
vice versa. Q.E.D.

Without proof we state the following proposition.

COROLLARY S. Let T, and T, be enriched 2-3 trees. Then the tree
CONCATENATE (T,T) contains the same number of nodes as T 1 and T, together.

A similar result holds for the SPLIT operation. All this means that concatenation and splits of
enriched 2-3 trees can be executed without using (temporarily) any unused space.

Now we will show how processors can update simultaneously a number of stacks. With
each stack S; is associated a access tree ACCESS (j) of at least K leaves. At the beginning of
each update operation, the values of the leaves of ACCESS (j) must all be zero. Each proces-
sor PE; knows its index i and can access leaf i of ACCESS (j) in constant time. With each
leaf of ACCESS (j) are associated 2 pointers (initially with value nil). One of them will be
used to make a singly linked list of leaves with value 1, and the second pointer can be used for
an enriched 2-3 tree. Each stack S; will be implemented as an enriched 2-3 tree T(j) with
stack entries of §; in the leaves of T(j); each internal node x of T (j) contains the number of
leaves that are descendants of x.

Pushing k& numbers unto stack S ; is done as follows:

(1) Make k enriched 2-3 trees, each of one leaf and assign the k£ numbers to these leaves;
and combine them into one singly linked list.

(2) Make one enriched 2-3 tree NT () of k leaves, using these k enriched 2-3 trees; this is
done deterministically in a way similar to the construction of balanced binary trees (cf.
[6]) and list contraction (cf. [2]).

(3) Concatenate NT (j) with T(j); this is done by one processor for each stack.

A precise description of the parallel push can be found in program A.
Popping k& numbers from stack S ;j is done similarly, but in reverse order:

(1) Split off from T'(j) an enriched 2-3 tree NT (j) of k leaves; this is done by one proces-
sor for each stack S;.

(2) Break up NT(j) into a singly linked list of k enriched 2-3 trees, each of 1 leaf.

(3) Take the numbers from the leaves of these k trees, assign them to the appropriate loca-
tions and retumn the trees to the unused space.

THEOREM 6. & simultaneous calls of push or pop on at most J stacks by k<K processors
takes O (logK + logmax|S;|) time. The total amount of space used for the maintenance of
J

J

these stacks equals O (JK + Y |S;|).
j=1

6

parallel data structures

Each

processor PE; knows its index i, has a number s (i) and a value a;; it wants to push g;

unto stack S, ;). With each stack S; is associated an access tree ACCESS (j) and a memory lo-
cation total[j]. With each leaf of ACCESS (j) are associated two pointers enrtree and next.
enrtree will be used for an enriched 2-3 tree and the pointer next is used to connect enriched
2-3 trees into a singly linked list. Processor PE; is able to access leaf i of ACCESS (j) in con-
stant time.

Each enabled processor PE; executes the following algorithm:

In
do

ACCESS (s (i)
UPDATE(i,1); r[i] .= RANK (i),
if r[i}=0 then total[s (i)] = value in root endif;

next of leaf (i) := NEXTRANK(i);
enrtree of leaf (i) := REQUEST;
(* enrtree consists of an enriched 2-3 tree of one leaf and associated with this tree is
a spare node *)
leaf of enrtree of leaf (i) := a;;
while total[s (i)] 2 2
do if odd toral[s(i)] and r[i] = total [s (i)]- 2
then enrtree of leaf (i) =
CONCATENATE (enrtree of leaf (i), enrtree of leaf (next of leaf (i)));
total[s (i)] := total[s (i)] - 1;
endif;
if even r[i] and r[i)<total [s (i)]
then enrtree of leaf (i) =
CONCATENATE (enrtree of leaf (i), enrtree of leaf (next of leaf (i)));
next of leaf (i) := next of leaf (next of leaf (i));
riil :=rli] div2
endif:
if odd r[ilthen r[i]:=-1 endif:
if r[i]=0 then total[s(i)] := total[s ()] div 2 endif

enddo;
if r[i]=0 then CONCATENATE (T (s(i)), enrtree of leaf (i)) endif;
next of leaf (i) := nil; enrtree of leaf (i) := nil; rli] ==~1;
CLEAR (i)
enddo
Program A. Algorithm for a simultaneous push.

Marinus Veldhorst

Proof. Steps (1) and (2) of the push operation and steps (3) and (2) of the pop operation take
O(logK) time, while step (3) of the push and step (1) of the pop operation requires
O (log|S, ;|) time.

The enriched 2-3 tree T(j) and ACCESS (j) use 0 (|S;]) and O (K) space, respectively. Thus,

J
the total space bound is O (UK + ¥ |S;]|).
=1

j QED.

Obviously this results holds also for the operations on queues and double ended queues that
are implemented with enriched 2-3 trees.
In Shiloach and Vishkin ([5]) also an operation FIND on a stack was used, dependent on the
value of the numbers in the stack (that are always nonnegative):

k-1 k
FIND (o.k ,p) Given o, FIND remmns k and p satisfying Ya; <« < Yg; and p =

i=1 i=1
k-1

0~ Y, a;, in which g; is the i™ topmost element of the stack § under con-
i=1

sideration.

This operation can also be implemented with an enriched 2-3 tree in O (log|S|) time. In each
internal node x is stored the sum of the numbers in the leaves that are descendants of x.

FIND is executed sequentially by one processor which walks down from the root of S to the
approppriate leaf k.

4. Conclusion. In this paper we have shown that linked allocation of data structures in
parallel algorithms is feasible. This contradicts the impression one might have from many
papers, that array allocation is the only efficient data structure for parallel algorithms. Thus we

hope that in the future designers of parallel algorithms will use abstract data types to express
the data structures they need.

Acknowledgements. The author wants to thank R. Heuvelmans for his work on the
memory bound of the Shiloach and Vishkin parallel maximum flow algorithm, that lead to the
more general problem of maintaining a number of parallel stacks.

REFERENCES

(11 Aho, A.V,, J.E. Hopcroft and J.D. Ullman, The design and analysis of computer algo-
rithms, Addison-Wesley, Reading, Massachusetts, 1974.

[2] Leiserson, CE. and B. Maggs, Communications efficient parallel algorithms, Proc.
Intern. Conf. on Parallel Processing, IEEE, 1986, pp. 861-868.

(3]

(4]

(5]

[6]

(71

parallel data structures

Paul, W, U. Vishkin and H. Wagener, Parallel dictionaries on 2-3 trees, Proc. 10th
ICALP 1983, Springer Lecture Notes in Computer Science 154, Springer Verlag, Berlin,
1983, pp. 597-609.

Schwartz, J., Ultracomputers, ACM Trans. on Programm. Lang. Syst. 2 (1980), pp.
484-521.

Shiloach, Y. and U. Vishkin, An O (n%logn) parallel maxflow algorithm, Jml of Algo-
rithms 3 (1982), pp. 128-146.

Vishkin, U., Randomized speed-ups in parallel computation, Proc. 16th ACM Sympo-
sium on Theory of Computing, 1984, pp. 230-239.

Vishkin, U., personel communication, 1987.

