THE ROLE OF “DIVIDE”
- IN
DIVIDE-AND-RULE
ALGORITHMS

O. de Moor

RUU-CS-87-26
November 1987

Rijksuniversiteit Utrecht

*o’ * "Q\ ; g
E%%S Vakgroep informatica -
£ £
BN Budmpestimen§ 3584 CD Utrechit

Corriadres: Postbus 80.012 3508 TA Utrecht
Telstoon 030-53 1454
The Netherlands



THE ROLE OF “DIVIDE”
IN
DIVIDE-AND-RULE ALGORITHMS

0. de Moor

Technical Report RUU-CS-87-26
November 1987

Department of Computer Science
University of Utrecht
P.O.Box 80.012, 3508 TA Utrecht
The Netherlands






Abstract

A most promising approach to transformational program development is the
manipulation of structure-preserving mappings, as advocated by L.G.L.T.
Meertens and R.S. Bird. They view such functions as homomorphisms
on algebraic structures. This excludes general divide-and-rule algorithms
from the calculus of transformations, since homomorphisms do not allow
for explicit specification of ‘divide’. In this report, a general scheme for
divide-and-rule is introduced. Under extremely weak conditions, two con-
secutive divide-and-rule algorithms may be merged into a single one. The
laws on homomorphisms used by Meertens and Bird are corollaries to this
general composition theorem. The formal framework developed to prove
the theorem permits a concise formulation of the popular transformation
technique known as “formal differentiation”. A possible application is the
development of algorithms on sets.






Contents

1 Introduction

2 Preliminaries
21 Logic. . . . . . i it e e e e e e e e e
2.2 Abstract types

2.3 Indeterminacy
2.4 Refinement

---------------------------

3 Theory
3.1 Manageable structures
32 Homomorphisms ... .....................
3.3 Indeterminateinsertion ... .................
3.4 General divide-and—rule: Integrates .. ...........
3.4.1 Specification of the divide strategy
342 Integrates . ... ....................
3.4.3 Composition of integrates

.....................

----------

---------------

4 Formal integration
41 Applications. . . ... ... ..... ... ... ... . ...

4.1.1 Integrate products
4.1.2 Set partitions

......................

5 Discussion
Bibliography

Index

60
62
62
64

66

68

71



Chapter 1

Introduction

In the initial stages of program development, it is good practice to specify
as little as possible. The reason for this admonition is obvious: the fewer
constraints a specification contains, the more susceptible it is to formal
manipulation. No undue commitments should be made. Most principles of
transformational programming are rooted in this Law of Parsimony. The
current emphasis on functional programs may be explained by the fact that
purely functional specifications! are not necessarily blurred by redundant
details on execution order, as imperative programs are.

This paper investigates the need and possibilities to specify the divide
strategy in divide-and-rule algorithms. Often the ways of splitting an
argument are crucial and should be restricted. For instance, the number
(#) of elements in a set is not adequately defined by:

#0 =0
# {a} =1
#(zVy) = #z+#y.

The third clause needs the constraint that £ and y are disjoint. This
amounts to a restriction of the divide strategy. We will identify conditions
stating whether such restrictions are necessary or not.

For programs without a specific divide policy, elegant transformation
laws can be formulated. This has been done in various papers by Meertens
and Bird (notably [Mee86] and [Bir86b]). The approach is to regard such

1The terms ‘program’, ‘algorithm’, ‘function’ and ‘expression’ are used interchangeably
to denote specifications.



algorithms as homomorphisms on algebraic structures. The theory might
be called ‘morphic programming’.

Generalizing their work, we will develop a calculus of divide-and-rule
algorithms, incorporating explicit divide strategies. A theorem on the merg-
ing of two consecutive programs will be proved. An important part of
morphic programming are the so—called “promotion laws”, which will be
presented as corollaries to this general composition theorem.

At the outset of these investigations, morphic programming was still
lacking the sound mathematical basis needed to carry them through. The
situation changed when Zantema presented a treatment of the theory along
the lines of universal algebra [Zan87). Certain aspects of his foundation,
however, seemed incompatible with the research described in this paper,
and therefore another approach is outlined in section 3.1. After discussing
homomorphisms and the basic operations of morphic programming (sec-
tion 3.2), we turn to functions lacking a divide strategy (section 3.3).

Next the more general form of divide-and-rule algorithms (involving
explicit specification of ‘divide’) is introduced. The new construct is chris-
tened ‘integrate’, because of analogies with conventional integration. The
composition theorem mentioned above is proved at this point (section 3.4).

Several authors have noted the resemblance between the development
of loops and differentiation as it is known from ordinary calculus (e.g.
[Sha81,Sha82,PK82 Pai86,Mee87b]). The issue is revisited, and accentu-
ated by a suggestive notation (chapter 4). In this context some program-
ming problems on sets will be considered.

Finally, the question is raised what might be gained from the results
obtained in this paper. Though some nice little programming problems
could be solved with the help of the method developed here, it does not yet
seem suited for deriving more substantial algorithms. Therefore, the feasi-
bility of extending our theory to more complex structures as well as other
possible directions for future research are briefly discussed in chapter 5.

This paper does not stand by itself. Some level of familiarity with the

earlier work on morphic programming is assumed. A good introduction is
[Mee87a).



Chapter 2

Preliminaries

As noted in the introduction, a sound mathematical basis is needed to solve
the problems that are the subject of this report. A modest attempt will
be made to treat morphic programming in the framework of algebraic data
types. The relation between such types and transformational programming
has been extensively studied in the project CIP at the Technical University
of Munich.

Some basic concepts and notations will be briefly discussed. The reader
is referred to [BBB*85,BPW80,WPP*83] for technical details. Despite the
adoption of the basics from CIP, we adhere to the free syntax commonly
used in morphic programming (e.g. [BMW85], Meertens’ proposal). To
avoid confusion with other notions of ‘algebra’ in this report, algebraic
types will be called abstract types as in [WPP*83].

2.1 Logic

In abstract types, first order predicate logic (together with equational logic)
is used. No special properties of this calculus are important, except that it
is sound: If something is provable, it is true. The symbol ‘-’ denotes the
relation ‘proves’, and ‘=’ stands for ‘models’. Thus, soundness is expressed
by:

FFé¢=>(AET = AE9).

To avoid confusion between syntax and semantics, ‘—’ is used as the logical
implication symbol, while ‘=’ specifies this relation in the real world.



Another notion used both in predicates and on the meta-level is univer-
sal quantification. Here the distinction is made clear by a different notation
for the range of the variable. In predicates, we write

Vs z : ¢(z),
whereas a meta—sentence might typically read

Vte S : p(t).

2.2 Abstract types

Abstract types provide a means for specifying sets of objects together with
operations on these sets. The sets are denoted by sort symbols, often
called sorts for short. The operations are written with an operation name,
which is associated with a so—called functionality. A functionality indicates
the domain and codomain of the operation. For example, if ‘nat’ is a
sort denoting the natural numbers, and ‘4’ is the name of addition, then
nat X nat — nat is the functionality of ‘4+’. This is written

(4 : nat X nat — nat) € Topn,-

An abstract type T is a pair < Tyign, Tiaws >. The signature Ty is a pair
< Toortey Topns >). Tuorts is a set of sort symbols, and Topn, is a collection
of operation names with functionalities. The language of T, consisting of
terms constructed from variables and the symbols in T'p,,, is denoted by
terms (T,i;n). The set terms(Tlign) is sorted by Tyory; thus, for s € Tyor,
terms (T,i;a), stands for the expressions of sort s. The ground ezpressions,
not containing any variables, will be referred to by grterms (T,i;n).

The laws (Thw,) are first order predicates over the language of T,ij.
These laws characterize the possible interpretations of the symbols in the
signature. An example is provided below. The phrase “based on INT,
BOOL” specifies that integers and booleans, together with their operations,
are available in this abstract type. The notion of availability may be quite
subtle [WPP*83]. For the moment, details are ignored here.



Example 1

type SEQU =
based on INT, BOOL
sorts iseq
opns (] : — iseq
[ . int — iseq
[_]e'ven :int — iseq
-H- . iseq X iseq — iseq
- . iseq X iseq — iseq
hd._ : iseq — int
tl. : iseq — iseq
lead._ : iseq — iseq
last_ : iseq — int
laws Viseq z,y,z2  : (zHy)Hz=zH(yH2)
Viseq z : (zH[]D)==2
Viseq z : ([JH#H2)=2
Viseq z,y (24 y) = (y+2)
Vint n ! [n]even = even n — [n]

O -evenn — []
Vint nViseqz : hd([n]H=z)=n
Vint nViseqz : tail([n]Hz) ==
Viseq z Vintn : last(z H[n])=n
Viseq z Vintn : lead(z +[n]) ==

An important class of predicates is formed by the equations that are

provable from the set of laws T},,,. This set of equations will be called the
theory of T,

Th(T) = {(to = t1)|to,t1 € terms (T,,',,.),T[aw, F to = tl}.

It will be convenient to have a notation for a restricted kind of equations,
where not all operations may participate. Let A =< A,orts, Aopns > be a

theory of T to A is

Th(T)\a := {(to = t1) € Th(T)|to, t: € terms(A)}.

6



The interpretation of an abstract type T is described using T;,,—algebras.
A T,i;n—algebra A is a collection of carrier sets Ac and a set of operations
Ao on these carrier sets. For each sort in T,,,,, there is a carrier set in A¢
and Ac¢ contains no more sets. In a formula, this reads

AC = {SAIS € Taorta}-

Similarly, Ao consists of interpretations of the operation names. Here in-
terpretations are also denoted by a superscript:

fA:sA o tA

stands for the operation associated with the symbol f : s — ¢ from T,,,,.

In the usual way (e.g. [vD83]) one arrives at the interpretation of terms.
For a ground term t € grterms(T,;,,),, t4 € s* denotes its interpretation.
To interprete non-ground terms, we need a function assigning a value to
each variable in the language. Such a function is called a valuation. If
v is a valuation, then t4* (¢ € terms(T.,,)) denotes the corresponding
interpretation of ¢.

A T,;;,—algebra is a model of the abstract type T iff it satisfies the laws
of T, i.e. A= Tius- A is an initial model of T iff the laws T, dictate all
equalities in .4, and any value can be denoted by a ground term

Vto, t; € terms (T“‘,n) . (to = tl) € Th(T) &S A |= (to = tl),

Vs € Tyorts : Ya € 84 : 3t € grterms (Tip), : t4 = a.

In general, the existence of an initial model of T is not guaranteed [WPP*83].
In the present context, this problem can be ignored.

As in the case of the theory of a type T (Th(T)), we will need a way
of cutting portions from a T,i.—algebra A. Let A =< A,,rts; Aopns > be a
signature with A, C Tyorts and Agpns © Topne. If A =< Ag, Ao > is a

T,i;n—algebra then A|x stands for the A-algebra < A%, A, > with

Ay = {s#|s€ Asorts}
Ap = {fAI(f 180X 81 X ... X 8p1 — 8p) € Agpns}

The algebra A|s is called the A-reduct of A.



2.3 Indeterminacy

The issue of indeterminate choice is a hotly debated topic in transforma-
tional programming. An indeterminate choice operator is a useful device
in specification, but it may produce several undesirable effects unless it is
used with extreme care [BMW85,Mor87]. For the purposes of this report,
it is indispensable. The problem is that there are difficulties in treating
the choice operator within the framework of abstract types. This topic is
a research theme in its own right. Quoting from [Mol85]:

“A deeper generalization, finally, would be the extension to non-
determinate operations in the algebras to cover also languages
with nondeterminism. However, it is not clear how an adequate
notion of homomorphism can be defined for such algebras and
what axioms for nondeterminate algebras should look like.”

Here, we will only list some characteristic properties of the indeterminate
choice. Also, a relaxed way of talking about the semantics of expressions
involving indeterminacy is discussed.

Let T be an abstract type. For any 8 € T,oris, [0, denotes the indeter-
minate choice. Also, for each sort a constant 1, is introduced. It stands for
the choice from nothing, i.e. “undefined”. The language of terms over T};,n,
extended with these syntactical operators, will be denoted by iterms (Tisn)
(igrterms (Tyipn) for ground terms). The laws T}, may use this language in
the predicates.

The semantics of an indeterminate expression will be described by its
set of possible values. The carrier sets in a model A of T, however, are still
viewed as sets of objects, not as sets of sets of objects. The interpretation
of terms and functions from the old language without indeterminacy is
denoted by a superscript as before. As in [BBB*85] and [Mee86], the values

are assumed to be present as constants in the old language grterms $T,,~,,,).
The undefined value of sort s is also written using a superscript: L.

The set of possible values of a term is called its breadth. It will be
specified using the breadth function

BA: igrterms (T,ign), — P(s4), (8 € Tyorss).

This function is characterized by the following equations.



(@) B(L,) =0

(i) Vt € grterms(T,m), : BA(L) = {t4} — {L.}
(ii) Vto,ty € igrterms (Tuipm), : BA(toO,t) = BA(to) U BA(t))
(iv) For all (f : u — 38) in T, :

Vit € igrterms (Ty,n),, : BA(S t) = |J{BA(S a)la € BA(t)}

Two terms 4o, € igrterms(T,;,,), are said to be equivalent iff BA(to) =
BZ(t1). Indeed, this induces a congruence relation on igrterms (Tyign) (see
e.g. [MG83]), and considering terms as representatives of the congruence
classes one may write (to,t; € igrterms(T.isn),)

to = tl lff B.‘A(to) = B,‘A(tl).

Slightly abusing terminology, we will say that the model A satisfies (=)
such equalities. According to the above properties of the breadth function,
A satisfies the following features of indeterminate choice:

(i) Vt € igrterms (Thign), : t0,L, = L,0,t = ¢
(ii) O, is associative, commutative and idempotent

(iii) For all (f:u — 8)in Typm, :
Vto, tl € igrterms(T,,-,,,)u . (f toD“tl) = (f to)l:l,(f tl).

The first property reflects the optimism of the approach: Choice be-
tween something and nothing will lead to something. It expresses the op-
posite of Murphy’s law: If something might go right, it will. Indeed, we do
not claim that the expressions are executable.

There is a price to these properties though, as will be illustrated in the
following example.

Example 2

Let (f : int — int) and (Vint ¢ : f 2 = z — ). What is the meaning
of f 00zl ? The term (00;y41) cannot be interpreted as an ordinary
ue from int#4, since that would give rise to undesirable equalities, as is

9



illustrated below. Using V-elimination (unfold) and property (iii) of Ojy,
one may derive that:

£ 00int1 = (004n¢1) — (00jptl) = —10jne 00 1.
On the other hand, one might derive that f 00;pt1 = 0, and therefore
0=-1 DintODint1°

This problem is often called “loss of referential transparency”.

One solution is to prohibit V—elimination (unfolding) with indeterminate
objects (see below) in the argument. This is quite restrictive, but for the
present it will do.

A specific class of expressions is formed by those that denote a single
value (possibly “undefined”). Such expressions are called determinate. A
term t € igrterms (T, ), is determinate in A iff |BA(t)] < 1. A function
f i 8 > uis determinate in A iff for any ¢t € grterms(T.ipn),, (f t) is
determinate in A. In reasoning about determinate functions it will be
convenient if these operations are total. A function f : 38 — u is total in
A iff for any t € grterms(T,i;.),, BA(f t) # 0. All functions are assumed
to be total, unless explicitly stated otherwise. Note that the subject of
partial functions was ignored in the exposition on abstract types. A possible
approach may be found in [WPP*83].

2.4 Refinement

In the development of actual computer programs, indeterminacy has to be
removed. Using the breadth function from the preceding section, one may
characterize the refinement relation 2 ;‘ on terms of sort s. In turn, the
refinement of functions can be pinned down.

(i) Vo, t1 € igrterms (Tign), : to 2 A ¢y iff BA(to) 2 BA(t,)
(i) Forall (f:s— u),(g:8— u)in Topn, :

f3lA.9
iff Vt € grterms (Thiga), : (f£) 22 (g 8)

10



Beware of the fact that any term of sort s refines to 1,; the relation
3 does not coincide with “may be replaced by”. Refinement is reflexive
and transitive, hence refinement chains may be glued together. Another
desirable feature is the local refinement of expressions. Let t[e] denote a
term of sort s with subexpression e (sort u). I for all terms e

el e = tle] T2 teo)

then t[e] is monotonic with respect to the refinement relation. To validate
the free application of local refinements, non—monotonic constructs are ex-
cluded from the expression language. This is a common restriction; it is
also imposed in [BBB*85]. In the sequel, the subscripts and superscripts
of B, J and O are omitted. Likewise, we will say ‘determinate’ instead of
‘determinate in A’ and ‘total’ instead of ‘total in .A’.

11



Chapter 3

Theory

3.1 Manageable structures

The abstract types used for specification are hard to use in program devel-
opment. Their general nature renders it difficult to formulate interesting
transformation theorems. In this section, we seek to identify parts of ab-
stract types that are apt to manipulation in algorithmics.

In [Mee86], morphic programming is applied to very simple data struc-
tures, which are built using only three operations: an embedding, a binary
operator and a constant. Of course, the general concepts are applicable to
more complex structure types [Mee87c]. For ease of exposition, our atten-
tion will be confined to the binary structures from the early days of morphic
programming. A slight generalization is allowed, though: the embedding

is not necessarily a singleton constructor and the constant is not always a
unit element.

Definition 3 (structure signature)

Let T be an abstract type. A signature X is a structure signature
in T if

(1) anm = {d,s} Q Tw.,-g,
(ii) Zopne = {":d > 8,0:8%x 8- 3,6:— 8} C Typm,.

The structure signature in definition 3 provides a view on the terms of
sort s. Only terms that are constructed by the operations in the signature

12



Figure 3.1: The structure signature provides a view on s.

are visible. Indeed, such terms are called visible; a precise definition will
be given below. The vision metaphor is useful in the graphical illustration
of results. A picture segment that is to represent a structure-signature—as—

a—view is displayed in figure 3.1. Our notion of a ‘view’ is reminiscent of
that in [Wad87].

Example 4 ,
Consider the abstract type SEQU in example 1 (section 2.2).

listsign :=< {int,iseq},{ [] : int — iseq,
-H--:iseq X iseq — iseq,
[]:— iseq} >

is a structure signature in SEQU. There is a deviation from the definition
above in the naming of the operation symbols. The conventional squiggles
for list construction have been used. Likewise, conventional symbols for set
construction are adopted throughout this paper.

Example 5
Yet another view on iseq is provided by

revlistsign :=< {int,iseq},{ [] : int — iseq,
—+F -: iseq X iseq — iseq,
[]:— iseq} >.

13



int

Figure 3.2: Different views on iseq.

This is also a structure signature in SEQU.

Example 6
Even the signature

evenlistsign :=< {int,iseq}, { [Jeven : int — iseq,
-+ _:iseq x iseq — iseq,
[]:—>iseq} >
yields a view on iseq. The different views from examples 4, 5 and 6 are
depicted in figure 3.2.

In general, the existence of an initial model of an abstract type is not
guaranteed. Much effort has been succesfully invested in the formulation
of sufficient conditions implying this desirable property [WPP*83]. Here,

it will be tacitly assumed that all abstract types introduced actually have
an initial model.

Definition 7 (structure)

Let T' be an abstract type, X a structure signature in 7. Let A
be an initial model of T. The E-reduct Als is the structure of
type ¥ in A.

14



Example 8
The structure signature listsign was introduced in example 4. Cists is the

structure of type listsign in the initial model of SEQU. It represents the
familiar lists.

Example 9

The structure signature evenlistsign was introduced in example 6. Evenlists
is the structure of type evenlistsign in the initial model of SEQU. It repre-
sents the lists with even numbers as elements.

The carrier d* is called the domain, s# the main carrier, ~4 the em-
bedding, ®* the operator and c* the constant of the structure. A structure
as defined here is nothing but a cutting from the initial model. Such struc-
tures are not always as easy to handle as one might wish. It could be that
the properties of the operations depend “too much” on other parts of the
abstract type. To investigate this, some further definitions are needed.

Convention 10 (abstract type and its initial model)

In the sequel, T denotes an abstract type, and A is its initial
model.

Visible terms are those which denote values in s that could be con-

structed using the operations in the structure. Their general form is de-
picted in figure 3.3.

Definition 11 (visible terms)
Let X :=<{d,s},{":d — 3, : sxs — 3,¢c :— 8} > be astruc-
ture signature in T. The set of Z-visible terms, vterms(T, %),
is the smallest set of ground terms S satisfying:
(i) (a) ce S
(b) Va € grterms(T,i;n),: ("a) € S
(ll) Vto,tl € S: to@tl € S.

15



= any ground
term of
sort d

Figure 3.3: Visible terms.

16




Deflinition 12 (visible subset of main carrier)
Let ¥ :=< {d,s},{":d > 8,0 :3x8 = 3,¢c:— 3} > bea
structure signature in T. The Z-visible subset of s4, s4|g, is

sA|z := {tA|t € vterms(T, T)}.

Convention 13 (omission of signature in “visible”)

If the structure signature I is clear from the context, it may be
omitted in “Y-visible”.

The elements from the visible subset are said to be visible values. Like-
wise, values in (s#4 — s4|5) (that cannot be denoted by a visible term)
are called invisible. Collectively, invisible values are known as junk (see
e.g. [MG83]). Note that both the visible subset and the junk may vary
according to the view provided by a specific choice of structure signature.

Example 14

In Evenlists (example 9), singletons with an uneven element are invisible.

It is important to realize that they are present in the main carrier (iseq?)
though.

Proposition 15 (visible subset in terms of structure signature)
Let ¥ :=< {d,s},{":d > 3,0 : 8 x5 = s,c:— 8} > bea
structure signature in T. Let X, be the set of variables (of sort
d) occurring in terms over T,ign- Then
$A|z = {t4A")] t € terms(X),, all variables in t from X,
v a valuation X4 — d4}.

Proof: Immediate from the fact that the initial model A, and hence d4,

contains no junk as a whole. O

17



The use of induction to prove facts on visible terms (and values) is so
familiar that one hardly thinks about its validity. The technique is safe
here, and the principle is stated as a fact. A proof may be found in any
introduction to abstract types (e.g. [MG83]).

Fact 16

Let ¥ :=< {d,s},{":d - 5,® : s x s — s,¢c :> s} > be
a structure signature in T. Let ¢ be a unary predicate over
terms (T ,i;,). If A satisfies

(i) ¢
(i) Va € grterms(T,i50),: ¢ @
(i.i.l) vto, t1 € vterms (T, 2) : (¢to)/\(¢t1)—>¢(to & tl)

then Vi € vterms (T, £) : A |= (¢ t).

The present aim is to regard a structure as an algebra over the domain
d4. The concept of an ‘algebra over a domain’, omnipresent in computer
science and mathematics, was formulated in [Zan87]. A precise definition
will be given below. The basic idea is that it should be possible to talk about
sets, bags and sequences just as we do in classical mathematics about groups
and rings, irrespective of the idiosyncrasies of the domain. In colloquial
terms, it is the outside, the surface that matters. The following definitions
pin these ideas down formally.

Definition 17 (surface signature)
Let T :=<{d,s},{":d > s,®:8x38 = s,c:> s} > bea

structure signature in T. The surface signature of ¥ is

<{s},{®:3xs—>s,c:—3s}>.

18



Convention 18 (shorthand for declaration of structures)

(i) “X:(d,s,",®,c)” stands for
“Let £ :=<{d,8},{":d—> 3,®:8x 38— s,c:> 3} > be
a structure signature in T.”

(i) “S:X” stands for “Let S be the structure of type ¥ in A,
the initial model of T.”

In the manipulation of terms of sort s, one is primarily interested in laws
expressed as equations over the surface signature, since these properties will
be generally applicable. For example, in calculating with lists, the following
laws are most important:

z 4[] = z
#z =2
(Hy)Hz = s (y42)

The algebraic richness of a structure contains all such properties and noth-
ing more.

Definition 19 (algebraic richness)
Let ¥ : (d,s,~,®,c), S: T. Let A be the surface signature of
I. The algebraic richness of S, $(S), is the set of equations:

$(S) := {to=ti|to, t: € terms(A), S = to=t,}.

Proposition 20 (algebraic richness as restriction of theory of T)
Let X: (d,s,~,®,c), S: . Let A be the surface signature of
)

$(S) = Th(T)|a.

19



Proof: A is an initial model of T, hence Vio,t; € terms(T,i0) : A |E
to=t1 &> Tkto=t;. In particular, this property holds for terms in terms (A).
For such terms, A = ty=t, &8 Eto=t,. O

The question is: Does the algebraic richness tell us all we need to know
about terms of sort s, or are there ‘unexpected’ equalities, depending on
the semantics of the embedding? It is difficult to formulate a definition
capturing the structures that do not exhibit this undesirable phenomenon.
A sufficient condition is that the structure is an initial algebra over the
domain d4, with the algebraic richness as laws.

Definition 21 (L-initial algebra over the domain)
Let ¥: (d,s,~,®,c), S: . Let L be a set of equations over
the surface-signature of ¥. S is an L-initial algebra over dA if

(i) sh|g =84

(11) Vto, i € terms(E), ) '= to=t1 &Lty = t,.

Definition 22 (manageable structure) :
Let £: (d,3,”,®,¢),S: &. S'is manageable if S is an $(8)—
initial algebra over d4.

Example 23
Consider the structure Cists (with integer elements) from example 8. Its

signature is
listsign :=< {int,iseq},{ []: int — iseq,
-H-.:iseq x iseq — iseq,
[]:— iseq} > .
The surface signature is
A =< {iseq},{ _H_:iseq x iseq — iseq,
[]:—iseq} >.

From the laws in the enclosing abstract type SEQU, one may conclude that
the algebraic richness consists of

(e#]] ==
[]'H'm =
(zHy)H2z = z4(y+2)},

20



and all equalities in terms(A) that may be deduced from these equations.
Indeed, two lists of integers are equal if and only if this may be proved from
the three laws above (and equalities between the elements). Also, any list
may be constructed by the operations in the structure. As a consequence,
Lists, the lists with integer elements, is a manageable structure. Similarly,
familiar structures like sets of integers, binary trees with character leaves
and bags with purchases are manageable.

Example 24
An instance of a structure that is not manageable is provided by Evenlists

from example 9. For easy reference, the structure signature is repeated
here.

evenlistsign :=< {int,iseq}, { [Jeven : int — iseq,
-H_:liseq x iseq — iseq,
[]:— iseq} > .

The surface signature and algebraic richness are the same as for the struc-
ture Lists above. Recall the law defining [Heven in SEQU (example 1)

Vint n: [n]even = evenn  — [n]
O -evenn — [].

We have e.g. [3]even = []. As was already noted in example 14, the value
[3]* is not visible. Hence Evenlists is not manageable.

3.2 Homomorphisms

The importance of maps that preserve the structure of terms has been con-
vincingly demonstrated in all papers on algorithmics. Many non-trivial
transformations may be succinctly formulated as identities involving ho-
momorphisms. There are certain conditions to be satisfied to ensure that
such a map exists between two given structures. These constraints are
investigated in the present section.

21



For our purposes, only a restricted kind of homomorphism is needed:
those between structures in the initial model A of the abstract type T.

Whenever the term “homomorphism” is used in this report, we refer to the
restricted form defined below.

Definition 25 (homomorphism)
Let Bo : (d,s,~,®,c0), So : o, T : (du,”,®,¢1), & : Zy.
A mapping ¢ : s34 - u4 is a homomorphism from S, to S, if

(i) ¢ cot = 01"
(i) go~A =4

(iii) Vz,y € 84 : §(z@4y) = (¢ 2)®4(¢ y).

One may translate any term from the language of one structure into
that of another. The point is: will terms, which evaluate to the same value,
when mapped to the other structure still evaluate to the same value? A
good start to solve the problem is the definition of term translations.

Definition 26 (term translation)

Let 20 : (dasa 5 6,00), 2l : (d’ u, ~a ®,cl)-

Let X, = {z0,21,...} be the set of variables of sort s. Let X, =
{y0,¥1,...} be the set of variables of sort u. Let vtermsx(T, Xo)

(vtermsx(T, 3;)) be the set of visible terms with variables from
X, (X4).

The term translation from T, to X,
1;5__21 : vtermsx(T, Xo) — vtermsx(T, X;), is defined by:

() Vie {0,1,2,...} : TR

Ti ‘=Y
Bg =%,
(i) TR cor=¢c;
(iii) Va € grterms(T,;,,) Py 'I;OR_.El"a = "~a

(iv) Vito,t1 € vtermsx(T, %) :
TR, (088) = (TR, W&(TR., 4)
The vision metaphor (a signature is a view on a sort) will be useful

in talking about term translations, too. A picture segment denoting the

translation from a view on one sort to a view on another is displayed in
figure 3.4.

22



TR

o
H D>

Figure 3.4: Graphical representation of a term translation.

Convention 27 (omission of types in term translation)
If in formulas involving TR _ both structure signatures T, and
&

¥, are clear from the contéxt, then they may be omitted: TR :=
To—Zy

In translating terms from the language of one structure to that of an-
other, the equality relation should be preserved. It stands to reason to

compare the structures with respect to their algebraic richness. Intuitively,
the source structure should be the poorer one in identities.

Definition 28 (poorer)
Let 3o and ¥; be structure signatures in T. Let Sy : ¥, and
S1 @ Ty. So is poorer than Sy, (S, < S1), if

{(TR to)=(TR t;)|to=t € $(So)} C §(5)).

As is clear from the definition, “not richer” would be a more accurate
term. However, the theory is already difficult to pronounce as it is, which
seems sufficient reason to allow for this slight anomaly in nomenclature.

Proposition 29 ( < is reflezive and transitive)
Let So, 81,8, be arbitrary structures in A.

(i) So =2 So
(ll) So j Sl and Sl j Sg then So j 82.

23



Proof: Note that term translations satisfy the following properties

IR, = id
TR _ oTR = TR _.
E;—~B3 Bg—3; Bo—32

The proposition follows from these facts and reflexivity and transitivity of
c. O

For manageable structures, the intuition expressed above is right. There
is only a well-defined homomorphism from S, to S; if Sy satisfies no more
identities then S;. To prove this, we will need the following simple fact

on the initiality of algebras and the existence of homomorphisms (see e.g.
[MG83,Zan87]).

Fact 30
Let Eo : (d,s,“, @D, Co), So : 20, 21 : (d,u, -, ®,c1), Sl : 21.
Let L be a set of equations over the surface—signature of £,. If
(i) Sois an L—initial algebra over d4
(11) 81 |= {(TR to) = (TR tl)l(to = tl) € L},

then there is exactly one homomorphism from S, to S;.

Theorem 31 (projection into a richer structure)

Let Eo : (d,s, A,@,CO), So . 20, 21 : (d,u, ~, ®, 01), Sl : 21.

If So is manageable then the following statements are equivalent:
(i) So X S

(ii) There is exactly one homomorphism from S, to S;.

Proof: Let S; be manageable.
(=) Let Sp be poorer than S;, Sy < S;. By definition 28, we have

{(TR to) = (TR t)[(to = ) € §(Sa)} € (5)).
According to the definition of algebraic richness (definition 19), this
implies

S1 = {(TR to) = (TR #)|(to = ) € $(S,)}.
By the given that S is manageable (definition 22), S, is a $(S,)-
initial algebra over d4. Therefore, by fact 30 there is exactly one
homomorphism from S, to S;.

24



(<) Let ¢ be the unique homomorphism from S, to S. By induction
(fact 16) it is easily shown that

Vt € vterms(T, Bo) : (TR £)* = 4 t4.
Assume that there is some equation (fo = t1) € $(S,), with
S1 (TR t0) = (TR t).
Then there are ground terms #), #, € vterms (T, ) such that
toh = 44,

but (TR )4 # (TR #)*, so (see above) ¢ #£4 £ 4 #/A. This is in
contradiction with the fact that ¢ is well-defined. One may conclude
that

{(TR 20) = (TR t,)|(to = 1) € $(S0)} € $(5)),
ie. So j S].

O

Often, a syntactic denotation for a ‘real’ function on the carrier sets
of A is absent in the abstract type T. For example, in the projection
theorem above, there may be no function symbol corresponding to the
homomorphism. We will tacitly assume that such symbols (along with the
defining equations) may be added to the signature whenever convenient.
Formally, one ought to check that such extensions of the type do not cause
“confusion” or introduce “junk” in the initial model A [MG83]. We will
not introduce new sorts in the abstract type.

Convention 32 (eztension of the abstract type)
The abstract type T is extended with new operations whenever

convenient. It will be tacitly assumed that this does not cause
confusion or introduce junk in the initial model A of T.

In functional programming, two kinds of homomorphism have become
extremely popular. First, the inserted-in, often named a reduce. An op-
erator is inserted between all elements of its argument. An example is the
sum of a list of integers:

+/[1,3,5,2] =143 +5+2 =11.

25



The second celebrity is the apply-to-all. It is commonly known as the
‘map’. Here a function is applied to all elements of its argument:

(+1)*[1,3,5,2] = [1+1,34+1,5+1,2+1] = [2,4,6,3].

Proposition 33 (inserted-in)

Let 3o : (d,3,~,®,¢c0), So : Zo, &y : (e,d,”,®,¢1), & : Iy.
If

(i) So is manageable

(i) So < &
then there is exactly one function, the inserted-in from S, to
S1, ®/4 : 84 — dA such that A satisfies:

(a) ®/ co=¢;

(b) Vda:®/da=a

(c) Vez,y:0/(z D y) = (®/2) ® (®/y)-

Proof: Let (i) and (ii) hold. Let ¥, : (d,d,id,®,¢c1), S : T;. The situ-
ation is depicted in figure 3.5. Obviously: $($1) = $(82), hence by (ii) and
proposition 29, So <% S,. Using (i), theorem 31 yields the desired result. O

There is a possible pitfall in this proposition. The inserted—in could yield
values that are not in the visible subset dAls,.

Example 34 ‘
Let (o] denote the sort of lists with elements of sort «. For instance [[int]]

stands for the lists of lists of integers and [int] corresponds to iseq in exam-
ple 1. Let

Zo : ([int], [[int]], [Jint;, + gintys ginty)s So : Do,
L, := evenlistsign, S, := Evenlists.

The latter structure of lists of even integers was introduced in example 9.
According to the proposition,

H/ : [[int]] — iseq

26



C @G
(&)

d ®

Figure 3.5: Inserted-in.

27




is a well-defined function. It satisfies

+/118]] = [3].

However, [3]* is not a visible value in Evenlists (example 14). This explains
why it says in the proposition

/A : 8% = dA
instead of the more natural

Qs o dA|y,.

Proposition 35 (apply-to-all)
Let 20 . (d, 8, A, @, Co), S() . 20, 21 . (C,U, ~,®,cl), Sl . 21.
Let f:d—e If

(i) So is manageable

(i) So X8
then there is exactly one function, the apply-to-all from Sy to
81, (f+)* : 84 — t4 such that .4 satisfies:

() (f¥)eo = e

(b) Vda: (f*)da="fa

(c) Vaz,y: (f)(z ®y) = ((f)2) ® (f*)y).

Proof: Let (i) and (ii) hold. Let £; : (d,u,~of,®, c1), 83 : X3, The
situation is depicted in figure 3.6. Obviously: $(5,) = $(S,), hence by (ii)
and proposition 29, Sy X S,. Using (i), theorem 31 yields the desired result.
O

An apply-to-all is meant to be used between two similar structures, e.g.
lists of integers and lists of characters. It should not involve a change of
algebraic richness. The apply—to—all introduced here is more general than
the usual ‘map’—function, as is exemplified below.

28



c
DH R R

Figure 3.6: Apply-to—all.

29



Example 36
Let Lists be the conventional structure of lists of integers as in example 4.

Let
Ty : (int,intset, {_},U,0), Sets: 3,

be the conventional structure of sets of integers. (id#) is an apply-to—all
from Lists to Sets. It turns a sequence of numbers into a set, Usually, this

is written as U/{_}, employing the intermediate structure of lists of sets
of numbers.

Because of the resulting ambiguities in expressions involving ‘*’, the
following convention is adopted.

Convention 37 (restricted use of apply-to-all)
Proposition 35 is only used if $(S,) = $(S:) modulo renaming.

By now, the seasoned algorithmician may long to see the homomor-
phism lemma pop up. This lemma states that any homomorphism from a
manageable structure to another may be decomposed into an inserted—in
and an apply-to-all. However, in the present context, the existence of the
intermediate structure needed to express this fact cannot be guaranteed. It
could be missing in the initial model A. An illustration of the result may
be found in figure 3.7.

Under the assumption that all structures involved are present, one could
prove the promotion laws at this point, using theorem 1. As mentioned in
the introduction, they are simple corollaries to a theorem on the composi-
tion of divide-and-rule algorithms in section 3.4, so their discussion is will
be postponed until that point.

3.3 Indeterminate insertion

In this section, we will discuss what happens if the constraints on alge-
braic richness are dropped in functions defined by term translation. No
doubt, the result is an indeterminate map. Still, it is a special kind of inde-
terminacy that might exhibit interesting features. Here, the phenomenon
is discussed briefly — a preparatory jump on the diving-board before we
immerse ourselves in the general divide-and—rule algorithms. To give an

30



id ©c,

v

Foc

Figure 3.7: The homomorphism lemma: H = @ /f*.

31



idea of what lies before us, consider the indeterminate map tsum, with the
following characteristics:

isum 0 = 0
isum{a} 2 a
sumzUy = some{(isum s)+ (isumt)|]sUt =2 U v}

The indeterminacy lies in the fact that U satisfies associativity, commuta-
tivity and idempotency, whereas + is only associative and commutative.
Nevertheless, (isum {2}) is a sensible expression. It specifies any non-zero
multiple of 2. This kind of specification could be a useful device. Also,
such indeterminate functions may be used in reasoning about generalized
inverses. This point will be amplified in the next section (proposition 65).
An ‘indeterminate inserted—in’ will be defined by its breadth. As is clear
from the characterization of isum, one needs some way of talking about “all
equal terms”.

Deflnition 38 (congruence class)

Let X be a structure signature in T. Let ¢ € vterms (T, ). The
congruence class of t, [t]%, is

[t = {t')t' € vterms (T, T), ¢4 = ¢4},

Convention 39 (omission of structure signature in congruence
class)

If the structure signature X is clear from the context (usually

quantification over a set of terms) it may be omitted in [2])%:

[#] := [t]%.
The next proposition is a restatement of the projection theorem (the-

orem 31). It clarifies the name of that result: finer congruence classes are
projected into coarser ones.

Proposition 40 (richness and granularity of congruence classes)

Let Eo : (d, 3, A, @, Co), So : 20, 21 : (d,u, ~, ®, 61), 81 : 21.

If Sy is manageable then the following statements are equivalent:
(i) So< 5

(ii) Vt € vterms(T, ;) : {TR t|t € [t]} C [TR .

32



Proof: Let S; be manageable.

(=) So X S1. Then there is exactly one homomorphism A# from S, to S;
(theorem 31), hence by (h t)* = (TR )4
Vto, t, € vterms (T, 20) : to’A = tl'A#(TR to)A = (TR tl)A.
From the definition of congruence classes (definition 38), one may
conclude that
Vit € vterms(T, Zo) : {TR ¢|¢' € [¢]} C [TR 4.
(«) Vt € vterms(T, Zo) : {TR#|¢' € [t]} C [TR t]. Let h*4: 34 — uA|g, be
a function such that A satisfies:
(a) hco=c
(b) Vda:ha=a
() Vaz,y:h(zdy) = (hz)®(hy).
By the assumption and the fact that
Vt € vterms (T, Xo) : (h t)* = (TR t)*4,
k4 is a unique homomorphism from S; to S;. The projection theorem
(theorem 31) yields S, < S;.
a

The neat definition of indeterminate inserted—in js an easy task by
now. It boils down to specifying the translation of all terms representing
the actual argument. Indeterminate inserted—in gives rise to expressions
with an infinite breadth. The semantic problems connected with this non—
determinism are left alone for the moment. It is conjectured without proof
that indeterminate inserted—in is monotonic with respect to expression re-

finement. A picture of the sorts involved in the definition is provided in
figure 3.8

Definition 41 (indeterminate inserted—in)
Let Eo : (d, 8, A, 69, CO), So H zo, 21 : (d, d, id, ®, Cl), 81 : 21.
The indeterminate inserted—in from 8o to Sy, (® c1):8 —d,
is the (possibly indeterminate) function:

Vit € vterms(T, 5o) : B((® [ er) t) := {(TR ¢)*| € [¢]}.

33



@ [c)

d ® c

Figure 3.8: Indeterminate inserted—in.

34



Proposition 42 (determinacy of indeterminate inserted—in)

Let o : (d,s,~,®,¢0),So : o, Ty : (d,d,id,®,c1), S, : .
Let Sp be manageable and Sy < S;. The indeterminate inserted—
in (® [ c1) is determinate, and (® [ ¢;) = ®/.

Proof: By proposition 40
{(TREY!¢' € [1]} C {toA[ta* = (TR )4} = {(TR H)*}.
Since (TR t)* € {(TR ¢)*|t € [t]}, it follows that
{TRYE € [1]} = {(TR1)*},

and hence there is only one choice in definition 41: (® Je)t)* = (TR 1A

One may conclude that (® [ c;) satisfies the equations of (®/) in proposi-
tion 33. O

3.4 General divide—and-rule: Integrates

A curious fact about the present morphic programming framework is that
natural operations like the sum of a set of numbers cannot be conveniently
expressed. Therefore, they are excluded from the transformation game,
which is a pity. The problem is partly overcome in Bird’s theory of lists
([Bir86b]) by the introduction of the right- and left—reduce.

(& «e)lao, ar,...,an_1] = (a0 ® (a; (---(an-1®e€)...))) (right-reduce)
(® #He)lag, a,... yan-1] = (... ((e ® ap) ® ai)...®an—1) (left-reduce)

However, this solution depends on the unique decomposition of lists into
a head and tail (lead and last, respectively). It does not work for other
structures.

The definition of indeterminate inserted—in suggests a more general ap-
proach: restriction of the congruence class in the set comprehension to
achieve determinacy. Homomorphisms reflect the well-known divide-and-
rule paradigm to a limited extent. They are a special case of this program
scheme in that the divide strategy is not specified. What we intend to do

35



is this: Restrict the congruence class by specification of the divide strategy.
For example, the sum of a set is defined adequately by

sum @ = 0

sum{a} = a

sumzUy = (sums)+ (sumt)
wheresUt=2zUy
andsnt=0.

3.4.1 Specification of the divide strategy

Definition 43 (divide function)

Let : (d,3,7,8,¢),S: T. e:35 — 38 x 3 is a divide function
on S if Vi € vterms(T, L) either A |= (m,ct) @ (®,et) = t, or
AE(et) = 1,.

In reasoning about divide strategies, only the breadth of the splitting
function is important. Therefore, we do not require that divide functions
are total.

Given a divide function ¢, one may wonder what terms are taken apart
down to atomic level by . These expressions are characterized by the
parsing predicate defined hereafter.

Definition 44 (parsing predicate)

Let £: (d,3,~,®,¢c),S: I, and ¢ a divide function on S. The

parsing predicate of ¢, p., is the least predicate on vterms (T, )
satisfying:

(i) pec holds.

(ii) Va € grterms(T,;;,) 4 Pe("a) holds.

(iii) Vo, € vterms(T, T): Pe(to®t1) holds if
both (Peto) and (Petl) hold and (S(to@tl)) = (to, tl).

As noted before, the inserted-in (+/ ) is not defined on sets because
union (U) satisfies idempotency, while addition (+) doesn’t. The parsing
predicate specifies how the domain of an operator may be restricted such
that ‘undesirable equalities’ (like idempotency above) are eliminated. One
may use the predicate to reduce the algebraic richness of an operator.

36



Example 45
Let

¥ :(d, dset, {_},u,0), S: %.
Let ¢ : dset x dset — dset be defined by:

(Bez):={(u,v)jultv=z,unty = 04}.

This specifies a divide function on S. The predicate p, may be used to turn
U into a partial operator U,, that only accepts disjoint arguments. The
original operator U is idempotent, whereas U, is not.

Definition 46 (parsed congruence class)
Let £: (d,3,",®,c), §: X. Let t € vterms (T, ). The -
parsed congruence class of t, [t]Z, is the set of terms:

[t := {£t' € [¢], pet'}.

Convention 47 (omission of structure signature in parsed
congruence class)
If the structure signature ¥ is clear from the context (usually

quantification over a set of terms) it may be omitted in [¢)E:
[¢]e == [t]7.

The parsed congruence class reflects the restriction~by-divide principle.
It will be convenient if there is always a correct way of partitioning the
argument. This amounts to the requirement that there is some way to
terminate the evaluation of a divide—and-rule algorithm.

Definition 48 (terminable divide function)
Let ¥ : (d,s,”,®,¢),S: 5. ciscalled a terminable divide func-
tion if

Vt € vterms(T, £) : [t]. # 0.

There is another, more abstract interpretation of ‘terminable’. Let ev-
erything be as in the definition above. In example 45, it was indicated how

37



the parsing predicate p, induces a partial version (&) of the operator ().
This gives rise to the structure

e :(d,s, ", Be,c), S. : Z..

The divide function ¢ is terminable iff S ¢ does not contain more junk than
S (84s, = sA|g). We will not try to render this conjecture more explicit
here.

Of course, the completely free divide strategy employed by homomor-
phisms satisfies all these requirements. It is specified in squiggles as

0z:=0/(M2,y).z By = z)4s X s,

where @ is the binary operator in the structure signature. For any predicate
D, pdis a ‘filter’ that removes all elements not satisfying the predicate from
its argument. Note that the indeterminate choice is inserted between a
possibly infinite number of arguments. A more conventional specification
of the breadth of o ¢ (with ¢ a visible term of appropriate sort) reads:

B(o t) := {(2,y) € 84 x sA|zpAy = t4}.

Proposition 49 (broadest divide Junction)
Let £: (d,s,~,®,c),S: X. Let

oz:=0O/(Mz,y).z Oy = z)<s x s.

(i) o is a divide function on S.
(ii) V¢ € vterms(T, T): [t], = [t].
(iii) o is terminable.

Proof:
(1) Trivial.
(ii) V¢ € vterms(T, X) : p,¢, by induction over &.
(ii) Vt € vterms(T, T): ¢t e [t]o: see (ii).

O

38



3.4.2 Integrates

A general construct to denote divide-and—rule algorithms is given below.
To emphasize the connection to “formal integration” as introduced by
M. Sharir in [Sha82), it is called an “integrate”. Integrates are powerful
expressions, encompassing peculiar cases like the indeterminate inserted—in
from the preceding section. They closely resemble the program schemes
proposed by D.R. Smith in [Smi85,Smi87a.,Smi87b]. Again, it is conjec-
tured without proof that the construct is monotonic with respect to the
refinement relation. A graphical illustration of the definition is given in
figure 3.9.

Definition 50 (integrate)

Let E0 : (d"s’ A) @,Co), SO : EO, 2l : (d7u7f’ ®’ c1)1 Sl : 21°

Let ¢ be a terminable divide function on S,. The e-integrate

from Sp to Sy, @K f O : 8 — u, is a (possibly indeterminate)
Ci

function: Vt € vterms(T, o)

B(®’2L f e t):= {(TR )| € [t].}.

Example 51
Let S be the structure of sets of natural numbers. Let S; be the structure
of natural numbers, with operator X and constant 1. The product of a set
z is:

H a=x¥idor z

a€zx 1

where for any term ¢ € vterms (T, ),

B(7 1) := {(u,v) € natset* x natsetA|uUAv = t4 y N4y = 04}

39



6Y £ 2)

Y ®c

Figure 3.9: Integrate.



Example 52

Let Sp be the structure of sets of natural numbers. Let S; be the structure
of lists of natural numbers. Selection sort is specified by:

-H-'% [] B¢

where € z := ({}/z},z — {|/z}). The downward arrow, | is a binary opera-
tor, yielding the minimum of its arguments. It induces (1/), an inserted—in
from sets to naturals, specifying the least element of a set, Note that ¢ is
partial, it is not defined on the empty set.

The most important issue in using integrates is whether they are de-
terminate or not. In the examples above, the details were ignored. The

following proposition states a sufficient and necessary condition implying
determinacy.

Proposition 53 (determinacy of an integrate)
Let 20 : (d, 3, A, @, Co), So : 20, 21 : (d, U,f, ®,Cl), 81 : 21.
The integrate ® f ¢ is determinate iff

18]

Vt € vterms(T, o) : p, t = {TR¥|t' € [t].} C [TR ¢].

Proof:

(=) ® f 8¢ is determinate. Let ¢ € vterms (T, o) be an arbitrary term
¢

1
such that p, ¢ holds. By determinacy, there is only one choice possible
in definition 50, hence: {(TR #)*|t’ € [t].} = {(TR ¢)*}, i.e. *

Vit € [t]. : (TR)* = (TR )4

The inclusion follows.

41



(&) Vt € vterms(T, o) : p. t=>{TR¢|t' € [t].} C [TR¢].
Let ¢ € vterms(T, Zo) be an arbitrary term. Since ¢ is terminable:
Ity € [t].. By definition 46: (pe to) and hence

{TRE|# € [to]e} C [TR 2],

ie. {(TR¥)A|¥ € [tole} = {(TR t,)*}, hence the integrate is determi-
nate.

Of course, many integrates are homomorphisms. It is important to
identify these cases, for this enables us to carry results on integrates over
to homomorphisms. First, some basic facts on the refinement of integrates
are needed.

The divide function controls the amount of indeterminacy in an inte-
grate. If the divide function is “more defined”, then the integrate will not
become “less defined”. This is expressed in the following proposition.

Proposition 54 (specialization)

Let 20 : (d’ 38, Aa @960)’ 80 : 20, E1 : (dau’f, ®acl)a Sl : El-
Let € and ¥ be terminable divide functions on Sy, such that
€ J9. Then

N fo JI&KfoY.
(4] (]

Proof: ¢ J 9, i.e. Vt € vterms (T, Xo) : B(e t) 2 B(Y9 t). By induction on
t: pst=>p.t, hence [t], D [t]so. By the definition of integrates (definition 50)
B(®K foet)D B(@K f891),ie. (K foet) 3 (@K fFo9t). O

1 (] ] 5]

If an integrate is already determinate, then refinement of the divide
function does not alter its semantics. This fact is known as the ‘specializa-
tion lemma’ in Bird’s theory of lists [Bir86b). A practical application might
be the implementation of an integrate as a loop (see e.g. [BKS80)).



Proposition 55 (determinate specialization)
Let Eo . (d,s, A, @,Co), So . 20, 21 . (d,u,f, ®,C]), 81 . 21.
Let € and ¢ be terminable divide functions on So, such that
e d9J. I @K f 8¢ is determinate then

¢t

K FO =K f89.
(5] 1

Proof: Let @ f 9c be determinate. K f 8¢ I @ f 89 implies
C1 (5] 1451

K f 8 =@ f 89
1 C1

or (K f 89 t) is undefined for some t € vterms (T, o). The latter case is
<

in contradiction with the assumption that functions are total (chapter 2).
Hence Vt € vterms(T, $o): @K f Oe t = KNFfOIL. O
(5] (4]

Intuitively, an integrate is a homomorphism if certain requirements on
richness and manageability of structures are met. The next version ex-
presses a strong version of the fact. It is the counterpart of the homo-
morphism lemma from [Mee86] mentioned before. Figure 3.10 gives an
impression of the participating views.

Theorem 56 (integrate and morphic programming
homomorphism)

Let Xo : (d,8,~,®,¢0), So : o, L1 : (e,u,~,0,¢1), 8 : 3,
L 1 (dye, £,®,¢2), 8 : 5. K

(i) So is manageable
(i) 8, is manageable
(iil) So %5 =S,

then
®'c3§ f 9 =(®/)(f*),

where @K f 8¢ the e-integrate from S, to S, ( f*) the apply-
C2
to-all from S, to §; and ®/ the inserted—in from S; to S,.

43



® G
(%)
~'f® <
®£f9€ !
ek

Figure 3.10: Theorem 56.

44



Proof: Let (i)(iii) hold. By (i) and (i), proposition 40 is applicable:
Vi € vterms(T, %) : {.I;OR-.n,tllt’ €[t} C [EOR-.s,t]'

Hence by proposition 53, @ f 8¢ is determinate. Proposition 55 yields:
C2
&Ko =@\ f oo,
Co Ca

o being the broadest divide function from proposition 49. By determinacy

and the fact that ¢ € [t], for any ¢ € vterms (T, o), unfolding of defini-
tion 50 leads to:

®'2(f3000 = ¢

2

&K fOoa = fa
C

SN fOrz0y = (BN 1 002)® (T f o y).
Cg C2 Ca

From propositions 33 and 35, it is known that (®/)(f*) is the unique func-
tion satisfying these equations, hence:

(®/)(f*) = ®2L f oo = ®'c§f; f B¢ .

Definition 57 (homomorphism condition)
If three structures, Sy, S; and S, satisfy the conditions (i)-

(iii) in theorem 56 they are said to satisfy the homomorphism
condition.

3.4.3 Composition of integrates

An interesting question concerns the composition of two integrates. When
is it possible to merge them into a single one? To solve this problem, some
extra theory on structures and terms is needed.

Note that under the present approach, a single carrier may have multiple
structures assigned to it. A special case occurs when only the embedding
and the constant are differing between two views on the same sort. In such

45



4 ®C

~n

® ¢

Figure 3.11: Conversion.

cases, it is often possible to convert all terms over the first signature into
terms over the second, preserving their semantics. This process is called a
conversion from one signature to another. The graphical segment denoting
a conversion is a dotted arrow (figure 3.11). It indicates a change of view
without losing sight of values.
Definition 58 (convertible)
Let 3y : (d,u,9,®,¢,), X : (d,u,”,®,¢1'). Ty is convertible
to X} if
(i) 3t; € vterms(T, ) : Tiw F to=c1
(i) Va € grterms(T,;,,) a* 3t € vterms(T, ) : Ty, F =g a.

Definition 59 (conversion)

Let %, : (d,u,9,®,¢), ¥ ¢ (dyu,~,®,¢), and let T, be con-
vertible to .

H C: vterms(T, I,) — vterms (T, ), satisfies:

(i) Tlawa [ Ccl =

(ii) Va € grterms (Toign)g : Tews F C(g @) = (9 a)
(lil) Vto, t) € vterms (T, El) : T]M,,, F C(to ® t]) = (cto) ® (Ctl)
then C is called a conversion from T, to .



Proposition 80 (conversion is conservative)
Let everything be as in definition 59.

Vt € vterms(T, 1) : Tiows F (Ct)=t.

Proof: Induction on ¢ (fact 16). O

Conversion is nothing new. It is common practice in morphic program-
ming to adopt a standard view on a sort. No matter by what term trans-
lation one arrives there, values are represented as terms over this standard
signature. The implicit conversion goes unmentioned.

Example 61
As before, let [a] denote the sort of lists with elements of sort a.

o : ([i"t],[.[i"t]]»[-][int]v H gineys [ginty) So = o
% : (_['"t],_ lint], idgngs, + pinggs [Jjngy), &1 ¢ B
Ty : ('nt’[mt]’[-]intv ‘H‘[int],[][int])a S 1 %
The inserted-in + (int] / from 8; to S, is defined by a term translation

from ¥, to X;. However, the result is considered as an expression from
vterms(T, ;). In examples 4, 5, 6 other views on [int](= iseq) are listed.

Proposition 62 (no junk and convertibility)
Let ] : (d,u,~,®,¢') be such that u#lg; = uA. Then for any
% : (d,u,9,®,¢1), L, is convertible to .

Proof: Immediate from definitions 11 and 58. O

The following theorem is central to this paper. It states that under ex-
tremely general conditions, two divide—and-rule algorithms may be merged
into a single one. This is a remarkable result, and one wonders whether
similar laws hold for programs on more complex structures. Because of its
importance, the proof of this theorem is elaborated in detail. The views
involved in the theorem are displayed in figure 3.12.

47



@ G

H-G

5 ® c\—

u C

/
\‘NM"_J
H

hoc

"

H‘j@ﬁ/c

Figure 3.12: Theorem 63.

48



Theorem 63 (integrate composition)

Let £o : (d,3,”,®,¢c0), So : Lo, T : (d,u,9,8,¢1), & : Iy,
%@y, ®,e), 8t B, T, (d,v,h,0,c3), S3 : T,
with ¥, convertible to £/ by conversion C.

Let G be the e-integrate from Sp to S;, and H be the J-integrate
from &'; to S,.

Let 85 : (d,v, f,0,¢3), Ss : T3, such that A satisfies f=Hog
and c3 = Hey.
If

(i) H is determinate
(ii) V¢ € vterms (T, Zo) : pet = ps(C -';OR-‘Elt)

then HoG is the e—-integrate from S, to S;.
Proof: Let (i) and (ii) hold. Let ¢, := (C ¢1) and Va € grterms (Taign);
tla] = C(g a).

Lemma 64 (translation composition)

Vi € vterms (T, 5,) : (TR,,CTR ) = (TR _t)*
1 1

E9—~Zy

Proof: Induction on t¢.
t= Co

2 Zo—E;

(TR, Ce)* = (def. 59)
(TR, t0)"

By definition 50 we have

B(H ) = {(TR,, #)*1% € [tolo}.

(TR, CTR )4 = (def. 26)
A

49



(Pe co) holds by definition of the parsing predicate (definition 44).
Therefore, according to assumption (ii), (p, ) holds, hence

(TR.,, )" € {(TR.,,, #4185 € [talo}.

Assumption (i), together with the assumption that functions are total
(section 2.3) yields that B(H t}) is a singleton set. Hence

(TR.,, to* = (H )"

The derivation proceeds:

(H )4 = (def. interpretation)
HA ¢A = (given)
HA(Ce))* = (prop. 60)
HA A = (def. interpretation)
(He)* = (given)
cat = (def. 26)
A
(1;5_,23 Coi =
('l;}!}_‘za t) (q.e.d.)

(TR, CTR _$)* = (def. 26)

1 -2 Eo—XE

(TR, Clga)* = (def. 59)

(TR, &la)* = (as above by ()&(ii)
(H1 t)[a])* = (def. interpretation)
HAGG)* = (given)

HA(C(g a))* = (prop. 60)

HAgAqA = (def. interpretation)
(H o g)*at — (given)

fAat = (def. interpretation)
(f a)* = (def. 26)

(1;5-»}:, a)-A -

(TR, & (g.ed.)

50



t = to®t; Induction Hypothesis: Fori =0,1:
(TR

1—%2

A A
CTR, t)*=(TR _ &)

Zo—Ig

(TR,.CTR )4 = (def. 26)

21-.23 To—2) 4

(TR ;,C (TR 1) ® (TR _ 11))) (def. 59)
A =

(1;3!3—»22((C -I;oR-oElto) ® (c -';oR—oEItl))) - (def‘ 26)

((-';?_Ezc TR, O (1;!(_‘22(: -I;.B-.z,tl))A = (def. interpretation)

(TR,,,C g}dlto)‘@A(ng_s:c TR, #)* = (induction hypothesis)
('I;B__nato)‘A@“‘('l;oR_satl )A = (def. interpretation)
(TR ., 1)@ (TR, 1)) = (def. 26)
(TR, (o @ #:))* =
(1;§~=,t)A (g.e.d.)
0
Let ¢ € vterms(T, o) be an arbitrary term.
B(H.Gt) = (H determinate )
{HAz|z € B(Gt)} = (def. 50)
{H A(-';:B-.zlt, YAl € [t].} = (proposition 60)
{HA(C EoR-zlt’ Yt € [tl} = (def 50and assump-
tion (ii))
ig}g_nztc’)}gj Eét;t)]ﬂ}t' €[tl} = (lemma 64)
Bo—E3
a

Many interesting programming problems may be formulated using right—
inverses of homomorphisms (“generalized inverses” in [Bir86a]). For exam-
ple, if

H /opart = id

then (part z) specifies some partition of the list z. As an immediate conse-
quence of the composition theorem, we have the following general result.

51



Proposition 65 (integrate inversion)
Let o : (d,s,~,®,c0), So : Zo
21 . (d,u, ~,®,61), 81 . 21.
Let G be the c-integrate from S to S;, and let H be the 9—
integrate from S; to Sp. If

(i) H is determinate
(i) .Vt € vterms (T, o) : p.t = py(C 1;5_2 t)

1

then HoG = id

Example 66
Let Xg : (dset, dsetset, {_} s, Uss, 0ss), So : Zo
Yy ¢ (dset, dset,id, u,,$,), S I,

U,/ is the inserted-in from S, to S;. According to the integrate inversion
proposition,

(U'/)(U“o'x {-}n 9o ) =id
where o is the broadest divide function from proposition 49. The integrate

U.,}( {-}ss 00 =

specifies some partition of z with possibly overlapping elements.
If one intends to exclude non-disjoint pairs from a partition, the inte-
grate could be specialized to

setpart = U,, "\ {.}.s O,
o.‘

where
ez=0/{(w,v)luUv=z,unv =0}

Now this is a remarkable function, for many problems may be formulated
in terms of its breadth. The expression

l#/ (all p)a B(setpart z)

specifies a coarsest partition of ¢ with all elements satisfying p. (Properly
speaking, the expression above is not a sentence from our language. This

52



anomaly is ignored.) We return to partition problems in the next chapter.

If H is a homomorphism, the conditions in the integrate composition
theorem are always satisfied, which accounts for the neat promotion laws
as presented in the morphic programming papers. Here, an intermediate,
slightly more general result is proved first. It is illustrated in figure 3.13.

Proposition 67 (composition of integrate and homomorphism)
Let o : (d,s,”,®,¢0), So : Zo, T : (d,u,9,8,¢1), Sy : Iy,
and G the e-integrate from S, to S;.

Let E’1 : (d,ua~, ®,61’), Sh o 2’1’ )PRE (e1va_, e7c2)7 S, 2,
X3 : (d,e,h,0,c3), S3 : I, be such that §'1,S,, S3 satisfy the
homomorphism condition.

Let (h*) be the apply-to-all from S’ to S;, and (®/ ) be the
inserted—in from S, to S;.

Let 24 . (d, e,Hog, @,HC]), 84 : 24.

HoG=0 ©/h*g8e¢,
®/hxCy

the e-integrate from Sy to S,.

Proof: By theorem 56, H is the o-integrate from S’; to S3, O/hx =
O h 80, o the broadest divide function from proposition 49. ©/hx is

C3
determinate. By proposition 49, condition (ii) in theorem 63 is satisfied
too. Finally, ¥; is reducible to ¥ by proposition 62. Application of the
integrate composition theorem yields the desired result. [J

Example 68
Let sort : natset — natseq
? : nat — bool.

The conventional structures of sets of naturals and lists of naturals are
assumed. It is intended to show by calculation

Pd sort = sort pa.

53



/

anonymous
onversion)
\ /

A\

Figure 3.13: Proposition 67.

54



For brevity, define the following functions

fla:= pa — |[d]
O -pa — []

fpa:= pa - {a}
O -pa — 0.

We use the definition of selection sort from example 52.

pd sort = (example 52)
P4 selsort = (unfold)

H/ fo* +i—'f[{]'\ [] 8¢ = (prop. 67)
W W/l =

-H-'}f]\ (-H-"[j]'\ [-] 9 f2) 8¢ = (theorem 63)
-H-'\if]\ [] 8¢ Uz\ f3 O = (theorem 56)
-H-'?]( [ 8e U/ f2+ = (fold)

selsort pa =

sort pa

The following proposition is a concise formulation of the celebrated pro-
motion laws in morphic programming. By careful choice of structures, they
emerge from the (admittedly obscuring) flood of squiggles. The result is
illustrated in figure 3.14.

55



H-6

f5 0 ¢

Figure 3.14: Proposition 69.

56



Proposition 89 (homomorphism composition)
Let Eo : (d,s,’“, &P, CO), So . Eo, 21 : (e,u,”, e,cl), 81 : 21,
22 : (dye,9,8,¢2), S; : T3, be such that So, S1 and S, satisfy
the homomorphism condition. Let G := ®/g*, (gx) the apply—
to-all from S to S;, ®/ the inserted-in from S, to S,.
Let X : (dye,”,®,¢7), 8 : 5,53 : (a,v, ¥,@,¢3), 83 : I,
X4 : (d,a,h,0,c4), S4 : E4, be such that S';, S; and S, sat-
isfy the homomorphism condition. Let H := O/hx, (h*) the
apply-to-all from §'; to S, ® / the inserted—in from S; to S,.
If ¢ = ¢y’ then

HoG=0/(0/h*g)*

where (©/h * g)* the apply-to-all from S; to S.

Proof: Let c; = c;'. Let Ij : (d,a,Hog,®,Hc;), S5 : Ts. Let o be
the broadest divide function from proposition 49. Theorem 56 yields:
G = O g 80 , the o-integrate from S, to S,. By proposition 67: HoG =
C2
@I'?\ © /h* g 80 , the o-integrate from S, to Ss. Since H is a homomor-
Ca

phism, we have from the assumption ¢; = ¢y": Hey = Hey' = ¢y, Therefore,
$(s;) = $(s;) and $(Ss) = 3(Ss). One arrives at (by the homomor-
phism condition): S, <X8; <8, < S, = 84 2 Ss5. By transitivity of <,
(prop. 29) S X Ss5. Together with the homomorphism condition on (',
83, S;) this implies that So, S3 and S5 satisfy the homomorphism condi-
tion. Note that (©/) is an inserted—in from S3 to Ss, too. Using theorem
56, HoG = O/(®/h* g)*. O

Example 70

Let [a] denote the sort of lists with elements from . The obvious structure
on this sort has signature

a —list =< {a,[a]},{ [a ! a—[a]
-tfel- : [a] x [a] = [a]
ot : —lal}>.
Let (h: o — B) be a function. The corresponding apply-to—all is
hx : [a] — [6].

57



Note that
hx = +15/([]s h)*, and
+H [a]/ = 'H'[a]/(id[a]*)'

From the proposition above (prop. 69), we have
h x -H—[a]/ = -H-Dg]/(h*) * .

In a similar way, other promotion laws may be derived. Of course, it is more
convenient to prove promotion laws directly using the results on apply-to—
all and inserted-in. However, the proof by way of proposition 69 reveals
the connection to general divide-and—rule algorithms.

Example 71

Given a function f and a predicate p, we intend to compute the number of

elements in a set with an f-value that satisfies p. The conventional set—
and bag-structures are used:

setsign  : (d, dset,{_},U,0)
bagsign : (d,dbag, < _>,Ll, <>).

The problem is specified by
H = # pa f* bagify

where bagify turns a set into a bag, with one copy of each element. This
function is specified by

bagify ;=K <.> e, c2:= O/{(s,t)lsut=snt=0}.
<>

To ease the calculation of a solution, the following notation is introduced

TAgLY = q — =z
O ¢ — y.

58



Another abbreviation is K, representing the constant function yielding 1.

H p—vtg

# pa f* bagify =

+/K1* U/(< ->qap> <>)* f* bagify = (prop. 69)

+/(+/K1* (< o> <ap_b <>))* f* bagify = (9(z agp y) =
(g9z)<gp(gy))

+/(1ap_>0)x fx bagify
+/((1 ap-> 0)f)* bagify
+/(1<apof_b0)x bagify
+/(Lapof > 0)x LK < .> ¢

P (+/(1pefpO)r < _>) B
0

+K (1 apof_p 0) B
(1]

(h* gx = (hg)*)

(]

(see above)
(prop. 67)

59



Chapter 4

Formal integration

The synthesis of homomorphisms is closely related to the well-known tech-
nique of formal differentiation (e.g. [Sha82,PK82,Pai86,Mee87b]). For each
change to a source object (operator in the signature) the corresponding
change in the target object is specified. In [Sha81] the analogy between
incremental computation of objects and conventional integration is high-
lighted. He stamps the technique: Formal Integration. The integrates
introduced in the preceding section exactly capture this phenomenon. The
analogy to the fundamental theorem of calculus is depicted in figure 4.1.
One might argue that the correspondence is merely notational. To
a large extent this is true. Integration is only a metaphor in reasoning
about loops and recursion patterns. There is some resemblance in the laws,
though. Compare the chain rule and the composition theorem (Th. 63):

G = [g(t)dt G=0Ng8

H = [ h(t)dt H= 0¥ h oo

HoG 2 = HoG(0) + JE(hG(1)) X g(t)dt HoG 2 = &S, Hg Be @
Hco

60



G(z) = G(y) +Tﬁ(t)dt Fz= EB'ZL fop =
1
G F
+,f DN
y Co
G(y) ¢
g f
dt op

Figure 4.1: Correspondence between integrates and conventional integra-
tion.

Definition 72 (differentiable)
Let Lo : (d,8,~,®,¢0), So : To. Let F: 8 — u.
F is differentiable on S, if there are
(1) 21 : (d,u, f, ®,cl), Sl : 21
(ii) a terminable divide—function € on So,

such that F = @ f 8¢ .
G

Not all functions are differentiable in the sense defined above. An ex-
ample is the problem of the second largest in a list of integers:

ooz :=1/ (1] = #)az.

However, any function tupled! with the identity function is differentiable.
At first sight, this trivial differentiation seems a silly trick, but as shown in
[Mee87b], it is sometimes a useful technique.

Proposition 73 (trivial differentiation)
Let ¥o : (d,8,~,,¢0), So : Zo. Let F: 8 — u.
(F,id) : s — s x u is differentiable on So.

! Tupling stands for the pairwise application of two functions to the same argument;:
(F,G)z:=(F z,G z).

61



Proof: Let T, : (d,u X 3,f,0,¢1), & : X,, where ¢; := (Feo,¢0), f :=
(Feo=, ") and (ro, 20)O(r1, 21) 1= (F(20®21), 2o®1). Let o be the broadest
divide-function from proposition 49. (F,id) = " f 8¢ . O

191

Convention 74 (omission of the target-structure of an integrate)
Since the target-structure is clear from the notation for inte-
grates, it may be omitted whenever convenient.

Integrate composition is a general form of vertical loop fusion. Of course,
horizontal fusion does also apply to integrates.

Proposition 75 (integrate tupling)
Let ¥o : (d,3,~,®,c0), So : To. Let F:8s v uand G: 8 — v
be differentiable on Sy, with

F=0f8, G=Q¥ g8¢.
(3] Cy

Then (F,G) : s — u x v is differentiable on So.

Proof: Let I, : (d,u x v,(f,9),0, (e1,¢2)), 81 : T, where

(fri,9m) @ (fra, gry) := (fry ® fry, gy ® gry),
then (F,G) = Q¥ (f,9) 6. O
(c1,¢2)

4.1 Applications
In this section, two applications of formal integration will be considered.

They are formulated as propositions that might become part of a ‘theory
of sets’.

4.1.1 Integrate products

First, we consider problems of the form

Hz=(Fz)®(Gz)

62



where F' and G are integrates. Such expressions will be called tntegrate
products. A possible application might be the incremental computation of

Hz=3(fz)x3 (g2

z€s x€s
(f and g having a number codomain).
Proposition 76 (integrate product)
LetX:(d,s,”,0,¢0),S: L. Let F =@ f 8¢ ,G = e\ g B¢,
(5] Ca

both determinate. Let @ be associative and commutative, and
let ® be an operator that distributes through &.

(F 2) ® (G z) =m0 (®)(f,9), f,9) Oe =

(c1®c21c1 /C2)

where

(ro, 1, 72)(30, 81, 8) = (To®(rl®82)®(?‘2®81)@80, r1Ds;, ro@sz).

Proof: Differentiate H on S:

e Heo=c1 Q¢
e Ha=(fa)®(ga)

e Let p(to © t1) hold. The parenthesis dispelling convention from
[Mee86] will be used. An expression of the form “a; 8” stands for
“(a)ﬂ”.

Hit, o0t

Fto@t1;®G to@tl

(Fto; ®Ft1) ® (Gto; ®Gty)

(F'to; ®Gto) @ (Fto; ®Gty) @ (Ft1; ®Gto) @ (Fiy; ®Gt)
Hto @ (Fto; ®Gty) & (Ft1; 9Gto) @ Hty

63



Using proposition 73:
(H,id) = 6L ((®)(f, 9), ") 8¢
(€18¢2,C0)
where

(ro, 20) © (r1, 1) = (ro ® (Fzo; @Gz1) & (F21; @G20) @ 11, 20 O z1).

Now one may apply integrate tupling (prop. 75) and common subexpression
elimination (also known as the ‘abstraction strategy’) to get the desired
result. O

It may seem that this result violates the differentiation metaphor, since
one would expect something like

F#)-6(t) = [ F(t)- g(t)+ G(t) - f(t)at.

However, the analogy emerges if ¢; from the proof of proposition 76 equals
d, for in that case

Hz0a=H z;®(Fz;®ga) ® (fa; 8Gz) @ (fa; ®ga).

The last product vanishes in conventional integration because of the in-
finitesimal steps.

One final remark on this example is in order. The integrate product
from the proposition does not excel in typographical clarity. This problem
is common to most expressions that result from tupling. Yet the technique
is important [Pet84] and the results merit a more transparent notation. It
is not obvious, however, what it should look like.

4.1.2 Set partitions

A second application of the approach discussed in this paper are partition
problems on sets. A partition of a set z is a collection ¢ of pairwise disjoint
subsets of z such that (U/c = z). The set of all partitions of z is denoted
by (setparts z). In example 66, we encountered a function that yields some
partition of z. Starting from that definition, the following result can be
calculated.

64



Proposition 77 (set partitions)

Let 6 z = @/f * setparts, where f = ®/g+. If @ distributes
through &, then

00 = g0
bz = ®/(®)8)x divs*z; B(g z;®9 0) @ (g 2)
where
O (z,y) = (6z,0y)
divste = {(w,v)juUv=2z,uNv="0u+#0v # 0}

In his theory of lists, Bird attained useful results on list partitions
[Bir86b]. The above proposition might be the basis for a similar theory

on sets [dM88]. Due to time and space limits, its proof cannot be elabo-
rated here.

65



Chapter 5

Discussion

The research described in this paper is a modest attempt to clarify the
role of ‘divide’ in the development of divide-and—rule algorithms. The
formal background that was developed to this end might be of use in the
understanding of morphic programming as a whole.

A promising area to put integrates to use is a future theory of sets.
Few operations beat set union in algebraic richness, so many operations
will need a divide function. Also, it is often convenient to take symmetric
set difference as the constructing operator, rather than union [Sha82]. Our
treatment of structures facilitates such a change of view.

Morphic programming is by no means restricted to the binary structure
types considered here. However, until the present day little work has been
done on general structure preserving maps [Mee87c]. The approach taken
in this report is not heavily dependent on the binary nature of structures,
and could probably be generalized to other structure types. The proof of
the composition theorem suggests that similar results can be automatically
derived.

There are a few unresolved problems concerning the work presented
here. The mathematical framework as introduced in section 3.1 is still
shaky. A more rigorous treatment, especially of indeterminate choice and
refinement, should be pursued. If indeterminacy is excluded, it should be
possible to give an elegant treatment of integrates using Zantema’s ap-
proach (Zan87]. His theory would need a generalization to partial opera-
tions.

Another problem is of a typographical nature. The notation used for

66



integrates is — to say the least — baroque. Considering future generaliza-
tion, it might be wiser to employ a notation like

(Aa @, cO)e = (~, ®, cl)‘

However, this is unwieldy too, and it does not fit into the conventional
squiggles employed in morphic programming.

The best way to proceed from here is putting both notation and theory
to practice. Some basic results on set problems seem to be within reach,
so that is where efforts should focus. If these investigations affirm the

practical merits of integrates, a next step should be the generalization to
other structure types.

Acknowledgements

I would like to express my thanks to S.G. van der Meulen for drawing my
attention to the subject of algorithmics. Doaitse Swierstra taught me the
basics of the subject and encouraged me to write this study. His support
and advice have been invaluable. Many helpful remarks were provided by
Lambert Meertens, Jeroen Fokker and Nico Verwer. Finally, I want to
thank Hans Zantema for his thorough criticism and numerous suggestions.

67



Bibliography

[BBB*85]

[Bir86a]

[Bir86b)]

[BK80)]

[BMWS5]

[BPWS0]

[dMss]

F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geisel-
brechtinger, R. Gnatz, E. Hangel, W. Hesse, B. Krieg—Briickner,
A. Laut, T. Matzner, B. Moller, F. Nickl, H. Partsch, P. Pepper,
K. Samelson, and M. Wirsing. The Munich project CIP, vol. I:

The Wide Spectrum Language CIP-L. Volume 183 of Lecture
Notes in Computer Science, Springer—Verlag, 1985.

R.S. Bird. Exercises on the theory of lists. NFI seminar Utrecht
University, December 1986.

R.S. Bird. An Introduction to the Theory of Lists. Techni-
cal Monograph PRG-56, Oxford University Computing Labo-
ratory, Programming Research Group, October 1986.

M. Broy and B. Krieg-Briickner. Derivation of invariant asser-
tions during program development by transformation. ACM

Transactions on Programming Languages and Systems, 2(3),
1980.

R.S. Bird, L.G.L.T. Meertens, and D.S. Wile. A Common Ba-

818 for Algorithmic Specification and Development. Working pa-
per ARK-3, IFIP WG 2.1, 1985.

M. Broy, P. Pepper, and M. Wirsing. On relations between
programs. In B. Robinet, editor, International Symposium on
Programming, pages 59-78, Springer—Verlag, 1980.

O. de Moor. Set partitions. In preparation, scheduled to appear,
1988.

68



[Mee86]

[Mee87a)

[Mee87b)

[MeeB7c]

[MG83]

[Mol85]

[Mor87]
[Paigé]

[Pet84]

[PK82]

L.G.L.T. Meertens. Algorithmics — towards programming as
a mathematical activity. In J.W. de Bakker, M. Hazewinkel,
and J.K. Lenstra, editors, Mathematics and Computer Science,
pages 289-334, CWI Symposium, North-Holland, 1986.

L.G.L.T. Meertens. An Abstracto reader prepared for IFIP WG
2.1. Note CS-N8702, Centre for Mathematics and Computer

Science Amsterdam, Department of Algorithmics & Architec-
ture, April 1987.

L.G.L.T. Meertens. Formal Differentiation — A Page from a

Book on Algorithmics. Working paper 550 COR-5, IFIP WG
2.1, 1987.

L.G.L.T. Meertens. Towards general morphisms. Note Utrecht
Algorithmics Club, 1987.

J. Meseguer and J.A. Goguen. Initiality, induction and com-
putability. In M. Nivat and J.C. Reynolds, editors, Algebraic

methods in semantics, pages 460-541, Cambridge University
Press, 1983.

B. Méller. On the algebraic specification of infinite objects —
ordered and continuous models of algebraic types. Acta Infor-
matica, 22:537-578, 1985.

C. Morgan. Refining non-deterministic expressions. July 1987.
Draft.

R. Paige. Programming with invariants. IEEE Software, 5669,
January 1986.

A. Pettorossi. Methodologies for program transformation and
memoing. PhD thesis, Computer Science Department, Edin-
burgh University, 1984.

R. Paige and S. Koenig. Finite differencing of computable ex-
pressions. ACM Transactions on Programming Languages and
Systems, 4(3):402-454, 1982.

69



[Sha81]

[Shag2]

[Smi85)]

[Smi87a]

[Smi87b]

[vD83]
[Wad87]

[WPP*83]

[Zan87]

M. Sharir. Formal integration: a program transformation tech-
nige. Computer Languages, 6:35—46, 1981.

M. Sharir. Some observations concerning formal differentiation
of set theoretic expressions. ACM Transactions on Program-
ming Languages and Systems, 4(2):196-225, 1982.

D.R. Smith. The design of divide and conquer algorithms. Sci-
ence of Computer Programming, 5:37-58, 1985.

D.R. Smith. Applications of a strategy for designing divide-
and-conquer algorithms. Science of Computer Programming,
8:213-229, 1987.

D.R. Smith. On the design of generate-and—test algorithms:
subspace generators. In L.G.L.T. Meertens, editor, Program
Specification and Transformation, pages 207-220, IFIP, Elsevier
Science Publishers B.V., 1987.

D. van Dalen. Logic and structure. 1983.

P. Wadler. Views: a way for pattern matching to cohabit with
data abstraction. In Proc. Principles of Programming Lan-
guages 14, pages 307-313, ACM, 1987.

M. Wirsing, P. Pepper, H. Partsch, W. Dosch, and M. Broy. On
hierarchies of abstract data types. Acta Informatica, 20:1-33,
1983.

H. Zantema. Towards algorithmics as a mathematical activity.
Note Utrecht Algorithmics Club, 1987.

70



Index

abstract type 5

algebraic richness 19
congruence class 32
restriction 19

apply-to-all 28

breadth 8

broadest divide function 38

carrier set 7

composition 49

homomorphism 57

integrate and homomorphism

53
congruence class 32
granularity 32
constant 15
conversion 46
conservative 47
convertible 46
no junk 47
determinate 10
indeterminate inserted—in 35
integrate 41
specialization 43
differentiation 61
trivial 61
divide function 36
broadest 38
terminable 37
domain 15

initial algebra 20
embedding 15
equivalent 9
formal differentiation 61
formal integration 61
functionality 5
ground expressions 5
homomorphism 22

condition 45

composition 57

initiality 24

integrate 43

poorer 24

promotion 57
indeterminate inserted—in 33

determinate 35
induction 18
initial algebra over a domain 20

homomorphism 24
initial model 7

algebra over a domain 20
initiality 20

homomorphism 24
inserted—in 26

indeterminate 33, 35
integrate 39

composition 49, 53

determinate 41

homomorphism 43



inversion 52
product 63
tupling 62
integration 61
inversion 52
language 5
laws 5
main carrier 15
manageable structure 20
model 7
monotonic 11
operation name 5
operation 7
operator 15
parsed congruence class 37
parsing predicate 36
partition 65
poorer 23
homomorphism 24
reflexivity 23
transitivity 23
product 63
projection 24
reduct 7
refinement 10
restriction 6
algebraic richness 19
satisfy 9
set partition 65
signature 5
structure 12
surface 18
sorted 5
sorts 5
specialization 42
determinate 43
structure 14

72

manageable 20
signature 12
structure signature 12
surface signature 18
term translation 22
terminable divide function 37
theory 6
total 10
tupling 62
valuation 7
visible subset 17
structure signature 17
visible terms 15



