ELIMINATION OF VARIABLES
FROM
FUNCTIONAL PROGRAMS

0. de Moor

RUU-CS-87-24

November 1987

Rijksuniversiteit Utrecht

°
o% S0
< <
Ei%%’é Vakgroep informatica
7S )
27 -y\‘? Budapestiaan6 3584 CD Utrecht :
Corr. adres: Postbus 80.012 13508 TA Utrecht

Telefoon 030-53 | 454
The Netheriands






Abstract

After a brief introduction to functional programming, it is shown how by
elimination of variables the substitutions involved in function application can
be avoided. The variable—free functions resulting from the basic algorithm
are however very large. Their size depends exponentially on the size of the
original expression. The rest of the paper is devoted to the question of how
to reduce the expression size. A well-known algorithm by David Turner is
presented and analysed. Next, we turn to the ‘best’ solution. It is proved
that only a weak form of improvement is attainable. An algorithm by Rick
Statman that is optimal in this weak sense is discussed. Clearly, both the
algorithm of Statman and that of Turner could be improved. We discuss
systematical ways of doing so. This results in an algorithm combining the
optimal results of Statman’s method with the good average behaviour of
Turner’s. This algorithm works for a restricted, but very large class of
functions. It highly resembles a method proposed by Warren Burton.
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Chapter 1

Introduction

Since the early days of computer science, it is a hotly disputed question
what a ‘good’ programming language should look like. In the past decade,
more and more people have argued that functional languages, which do not
exhibit the cumbersome features of assignment, are best suited to the future
[Bac78,Tur82]. Few people will deny that from a mathematical point of view
such programs are elegant. However, there is one serious drawback: func-
tional programs tend to be very inefficient, consuming lots of memory and
computer—time. Therefore, it is important to study their implementation.

A technique that has received considerable attention during the past
few years is the translation of functional programs into what has been
called ‘combinator code’ [Tur79b,Tur79a,Hug82,HG85]. Few people have
addressed the problem of minimizing the code-size. It is this problem we
seek to solve here. A survey of the efforts made was drawn up by Hans
Mulder [Mul85]. An in—depth study of the subject is provided in [JRB85].
At the time of this research, the author was unaware of the latter work. The
idea to use abstraction of subexpressions, described further on in this paper,
was suggested to me by Doaitse Swierstra.

The reader of this paper should possess a minimal background in math-
ematics. Though some of the proofs use advanced techniques, they are not
vital to understanding the main issues. Some programming experience is

tacitly assumed. Acquaintance with a functional language like SASL [Tur76)
may be helpful.



1.1 Functions

In mathematics, functions are often regarded as some special kind of relation,
where each argument is associated with a unique result. In common speech,
a function denotes an activity of a person or thing. This contrasts with the
non-operational mathematical approach.

Most of those who have done some programming will feel that func-
tions are pretty strong tools. It may come as a surprise to them, though,
that anything computable can be expressed in functions alone. No assign-
ment, no control-structures like ‘if or ‘while’ are needed, just functions and
application of functions. This unproved fact is known as Church’s thesis.
It cannot be proved, since that would require a similar statement defining
‘computability’. The thesis is assumed to be correct because it is proven to
be equivalent to all other commonly accepted notions of computation.

Functions are well studied mathematical objects. This speaks strongly
in favour of expressing algorithms in a functional way. Since none of the
notorious problems connected with the assignment such as aliasing (distinct
variables denoting the selfsame object in memory) or side—effects (alteration
of global variables in a procedure-body) block our insight in the structure
of programs, it makes an elegant way to reason about algorithms.

To support his conjecture, Alonzo Church invented a formal system to
talk about functions, the A—calculus. We shall use this notation here. For
a much more thorough introduction to the sub ject, see [Bar84]. Basically,
there are two operations: A-abstraction (introducing a parameter) and ap-
plication of a function to its argument.

An example will clarify this. Suppose we want to describe the value of

(z+ y)?, given z and y. In ordinary high-school notation, one would write
something like this:

f(z,9) = (z +y)? (1.1)
In the A-calculus, it is written:
B
- Z \
” E‘ I
e e,
f = (Az.(Ay.(square((plus z) y)))) (1.2)
E;
B,

E3 stands for z + y. We write all operations in prefix notation: first the



operator, then the arguments. One might wonder what E, is. It signifies
the function that adds z to its argument. This is our first example of a
higher-order function: plus applied to one argument yields a function as a
result. We will return to this phenomenon in a moment, E; denotes (z+y)2.
Again, the prefix—convention is used. Both plus and square are predefined
functions. In E,, y is bound to E, as an argument-name. Likewise Az in
Eo names z as the first argument of the whole expression.

As can be seen, functions of two arguments may be written as one with a
single argument using higher-order functions. This process is called curry-
ing (after the logician H.B. Curry). The concept of a higher—order function
(having a functional argument and/or result) may seem a bit strange, but
in fact it is quite common. Familiar examples are differentiation and inte-
grating over a variable-length interval.

Now let us take a close look at what forms a A-expression E may assume.
The following definition gives rules for all possibilities.

Definition 1 (A-ezpression)
A A-ezpression is a sentence from the language described by
= (EFE) application
(Az.E) X-introduction
c; constant ¢ =0,...,m
= T variable i = 0, ...

CHGEG N
]

Consider the application of our example (1.2) to the constant 2:

((A2.(Ay.square((plus 2)y)))2) (13)
Upon evaluation this appears to result into:
(Ay.square((plus 2)y)) (1.4)

This A-term is equivalent to the function g, where g(y) = (2 + y)2. We
obtained it through substituting the argument 2 for the occurrences of z.
As the reader will expect, the evaluation of a A—expression may be defined
by textual substitution. We shall try to put this more precisely.

Consider the following expression (which equals 5).

(Az.((plus((Az.z) 4) 2) 1)) (1.5)

Clearly, one should not simply substitute a value for all occurrences of z.
Only ‘free’ occurrences may be used. A variable is Jree if it is not bound,
this is to say, in Az.((plus z) z) z is bound, whereas in ((plus z) ) it is free.
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Definition 2 (free variables in a A-~term)

Let t be a A~term. The set

defined by:
Jreevars(t) =

RO00OR

1= (E1E2)

t=(Az;.E)
=

1=z

Definition 8 (substitution)
Let t be a A~term, and let z denote a variable. The substitution
of t for z in an expression E (E[t/z]) is defined by:

—
-—
—
—

Elt/z]:= if E= (Ey Ey)

O F =(Ay.E;)and
¥ # x and
Y & freevars(t)

O E=()y.E,)and
y=vz

O E=(\y.E;)and
Y € freevars(t)

O E=c¢

O F=z

fi

Some may wonder why the s
shall discuss this in a momen

of a A—expression.

of free variables in t, Jreevars(t), is

Jreevars(E,) U Jreevars(E,)
Jreevars(E) — {z;}
0

{z:}

— (Eilt/z] Ex[t/=))

= (Ay.Eqft/z])

- FE

- FE
- E
—

pecial case for y € freevars(t) is included. We
t. Let us first define the execution (evaluation)

Definition 4 (evaluation of & A-ezpression)
Let E be a A-expression. Its evaluation is defined as follows:

eval(E) := if

POoooao

E = ((Az.E))E,)

E = (E\E,)
E = (Aa:.El)
E=c¢
F=z

L1l

eval( Ey[E,/z])
evaleval( E,) eval( E,))
(A(L‘.El)

fmdeﬁned

Now return to the question raised Jjust before we formulated the above def-
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inition. Why is the clause
E = (Ay.F) and y € freevars(t) — E (1.6)

necessary in the definition of substitution? An example will illustrate this.
Consider

((Ay.(Az.(Ay.((plus y)z))1)y)2) (L.7)
If 1.6 was just ignored one could get both
((plus 1) 1) (1.8)
and
((plus1)2) (1.9)

as a result of the evaluation. 1.6 prohibits 1.8 as a correct execution—output,
which is what we want. However, the condition is a little too restrictive.
This is clear from the evaluation of:

(Az.(Ay.((Az.(Ay-(square((plus 2)y))))(squarex))(squarey))))  (1.10)

We are not getting very far. Yet 1.10is a perfectly legal expression, intu-
itively equal to (22 + y2)2. One solution to avoid such name—clashes is the
renaming of variables:

(Az.(Ay.(((Aa.(Ab.(square(( plus a)b))))(square z))(squarey))))  (1.11)

is equivalent to 1.10 but it is evaluable. In the sequel, it is assumed that
within (Az.E) no proper subexpression (A\z.D) occurs. If this is the case,
suitable renaming solves the problem.

Some readers may be in doubt whether the evaluation of an expression
has been defined properly. In fact, the evaluation of an expression may result
in expressions that differ in form. However such differing expressions may
be turned into the same expression if some evaluation within function bodies
(b in Az.b) is done. This delightful phenomenon is called the Church-Rosser
property.

The evaluation-step ((Az.E1)E;) = Ey[E;/z] is called a reduction. The
question that remains is what order of reductions we should use in a de-
terministic evaluation process. If ((Az.E1)E;) = eval(Ey[E,/z]) is always
executed in favour of (E1E;) = eval(eval( 1) eval( E;)) then we are doing
what has been called lazy evaluation. If it is the other way round, the pro-
cess is called compositional evaluation. Most conventional programming



languages use the latter strategy: evaluate the components of an expression
before the expression itself.

The Church-Rosser property tells us that there is no fundamental differ-
ence between both methods. In practice, there is an important difference.
Compositional evaluation may go on forever in cases where lazy evaluation
would stop. Unless otherwise stated, lazy evaluation is assumed to be the
reduction strategy throughout the rest of this paper. We did not touch on
the subject of evaluation of predefined functions. Special evaluation—rules
(also called reductions) could be added for them.

The syntax of A—expressions suggests an alternative to the obscure paren-
thesized formulas that were used up to now. We could think of a A-term as
a tree. The correspondence is depicted in figure 1.1. Some examples are to
be found in figure 1.2

Lazy evaluation is done by running down the tree from the top node,
always chosing the left branch, until in some node N a variable-introduction
(A z) is found. Assume that it is a son to some application node, say
P(arent). The left son of P, N, is a tree representing a function, the right
son is the argument (A) (see figure 1.3). The free occurrences of z below
N are replaced by the argument A. To this end, the whole subtree has to
be searched, something quite costly. When the substitutions are completed,
P is replaced by the function-body below N. N, P and M are superfluous

by now, hence they are discarded. If P does not exist (N is the root of the
tree), there is nothing to evaluate.

Clearly the substitution process makes evaluation expensive. Variable—

free expressions may be computed efficiently, as illustrated by the following
pascal fragment.

Algorithm 1 (evaluation of a variable-free A-ezpression)

TYPE tree = “treenods;
treenode = RECORD
value : con_expr;
left_son, right_son : tree
END;

FUNCTION execute(root : tree) : con_expr;

PROCEDURE descent(VAR father, current : tree);



formula tree

(A x.D) ©

tree(D)

(D, D)
tree(D‘ ) tree(D, )
X X
C c

Figure 1.1: Formula and tree representations of A~terms.



X y4 Y Z

tree representation of

(Ax.Qy.(Az.((x 2) (y 2) )

tree representation of
(Ax.((cx) (x (Ly.( (xy) d)))

Figure 1.2: Example tree representation.
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function
body

times

plus

Figure 1.3: The evaluation process.
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VAR
scribble : tree;
BEGIN
WHILE NOT is_leaf(current) DO
descent(current, current”.left_son);
scribble := father~.right._son;
father := apply(current-.value, scribble);
delete(current);
delete(scribble)
END;

BEGIN
IF NOT is_leaf(root)
THEN descent(root, root~.left_son) ;

execute := tree”.value
END;

End of algorithm 1

Here, we do not have to know intricate things about free variables and
substitutions; the changes to the graph are entirely local. If it would be
possible to transform each A-term into an expression without variables, this
simple evaluation scheme might always be used.

At first sight, one might deem it impossible: doing without variables!
Yet, it can be done by carefully chosing the constants. This is the sub ject
of the next chapters. An algorithm is presented and we try to improve it,
in order to minimize the length of the resulting A-term.

However, before we are ready to embark upon a discussion of variable—
eliminating algorithms, some additional nomenclature is indispensable. Some
special kinds of A-terms are introduced first:

® combinators or closed terms
¢ combinatory terms or applicative forms
® proper combinators or variable applicative forms

e constant applicative forms

12



Regarding an expression as a computer-program, we demand that all
variables are declared. A A-term E with this property (freevars(E) = 0)
is called a combinator or a closed term. We shall use ‘combinator’ only for
predefined, closed terms (constants).

A special kind of combinator is the applicative form (combinatory term).
Here all variables are declared at the outermost level. An applicative form
looks like this:

(Az1.(Aza(Aza(...(Azn.4)...)))) (1.12)

where A does not contain A-introductions. If A does not contain any con-
stants, we have a variable applicative form. If the applicative form has no
parameters (n = 0) and thus no variables occur in A, it is called a con-
stant applicative form. Such an expression consists of nothing but constants
combined by application. We want to translate any closed A-term into an
equivalent constant applicative form, a caf for short. The following defini-
tion summarizes the terminology on special kinds of A-terms.

Definition 8§ (special kinds of A-terms)
Let F be a A-term. E is called a
e combinator if freevars(E) = 0.

e applicative form if E = (Az1.(Az2.(...(Azp.4)...))), where
A does not contain A-introductions and freevars(E) = §.

— constant applicative form (caf) if E contains constants

only (n = 0).
— variable applicative form (vaf) if A contains variables
only.

Up to now, we were quite vague about the ‘size’ of a A-expression. In the
comparison of methods to remove variables, a precise complexity measure
is needed. Two definitions of size obviously present themselves.

Definition 8 (size of a A-term)

1. The tree size of a A-term is the number of nodes in its tree
representation. (Iree measure )

2. The flat size of a A-term is the number of symbols occurring
in it, not counting dots and parentheses. (flat measure)

In this paper, it is assumed that all identifiers have unit length (1 ). fn

is the number of A-introductions and a is the number of applications in E,

13



(2) says that the size of Eis 2n+a+1. In a caf, n = 0, and hence (2) tells
that the size is a + 1. Applying the first definition to a caf yields 2a+ 1. To
check this, observe that the tree representation of a caf is a binary tree. a is
exactly the number of internal nodes. In a binary tree, the number of leaves
is the number of internal nodes plus one. Hence the total size amounts to
(2a + 1).

The circumstance that a caf may be represented as a binary tree is
important. It enables us to compute the number of cafs of given length,
assuming that we know how many constants may be used. This property is
shared by the bodies of applicative terms. The number may be immediately
computed from the following theorem.

Theorem 1 (number of binary trees)
The number of binary trees with p leaves is

£, = 1(2p-2
Pop\ p-1
the p** Catalan number (Eugéne Catalan, 1814-1894).

This statement is proved by generating functions. The interested reader
should consult [RND77]. Here we are only interested in the consequences.

Corollary 1.1 (number of cafs)

Using the tree measure The number of cafs of tree size m
using k constants is

k(m+1)/2 f(m+1)/2

Using the flat measure The number of cafs of flat size n. using
k constants is

k™. fn
Proof: Let m be the total number of tree nodes, and a the number of
applications

m=2a+1¢T§i=a©m+l

= a + 1 = number of leaves

14



Theorem 1 yields the desired result, since we have k choices to fill each leaf.
O

Corollary 1.2 (number of applicative forms)

Using the tree measure The number of applicative forms of
tree size s using k constants and v variables is

(k+v)le—viD)/2, §(s—v41)/2

Using the flat measure The number of applicative forms of
flat size s using k constants and v variables is

(k + 0)3—20 * 6&-—21}

Proof: The contribution of the A-introductions is subtracted from the size.
We may apply the same method as in the proof of the previous corollary. O

In the sequel, we will use only the flat size measure. Anyway, conversion of
results to the tree measure is usually easy enough.

15



Chapter 2

Elimination of variables

In this chapter, a straightforward algorithm for eliminating variables is pre-
sented. It has a most serious disadvantage: The size of the resulting A-
expression depends exponentially on the size of the input.

Consider the A—expression in figure 2.1. Evaluating this expression, we
could send 4 down the left subtree, to all leaves plus, z, and 2. Only 2 is
replaced by 4. Note that this another way of describing the substitution
process defined in the previous chapter. However, we would like the test
whether a leaf is z to be done at compile-time. After all, the human observer
is able to identify the path that an argument should take immediately just

by looking at the expression tree. We have three functions S, K and I
characterized by:

((SHgle = (fz)(gz)
(—’gy)rc =y (2.1)
T =

Using these functions one could rewrite figure 2.1 to the expression in fig-
ure 2.2, You could interprete this as follows:

S — send argument into subtrees
K — block argument propagation:
don’t send into subtree
I — here is where the argument should be

A-expressions are used to define S » K and I formally:

16



plus X

Figure 2.1: Example A—expression.

4 ummans grgument

lus

Figure 2.2: Translation of figure 2.1.
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plus

X uad X

K lus

Figure 2.3: Example of Curry’s algorithm.

Definition 7 (S, K and I)

S = (Az.(Ay-(Az.((z2)(y2)))))
K := (Ay.(Az.y))
I = (Az.2)

The names of these constant—functions betray their German origin [Sch24].

§ = Schénfinkel’s Verschmelzungsfunktion
K = Konstanzfunktion
I = Identitit

They provide a way of eliminating variables. This is done by expressing
the substitution steps explicitly in the code. To further elucidate what is
intended, we add some more examples in figures 2.3 and 2.4. One may

18



((S((S(KS)) ((S((S(KS)) ((S(KK))(KS))))

((s((s(KS)) ((S((S(KS)) ((SCKK)) (KS))))

((SC(s(KS)) ((S(KK)) (KK)))) ((S(KK))I))))) ((SCKK)) (KI))))))
((s((s(ks)) ((S((S(KS))

((S(KK)) (Ks))))

((s((s(KS)) ((S(XK)) (KK)))) (KI)))))

((S(KK)) (KI))))

((s((s(Kc))I))

((SI1)((s((s(ks))

((SC(S(KS)) ((S(KK))I)))

((SCKK)) (Ky))))) ((S(KK)) (Kd)))))

Figure 2.4: Translations of expressions in 1.2.

define this method by the following algorithm:
Algorithm 2 (Curry’s algorithm)

CurryTrans (\z.E)
CurryTrans (E, E,)
CurryTrans c
CurryTrans z
CurryTrans comb

removevar ¢ (CurryTrans E)
((CurryTrans Ey)(CurryTrans E;))
c

z

comb

removevar z (Ay.E)
removevar z (E; E,)

does not occur
((S (removevar = E,))(removevar z Es))

hnu

removevar Yy if z=9y — I
O z#y — (Ky)
fi

removevar z c = (Ke)

removevar z comb = (K comb)

End of algorithm 2

Here, comb denotes a combinator §, K or I. It was not taken as a con-
stant for clarity and because the distinction between the predefined combi-

19



nators and ordinary constants will be needed later on.
From figure 2.4 it may be gathered that the expression size is exploding
during translation. We will state exact bounds for this phenomenon.

Lemma 1 (upperbound on variable-removal)
Let E be an applicative form with a applications.

|(removevar x E)| < 3a + 2

This bound can be attained.

Proof: Induction on E.

o F atomic.

H E = z then |removevarz E| = |I| = 1. If E # z then |removevarz E| =
|K E| = 2.

¢ E = (A B), where A contains b applications, and B contains ¢ appli-
cations.

Hypothesis |removevar z A| < 3b+ 2 and |removevarz B} < 3¢+ 2.

|removevar x E|

|removevar z (A B))

[((S (removevar z A)) (removevar z B))|
1 + |removevar z A| + |removevar z B|
1+(3b+2)+(3c+2)

3(b+ec+1)+2

3a+ 2

A

Theorem 2 (complezity of the Curry translation)

Let D = (Az1.(Az2.(...(Azr.E)...))) be an applicative form
with a applications.

|(CurryTrans D)} < (2-3%-a + 3 + 1)/2
This bound can be attained.

Proof: By induction on k. For brevity, CT = CurryTrans.

20



k =1 By lemma 1:

2[CTD|=23a+2)=2-3'.a+3' 41
k > 1 Hypothesis

2|CT (Aza.(...(A2k.E)...))| =2-3%1. g 4 361 4

2|CT D| = (def. D)
2/CT (A21.(CT (Azau(. .. (A2r.E) .. .))) = (m. 1)
2B((CT (Az1.(Az2.(...(Aek.E).. ) - 1) +2] = (ih.)
6((2-3"‘1-a+3"‘1+1)/2—1)+4 =

2.3k .a4+3k41

21



Chapter 3

Turner’s algorithm

Among the variable-eliminating algorithms David Turner’s is undoubtedly
the best-known. In [Tur79b] he introduced the concept as an implemen-
tation technique for functional languages. A more refined algorithm was
presented in [Tur79a).

Both articles lack a solid basis for complexity analysis. The algorithm is
defined informally and new combinators are introduced in an ad hoc manner.
For this reason, we closely follow the approach taken by J.R. Kennaway in
[Ken84]. He proves that in the worst case the size of the resulting caf is
proportional to the square of the input size. In the first part of the analysis,
we will confine ourselves to applicative forms.

3.1 The algorithm

Why does Curry’s algorithm perform so poorly? Recall that the combina-
tors make the substitution process explicit. They ‘direct’ arguments down
the expression tree. Curry’s way of doing this does not seem very sophis-
ticated. The directing goes on to atomic level, even if a subtree does not
contain any occurrence of the variable in question. Hence, we conclude that
the main problem lies in the introduction of K. We should replace an ex-

pression E without free occurrences of z by (K E), blocking superfluous
transformations of E.

Another rather crude director is S. In most cases, an argument need
not be directed into both branches of an application node. However, with
Curry’s method § always does exactly that. This would seem to justify
the introduction of two new combinators B and C, with B channeling the

22



argument into the right-hand subtree, C into the tree on the left—hand side.

When we encounter an expression of the form (E z), where z is the
variable being eliminated and E does not contain z, we might as well re-
place this expression by E. The application does not yield any effect and is
superfluous.

The new translation of applications is depicted in figure 3.1. This way
of translating A-terms into cafs, attributed to M. Schénfinkel [Sch24] is a
definite improvement over Curry’s algorithm. The translation of

(Az.(Ay-(Az((22)(y2))))) 3.1)

immediately yields § with Schénfinkel’s method. Curry’s algorithm in con-
trast, yields a baffling number of 73 combinators!

One could push the refinements even further by introducing combinators
- reaching deeper down the tree. Up to now, we were only concerned with
the immediate subtrees of an application node. Why not look beyond this
border, to also include cases like those depicted in figure 3.27

Another good question is: Why do we not consider deeper subtrees on
the right-hand side? In eliminating more and more variables, expressions
tend to develop like this:

(((- .. combinators. . .)E)F) (3.2)

If we were able to reach across the first subtrees, as exemplified by the
special cases in figure 3.2, we would be able to prevent the algorithm from
tunneling through lots of brackets, spewing combinators as its proceeds.

Definition 8 (B, ¢, s, B, c)
The combinators in Turner’s algorithm are S, K, I, and those
defined by the following A-terms.

B = (Az.(Ay.(Az(2(y2)))))

C = (Az.(Ay.(Az.((zz)y))))

ST = (AR Ay.(Az.((k(22))(¥2))))))
B = (Ak.(Az.(Ay.(Az.((kz)(yz))))))
C!' = (Ak.(A:c.(Ay.(Az.((k(:cz))y)))))

By now, we have arrived at Turner’s algorithm in its proper form. It is
summarized below [Ken84].
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NO x NO x

v
(,\f\“'v*ﬂ::; ument
2 ™ v.-u-.u.uﬂ-"w.

NO x X

Sihial e,

,f{: :rgument M}
& b s
‘5,

i

X NO x

Figure 3.1: Schénfinkel’s translation of application nodes.
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NO x

(combinators)

NO x

(combinators)

NO x

(combinators)

Figure 3.2: Reaching deeper down the tree.
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Algorithm 8 (Turner’s algorithm)

TurnerTrans
TurnerTrans
TurnerTrans
TurnerTrans
TurnerTrans

removevar

(Az.E) = removevarz (TurnerTransE)
(E1E3) = ((TurnerTrans Ey)( TurnerTrans E3))
c = ¢
z = z
comb = comb
zE = Tz2E

For any expression E, (T z E) is defined by the first of the following cases
which applies. E,, F, and G, stand for expressions in which z occurs at
least once, and E, F and G for expressions in which z does not occur.

(1) (@) Tz= = I
) TzE = (K E)
(2) When E contains no variables
(@) Tz((Ez)F;) = (SE)T=zF,)
(0) Tz((Ex)F) = (CE)F
() Tz((EF)G) = ((SEXTz F)) Tz Gy)
(&) Tz((ENG,) = ((B'E)F)(Ts Gy)
() Ta((EFR)G) = ((C'E)TzF.)G
(3) (a) Tz (Ex) = E
) Taz(EFy) = (§(Tz E,))TzF,)
(¢) Tz(EF,) = (BE)Tz F;)
(d) Tz (E,F) = (C(Tz E,))F

End of algorithm 3

The algorithm may be readily derived from our discussion, except for
the cases 2% and 2b. They are examples of compile-time evaluation, like 3¢.
They prevent the more expensive choice of a dashed combinator. Another
‘irregularity’ is the condition in case 2. One would expect “when F contains
no occurrence of z” instead of “when E contains no variables”. Clearly, the
latter statement implies the former. Hence, the algorithm is still correct.
The condition stems from the motivation that dashed combinators should
reach across the first term which consists of combinators only.
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As you see, we are faced with lots of special cases. Estimating the
resulting expression size might be difficult. The next section is devoted to
this task.

3.2 Caf size for applicative forms

In this section, the translation from general applicative forms to constant
applicative forms is considered. Recall that an applicative form is:

(Ae1.(Az2.(. ..(AZn.E)...))) (3.3)

where E does not contain any A-introductions. A constant applicative form

is made up of constants combined by application. In a caf, A-introductions
do not occur at all.

3.2.1 A simplified algorithm: 1"

As we just pointed out, the present algorithm is abundant in special cases,
and one may wonder whether analysis is feasible. If one tries to construct
a worst case for the abstraction of a single variable, it turns out that the
next cycle is not so bad at all. It seems that the problem is caused by two
properties of the algorithm.

1. Several combinators may be introduced by more than one rule.

2. The tree representation does not reflect the ‘look—-ahead’ characteris-
tics of dashed combinators.

We follow [Ken84] in solving these problems. An outline of the analysis is
to be found in figure 3.3

To circumvent the first problem, we define a modified version T’ of T,
which is easier to analyse. One obtains 7/ from T by dropping the irregular
cases 2%, 2° and 3%. In addition to that we strengthen the condition in
2 to: “when E does not contain any variables or constants”. This makes
the motivation for dashed combinators explicit in their introduction: They
should only reach across a combinator tree. To accomodate the use of T’

and other versions of T' that will be discussed in the sequel, we define the
function Trans.
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original algorithm: TurnerTrans(T)

simplified algorithm: 1"
4

easy-to-analyze formulation of T": U
(by changing the tree representation of expressions)

Y

analysis, construction of worst case for U

\

results happen to carry over to T

Figure 3.3: An outline of the complexity analysis.

Algorithm 4 (general variable—eliminating algorithm)

Trans RVfunc (Az.E)
Trans RVfunc (E,E,)

RVfunc x (Trans RVfunc E)
(( Trans RVfunc E, )( Trans RVfunc E3))

Trans RVfunc ¢ ¢
Trans RVfunc z = z
Trans RVfunc comb = comb

End of algorithm 4

Note that TurnerTrans E = Trans T E. Since this notation is still a little
cumbersome, we will write RVfunc E meaning:

RVfunc E = Trans RVfunc (Az1.(Az2.(...(Azn.E)...))) (3.4)
Where z,,...,2, are the parameters of the function with body E.

3.2.2 Changing the tree representation

Recall that Turner’s set of combinators provides some sort of look—ahead
capability in the syntax tree. This renders the use of binary tree representa-
tions awkward. We would like to transform trees as depicted in figure 3.4. In
such a way all combinators have only a local directive function in the tree.
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ONLY
COMBINATORS X

ONLY
COMBINATORS X X

Figure 3.4: A more natural way of representing dashed combinators in a
tree.
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Hence, we want the bodies of applicative forms to obey to the following
grammar :

E 2= ZEE|EE|z|c|comb (expressions)

Z = Z Z|comb (combinators only)
(::= means: ‘has the form’, | means ‘or is of the form’) Using this gram-
mar, the tree representation of a not fully parenthesized expression is not

uniquely determined. In other words, the grammar is ambiguous. The old
representations are mapped to the new ones by the function t.

Algorithm 5 (translation to new tree representation)

t (Az.E) = (Az.(tE))
t (EF)G) = (#E)tF)tG)) if E consists
of combinators only
t (EF) = (#E)(F) if the preceding
rule does not apply
t a = a for all atoms

(variables, constants
and combinators)

End of algorithm &
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The following algorithm, U, removes variables from the new representation
trees. We follow the same conventions as in the definition of T

Algorithm 6 (easy-to-analyze simplification of Turner’s

algorithm)
1) (@) Uzz = I
(b) Uz E = (K E)
(2) (@) Uz(EF,G;) = (S'E)Uz F)(UzGy)
() Uz(EFG,) = (B E)F(UzG,)
(¢) Uz(EF,G) = (C'E)UzxF,)G
3) (a) U=z (E; Fy) = S(Uz E;)(U z Fy)
® U=z (EF) = BE(UzF;)
(¢) Uz(E.F) = C(Uz E)F

End of algorithm 6

Obviously U is a restatement of 7" in the new representation. This fact is
formally expressed as:

Lemma 2 (algorithms on old and new tree representation)

a) t(T"z E)=U z (t E)
b) t(T"E)=U(tE)

Proof:

a) By inspecting the eight expression templates.

b) From a, by induction on the number of parameters of the
applicative form. (U E) is defined analogously to (T E).

O

Let us return to the central idea in Turner’s algorithm. Arguments are
channeled down the tree by combinators. The only relevant paths with
respect to z are those from the body-root to occurrences of z in the leaves.
Together these paths form the spanning tree of z. See figure 3.5. These
spanning trees exhibit two useful properties if we submit them to U.
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internal
node of
spanning tree
of x
X
times
X
plus 3

Figure 3.5: Example spanning tree.
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1. No spanning tree is altered in the translation process.

2. The number of combinators introduced in the process of eliminating

variable z is exactly the number of internal nodes in the spanning tree
(figure 3.6).

Here is the starting point for a sound complexity analysis. We can predict
the size of a caf coming from U.

Lemma 38 (caf size and spanning tree sizes)
Let E be the body of the applicative form
(Azy.(Aza(...(Azg.E) .. ))))

k
\(U E)| - |E| = is(zi, E)
i=1
where is(y, E) denotes the number of internal nodes in the span-
ning tree of y in E.

3.2.3 Construction of a worst case

We try to construct a special case, maximising the sum in lemma 3. To this
end, two lemmas on tree shape and output size are proved. First, we ask
which tree from figure 3.7 will produce the longest code. Intuitively, the

spanning trees of the one on the right-hand side seem larger, and we expect
this tree will yield the longer code.

Lemma 4 (tree representation and caf size)
|U(E FG)|L|U((EF)G)

Proof: Call the expression on the left hand size L and the other R. Consider
any parameter  of (Az1.(Az2.(...(Az,.L)...))) and (Az1.(Az2.(...(Azn.R). . .))).

From figure 3.8 and lemma 3, we may conclude that the lemma is correct.
a

This lemma forces us to conclude that the worst possible input is a binary
tree. Can we say anything on its shape except that it should be binary? It
should be as unbalanced as possible, listing to the right. (Figure 3.9.) In
such a tree, each leaf has to be considered separately. One cannot look ahead
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Number of Internai
nodes in epanning
tree of v: 3

Number of internal
nodes in spanning
tree of x: 4

elimination of x

LS ] LS|

L B [ B ] fimes

Lc] L8]

B | [plus]

Figure 3.6: Code size and spanning trees.
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Figure 3.7: Which tree produces the largest code?
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zoccurs in | is(z, R) ~ is(z, L)
- 0
E 1
F 1
G 0
E,F 1
E,G 1
FG 1
E,F,G 1

Figure 3.8: Differences in spanning trees from figure 3.7.

Figure 3.9: A worst case input.
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across a number of irrelevant ones in a single step. In the next lemma, our
intuitions are fed to the mathematical engine. The trees in figure 3.10 are
compared with respect to code size.

Lemma 5 (ezpression form and caf size)
Let

E, = ((F1F2)(F3F4))
E, = (Fi(F(F3Fy)))
E; = (F3(Fy(FF)))

(See figure 3.10) Then |UE,| > |UE,| or |[UE3| > |UE,|.

Proof: As in the previous lemma, we construct a table for occurrences of
parameter z. It is shown if figure 3.11.

Define: v; = variables occurring in Fi(i = 1,2,3,4) This enables us to com-
press the results from the table into:

|U E2| - lU Ell = I('U3U v4) - ('Dl U ’vg)l - |‘01 - ('v2 Uvg U ’04)|
IU E3| - ‘U E1| = |(’01 U ’vz) - (v3 U ’04)| - |’03—- (v4U (R v2)|

I the sum of the right hand sides is non-negative, we have established our
lemma.

v3—(vaUvUvy) C (v3Uvg)— (v1Uwy)
1)1—(’02U‘03U’v4) - (vlu'vg)-—('v;;Um)

yields this fact. O

One may conclude that U produces the worst results with an input that
looks like figure 3.9. The only remaining question is: How have the constants
and variables to be placed in the leaves L;? For any z occurring in L; (t < m)
is(z, E) > i. For z in L, is(z, E) > n — 1. Hence, the variables should be
placed as much to the right as possible.
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Figure 3.10: Expressions from lemma 5.
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F1 F2 F3 F4 is(a:,Eg)—is(z,El) is(a:,E3)—is(:c,E1)
0 0
+ +1 +1
+ +1 -1
+ |+ +1 0
+ 0 +1
+ + 0 0
+ |+ 0 0
+ [+ |+ 0 0
+ -1 +1
+ + 0 0
+ + 0 0
+ + |+ 0 0
+ |+ 0 +1
+ |+ + 0 0
+ ]+ |+ 0 0
+{+]+]+ 0 0

Figure 3.11: Differences in the spanning trees from figure 3.10.
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Theorem 3 (caf size for applicative forms using U )

Let E be the A-free body of an applicative form with k param-
eters in the new representation. E has flat size n and k distinct
variables occur in it.

if
k=0 —- |UE|=n

O k>0 — |UE|<n+k(2n—-k+1)/2-1
fi

The upperbound can be attained by expressions in the old repre-
sentation (which do not contain nodes with three descendants).

Proof: From lemmas 4 and 5: |U E| is largest if E is of the form depicted
in figure 3.9. Lemma 3 yields for such E:

k
U E| - |B| = Y is(z:, E)

=1
This sum is largest if the variables all occur as deep as possible. Then,
Z?:l 1.3(50,', E) =

(r-D+(n-)+(n-2)+...+(n—k+2)+(n—k+1)
k(2n -k +1)/2 -1

One may conclude that
[lUEl=n+k(2n-k+1)/2-1.

Since the worst input E is a binary tree with no combinators, E = t E.
In other words, E is an expression with an ‘old’ tree representation. If

k = 0, nothing needs to be done since the expression already is a caf, and
U El=n. O
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3.2.4 Worst case for the original algorithm (T')

Theorem 4 (caf size for applicative forms using T')
Let E be the A-free body of an applicative form with k parame-
ters. F has flat size n, and k distinct variables occur in it.

IT E| < n+ k(2n — k + 1)/2 — min(k, 3)

This bound can be attained.

Proof: Consider the expressions in figure 3.12. The translation ¢ from old
representations to new ones leaves them unaltered:

E=tEand F=tF
Hence (lemma 3 and the fact that ¢ does not alter the expression size)
T’ E| = |t(T" E)| = |U(t E)| = |U E]|

so |T'E| = |UE| and analogously |T'F| = |UF)|

T' differs only from T in that cases 2%, 2% and 3% are dropped. Note
that 2% and 2% can never apply for input E of F. We abstract variables
ZTkyTk—1,--.,%1 from E and F in that order. Here we are not sure that
F is always the worst case. In removing z,, the expression is of the form
((constants & combinators)zy). Thus, case 3% is applied, and we get 2 com-
binators less than in the translation by 7'. We conclude that

ITFl=n+k(2n-k+1)/2-3
Input E does not suffer the combinator-loss and here:

ITE| =

U E|

n+(n—k)+(n-k+1)+...+(n~1) =
n—(k(2n-k+1))/2-k

Since 3% can only apply during removal of 2, the worst output size is the
maximum of |T' F| and |T E|. O
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Figure 3.12: Cases in the proof of theorem 4.

42



3.3 Generalization to A—terms

Now that we got restricted results on applicative forms, we should look at
the performance of Turner’s method on full A-terms.

Theorem 5 (caf size for arbitrary A~terms using Turner’s
algorithm)
Let E be a A-term of size n.

| TurnerTrans E| < if
n<17T — (-5k?+ (2n - 5)k +2n)/2
where k the nearest integer to (2n — 5)/10
O n>17 — (-5k*+(2n—3)k +2n —6)/2
where k the nearest integer to (2n — 3)/10
fi

This bound can be attained.

Proof: Again, we go in search of the worst case. The following two fact
provide the necessary information on how we should construct the input.

o If + ¢ freevars(E) then TurnerTrans (\z.E) = T = E' = K E'),
TurnerTrans (¢ E) = (¢ E'), where E/ = (TurnerTrans E).
So | TurnerTrans (Az.E)| = | TurnerTrans (¢ E)|.

o If z € freevars(F) then | TurnerTrans (D (Az.F))| =
| TurnerTrans ((Az.F) D)| < | TurnerTrans (Az.(D F))|

We conclude that the worst input has to be an applicative form
E = (Azy.(Aza.(...(Aze. F))))

with freevars(F) = {z1,...,2x}. Note that for such F and F (by notational
convention) TurnerTrans E = (T'F). We may apply the previous theorem
to F. The flat size of F' is (n — 2k). We get: there exists a A-term G such
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that: | TurnerTrans G| =
if
k<3 — (n-2k)+ﬂﬁ"—"{’i+—ll—k
O k>3 — (n-2k)+ Ho-Z0-kt)) 3
i =
k<3

n 4 K@noSkD) _ ap
O k>3 — n4H2n-SkD _op_3

!

Maximizing over k yields k = (2n — 5)/10 (for n < 17) and k = (2n — 3)/10
(forn >17). O

The theorem states that the worst case caf size is approximately behaving
like n2/10 + 3n/4. In the next chapters, it will be shown that significant
improvements over this bound are possible.
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Chapter 4

Optimum code size

In this chapter, we examine to what extent the minimization of combinator
code is possible. As the reader might expect, it appears that the problem
cannot be solved in general terms. Hence it js mandatory that we define
some weaker notion of optimality. In this chapter we follow the approach
of Statman [Sta83], based on worst case behaviour. An algorithm that is
optimal with respect to his criterion is presented.

4.1 No general solution

Obviously, the translation of A~terms into combinator code should be opti-
mal. However, what is meant by ‘optimal’ in this connection? It would be
most fortunate if the following optimality principle could be satisfied:

Let A be an optimal translation from A-terms into combinator
code. Let E be a closed A-term. Then there js no caf C equiva-
lent to A(E) such that [A(E)] > |C|.

Regrettably, this ultimate goal cannot be attained. Let .4 be an optimal
translation. A yields optimal code for unary functions with integer range.
Clearly, the shortest code possible for such a function applied to an argument
is a single integer constant. The existence of such A is contradicted by the
fact that the halting problem is beyond computation. The halting problem
can be formulated as follows: Given an arbitrary function f, will it yield a
result on the arbitrarily chosen input ? A(f(7)) always ends its evaluation,
so the answer would always be positive.
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Of course this result is rather obvious, since ‘equivalence’ was interpreted
in its most general sense. One could prohibit certain forms of evaluation to
gain decidability. Statman takes another approach: he weakens the opti-
mality notion, while the translation process remains unconstrained.

4.2 Weakened optimality

So it stands to reason to look for the maximal length of combinatory code
for a closed A-term of specified length. For a translation a, we define wela(n)
to be the Worst Case Length for terms of length n or less.

Definition 9 (worst case length)

Let a be a variable-eliminating algorithm. The worst case length
of a is defined by

wely(n) = max{|a(?)] | t a A-term, |t| < n}

An algorithm is optimal if it minimizes wely(n) for arbitrary n.

Definition 10 (optimal algorithm)

Let a be a variable-eliminating algorithm, with wel,(n) = Q(f(n)).
a is called optimal if for any other algorithm b with wel(n) =
Qg(n)): f<y.

In the subsequent sections, it is shown that for any a,

conlog(n) < wely(n) (4.1)
We provide an algorithm s by Rick Statman for which:

wely(n) < eynlog(n) (4.2)

This establishes that an optimal algorithm does exist.

4.2.1 Lowerbound on wcl,(n)

Consider the terms of length n or less. Suppose there are at least I(n) that
translate into distinct cafs. These I(n) cafs have by definition a length less
than or equal to wels(n). From corollary 1.1 we can derive an upperbound
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u(wely(n)) on the number of such cafs. In this manner Statman arrives at
the following inequality:
I(n) < (number of cafs of size < wely(n)) < u(wely(n)) (4.3)

It is not unlikely that / and u are both ever-increasing functions. Assume

that we know the inverse function 4~ of u. Then one may conclude from 4.3
that:

wely(n) > u~(I(n)) (4.9)

This is the strategy we intend to follow. We start by deriving the function
u. Recall that corollary 1.1 gave us the number t,, of cafs of size n.

tn = k" . En (4.5)

k is the number of constants used. Here, we regard combinators also as
ordinary constants. The number of cafs of size m or less is equal to

m
>t (4.6)
i=1
We seek to find an upperbound u(m) on this sum, such that
>t < u(m) (4.7)
=1

Since k* occurs as a factor in ¢, u(m) should be at least an exponential
function ¢ in which the constant is linearly dependent on k. In lemma 6,
it is proved that one may take u(m) = (4k)™+1,

Lemma 6 (upperbound on number of cafs)
Let ¢; be the number of cafs of flat size 7, using k constants.

n
Z 1 < C'k"+1

=1

where ¢ = 4k.

Proof: Use corollary 1.1. The pth Catalan number is given by: &, =
2p—-2
r~1

(2p-2) _ [ 2p—2 2p -2 2 — 2 2p — 2



Hence:
( 2p-2 ) < 202p-2)
p—1

S« Sy = G2 <

=1 =1

It is more complicated to find a suitable function I. For all n, we must be
sure [(n) terms of size n or less translate into distinct cafs. Consider a term
in which no subexpression may be evaluated. No reductions are possible,
even no constant—defining ones. Such an expression is called irreducible.
Assume F' and G are irreducible and distinct. Furthermore, assume they
translate to the same caf. Then we may conclude that F = G, as they yield
the same value for any argument. It is a theorem from the A—calculus that

an irreducible form is unique. Hence this cannot happen. Irreducible terms
translate to unique cafs.

Lemma 7 (lowerbound on number of irreducible terms)
There are at least g(n)%") terms of length < n that are irre-
ducible, where g(n) = [(n — 5)/4)].

Proof: Consider

E = (AF.(Az.(F (Afr.(.. . (F (Mfi(wz)))...)))))

where [ = largest integer < "—}-5-, and w is any word of length ! made up
from fi,..., fi. There are I’ such words. Note that for all these choices of w,

E is irreducible. E has length 5 + 4/, and hence its length is less than or
equal to n. O

Summarising what has been established about u and [ in this subsection:
l(n) < (nr cafs of size < wcly(n)) < uw(wely(n))
u(m) = pt?

I(m) = 29(m) logg(m)

The next theorem adds the finishing touch by taking (u~11).
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Theorem 6 (lowerbound on wely(n))
For any variable-eliminating algorithm a using k constants:

wely(n) > dy - g(n)logg(n) —1

where di = 1/(2logk) and g(n) = [(n - 5)/4].

Proof: From lemma 6, we know that there are c,:”d“(")"'l worst output cafs
at most. According to lemma 7 there are at least 29(")1°89(%) terms of length
n or less that will translate into distinct cafs of size wel,(n) or less. Hence:

20(n) logg(n) < cgcl«(n)n = 2(2logk)-(wcla(n)+1)
and one may deduce that

wels(n) 2 (1/(21ogk))g(n)logg(n) — 1

4.2.2 An optimal algorithm

In Turner’s algorithm, arguments are sent separately down the tree. Serious
problems were to be expected with regard to the removal of large numbers of
variables. Statman takes a different approach. Why not pack all arguments
into one structure and send them down the tree in one sweeping move? On
encountering a A-introduction, the argument is packed into the structure. If
a value z; is needed, it is retrieved from the structure. This is much like the
conventional way to implement local variables in a computer language. The
structure is called an environment. The idea is exemplified in figure 4.1.
An environment is denoted by < z1,23,...,2, >, where the z; are the
argument-values. To facilitate reasoning, we assume that T1,...,%y are
introduced in that order.

Statman’s algorithm is the following: (Derived from a formulation in [Mul85].)
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from envir

retrieve y
from envir from envir

Figure 4.1: The environment solution.
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Algorithm 7 (Statman’s algorithm)

StatmanTrans z; n = FP

StatmanTrans c n = ¢

StatmanTrans (E1 E;) n = (S (StatmanTransE;n)
(StatmanTrans E; n))

StatmanTrans (Az1.E) 0 = (StatmanTransE 1)

StatmanTrans (Azn41.E) n = (B(B(StatmanTrans E (n + 1))))An

Statman E = StatmanTrans E 0

Fp finds z; in the environment < 21,...,%, >. An packs the actual value
for zp4q into < z1,...,25 >.

End of algorithm 7

A simple example and its evaluation are depicted in figure 4.2. Obviously,
the best way to organize < z,,...,2, > is a perfect binary search tree. The
implementation of these trees in the A—calculus is difficult. We provide the
definitions, and conjecture without proof that they work properly, which is
all that is necessary to comprehend the rest of this section.
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evaluation

—gp-

(TransStatman F 2)

Figure 4.2: Example Statman translation.
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Definition 11 (functions in Statman’s algorithm)

1. R, L and P are predefined combinators the semantics of
which are provided by:

L((Pz)y) =
R(Pz)y) = y
(P(Lz))(Rz) = &

(For those familiar with functional programming: L = head, R =
tail, P = pair, :.)

A< = (A2.09.002.((P((2(Ly))=))(Ry)))))
4> = (A2.Q09.002.((P(Ly))((=(Ry))2)))))

3. The packing functions A,, are defined as follows:

A = P
An = AA, o if2.-2F<n<3.2F
An = A A, g if3-2F<n<4.2F

4. The retrieval functions F" are defined as follows:

o= 1
Fr = (BL)FM ifi<n*

Fr = (BR)FZ ifi>n*

where n* = smallest integer greater than n/2 and 2k+14* =
2% + 4 — 1, for some k > 0.

It

As one might guess, complexity analysis is a good deal less difficult than the
program itself. We make an estimate for |A,| and |F"|. This enables us to
prove that the algorithm is optimal. S, B, I, L, R and P are the primitive
combinators in the cafs.

Lemma 8 (size of packing functions)

|[An] € Calogn
where C4 = max(|A<|,|45])(= 13)

Proof: In each step of the recursive definition 13 (= length of A< = length
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of A ) is added to the total, clearly, at most (log n) such steps can be made.
(]

Lemma 9 (size of retrieval functions)

|F{*| < 2logn

Proof: One easily verifies that in each step 2 combinators are added. There
are (logn) steps at most. [J

Theorem 7 (caf size for arbitrary A-terms using Statman’s
algon’thm?
Let E be a A-term of length n, with m free variables.

|StatmanTrans E m| < Cnlog(n + m)

where C = max(Cy4/2,2).

Proof: Abbreviate: T = StatmanTrans. By induction on E.

* E atomic, then either £ = c and then [T Em| = |¢| = 1 or E = z;
then (TE) = F/. By lemma 9 |T E m| < 2logm. So in the atomic
case, the theorem holds.

e E=(X; X,).
Hypothesis
|T X3 m| < C-nglog(ng + m)
ITXom] < C-ny log(ny + m)
where ng+n; = n

(TEm) =
1+ (T Xy m)] + (T Xy m)| =
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1+ C (nolog(no + m) + ny log(ny + m)) <
1+ C(no + n1) (log(no + m) + log(ny + m)) <
Cn (log(no + m) + log(ny + m)) <

Cnlog(n + m)

o E=(Azpm41.F).
Hypothesis

I(T F (m+1))| < C(n - 2)log((n — 2) + (m + 1))
(T Em) = (B(B(T F (m+1))))Am , hence:

(T E m)|

24+ (T F (m+1))| + |Am]

24+ (TF(m+1))|+ Calogm

2+C(n-2)log((n—2)+ (m+1))+ Calogm
2+Cnlog(n+m—1)—2Clog(n+m—1)+ Cylogm

2+ Cnlog(n+m — 1) — 2Clog(n + m — 1) + 2(C4/2) log(n + m —1)
2+ Cnlog(n+m—1)

Cnlog(n + m)

Theorem 8 (optimality of Statman’s algorithm)
Let a be Statman’s algorithm. Then:

(9(n)logg(n))/2logk — 1 < wely(n) < Cnlogn

Where
k = number of primitive combinators
C = max(C4/2,2)
Ca = max(JA<l,|45])
9(n) = |(n-5)/4).

Proof: Immediate from the previous theorem and lemmas. O
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Theorem 8 tells us that we cannot expect a spectacular improvement over
Statman’s worst case. Although all estimates were very rough, the algorithm
is only a small factor worse than the best that could possibly be achieved.
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Chapter 5

Possible improvements

In chapter 3, it was shown that Turner’s algorithm produces code of a size
less than or equal to n?, n being the length of the input. The performance
of Statman’s is much better for the worst case. The two bounds are de-
picted graphically in figure 5.1 Note that we did not prove that Statman’s
bound can be attained, as we did for Turner’s. The average behaviour of
his algorithm, however, is very poor. Some results derived from [Mul85]
are summarized in figure 5.2. Recall how Turner achieved his major im-
provement over Curry’s algorithm. Essentially, this was done by introducing
more refined combinators. In this chapter of our paper the question is raised
whether application of Turner’s method to Statman’s algorithm might lead
to further improvements.

Surprisingly, there appears to exist a strong connection between the
abstraction of subexpressions and the introduction of new combinators. By
abstraction of subexzpressions the following is meant: Consider an expression

(Az.((plus1)z)) (5.1)
This is equivalent to the result of evaluating
((Ay.(Az.(y 2)))(plus 1)) (5.2)

Abstraction of subexpressions may be seen as the inverse of evaluating an
application.

We will study the effect of rewriting expressions by abstraction on the
code size. We discuss whether there is an optimal way of performing the
abstractions. Unfortunately, finding the optimal rewriting sequence is an
unsolved problem, and probably even undecidable. One has to look for
more practical ways of reducing code size by abstraction.
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Figure 5.1: Bounds from chapter 3 and 4.

A— ~term E |E] | [TurnerTrans E| [ |Statman E|
(Az.(Ay.(Az.((z2)(y2))))) 10 4 41
(Az.(2y.(((zn)2)(Az.((z2)y))))) | 12 9 46
(Azl.(/\zz.()\zs.(/\x.,.(/\n.xl))))) 11 7 75

Figure 5.2: Some figures on code-length.
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For Statman’s algorithm, it is possible to compute whether a single ab-
straction is profitable. This could serve in developing heuristics to construct
a good rewriting sequence.

The effect on Turner’s algorithm is more spectacular. In careful ‘balanc-
ing’ of the expression tree, abstractions are used to minimize spanning tree
sizes. In this way one arrives at a blend of Statman’s and Turner’s algo-
rithms, combining good properties of both. This algorithm is only applicable
to applicative forms.

Finally, we briefly touch on translation to super—-combinators, a variable
elimination method devised by John Hughes [Hug82]. It is entirely based
on subexpression abstraction.

5.1 Introduction of combinators

In chapter 3, substantial improvements over Curry’s algorithm were achieved
by introducing B, C, §’, B’ and C’. One wonders whether further refine-
ments might lead to better results in the case of Turner’s algorithm. And
Statman’s? Could extra combinators improve its average behaviour?

5.1.1 Adding extra combinators to Turner’s algorithm

Extra combinators will not improve Kennaway’s worst case bounds by an
order of magnitude. The proof of this conjecture is omitted here.

We might want to introduce extra combinators because it is known that
some particular case occurs fairly often. How should they be inserted in
Turner’s algorithm? For ease of reference, the variable-removing part of
Turner’s algorithm is repeated here:
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Algorithm 8 (Turner’s algorithm)

(1) (@) T2z I
b)) T=zE (K E)
(2) When E contains no variables

o

(@) Tz ((Ex)F,) = (§ E)T z Fy)
(b) Tz((Ez)F) = (C E)F
(€ Tz((EF)G:) = ((S'E)Tz F))TG,)
(d) Tz((EF)G,) = (B E)F)(T z G,)
() Tz((EF)G) = ((C'E)TzF))G
(3) (a) Tz (Exz) = FE
(b) Tz (E.F,) = (S(TzE.))TzF,)
(¢) Tz(EF,) = (BE) Tz Fy)
(d) T=z(E,F) = (C(Tz E,)F

End of algorithm 8

Clearly far reaching combinators should be given preference over others.
Generally speaking, this is the case in T. Case 1 introduces combinators
that deal with as much of the expression tree as possible, and thus contain
1o recursive application of T. Those in case 2 reach one level deeper than
those in case 3. The irregular ‘compile-time evaluations’ 29, 2% and 32 do
not fit into this scheme. We neglect them here. Define the ‘range’ of a
combinator to be the length of the template in its introduction rule. Then
an extended Turner-algorithm could look like this:
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Algorithm 9 (Turner’s algorithm with extra combinators)
(1) (@) Tz=z
(b)) Tz E

(2)

I
(K E)

]

Special combinators in order of descending range
(But without ‘irregularities’ like 2%b)

(3) (a) Tz(Eux)
(b) Tz (E.Fy)
(¢) Tz(EF,)
(d) Tz(E,F)

E

(S(T =z E))T =z Fy)
(B EXT =z F)

(C (T z E))F

ot

End of algorithm 9

5.1.2 Adding combinators to Statman’s algorithm

Statman’s algorithm uses a terse combinator set to build cafs. Yet even for
this small number, the algorithm is not able to take full advantage of them.
S itself translates into a constant applicative form of size 42. Two possible
optimizations may be suggested.

e Splitting the environment. We could send arguments only to where
they are used. This resembles Turner’s way of dealing with this prob-
lem.

e Optimization of the environment structure. How could one do better
than Statman’s intricate tree?

Strictly speaking, one does not need new combinators for these optimiza-
tions. What is certainly required however, are new rules for introducing
combinators.

Let us first take a closer look at the splitting of an environment. Just as
in Turner’s algorithm, we want to send arguments only to the corresponding
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&

()

expression

Figure 5.3: A bad case for environment splitting in Statman’s algorithm.

variable occurrences. An improvement that costs (almost) nothing is block-
ing the environment from propagating into a constant subexpression by K.
How about splitting the evironment to its optimal extent? Will it help to
reduce the code size?

A splitting operation could easily cost clogn extra combinators. In case
like the one exemplified in figure 5.3 this will amount to cn logn, the worst
possible case in Statman’s algorithm. We conclude that not much is to be
expected from splitting the environment.

Statman’s tree is an optimal storage structure in the A-calculus. We
cannot hope to improve the bounds for packing and retrieval code size by
an order of magnitude. Introduction of specialized combinators might prove
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combinator Translation into S, K, I
S S
K K
I I
B (S(K S))K
c (S(S(K S)((S(K K))S))(K K)
s’ (B(B $))B  (((S(K S)K)((S(K $)K)S))(S(K S))K)
B' (B B) (((S(K $)K)(S(K $))K))
c’ (B(B C))B (((S(K SHK)((S(K $)K)
((S(S(K S)(S(K K))S)))(K K))))
((S(K S)K)

Figure 5.4: Translation of Turner’s combinator set into S, K and I.

helpful, however. First, consider the retrieval functions F*. A typical ex-
ample is:

F3 = (BL)((BR)((BL)I)) (5.3)

By abbreviating (BL) and (BR) into predefined single combinators, the
size of F* is reduced by a factor 2. For the insertion functions A,, one could

take A< and Ay as primitives. This brings the constant in theorem 8 down
to 2, an improvement by a factor 3.

5.2 The redundancy of new combinators

Is the introduction of new combinators essential? Might we not achieve as
much using S, K and I only? The answer is yes. Use any of the foregoing
algorithms to get a caf. Replace all combinators by their definitions in § ,
K and I. All you lose is a constant factor ¢ in the code size. This constant
is bounded by the longest definition. From figure 5.4, we may conclude that
¢ = 22 for Turner’s algorithm.

One may wonder whether the same result cannot be obtained without
the intermediate step of introducing new combinators. Swierstra discovered
that it may be done by abstraction of subexpressions [Swi86]. He shows how
S’ may be rendered superfluous. As an example, consider the introduction
of B

(T z (E F,)) = (B E)(T ¢ F,) (5.4)
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Using the translations from figure 5.4 outlined above, this may be rewritten
to:

(((S(K S)HK)E) (T z Fy) (55)

We show how this last expression may be obtained by using two operations:

¢ A modification of Curry’s algorithm called CRYV, altered to apply K
on mazrimal constant subexpressions. Also, redundant applications are

removed.
CRV z (Ez) = E(ifz ¢ freevars(E))
CRV =z z = I
CRV =z E = (KE)(if z & freevars(E))
CRV z (Ey FE;) = (S E,)E, (if no earlier rule applies)

This algorithm is called (abef) in [CHST72].
o Abstraction of subexpressions.

Starting with CRV z (E F), it is possible to attain (B E) (CRV z F;). The
clue lies in the choice of abstraction steps intertwined with CRV’s execution.

CRVz (EFy) = introduction of §
(S(CRVz E))(CRVz F;) = introduction of K
(S(K E))(CRV=z F)

For brevity, consider the left expression:

(S(K E))

((CRVa (S(K a)))E)
(((S(CRV a $))(CRV a (K a)))E)
(((S(K S))(CRVa (K a)))E)
((S(K $)K)E)

abstraction of
introduction of S
introduction of K
redundant application

LR

The same process may be applied to C, S’, B’ and C’. Surely abstraction
of subexpressions appears to be a pretty strong tool.

5.3 Abstraction of expressions
In the preceding section, we saw how new combinators may be simulated by

a simple translation algorithm, combined with the abstraction of subexpres-
sions. But how does one recognize the right abstraction? In general, one
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Figure 5.5: General abstraction of subexpressions.

wonders whether a sequence of abstractions resulting in a minimal code size
is computable. We argue that this is probably not the case. Therefore, ways
are examined to identify profitable abstractions in Statman’s algorithm. In a
heuristic way they may help us to find a profitable sequence of abstractions.

In Turner’s algorithm, abstractions will be used to minimize the spanning
tree sizes. This enables us to bring the worst case for applicative forms to
the same order of magnitude as Statman’s algorithm.

An interesting idea is to use abstraction of the largest possible expres-
sions. This was done by John Hughes [Hug82]. He abstracts ‘maximal free
expressions’. Maximal free expressions are subterms that do not contain
free occurrences of the variable that is being eliminated. Moreover, they are
not contained in other terms sharing the same property.

5.3.1 Conditions on abstraction

Before we proceed to discuss the effects of abstracting expressions on the
code size, agreement on the exact properties of this operation is required. In

figure 5.5 it is depicted graphically. Abstraction should always be reversible
by evaluation.
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plus

Figure 5.6: Variables should not be moved outside their scope.

Consider figure 5.6. Here, there is no way back, because z is no longer
bound by its introduction-node. Evaluation of the right-hand tree does
not yield the one on the left. Hence we require that no variable is moved
outside its scope. (In (Az.E), E is the range of z, the scope of z is E minus
expressions of the form (Az.F)).

Since abstraction is to be used for practical purposes, it is worthwhile to

exclude some degenerate cases. Consider the abstraction of an expression
from itself:

E = (Aa.a)E (5.6)

Since F is still unaltered in the result, one can hardly expect reduction of the

code size in going from E to (\a.a) E. Abstractions of true subexpressions
are called proper.

Note that non-proper abstractions could serve for common subexpres-
sion elimination. Expressions could be made equal by them. We shall not
pursue this issue. In the sequel, abstractions are assumed to be proper.
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5.3.2 The optimal abstraction sequence

In the preceding chapters, three algorithms to eliminate variables were pre-
sented, Curry’s, Turner’s and Statman’s. They all work by bumping the
A-introductions down the expression tree. Curry’s and Turner’s method
move one A-introduction at a time, requiring multiple sweeps to remove
them all. Statman bumps them all down in one sweep. This suggests ex-
ploiting expression abstraction as follows. Each time a new combinator is
introduced, we consider the whole expression tree. A (possibly empty) se-
quence of abstractions is performed. The algorithm proceeds transforming
the whole tree until no A~introductions remain. This outline is sketched (for
multi-sweep algorithms) in the following pascal-like fragment:

Algorithm 10 (outline multi-sweep algorithm with abstractions)

PROCEDURE Translate(VAR WholeTree : ExprTree);
VAR Subject : ExprTree;

FUNCTION FindInnerLambda(T : ExprTree;
VAR Result : ExprTree) : BOOLEAN;

FUNCTION Do(T : ExprTree) : BOOLEAN;
BEGIN
IF T=(lambda x.E), E contains no lambda’s
THEN BEGIN
Result := T;
Do := TRUE
END
ELSE IF NOT Do(T".Left)
THEN Do(T~.Right)
END;

BEGIN
Result := NIL;

FindInnerLambda := Do(T)
END;

PROCEDURE BumpDownLambda(VAR Subject : ExprTree);
{equivalent to CRV}
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BEGIN
. let E and x be such that (lambda x. E)=Subject ...
IF match(E, (D x)) AND
NOT (x IN FreeVars(D)) THEN Subject := D
ELSIF match(E, x) THEN Subject := I
ELSIF NOT (x IN FreeVars(E)) THEN Subject := (K E)
ELSIF match(E, (E1 E2))} THEN Subject := ((S E1) E2)
ELSE {does not occur}
FI
END;

BEGIN { Translate }
PerformAbstractions(WholeTree);
WHILE FindInnerLambda(WholeTree, Subject) DO
BEGIN
BumpDownLambda( Subject );
PerformAbstractions( WholeTree )
END
END; {Translate}

End of algorithm 10

We are faced with the question: Can PerformAbstractions be defined
to get the smallest code possible? In chapter 4, we saw that this cannot be
done in a general way. However in the present context we are considering
very, very restricted algorithms only. Is there a best one? Assume there is.
Recall that abstraction is the inverse of evaluation. Given some value, we are
looking for a function that will compute it. This function should translate
to the shortest possible caf using our procedure BumpDown. In all likelihood
this is an undecidable problem, but the author was unable to prove this
conjecture. It is possible however, to attain the ‘best’ case as defined by
Statman. We show this for applicative forms and Turner’s algorithm in a
subsequent section.

5.3.3 Abstractions in Statman’s algorithm

In this paragraph it is investigated what might be gained by a single expres-
sion abstraction in the original expression using Statman’s algorithm. We
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define a ‘cost’ for every expression. Subsequently, it is proved that a larger
cost means a larger translation. Hence, if an abstraction brings down the
cost of an expression, one has gained something. The ‘cost’ may be more eas-
ily computed than the translation according to Statman’s algorithm. This
is important, since otherwise one could simply do the translation to check
whether a particular abstraction is profitable. ‘

The length of Statman’s output is depending on the size of the environ-
ment and the length of the translation of subexpressions. This suggests the
following definition:

Definition 12 (ezpression cost)

Let E be a A-expression, and envir be a set of variables. The
cost of E in envir is

cost (Az.E) envir (cost Ey enviru {z}) + |envir|

cost (Ey Ep) envir = (costE; envir)+ (cost E, envir)
cost z envir = |envir|
cost c envir = 1

We conjecture that this cost function may be used to judge abstractions.
First, it is shown that a decrease in cost implicates that the code will not
grow.

Lemma 10 (caf size and ezpression cost)
Let TR be the Statman translation StatmanTrans. Let E and
F be A-terms. Let envir be a set of variables, containing both

freevars(E) and freevars(F). If (cost E envir) < (cost F envir)
then |TR E n| < |TR F n|.

Proof: Let D be a A~term. We show by induction on D that |TR D n| is
monotonically increasing in cost D envir.

® D atomic: Then by definition cost D envir = 1 or cost D envir =
lenvir|. |TR D n| = |Fp| = 2logn, where n = |envir|, so here the
conjecture holds.

o D= (D1 Dz):
Hypothesis TR D; n = fi(cost D; envir), f; monotonically increas-
ing. (i=1,2)
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I TRD n| =
|S(TR Dy n)(TR D, n)|
1+ fi(cost D, envir) + fa(cost D, envir)

N

which is of course monotonically increasing too.
e D= (Az.E):
Hypothesis |[TRE (n +1)| = f(cost E enviru {z})

[TRDn| =
3+ Cloglenvir| + |TR E (n + 1))
3 + Clog|envir| + | f(cost E enviru {z})|
If the cost of D increases, then so does this expression.
O

In figure 5.7 the abstraction of B from A is depicted. Assuming that
the cost at each node of the tree is known, it should be possible to compute
the cost difference brought about. B may occur more than once in A, its
occurrences being distinguished by a superscript. At a node X, (envir X )

is the environment of the corresponding subterm. (cost X) signifies its cost,
(cost X (envir X)).

Lemma 11 (abstractions and cost)
Let E be an expression with cost E envir — ¢. Then

cost (Az.E) envir = ¢ + (lambdas E) + (vars E) + |envinr|
Where

lambdas E = number of A~introductions in E
vars E = number of variable-occurrences in E

Proof: For each variable and each A-introduction we have a cost—increase
of 1. At the node itself, an increase by |envir] is inflicted. O
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Figure 5.7: Computing thecost difference for an abstraction.

Theorem 9 (abstractions and cost difference)

Let A, B' and C as in the left tree of figure 5.7. The Bi are
occurrences of a subtree B. Let

n n
p = Z(cost BY) - Z |envir BY|
=1 =1
¢ = lambdas A+ (vars A) + |envir A| — n(vars B + lambdas B)
T = cost B! + (|envirC| - |envir B!|)(lambdas B + vars B)

Assuming all variables are distinct, the total cost increase in-
flicted by abstraction in figure 5.7 is:

g—pr+r

Proof: p, q and r are explained.

P: In A, we remove the occurrences of B, B'. This decreases the cost by
YR, cost Bi, However, they are replaced by a’s, each accounting
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for cost |envir BY|, where (i = 1,.. .yn). Therefore, the cost of A is
decreased by Y°(cost B*) — " |envir Bl

q: Immediate from the previous lemma.

r: On the right hand side in figure 5.7 B is a ‘new’ subtree. Its cost
is cost B'. However the environment is reduced compared to B1,
(envir Bl) D (envir C), because all variables are distinct. So we
get an increase of |envir C| — |envir B!| for each A-introduction and
variable occurrence in B.

To compute this measure efficiently, one should augment each node with the
necessary information as attributes. This can be done during tree construc-
tion. Recomputation after an abstraction may be done in linear time.

5.3.4 Turner on the chopping block

Any attempt at optimizing Turner’s algorithm should be submitted to the
test whether it improves on the worst—case bound as it is stated in chapter 3.
Abstraction of expressions does so for applicative forms. By incorporating
some simple abstractions, the output will be rendered ‘weakly optimal’, as
described in chapter 4.

The main idea is straightforward enough. We should minimize the sum
of the spanning tree sizes. For an applicative form, this is equivalent to

minimizing the sum of all path-lengths from the root of the body to the
leaves.

It is a well-known fact that the so—called ‘weight—balanced trees’ exhibit
the following property: Fach path from the root to a leaf has length O(log n)
(i.e. <Clogn forn large enough). Consider an applicative form

()\331.()\:272.(. . (/\ka) . ))) (5.7)
Assume that the body B is a weight-balanced tree. Translation will add
O(1B| log | B|) (5.8)
combinators at most. The whole translation will have length

O((IBl1og|B]) + |B|) = ©(|B| log|B|). (5.9)
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We will try to convert any applicative form into such a balanced tree by
abstraction of expressions.
Balanced trees are ubiquitous in computer science. We already met them

in this paper: the environment structure by Statman. Here we will use a
more relaxed version. The main goal is to prevent trees from listing either
too far to the left or to the right. Weight-balanced trees were introduced
by Nievergelt and Reingold [NR73]. We cite the definitions from [BM8o).

Definition 13 (balance of a tree)

Let T be a binary tree. If T'is a single leaf, the the root-balance

B(T) is 1/2, otherwise we define B(T) = |TL|/|T|, where | Tz

is the number of leaves in the left subtree of T and |T| is the

number of leaves in tree |T|.

Definition 14 (balanced tree)
A binary tree T is said to be of bounded balance «, or in the set
BBla], for0< a < 1/2, if and only if

La<pM<1-a

2. T is a single leaf or both subtrees are of bounded balance
a.

For reasons that will be explained later on, o is taken such that o <1/4.

A A-term is said to be of bounded balance o if each application node satisfies
the conditions under definition 14.

To give the reader a more concrete idea of what we intend to do, an
example is provided in figure 5.8. The expression depicted is a bad case for
Turner’s algorithm. The tree is listing far to the right. Asa consequence, the
term is not balanced in the sense defined above. The translation introduces
53 combinators. By abstraction of Ejy, the situation is profoundly changed.
The term is balanced and requires only 44 combinators.

Lemma 12 (balanced ezpressions in Turner’s algorithm)
Let E be a balanced applicative form

(Az1.(Az2.(... (Azr.D)...)))
where |D| = n.

| TurnerTrans D| = O(nlogn)

Proof: Let p be the sum of the lengths of all distinct paths from the root
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a=1/5

= out of balance

Figure 5.8: Example of expression balancing by abstraction.
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of D to the leaves. Each path has length O(logn) because D is a balanced
binary tree. Hence p = O(nlogn). F := (t D) From the definition of
(algorithm 4) , it is clear that no path is made any longer. The sum of the
number of internal nodes in the spanning trees in F of z,, Z2,...,% is equal
to or less than p.

Application of U (result: G) yields O(nlogn) combinator introductions,

accounting for a total expression length of |G| = O(nlog n).
Define ¢t-! to be:

t™1 (EFG) = (L EYt-1F))(t1G))
=} (EF) = ((t"'E)(t-'F))
t-1 a = a

Translate G back to the conventional tree representation using t~1. The
length of G is not altered.

Summarizing, we used t~1(Trans U)t to get a translation of length O(nlogn).
(Trans is algorithm 3 adapted to the new representation.) By lemma 2
t~1(Trans U)t = (Trans T'). Trans T' always performs worse than the
original algorithm TurnerTrans = Trans T, because cases 22,25 and 39 are
dropped. O

Theorem 10 (caf size for balanced terms)
Let E be a balanced A-term, with |E| = n.

| TurnerTrans E| = O(n logn)

Proof: For E an applicative form, the theorem holds by the previous lemma.
Observe that

| Turner Trans ((Az.E)D)| =
| TurnerTrans (D(Az.E))| <
| TurnerTrans (Az.(E D))

By the previous lemma, we may conclude that the theorem holds for general
A-terms, too.
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Consider the general form of a worst case for Turner’s algorithm, as
depicted in figure 5.9. We chop it up into two parts of approximately equal
length, and combine them by lambda abstraction into one balanced node.
Both subtrees will increase in size by an equal amount of extra nodes, so
this node remains balanced throughout the rest of the process.

The algorithm is applied recursively to both subtrees. We continue in
this way until a subexpression has only three leaves (or less). Note that
this situation is always reached after logn steps: At each step the sizes of
subtrees shrink by a factor 2.

Clearly, the number of nodes in the tree grows rapidly by this transfor-
mation. In the first step, 2 extra nodes are introduced, in the second 4, in
the third 8 and so on. This amounts to:

logn .
dooi=olen)tl _o_o, o (5.10)

=1

extra nodes. However, the resulting tree of size 3n — 2 (excluding A’s)
translates to an expression of length O(nlogn) by the previous theorem. In
the end a definite gain has been booked, as exemplified in figure 5.3.4.

Could this algorithm be applied to any expression tree? Here, we cannot
always find a subexpression of size n/2 or (n - 1)/2. To solve this problem,
a strategy expressed by the function search could be employed:

search tree size =
IF (8ize0f tree) <= gize -> tree
(size0f tree) > size -> IF 8ize0f (leftSub tree) >=
8ize0f (rightSub tree) ->
(search (leftSub tree) s8ize))
OTHERWISE ->
(search (rightSub tree) size)

FI
FI

As soon as size0f tree <= size applies, the search is over. By the
definition of search, the parent to tree is larger than size, and tree is the
larger of its sons. Hence (size0f tree) >= size/2 = (sizelf expr) /4.
We may readily conclude that the algorithm presented for the worst cage
may also be used in all other cases to get a tree of bounded balance less

than 1/4. The result remains the same, but we have to use log to the base
4/3.
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Figure 5.9: Improving on Turner’s worst case behaviour.
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expression | TurnerTrans | optimtrans (a = 0.25)
length length length
15 13 14
33 64 50
48 134 81

Figure 5.10: A comparison in code-length.

The algorithm, implemented in SASL ([Tur76]), is given below:

Algorithm 11 (balancing of A-terms)

sizeof (’app",el,e2)
sizeof e

(sizeof e1) + (sizeof e2)
1 || atoms

beta (’app", e1, e2)

s8izeof e1/ ((sizeof e1)+
(sizeof e2))

beta e 1/2 || atoms

top_balance alpha (’lam",y,e) = (’lam",y,

(top_balance alpha e))
top_balance alpha e = balance alpha 1000 e

balance alpha x e = (alpha <= beta(e)) &

(beta(e) <= 1-alpha)

. -> (sub_balance

alpha x e)
(C’app",
()1amn’
X,
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(balance alpha (x+1) body)),
(balance alpha (x+1) abstracted))
WHERE (body, abstracted) =
(chop e ((sizeof 6)/2) x))

sub_balance alpha x (*app",e1,62) = (’app",
(balance alpha x el),
(balance alpha x 62))
sub_balance alpha x e =8 I atoms only

I chop a subtree of the right size

chop tree size x = (sizeof tree) <= gize
-> ((’id",x), tree)
(chopappl tree size x)
chopappl (’app",el,e2) size x =
(sizeof e1) >= (sizeof e2) -»> (((’app",r1,e2),r2)
WHERE (r1,r2)=(chop
el
size
x))
((C’app",e1,r1),r2)
WHERE (r1,r2) = (chop
e2
8ize

x))

optim_trans alpha e = turner_trans (top_balance alpha e)

End of algorithm 11
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This approach is very similar to the one taken by Burton [Bur82]. In
chopping, he searches for the tree having as close to (n+1)/2 leaves as pos-
sible. This enables one to take o = 1 /3. An interesting extension proposed
by him is the application to expressions that consist of closed subterms only,
i.e. within the body of a function no variables from an enclosing term are
used. By simply taking size (translatedexpr) = 1 the method is readily
generalized to such terms. Any A-expression can be converted to the indi-
cated form by introducing extra parameters for global variables. A method
to do this transformation is introduced in the next section.

5.3.5 Abstraction of maximal free expressions

We are investigating the effect of expression abstractions on code size. As
pointed out, no variable should be moved outside its scope. All candidates
are free expressions, they do not contajn any occurrence of the variable that
we intend to eliminate. What if all mazimal free expressions are abstracted
to the outside? A maximal free expressions (mfe) is a free term that is not
enclosed in another with the same property. An example of repeated mfe
abstraction is given in figure 5.11. Single constants are not abstracted.
Hughes [Hug82] uses this technique to remove variables. His method
boils down to the introduction of specialized combinators for each program,
rather than using a fixed set as we did up to now. These new combinators are
called super-combinators. In figure 5.11 ¢¢ and ¢y are super—combinators.
A translation to super-combinators from [Hug85] is presented here. For
clarity, applications (E D) are marked (app E D) to distinguish them from
program fragments. Also, identifiers are denoted by (id z), z an integer.

Algorithm 12 (Hughes’ algorithm)

Strans (id x) = (id x)

Strans (app E1 E2) = ((Strans E1) (Strans E2))

Strans (lam x E) = (abstract (mfes x tb) x tb)
WHERE tb = trans b

abstract m x b = mkapp m (mkcom (m++[x]) b)
mkapp [] £ f
mkapp (a:m) £ mkapp m ( app f a)
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plus 2

plus 2

define ¢ =

abstract (Az(Ax(c(times(z, x)))))

(times ((plus 2) X))

-

define ¢,= (Az.. (Ay.(z ¥))))
abstract (plus 2)

o y plus 2

Figure 5.11: Example mfe abstractions.
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mkcom m b = (com (length n) (subst m [1. .length m] b))

End of algorithm 12

‘abstract’ removes the mfes that are passed as a list in its first argument
from b, and introduces a super-combinator for the remaining body.

A new kind of node is introduced: com a b. This signifies a super—
combinator with a arguments and body b. The parameters in the body are
represented by integers from 1 to a. subst introduces the numbers, replacing
them for the mfes that are abstracted.

To find the maximal free expressions it is necessary to determine the
most global identifier in each subexpression. If this is a more global one
than the variable to be abstracted, we have a, free expression.

One may wonder what happens if the following translation scheme is
used: First translate an expression to super—combinator code. Second,
translate the super-combinators using Turner’s algorithm. The combina-
tors from the fixed set {5, K, I, B, C,S,B',C’, 8'} act as microcode for the
super—instructions.

Intuitively, one might expect that this would yield a good translation. It
is, however, not difficult to find a counter—example. Consider our familiar
right-skewed case:

(Az1.(Az2.(. . . (Az (22 ((. .. (Bn-124)...))))...)) (5.11)

E is submitted to Strans. The generated super—combinator is equal to
the whole expression. The translation will inevitably end up with a result

that is even larger than what direct application of Turner’s algorithm would
have yielded.
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Chapter 6

Discussion

In this section, we intend to dwell a little on the consequences of the re-
sults we obtained. First, some possible directions for further research are
examined. Second, we discuss how the results might be applied in Practice.

The first extension to the present work should be the implementation
of all algorithms. Apart from the fact that this programming task should
be a most instructive exercise, we will get empirical data on the average
performance of the translations. This should serve as a basis for average
case analysis. While we are happy to know that no really bad output can
occur, the question whether the average behaviour of a compiler to cafs is
good is much more important.

The algorithms presented in this Paper only provide a snapshot of the
wide spectrum available, The summary in [Mul85] is much more complete.
It should be illuminating to make a more exhaustive comparison in com-
plexity.

The properties of expression abstraction are by no means covered com-
pletely in chapter 5. The question remains how we can do better than
the crude splitting of expressions. The theme of the connection to super—
combinators should be investigated in more depth. Especially the optimiza-
tions from [Hug82] provide an interesting research theme.

We did not consider compile-time evaluation as a technique to im-
prove on variable-eliminating algorithms. The main reason for not doing
so is that this would demand a lengthy exposition on ‘strictness analy-
sis’. Compile-time evaluation is certainly advantageous from the viewpoint
of time-efficiency, if graph representations with subexpression—sharing are
used. For abstraction of subexpressions, this is not necessarily the case.

It remains to be seen how much may be gained by sharing substructures
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in the graph representation. The question whether there is a trade—off be-
tween caf size and evaluation time is still open. What is needed is a sound
theory on efficiency analysis of functional programs.

It was the main aim of this paper to contribute in a modest way to our
insight in variable—elimination. While interesting from a theoretical point
of view, its practical merits are not great. Computer memories are ever—
increasing in size and falling in price, so reduction of the code size from
n? to nlogn is not that important. However, a feasible practical applica-
tion might lie in the distributed execution of functional programs. Paul
Hudak and Benjamin Goldberg argue in [HG85] that a variant of Hughes’
super—combinators, called serial combinators, provide ‘maximal grains of
parallelism’. These identify subcomputations with ‘minimal’ communica-
tion costs. This highly resembles our minimization of the expression tree.
Identifying subtrees with processes, we seek the lowest number of processes
computing our function. Research on this correspondence should enhance
our understanding of specialized architectures for functional languages. A
recent survey of this field was made by Steven Vegdahl in [Vegs4].
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