A Unifying Approach to
the Denotational Semantics of
Communicating Sequential Processes

M.J. Walsteijn

RUU-CS-88-3
February 1988

Rijksuniversiteit Utrecht

o)
< ¢
5%%3 Vakgroep informatica
7S ¥
RN Budapestiaan 6 3584 CD Utrecht _
Corr. adres: Postbus 80.012 3508 TA Utrecht

Telefoon 030-53 [454
The Netherlands 3

A Unifying Approach to
the Denotational Semantics of

Communicating Sequential Processes

M.J. Walsteijn

Technical Report RUU-CS-88-3
February 1988

Department of Computer Science
University of Utrecht
P.O.Box 80.012
3508 TA Utrecht
the Netherlands

Abstract *

In this report four different denotational semantics are given for a language based on
communicating sequential processes. These four semantics are based on a number
of approaches that were presented earlier as attempts of giving a formal definition
of Hoare’s original CSP. Unfortunately, the earlier approaches all used different
variants of CSP that were conveniently chosen in order to simplify the presentation
of the particular semantics or to avoid certain insurmountable difficulties in the
approach.

In this report the four most successful denotational semantics developed for (vari-
ants of) CSP are adapted to one, fixed language based on communicating sequential
processes. This makes it possible to understand the four semantic approaches as
they materialize for one, common, unified base language, and compare the various
semantics from a single, unified perspective.

cantet a Jegroe oin Lo N Vriversis

Contents

1 Introduction

2 The language CSP-W
2.1 Syntax and informal semanticsof CSP-W.
2.2 Anexampleof a CSP-Wprogram

3 A semantic model of CSP-W using stream processing functions
3.1 The notion of observable behavior
32 Thedomains uiii....
3.3 The semantic equations
3.4 Remarks and extensions

....................

..........................

.........................

4 A linear history semantics for CSP-W
4.1 Definitions and domains
4.2 The semantic equations
4.3 Remarks and extensions

..........................

5 An alternative linear history semantics for CSP-W
5.1 Definitions and domains
5.2 The semantic equations
5.3 Remarks and extensions

..........................

6 A synchronization tree semantics for CSP-W
6.1 Definitions and domains
6.2 The semantic equations
6.3 Remarks and extensions

.........................
..........................

.........................

7 Conclusions

10
10
11
13
20

23
23
25
32

33
33
35
41

43
43
45
52

54

Chapter 1

Introduction

In the last decade, many researchers have tried to solve the challenging problem of
giving a denotational semantics to CSP [Hoare 78]. CSP is a language for describing
communicating nondeterministic processes. The basic ingredients of CSP are assign-
ment, selection, iteration, parallel composition, and input and output. CSP received
much attention, maybe because of its elegance as a distributed programming lan-
guage. It was one of the first languages providing an elegant set of communication
constructs, which have had a considerable impact on the design of programming
languages for multitasking environments (e.g. Ada [ANSI)).

The statement types of CSP are all standard, except parallel composition. A
parallel composition is a statement which causes its components to execute con-
currently. These components, usually called processes, communicate via input and
output instructions (receive and send) that must match as in a handshake. A hand-
shake is a simultaneous activity (like receive and send) of two processes, which can be
exploited for both message passing and synchronization. Furthermore, all processes
combined in a parallel composition have disjoint variable sets.

Input and output instructions may occur in selection and iteration statements.
A selection has the form [by;¢; — 5;0 ... Obm; e — 3m], where b; are boolean
conditions, ¢; are input or output instructions, b;;¢; are called guards and s; are
arbitrary program fragments. If (for a certain i) b; is true and the communication
partner indicated by c; is ready to execute the corresponding input or output in-
struction (the guard b;; c; evaluates to true in that case), then the communication
may take place and the corresponding s; is executed. If several guards are true then
an alternative is chosen nondeterministically. An iteration *SEL, where SEL is

a selection, consists of the repeated execution of SEL until all guards evaluate to
false.

Four formal (denotational) definitions for CSP have been proposed in the lit-
erature. In [Broy 86], the semantics of a CSP-program is a function describing its
behavior. This function gives a row of reactions (success or rejection) when con-
fronted with an arbitrary row of proposals for communication. The function indicates
whether the row of communications is realizable, i.e. executable in that order, by
the program. This kind of functions resemble the ones in [Hoare 85], where they

2

were used to implement (!) the concurrency theory presented there.

Another approach was followed in [FLP] and in [Sound]. Let a state be an as-
signment of values to all variables and a communication history be a row of commu-
nications. The meaning of a CSP-process now is a function mapping a pair consisting
of a state and a communication history to a set of pairs, again consisting of a state
and a communication history. Such a function reflects the set of possible computa-
tions of a process: given an initial state and an initial history (e.g. the empty row),
the function yields the set of results of all possible computations. The result of a
computation by a process is the final state of the computation combined with the
row of communications needed for that computation. Whether such a computation
of a process is realizable depends on the other processes of the program. For ex-
ample, there should be processes providing the counterparts of the send and receive
instructions. From the a priori semantics of the individual processes, the semantics
of the entire program is constructed. The approaches in [FLP] and [Sound| differ
considerably in the way these basic ideas are elaborated.

Another semantics of CSP was presented in [FHLdeR]. Here, the semantics of
a process is a tree. Every path in the tree is a possible computation. The domain
of trees is defined by a domain equation. In fact, this will be the only domain
defined by a domain equation in the entire report. The meaning of a CSP-program
is constructed from the trees of the individual processes in the program.

All four approaches used different variants of CSP in order to simplify the pre-
sentation of the particular semantics or to avoid insurmountable difficulties in the
approach. The variant used in [Broy 86] will be called CSP-B. For example, in CSP-
B receive statements have the form z?, where z is a local variable. This means that
input for z from any other process is expected. Send statements have the form z!E,
meaning that the value of expression E is to be sent to the variable z (where z is
owned by another, unique process). These two corresponding actions are executed
simultaneously: the process which is first, waits. No assignment to or reading of z is
allowed to non-owning processes. This mechanism is in contrast to CSP, where P;?z
(receive) indicates that input is expected from process P;. The output statement
of CSP is of the form P;!E, and mentions the destination process P; instead of a
variable.

The other variants of CSP will be denoted as CSP-FLP, CSP-S and CSP-
FHLdeR. The deviations of the various CSP variants from CSP are shown in ta-
ble 1.1.

The notions of nested concurrency, mixed guards and the distributed termina-
tion convention will now be explained. We speak of nested concurrency if a process
may contain a parallel composition of several other processes. The distributed ter-
mination convention defines when a guard, in particular the communication part of
a guard, is false. Generally, a guard evaluates to false if its boolean part is false.
Additionally, the distributed termination convention states that the communication
part of a guard is false if the communication partner indicated by that guard has
terminated. This implies that a loop exits if all communication partners indicated
by the guards of that loop have terminated. A variant of CSP features mized guards

3

nested | mixed | term.
conc. | guards | conv.

CSP + + +
CSP-B = + -
CSP-FLP + + —
CSP-S - + +
CSP-FHLdeR | - - +

Table 1.1: Deviations from CSP.

if mixtures of purely boolean guards (guards with empty communication part) and
guards containing a communication within one selection or iteration statement are
allowed.

In this report, all four semantic approaches to CSP are adapted to one, unified
base variant of CSP. This base variant, called CSP-W in the sequel, is roughly
the intersection of CSP-FLP, CSP-S and CSP-FHLdeR and hence very similar to
CSP, but does not feature nested concurrency, mixed guards and the distributed
termination convention. This makes it possible to compare the four semantic models

of CSP for one, unified base variant of the language. The topics of the comparison
will be:

¢ Simplicity: of domains, orderings and denotations.

o Abstractness: to what degree do ‘equivalent’ program fragments have identi-
cal denotations, on the condition that ‘inequivalent’ program fragments have
different denotations?

e Generality: is it possible to easily define language constructs of CSP which
are not present in CSP-W, in the particular formalism?

e Compositionality: is the semantic definition of the language obtained by in-
duction on the syntax?

o Continuity: are all functions expressing the computation of programs contin-
uous? (This is necessary in order to apply the theory developed for proving
properties of programs.)

All definitions used in this report are completely general. This is in contrast
to e.g. [FHLdeR], where selections and iterations are defined by means of example
cases. Although this difference is not crucial, definition by example sometimes hides
the complexity of a method.

It is worth mentioning that there also exists a weakest precondition semantics of
CSP, see [EF]. However, Elrad and Francez had to give up the property of composi-
tionality: their definition is not based on induction on the syntax and is therefore not

4

completely satisfying. Recently, another variant of CSP was proposed (see [ABC]).
This variant synthesized from observing the structure of many correct CSP pro-
grams. Both approaches will not be discussed in this paper.

People have found it difficult to give a proper mathematical semantics to CSP;
some researchers thought that the language is inherently difficult and some of them
diverted their attention to a theory of communicating sequential processes [BHR]
in which no assignments occur. In this theory the primitive elements are (abstract)
atomic actions, and therefore this theory is much less a programming language
than CSP: it is an alternative to concurrency theories like CCS [Milner] and pro-
cess algebra [BK]. Unlike assignments, these atomic actions do not influence the
communications that may take place; an assignment may influence the choice of an
alternative in a selection. This theory is essentially different from CSP, although it
is called CSP in [Hoare 85]. A more appropriate name would be TCSP, with the
“T” standing for “Theory”.

Throughout this report it is assumed that the reader is familiar with the tech-
niques used in the den{;:ational semantics of sequential programming languages (see
e.g. [Stoy], [SM], [MA]

The rest of this report is organized as follows. In chapter 2 the language which
will be used (CSP-W) is defined informally and an example program is given. In
chapter 3 a formal definition of CSP-W is given, based on the model in [Broy]. In
chapter 4 a semantics is given based on the model in [FLP]. Chapter 5 contains a
semantics based on theiidea.s in [Sound] and chapter 6 contains a semantics based on
[FHLdeR]. Each of the four chapters contains a section on domains and definitions,
a section on the denotjations and a section with a discussion on the method. In
chapter 7 some conclusions are listed and the comparison is carried out.

Chapter 2

The language CSP-W

This chapter introduces the language which will be used in this report. Four formal

definitions of this language will be given in the subsequent chapters.

2.1 Syntax and informal semantics of CSP-W

The language will be very similar to Hoare’s original CSP with some exceptions: no
nested concurrency and mixed guards are allowed and no distributed termination
convention is enforced. The syntax of CSP-W in B.N.F. is as follows (identifiers,

expressions, process names and booleans are left unspecified):

<program>
<processes>

<process>
<command>

<iocommand>
<selection>
<gcs>
<pbgcs>
<pbgc>
<comgcs>
<comgc>
<pbguard>
<comguard>
<iteration>

i

W

|[<processes> ||

<process> |

<processes> || <processes>
<proname> :: <command>

skip | <id>:=<exp> |

<iocommand> |
<command>;<command> |
<selection> | <iteration>
<proname>!<exp> | <proname>?<id>
[<ges>]

<pbgcs> | <comgcs>

<pbgc> | <pbgcs> O <pbgcs>
<pbguard> — <command>
<comgc> | <comges> [J <comgcs>
<comguard> — <command>
<boolean>

<boolean>;<iocommand> | <iocommand>
* <selection>

The informal semantics of CSP-W will indicate the form and intended meaning of
a program written in CSP-W.,

A program consists of the parallel composition (||) of one or more concurrent
processes. The execution of a multiple-process program may be conceived as being
an arbitrary interleaving of the actions of the individual processes or as the real
concurrent execution of the processes (multiprogramming or real concurrency). In
both cases, the only restriction is that corresponding sends and receives must hap-
pen simultaneously. The state of a program (process) is defined as an assignment
of values to all program (process) variables. For a state o, an identifier z and data
element d, we denote the updated state by o[d/z], i.e.

old/z](z) =d
old/zl(y) = o(y) for y # =

It is required that all process names in a program are distinct. Each process consists
of a sequential program labeled by a process name. Variables are strictly local to a
process and are not exported across process boundaries (hence there are no shared
variables).

In the sequel P,...,P, denote the distinct names of the n concurrent processes
of a program. Communication between processes P; and P; takes place by process
P; executing a command or guard having the form P;!E and P; executing P,?z.
This execution has to be simultaneous, and its effect is the assignment to z in P;
of the value of E in P; at the moment of the communication. In other words, P;
outputs the value E to P;, which inputs it in a handshake with P,.

The execution of skip immediately terminates with unaffected state, without
performing any communication. The execution of z:=F involves the evaluation of
E and assignment of the value of E in the current state to . An instruction of the
form commandl;command2 is executed as the usual sequential composition: the
execution of commandl is followed by the execution of command2.

There are two forms of selections: either all guards are purely boolean or all
guards contain a communication. Mixed guards are not permitted. The two types
of selection statement have the following meaning:

1. [by — commandl O ... 0¥, — commandm] is a selection statement which
involves the selection of a true boolean b; and execution of the corresponding
commandi. If there is more than one b; true then any alternative with a
true boolean is chosen nondeterministically. If there are no true b; then the
execution of the entire program is aborted.

2. [b1;¢;4 — commandl O... Oby; ¢ — commandm)] (where b; is true by
default if it is missing and ¢; is an iocommand) is a selection statement which
involves the selection of an enabled guard b;; ¢;, and the subsequent execution of
¢; and then commandi. A guard is enabled if b; is true and the communication
partner indicated by c; is ready to communicate. The execution of ¢; again
requires the simultaneous execution of the iocommand of the current process

7

and its communication partner. If no indicated partner in any guard with a
true boolean is ready to communicate, then the whole command is delayed.
In case of more than one enabled guard, again any alternative that is enabled
is chosen nondeterministically. Furthermore, if there are no true b; then the
entire program is aborted.

Let C be a selection statement of the form [g1 — commandl O... Ogm —
commandm], either with all guards g; purely boolean or with each guard g; contain-
ing a communication. The execution of the iterative command *C consists of the
repeated execution of C' and continues until all b;’s of the guards are false. Note
that a loop in which one of the b,s is always true (in every iteration of the loop
this may be a different one) never terminates even in the case of iterations with all
guards containing a communication. A special case of this is, that a loop in which
all guards are purely communication guards (i.e. , all b;’s missing) never terminates.

The given interpretation of selection and iteration deviates from Hoare’s formu-
lation for the case of CSP, which considers the communication part of a guard to
be false if its communication partner has terminated (the distributed termination
convention). However, it is possible to encode the sensing of termination of other
processes by additional explicit communications. Therefore, this deviation is not
crucial.

Note that the language does not provide for nested concurrency; the syntax
prohibits this.

2.2 An example of a CSP-W program

In this section an example of a program in CSP-W is given. The problem was taken
from [Moitra).

Problem: Given two disjoint and nonempty sets of integers S and T, SUT has to
be partioned into two subsets 4 and B such that |S|=|A|, |T|=|B| and every element
of A is smaller than any element of B.

A simple, sequential solution of the problem swaps the maximum of S and the
minimum of T' while the maximum of S is greater than the minimum of T'. This can
be encoded in the following sequential CSP-W program, where max, min, + and -
are maximum, minimum, set union and set difference, respectively.

|[Partition :: mazS := maz(S);
minT := min(T);
*[maz$§ > minT — S := § — {mazS} + {minT};
T:=T— {minT} + {mazS};
mazS := max(S);
minT := min(T))

Il

Next, we transform the program into a distributed one. Process P, computes
the maximum of S (a local set), receives the minimum of T' (a remote set for P,)
from P, and sends its computed maximum to P;. Now it is possible to perform the
same test as in the sequential program and to adjust S accordingly. After this, the
process is repeated. Process P; is completely symmetric.

Globally, the following happens. First, the maximum of S and the minimum of
T are computed concurrently. Next, these computed values are exchanged and then
the test of the sequential program is possible. If all elements of S are smaller than
all elements of T' then both P, and P, exit their loops, because P, and P, perform
the same test. Therefore, the entire program terminates. In the other case, S and
T are updated concurrently and the entire computation is repeated. Note how the
communications synchronize the processes. Furthermore, one could perform the
test in only one process and send it to the other, but this breaks the symmetry.
Moreover, a communication is (nowadays) more expensive than a test. Therefore,
in the following CSP-W program, no leader process is present.

[Py :: mazS := maz(S);
PyMtempl;
Py)mazS;
*[mazS > templ — S := S — {mazS} + {templ};
mazS := maz(S);
P,Mempl;
P'mazS]

| P; :: minT := min(T);
P !'mainT,
P, Mtemp2;
*[temp2 > minT — T := T — {minT} + {temp2};
minT := min(T);
P \minT,
P, Mtemp2]

Il

This program is at least as elegant as the one in [Moitra], which uses the dis-
tributed termination convention.

Chapter 3

A semantic model of CSP-W
using stream processing functions

In this chapter we give a denotational semantics of CSP-W in the spirit of [Broy 86).
Broy uses stream processing functions in his formal definition of CSP-B. The idea
of stream processing functions will be applied to CSP-W, which will require several
adaptions of the semantic model of Broy.

3.1 The notion of observable behavior

For a better understanding and a motivation of the model of stream processing
functions, a particular model of experiment for testing the identity of a process is
introduced. The testing machinery consists of a processing unit in which the CSP-W
program is loaded, and of a display together with a keyboard on which actions can
be typed in. After loading the program, the program variables have an undefined
initial value (the initial state). The experiment now proceeds as follows, based on
information shown on the display:

1. The display may show ‘terminated’ and a list of the values of the variables:
the final state. Then the experiment is finished.

2. Otherwise, an arbitrary communication action is chosen by the experimenter.
The action is typed in via the keyboard. Below, this action will be called an
offer. A

3. The display may show either ‘rejected’, ‘accepted’ or the data value that is
communicated between two of the processes of the program. It is also possible
that the machine does not give an answer at all (divergence).

4. The experimenter may finish the experiment or may start all over again with
1.

If the display shows ‘terminated’, then further input via the keyboard cannot change
this.

10

In this model, assignments are not regarded as observable atomic actions but as
silent steps ([Milner]), which are not observable. Likewise, skip is a silent step. The
communications, however, are regarded as observable atomic actions.

In Broy’s model, the semantics of a CSP-W program is defined as the behavior
of a program in an arbitrary experiment. An experiment is a stream of offers which
correspond to communication actions. An offer (a proposal of a communication)
is possible if the offer corresponds to the next communication instruction in one of
the processes in the program. If the proposed communication is possible then the
action is executed and reacted to, and the executing process advances internally to
a next observable action, i.e. a communication action. If the offer is not possible,
then it is rejected and the program considers the next offer in the stream of offers,
never reconsidering the rejected offer.

The stream of reactions (acceptances, rejections, data values) together with the
final state as a function of the stream of offers is called the behavior of a CSP-
W program. This explains the term stream processing functions: the semantics of
a CSP-W program is a stream processing function. In other words, the meaning
of a CSP-W program can be determined by exhaustively testing the behavior of
the program to various experiments. Obviously, exhaustive testing is not possible in
practice. The idea of physical testing machinery is just used to support the intuition.
These ideas will be formalized in the next section.

3.2 The domains

STATE ¥ <id>— D
where D is assumed to be a given set of data.

STATE" is the flat domain defined by STATE and L (undefined). A state is
the association of a value from D to every variable in <id>. Divergence is repre-
sented by L. An abortion is not distinguished from the entering of a nonterminating
loop and therefore represented by L too.

OFFER % (<proname> x <proname>)U
(<proname> X <proname> x <id> x D)
REACT ¥ {R,A}UD

OFFER contains two types of elements. An offer can be an element having
the form (namel,name2), which is a proposal to process namel to output to process
name2. The reaction is R (Rejection) if the next instruction of name? is not name2 E
or if the proposal is not handled by process namel. Otherwise, the reaction to this
offer is the value of the expression in the output instruction.

Another form of offer is (namel,name2,z,d), which is a proposal to process
name2 to input from process namel the value d. This value should be accepted as

11

the new value of x. The reaction to this offer is R if the next instruction of name2is
not namel?z or if the proposal is not handled by process name2. Otherwise the reac-
tion to this proposal is A (Acceptance). This also explains the definition of REACT.

Given a set X, the set STREAM(X) is defined by
STREAM(X) ¥ x*u x>

Concatenation on streams is denoted by ++. The empty stream is denoted by
e. For a € X the one element stream is [a]. For a € X, s € STREAM(X), a: s is
written for [a]++s. Furthermore, 1 : s is defined as ¢ (for any s).

Several functions are used on streams:

first: STREAM(X) — X+

rest: STREAM(X) — STREAM(X)

| |: STREAM(X) x INT — STREAM(X)

prefix: STREAM(X) x STREAM(X) — BOOL

drop: STREAM(X) x STREAM(X) — STREAM(X)

where

first(e) = L

first(a:3) =a

rest(e) = €

rest(a:s) =s

Islo= €

|8ln+1= if 8 # € then first(s): |rest(s)], else e

prefix(e, s) =true

prefix(z : p', €) =false

prefix(z : p',y : 8) = if £ = y then prefix(p/, ¢') else false
drop(e,s) = s

and, for z,y # L, rl infinite and r finite:

drop(z : 7,y : 8) = drop(r, s)
drop(rl,s) = ¢

The functions first and rest do not need further explanation. By |s|n the prefix
of s of length n is denoted. The function prefix tests whether its first argument
is a prefix of its second argument. The function drop throws away a prefix of its
second argument. The length of this prefix is determined by the length of the first
argument of drop. If the latter length is infinite then the result of drop is the empty

12

stream. Note that drop is not defined if the second argument is longer than the first
argument, except when the first argument is infinite.

Now all ingredients are available for the most important definition of this section.
The meaning of a CSP-W program will be modelled by a function in

DENOT ¥ STATE! — (STREAM(OFFER) —
P(STREAM(REACT) x STATE"))

In this definition the semantics of a CSP-W program is a function from an initial
state to a function from a stream of offers to a set of pairs: streams of reactions and
final states. The powerset P in the definition of DENOT reflects the nondetermin-

ism of a CSP-W program: more than one outcome is possible with the same initial
state and stream of offers.

STREAM(X) for every X and STREAM(REACT) x STATE* form domains if
ordered by

S1 C S2iff S1 is a prefix of $2, and
(S51,01) C (52,02) iff (61 = L A S1 £ 52) v ((S1,01) = (52,02)),

respectively.

3.3 The semantic equations

Let V :<exp>— (STATE* — D) be a function, which gives meaning to boolean
and arithmetical expressions without side-effects, i.e. , V associates with every ex-
pression a function from a state to a value (for every state the expression has a certain
value).

We now give the formal definition of F :<process>— DENOT, together with
the informal explanation of each clause in the definition. F' gives meaning to in-
dividual processes. Given an initial state o, it assigns a stream processing function
to a process. F is defined by induction on the syntax: the meaning of a composite
language construct is defined in terms of the meaning of its constituents. Every
CSP-W language construct which may occur within a CSP-W process is defined
by F in a separate clause. We will write F,[t] as a shorthand for F(P; :: t)(o).
Note that in F,[t] the term ¢ occurs in process P; by convention. Similar nota-

tions are used for other functions. s will denote an arbitrary stream of offers, i.e.
s € STREAM(OFFER).

(1) Fult)(s) = {(e, 1)}

13

In the sequel we let o be arbitrary, with o € STATE.
(2) skip

F,[skip](s) = {(¢, 0)}
Obvious.

(3) assignment

- _) (1)} if V,|E] = L
Fole = B)(s) = { {Ef,U[Va[E]/Z‘])} otherwise

The meaning of assignment is the appropriate update to the state 0. In cases
like division by zero V yields L. Like skip, assignment is not an observable action.
Therefore, the stream of offers is disregarded and no reaction is output.

(4) output

{ {(Vo[E) : €,0)} if first(s) = (P, P,)Ai £ jAV,[E] # 1
F,[PEl(s) =< {(e, L)} ifs=€eVV,[E]=1
{(R:4,0") | (¢',0") € F,[P;\E](rest(s))} otherwise

Output has no side effect. If the presented offer first(s) is not in correspondence
with the output command, then it is rejected and the next offer in the stream is
considered. Note that the second of the names in the offer first(s) has to match the

one in the output command and the first name the name of the process in which
the output command occurs. See section 3.2 for further explanation.

(5) input
{(A: ¢, 0[d/z])} if first(s) = (P}, P;,z,d) Ai # j

F,[P;?z)(s) = { {e, L)}ifs=€evi=j
{(R:s,0")| (¢,0') € F,|P;?z](rest(s))} otherwise

The side effect of the input command is the update to the state corresponding to
the assignment of d to . The value d corresponds to the value in the offer first(s).
Remarks, similar to those for (4) can be made here again. In addition, the variable

14

z in the offer first(s) has to match the one in the input command.

(6) sequential composition

Fo[C1;C2)(s) = {(s1++82,02) | (s1,01) € F,[C1](s)A(52,02) € F,1[C2)(drop(s1,s))}

Note that the number of reactions of C1 is equal to the number of offers tested
by C1. Therefore drop throws away the prefix of the experiment s consisting of the
offers tested by C1. Consequently, the input to F' applied to C2 are the modified
state ol and the stream consisting of the rest of the offers (the remainder of the
experiment). If the stream of reactions of C1 is infinite then the remainder of the
experiment, which is meant as input to C2, is empty. The stream of reactions pro-
duced by C1; C2 simply is the concatenation of the streams produced by C1 and C2.

(7) selection with all guards purely boolean

The semantics of a selection of the form:
SEL1 = [b; — command1(... (b, — commandm]
is as follows:

Fo[SEL1)(s) ={p | Ji(p € F,[commandi](s) A V,[b;] = true)}
U {(e, L) | F(Vo[b:] = L) vV Vi(V,[b;] = false)}

In a selection with all guards purely boolean, the observable actions can only occur
in the commands of the guarded commands. In other words, the selection of an
alternative itself is not observable. Furthermore, the choice of an alternative does
not affect the state. This explains the first set in the definition of selection SEL1. In
this set all possible behaviors are contained, which are due to local nondeterminism.

An abortion takes place if the value of one of the boolean expressions is unde-
fined or if all boolean expressions yield false. This explains the second set in the
definition of selection SEL1.

(8) selection with all guards containing a communication

Every selection with all guards containing a communication has the form:

SEL2 = [by; P,'E; — commandl0 ... Ob,; P, !E, — commandr(]
by; Py 7z — command1’0 ... Ob); P;, 7z, — commands/]

If there exists ¢x such that iz = i or j; such that j; = i then F,[SEL2|(s) = {(¢, 1)}.
Thus, without loss of generality we may assume that

15

Uyeesbry JiyeeeyJs € {1,...,4 = 1,4+ 1,...,n}, where n is the number of processes
in the program.

F,[SEL2)(s) =

{(R:r,0') |3n1,n2 e<proname> (first(s) = (n1,n2) A VE(V,[b] = true —
(n2 # P, Vnl # P))) A(r,0') € F,[SEL2)(rest(s))}

U {(a:r,0') | k(first(s) = (P, P,) A V, [bx] = true A V,[Ex] = a A
((a=LAd'=LAr=¢V(a#LA(rd)E Fy[commandk](rest(s)))))}

U {(R:r,0’) | Inl,n2 €<proname>,z €<id>,d € D(first(s) = (nl,n2, z,d)A
VI(V,[bf] = true — (nl # P;, Vn2 # PV z # x)))A
(r,0') € F,[SEL2|(rest(s))}

U {(A:r,0") | Inl e<proname>,z €<id>,d € D(first(s) = (n1, P, z,d)A
Jnl =P AV [l =trueAz =z, A
(r,0') € Fyy4/z[commandl’](rest(s))))}

U {(e, L) | Ie(Volbe] = L) VIV, [} =L)vs=eV
(VE(V[bi] = false) AVI(V,[b]] = false))}

An offer first(s) is rejected if for all guards of the selection statement the following
holds: if the boolean expression yields true, then the offer does not correspond to
the input or output command of the guard.

An offer, which proposes an input command is accepted if it corresponds to the
input command of a guard in the selection and the boolean expression involved
yields true. With the corresponding alternative and updated state is continued.

If the offer corresponds to an output guard and the boolean expression involved
yields true, then the reaction consists of the value of the expression of that output
guard. If this value is defined, then execution is continued with the corresponding
command . Otherwise the effect is an abortion, i.e. (¢, 1). (Recall that L : r is
defined as ¢).

An abortion occurs if one of the boolean expressions in the guards is undefined
or if all boolean expressions are false or if the input stream is empty.

(9) iteration

The semantics of iteration is given by a fixed point equation. For the two dif-
ferent types of selection, the semantics of iteration is defined in the same way. An
arbitrary selection has the form:

SEL = [g — commandl(Q ... Ogm, — commandm]

16

where SEL contains either purely boolean guards or guards with a communication.
F,[*SEL] = if C then F,[skip] else F,[ONESTEP]

where

ONESTEP = [g; — commandl;*SELQ ... Ogm — commandm;*SEL)

C = Vi(Vo[bi] = false) if SEL is SEL1 type
| VE(Ve[bk] = false) AVI(V,[b]] = false) if SEL is SEL2 type

A loop with all guards purely boolean is exited if all booleans are false. If all
guards contain a communication, then the loop is exited if the boolean parts of all
guards are false.

Note that if SEL is a SEL2 type selection, then it follows from this definition
that the termination of other processes is not sensed, i.e., there is no distributed
termination convention.

(10) parallel composition

The parallel composition of processes in CSP-W is handled in two steps. In the
first step an auxiliary, binding function B is defined in terms of F. In the second
step a function M is defined, which gives meaning to CSP-W programs with the aid
of function B of step one.

(10.1) step 1.

For the first step an auxiliary function B (of binding): <processes>— DENOT
is introduced. Here, the case of two processes is given. The case of more than two
processes is handled by considering the parallel composition of two processes as a
new process. More precisely, we consider the result of the binding of two processes
to be a new process. The order of this binding is irrelevant, since it can be proved
that B is associative and commutative.

B, [P, :: commandl|| P; :: command?2](s) =
{p €join(f1, £2,3) |f1, f2 € [STREAM(OFFER) —
STREAM(REACT) x STATE*]A

Vt € STREAM(OFFER)(f1(t) € F(P, :: command1)(c)(¢)A
f2(t) € F(P; :: command2)(c)(t))}

where the function join on two functions (see the definition of B for their type) and

17

a stream of offers is defined by:

join(f1, f2,z : s) ={(y : t,0") |(t,0") € join(f1,, 2,8) Ay = first’'(f1(z : 5))A

~(y € {R, 1))}

U{(y : t,0") | (t,0") € join(fl,, f2,,8) Ay = first’(F2(z : 8))A
-(y € {R, L})}

U{(e, upd(o,01,02)) | f1(z : 8) = (¢,01) A f2(z : 3) = (¢,02)A
01,02 # L}

U{(R:t,0") | (¢,0') € join(f1,, f2,,8)A
((first’(f1(z : s)) = R A terminal(f2(z : s)))V
(first’(f2(z : 3)) = R A terminal(f1(z : s)))V
(first’(f1(z : 8)) = first’(f2(z : s)) = R))}

U{(e, 1) flz:s)= (e, -L) V f2(z: 8) = (57-L)}

where upd, terminal, f,, and first’ are defined by

ol(z) if ol(z) # o(z) A 02(z) = o(x)
upd(s,01,02)(z) = { 02(z) if 62(z) # o(z) A 0l(z) = o(x)
o(z) if o(z)=ol(z) = 02(x)
terminal((s,0)) = (s = e Ao € STATE)
first’((¢, 0)) = first(t)
f(z:8) =(s1,0) = f.(s) = (rest(s1),0)

The different f1’s and f2’s represent the different paths of computation, which com-
mandl and command2 may take due to nondeterminism. The effect of join on f1,
f2 and s could be pictured as follows:

First, the behaviors (r1,01) and (r2,02) of commandl and command?2 to the
experiment s are calculated. The result of the join is a particular kind of ‘merge’ of
rl and r2 and an updated state. This state is the original state updated by both
the changes of commandl to the original state and the changes of command2 to the
original state. Because all variables are local to a process, it is not possible that both
commandl and command2 change the same variable (all names of variables could
be thought prefixed with the name of the process; with o{d/z], o[d/P;z] is meant).
It is possible that one command yields an undefined state, but this is handled by an
extra condition.

The particular kind of merge of r1 and r2 can be conceived as being calculated
as follows: if the first element of r1 is A or d; (with d; € D) then it is the first
element of the result. It cannot be the case that at the same time the first element
of r2 is A or d; as well, because an offer is always accepted or responded to by at
most one process: an offer is always directed to one particular process. Hence, r2 is

18

empty or its first element is R. The rest of the result of the merge is the merge of
the rest of r1 and the rest of r2.

The case that the first element of r2 is A or d is completely analogous. If one
of the streams is empty, then the other is copied to yield the rest of the result.
Otherwise, an offer is rejected only if it is rejected by both commands. In this case
the rest of the result is again the merge of the rest of r1 and the rest of r2.

Example. Suppose s = [(Pl, Py), (P, Py, z, d), (P, F;), (Ps, Ps, y,d'), (P, Py)]
and suppose f1, f2 model P, P;, respectively, where
f1(s) = ([10, R,20, R, R],01) and
f2(s) = ([R, A, R, R, 02) and
the original state is o, then
join(f1, f2,s) = {([10, A, 20, R, R],upd(a, 01,02))}

At this stage the behavior of the parallel composition is such that an offer, which can
be accepted or responded to by one of the processes, is in fact accepted or responded
to by the parallel composition. Cooperation between the processes is not achieved
yet. This will be done in step two.

(10.2) step 2.

If all n commands in the parallel composition are bound by the binding function
B, then the second step in the parallel composition is performed. This second step
gives the meaning of a CSP-W program. A function M is introduced, where

M :<program>— DENOT. This function M is the main semantic function, as it
assigns a meaning to a CSP-W program. This is achieved by the use of the auxiliary
function B, which in its turn uses the a priori semantics of the individual processes
given by F. In this way induction on the syntax is performed. The definition of M
is as follows: (parcom is a CSP-W program without begin-end brackets)

Mo, [|[parcom]|](s) =

{(r,0) | (r,0) € B,,[parcom](s) A handshake(s,r)} U

{(+'sL) | 3p,r,0 ((r,0) € By,[parcom](s) A prefix(p, s) A
prefix(r/,7) A handshake(p, ') A
—handshake(|drop(p, s)|2, |drop(r’,7)|2)}

where

handshake(s, r) = Vi(hs(|s]2, |r|2))

19

hs(e, €) = true

hs(ol : €,5) = hs(s,rl : €) = false

hs((ol : 02: 81,71 : r2: s2) = hs(sl,s2) A 3nl,n2 E<proname>,z €<id>,
d € D(ol = (n1,n2) A
02 = (nl,n2,z,d)Arl =dAr2=A)

The predicate handshake enforces that all offers are done in corresponding pairs,
of which the input offer must be accepted and of which the output offer must be
reacted to with a value equal to the value in the input offer. If this condition does not
hold then the result of a program to an experiment s contains the (possibly empty)
largest prefix of the reactions, which, together with the corresponding offers, makes
the predicate handshake true. In this case the resulting state is undefined. Note
that handshake is defined for both finite and infinite streams.

The intuition behind the correspondence between an experiment and a program
can now be stated as follows. A communication action is proposed by means of two
offers. If the offers correspond and the reactions are appropriate, then the com-
munication instructions are executed simultaneously in the communication partners
involved and a next communication action may be proposed. At the moment the
two (or fewer) offers and the reactions do not represent a handshake, the state be-
comes undefined and the experiment terminates abnormally (further input does not
affect this behavior). This is in contrast to the a priori meaning of a process, which
may reject an offer and yet respond to offers appearing after it in the experiment.

3.4 Remarks and extensions

In the preceding section we defined F, B and M. The meaning of a recursive defi-
nition is given by applying the appropriate fixed point theory. Here, the same fixed
point technique as in [Broy 84] has been used. Now, the features of CSP which are
absent in CSP-W will be discussed.

The model of stream processing functions is capable of dealing with mixed
guards, see [Broy 86]. The model of stream processing functions also allows for
the treatment of nested concurrency: the binding operator B combines the seman-
tics of the processes P; and P;, which are functions in DENOT:, to form the semantics
of the parallel composition of them, again a function in DENOT. In other words,
the parallel composition of two processes is a new process, replacing the other two.
Thus binding may be performed on any level. Moreover, it can be proved that
Py || ... || P, may be combined in pairs in any association order.

Whether the distributed termination convention can be introduced in the model
or not is an open problem.

A serious drawback of stream processing functions seems to be that the seman-
tics of a program is not a function from an initial state to a set of final states, like one
would possibly hope. Nevertheless it is possible to abstract from communications
(offers) in the following way. Consider the following alternative M’ to M,

20

M' :<program>— STATE — P(STATE"*)

M, [|[parcom]|] = {o € STATE |3s1 € OFFER*,s2 € REACT*((s2,0) €
B,,[parcom](s1) A hs(sl,s2))}

U {1} if deadlock(B,,[parcom])Vdiverge(B,,[parcom))
) otherwise

where deadlock is a predicate on stream processing functions which is true if the
possibility exists that after some offers and reactions a point is reached where all
pairs of corresponding offers can be rejected, and diverge is a predicate on stream
processing functions which is true if infinite chattering (two or more processes co-
operate in an infinite sequence of communications) is possible or if after some offers
and reactions an infinite (internal) loop is entered. In the latter case no reaction
occurs on any offer.

Actually, this is the approach followed in [Broy 86]. In it, the definitions of di-
verge and deadlock can be found. The reason why this approach wasn’t followed in
this report is that it seemed more instructive, more consequent and more supporting
the intuition to define the semantics of a CSP-W program as a stream processing
function. The entire model was explained by the notion of a certain kind of experi-
ment and the behavior of a program to an experiment. If one abstracts from offers
and reactions, the principle of observability is abstracted away with it.

For instance, observability implies that a deadlock is observed if every pair of
corresponding offers typed in by the experimenter is rejected. Hence, a deadlock
can be concluded by purely observing reactions to some experiments. Therefore,
no special predicate ‘deadlock’ is necessary. Similar statements can be made for
diverge.

Moreover, in the approach in this report the a priori semantics of a process is in
the same function space as the semantics of an entire program. Both processes and
programs can be observed by an experimenter. However, sometimes it is desirable to
abstract from communications and this is why the method to do so was enunciated
above.

Finally, we make some remarks about the formal definition of CSP-B in [Broy
86]. From Broy’s definition it follows that it is perfectly legal to have the fragment
-..zlE;z7... in one process. If the corresponding offers are supplied to this process
then the effect of this is the assignment of E to z. Also at binding, this situation is
not noticed and therefore not forbidden. Hence, also if an entire program is supplied
with the usual two offers for proposing a communication involving z, then the effect
is still an assignment of E to x within the process containing the fragment. This
presents a serious problem in the framework proposed by Broy. Note that with
the approach in this report, a similar fragment in CSP-W is not possible, i.e. it is
forbidden by the formal definition.

It also follows from the formal definition of CSP-B that in the selection statement
of CSP-B no abortion occurs if the boolean parts of all guards are false. This can

21

easily be repaired by extending the definition of the selection.

A last flaw in the definition of CSP-B concerns the definition of join in [Broy 86].
If this version of join is presented with the example of the preceding section then in
the second recursive call of join, f1, becomes undefined: see its definition. In the
join as defined in this report this is not the case.

22

Chapter 4

A linear history semantics for
CSP-W

In this chapter a linear history semantics is given for CSP-W. This semantics uses
both linear sequences of communications to record the communications occurring in
a computation and special states, called expectation sets, characterizing potential
deadlocks. For any well-formed program fragment the semantics is a mapping from
an initial state to a set of pairs, consisting of a (final) state and a communication
sequence to attain this state. These ideas of Francez, Lehmann and Pnueli [FLP]
are applied to CSP-W.,

4.1 Definitions and domains

First we begin with several definitions. Let D be the data set. A communication
record has the form (P;, P, d), meaning that the value d € D has been passed from
P; to P;. %; is the set of communications of process P; defined by Z; = {(P;, P}, d) |
d € D,j #1}U{(P;,P,d) |d € D,j # i} U {6}. The first set contains outputs
from F; to some P;, the second inputs from some P; to P; and the third an empty
communication §, which is associated with each noncommunicating instruction such
as skip, a test or an assignment. I is defined by & = {J; Z;.

The role of 6, the empty communication, is to indicate the progress of a noncom-
municating computation. It leads to the property that long computations correspond
to long communication sequences, regardless of the amount of communication actu-
ally generated. The & resembles the silent transition 7 in [Milner].

A communication history is a finite sequence in H; = T?. Each computation of
P; reaches a state ¢ and produces a certain communication sequence h in order to
get there. Whether this computation is realizable in a given environment of other
processes depends on the ability and readiness of the other processes to cooperate
in producing the corresponding communications on their side.

The space of states S; is defined as §; = S; U {L} U E;. S; is the space of
possible proper local states of P;. Here, for simplicity, S; = D™, where n; is the
number of local variables of D;. Possible type restrictions are thereby ignored. If a

23

computation converges, then it results in a final state o € S;. The undefined state
1 denotes an incomplete computation, i.e. , a computation that has not converged
yet. E; is a set of expectation states of the form e(A), where A contains elements
of the form pi!, which denote that process P; is ready to execute output commands
P;!E, and elements of the form p;'-?, which denote that process P; is ready to execute
input commands P;?z. If a process is in a state e(A) then this means that there is
a potential deadlock. Only if an action in A happens then the deadlock is resolved.
In other words, if none of them ever happens, i.e. , no matching communication is
forthcoming, as may be the case if all potential partners have terminated or are each
expecting some other unrelated communication, then the process is deadlocked. If a
deadlock is established, then e(A) denotes a necessary deadlock. In particular, e(9)
is to be interpreted as an established deadlock or abortion.

Next, the function Dual is defined (the result of Dual is the matching communi-
cation):

Dual(pi!) = p{?
Dual(p?) = p!

Furthermore, define II* and II; as follows:

I ={pj! | 1=1,...,n AL#£JU{P? |1=1,...,n Al #i}
H;:Dua.l(nq:{p{-!ll:1,...,‘n/\l#i}U{pf~?|l=1,...,n/\l-',éi}.

Now it is possible to define E; formally:
Ei={e(4) | AC T}

Whether a deadlock actually occurs can only be determined at binding, because
the necessary information about the other processes will then be available. When
P; is analyzed in isolation, the only information that can be stored is that a situation
e(A) is possible, in which at least one of the communications in A is necessary in or-
der to resolve the deadlock. Now the most important definition of this section follows:

DENOT ¥ P(3; x H;) — P(3; x H;)
and
F :<process>— DENOT

The intended meaning of this definition is as follows. F maps a process to a function
from the powerset of a set of pairs to the powerset of the same set of pairs. This
function, which is the meaning of a process, maps an initial state oy and an initial
history ko to a final state and history. Intuitively, for oo € S;, o € S;, ho € H; we
have

(o, ke + +h1) € F[P; :: commandi)({(o0, ko)})

24

if the following holds. Starting with an initial state oo and a given initial his-
tory ho, a computation leads to a state o while communicating ;. These additional
communications of the computation are appended to ho. The initial history hg
can be thought of as being empty if P; is the entire process, but is not necessarily
empty if P; is preceded by another program fragment which produced ho, e.g. in
case of sequential composition. For a state 0, 0 € S; holds if the computation
reached a termination point. If the computation did not reach a termination point
(in case of an incomplete or partial computation), then o = L. Furthermore, if the
computation led to a situation in which P; is expecting at least one of the commu-
nications ci,...,c; then 0 = e({c1,...,c}). In this case (L, ho + +h) € F[P; =:
commandi](o, ho) for some h;. Note that the computation is independent of kg,
the “past”. For gq € S; — S;, i.e. , 09 € {L} U E;, the following always holds:

F[F: :: commandi)({(c0, ho)}) = {(00, ko)},

independently of P;. For V CS5; x H;:
F[P; :: commandi}(V) = U, pyev FIP; : commandi]({(e,h)}).

In words, a function in DENOT acts on non-singleton sets by taking the union
over all elements of the argument. Hence, F[P; :: commandi] is totally distributive.

In addition to all possible convergent computations, the semantics for P; includes
all initial subcomputations of convergent computations. Many of these computations
will appear to be unrealizable, because the environment cannot respond with the
right communications. Because in the result sets elements of the form (L, k) are
present (the initial subcomputations), the only way to decide whether there exists
a divergent computation is to observe chains of A’s of unbounded length.

P(S; x H;) is partially ordered by subset inclusion C. The minimal element is @
and not L, which will be introduced by the semantic equations to denote incomplete
computations. This certainly is a complete lattice.

4.2 The semantic equations

As a notational convention we write F[t](o, k) for F[P; :: t |({(o,k)}). Since for
every o € S; — §; F[t])(o,h) = {(o,)}, F[t] applied to {(c,)} will only be defined
for 0 € S;, h € H;. F[t] for arbitrary subsets of S; x H; is defined by distributivity.

(1) skip

Fskip)(a, k) = {(L, k), (o, h+ +[6])}

25

The first element in the result set denotes the partial computation up to the point
before the instruction. This element will appear in the semantics of all other in-
structions and commands. The second element in the result set represents the state
and history upon completion of the computation by skip: o is unchanged, and h is
extended by §, thus recording a noncommunicating computation step.

(2) assignment
F[:I: = E](U, h) = {(-L’ h), (U[E,/:I:], h + +[6])}

In the second element, o[F,/z] is defined as in section 2.1, where E, denotes the
value of expression £ when evaluated in state o. It is assumed that E, is well-

defined if o # L.

(3) output
F[P;\E](o, k) = {(L,h), (e({p;!}), h), (o, h + +[(P;, P}, E,)])}

Here the set of results includes the possibility e({p;'-!}), which records the possi-
bility of a deadlock at this instruction: a situation in which process P (recall that
P;!E occurs in process P; by convention) is waiting indefinitely for process P; to
accept an output from it. The last element denotes the possibility of a successful
communication: (P;, P;, E,), which means that the value E, is communicated from
F,; to P, is appended to the communication history.

(4) input
F(P;?z)(o,h) = {(L, h), (e({r;}), k)} U {(o]d/s), h + +[(P;, P;, d)]) | d € D}

The second element of the first set is similar to the case as discussed for output. The
second set is a set of results corresponding to all input values d € D which may pos-
sibly be communicated from process P; to process P;. For each input d, the resulting
pair consists of the modified state, in which d is assigned to z, and a new com-

munication history, which is obtained by appending the appropriate communication
record to h.

26

The part of the result set which constitutes the successful communications will
be defined by the following. This definition will be convenient in the sequel.

Suc[P;!E)(o, k) = {(o,k + +[(B;, P}, E,)])}
Suc[P;?z](o, k) = {(cld/z], h + +[(P;, P;,d)]]) | d € D},

Suc can be extended to P(S; x H;) in the usual way. Suc does not apply to every
program fragment. It applies to communication instructions only.

(5) sequential composition

F[command1l;command2](e, k) = F[command2](F[command1](c, h))

Note that any intermediate result (o’, k') with o’ € {1} U E; and generated in
‘commandl is preserved by F[command2] and is element of the result set of com-
mandl;command?2.

(6) selection with all guards purely boolean

Every selection statement with all guards purely boolean has the form

SEL1 = [b) — commandl0 ... b, — commandm)]. For a given state ¢ we define
L, to be the set of all [€ {1,...,m} such that (b)), = true. It is assumed that
bi,...,bm are well defined when o # 1.

Then F[SEL1])(o,h) = {(L,h)}
UUier, F[commandl](c, k + +[6])
U if L, = 0 then {(e(9),h)} else 0

The second part of this definition selects all (boolean) guards which are true
when evaluated in o, records this test as a noncommunicating computation step by
appending ¢ to the history, applies the meaning of the corresponding command to
the state and updated history and adds the result of this application to the result
set of the selection statement. The third part of the definition handles the case of no
true guards. In this case (¢(P),) is generated. Recall that e(0) is to be interpreted
as an established deadlock or an abortion. The latter of these applies, because a
selection statement should abort if all guards in it are false.

(7) selection with all guards containing a communication
Every selection with all guards containing a communication has the form

27

SEL2 = [b;¢; — commandlO ... Obm;cm — commandm]. If a b is absent, it is
taken as true by default.

F{SELZ](O" h) = {(-!-’ h)}
Uz, Fleommandl(Suclerl(e, h + +[4])
U {(e({c |1 € Ls}), h)}

where ¢ is defined by:

i _ | pi! if ¢ has the form P}!E
%=\ 7 if ¢ has the form P;?z

The second part is similar to the case discussed in (6), except for the effect of
the communications. In this part of the definition a successful communication is as-
sumed. Recall that the semantics of P; includes all possible computations, regardless
of which of them will later appear to be unrealizable. The third part denotes the
possibility of a deadlock. Because every guard contains a communication, the pos-
sibility of a deadlock at this selection statement is present if all processes addressed
by communication parts of which the corresponding boolean parts are true, fail to
communicate with P;. Therefore an expecting state containing the communications
that have the corresponding boolean parts true, is added to the result. Note that

if there is no true boolean then again (e(8), h) is generated, which should be inter-
preted as an abortion.

(8) iteration

Let C have the form of either SEL1 or SEL2. The semantics of iteration is given
by the least fixed point of the following equation.

F[xC](o,h) = {(L,h)}u
if 2(b1)o Ao A (b))
then {(o,h + +[8])}
else F[xC|(F[C](e,}))

This definition applies to both types of iteration statement. It states that the
computation only halts if all boolean parts of the guards are false. An extra § for
the test is recorded when all guards are false. When some guard is true, the extra
0 is recorded within the evaluation of the selection statement.

28

(9) parallel composition

First we give a number of relevant definitions:

o The set of combinations of proper states of two processes P; and P; is defined
by S; x Sj = {(0‘,’,0']') I 0 € S; A o; € SJ}

o The entire state space of the combination of two processes P; and P, is defined
by Sij = (8i x §;) U {L} U E;;, where the combined space E;; of expectation
states contains states of the form e(...pf...) where k = i or k = j, but
excludes elements of the form p or p].

* The combined history space is defined by H;; = Ij;, where Z;; = (Z;AZ;) U
{6}, i.e. a symmetric difference: all communications involving either P; or P;,
but not communications between P; and P;. These will be converted to § since
they are internal to parallel computations of P; and P;.

In order to define the semantics of parallel composition a function M :<program>—
(P(8i; x Hij) - P(Si; x H;;)) is introduced, which assigns meanings to CSP-W
programs. M uses the semantics of the individual processes given by F. In this way,
compositionality is achieved. We consider two cases.

1. ForaES;ija.ndhEH.-j:

M[|[P; :: commandi || P; :: commandj]| |(e, k) =

{(0‘; X ajh+ +h') I h € M,‘j(h,‘,h,‘) A
(0iy hi) € F[|[P: :: commandi]| |(mi(), []) A
(95, k;) € F[|[P; :: commandj]| J(x;(o), [])}

where

e m;(c) is the projection of o on the variables local to process P, (the set
of values assigned to this variables in ¢). Thus, 7;(0) € S;, 7;(¢) € S;.

® M;;(hi, hj) is a particular kind of merge of h; and h; defined by:
M;;(hi, h;) =

if h; = h; = [] then {[]} else 0

Uifh;=[r]+ +hiA(r=6VreX — X;) then r - M;;(hl, h;) else §
U if h; [’I‘] + +h;- A (r =6Vrel — 2.’) then r - M,'j(h,', h;) else 0
Uif hy =[r] + +hl Ak =[r] + -I-h_"- then 6 - M;;(h, 1) else 0

7

where z - y denotes the set of elements which results from appending
z to every element of the set y. (z-0 = 0)

29

o the cross product o; x o; € S;; of twostates o; € S;, 0, € T, is defined by:

o X 0; =

ifo;=1Vo; =1 then L else
if 0; = e(A) A oj € S; then e(A — II;) else
if 0; € S; A o; = e(B) then e(B — II;) else
if 0; = e(A)Ag; = e(B) then
if AN Dual(B) # 0 then 1
else e(AU B —II; — II;)
else if 0; € S; A o € S; then (04, 0;)

2. For o € 5;; — S; x S; the usual rule holds:

M{[|[P; :: commandi || P; :: commandj]| }(e, k) = {(o, h)}

Before we explain the entire definition of M, we explain the components merge
of histories and cross product of states. The merge M;; of the sequences h; and
h; produced by P; and P;, respectively, contains all the communications that P;
and P; had in h; and h; with the external world, but none of the communications
between each other. While forming the merge, it is checked that the communica-
tions between P; and P; match: similar records have to occur in both sequences
and are both replaced by one new §, because inter-communications have become
internal to the combination of the processes and are regarded as noncommunicating
computation steps.

Note that a merge is successful only if with each (P;, P}, d) in h; there corresponds
a (P;, Pj,d) in h; and vice versa. If a merge is not successful then it results in
an empty set. For instance, M;;([(P;, Pj,d)],[]) = 0. In this example one of the
processes, say F;, wishes to communicate with P;, but P; does not respond. Finally,
all 8’s from h; and h; occur in the merge.

The cross product o; X o; of two states defines the combined state resulting from
P; reaching state o; and P; reaching o;. If either o; or o; denotes an incomplete
computation, then the combined state is undefined. If o; = e(A), i.e., P; is in an
expecting state, and o; € Sj, i.e. , P; has terminated, then the resulting state is still
expecting. From its expectation set all expectations from P; are deleted, since P;
will never realize them. This may result in an e(@) state: an established deadlock.
The case of 0; = ¢(B) and o; € S; is symmetric. If o; = ¢(A) and o; = e(B), i.e.,
both are expecting, then there are two cases. If A N Dual(B) # 0 then there exist
communications p;'-! € A and its dual p!? € B. If this is the case, then both P,
and P; can resolve the deadlock: both have a ready communication partner in each
other. All that we can say is that there exist some incomplete computations which

30

bring us to these situations in the respective processes. Consequently, the resulting
state is 1. Otherwise, P; and P; need help in the resolution of the deadlock. For this
purpose a unified expecting state is formed consisting of all external expectations of
either F; or P;: (AU B — II; - II;). If both P; and P; have converged and reached
proper final states o; € S; and o; € S;, then the resulting state is the combination
(0i,0;) meaning the combined values of the variable sets corresponding to P; and
P;, respectively.

The semantics of parallel composition is now defined as follows: the executions
of the parallel composition of P; and P; are obtained by coupling the matching
individual executions of P; and P;. Coupling consists of forming the merge of the
communication sequences of the computations produced by P; and P; and of forming
the cross product of the states.

The resulting semantics of the parallel composition can be interpreted as before:
for an argument (g, []) it contains a set of pairs (o, h), where o denotes a final state,
an incompleteness state or an expectation state and h a communication history for
getting to this state. Note that h may contain either § steps or communications
with the external world of either P; or P; .

We are now in a position to consider the semantics of a complete CSP-W program
P that has no communication with any process outside the program. The meaning
of P = |[P :: commandl|| ... || P, :: commandn]| can be found by successive
application of the binary binding operator. The order in which this happens is
irrelevant, because it can be proved that the binary composition is associative and
commutative.

Let o9 € S be an initial state. The set M[P](0,[]) C S x §* represents all pos-
sible computations in P. It can be interpreted as described in the following summary.

The program has a divergent computation iff, for every n > 0,

(L,8") € M[P)(oo,[])
The program has a convergent computation resulting in a state ¢ € S iff there
exists a n > 0 such that

(0’, 5n) € M[P](UO’ [])
The program can reach a deadlock (no process can proceed but not all processes
have terminated) or is aborted iff there exists a n > 0 such that

(e(9),6") € M[P](00,[])

31

4.3 Remarks and extensions

One of the advantages of this approach over the three other semantics of CSP-
W presented in this report (cf. chapters 3, 5, 6) is the fact that subset ordering
is adequate for the semantic analysis and that no power domain construction is
necessary.

The proof that the relevant functions (e.g. the one defined by the least fixed point
equation for iteration) are continuous is evident since the ordering relation is that of
subset inclusion. Furthermore, the proof that the binary binding is associative and
commutative is straightforward, but rather tedious because it requires an exhaustive
consideration of many cases.

Now consider the features of CSP which are absent in CSP-W. The linear history
semantics can model mixed guards, see [FLP]. Nested concurrency can be modeled
by the linear history semantics because of the uniformity of the a priori semantics
of a process and the semantics of the parallel composition of several processes.
A parallel composition could be combined with other processes as though it were
a single process. This allows for the treatment of nested concurrency, in which
one process contains a parallel composition of several other processes, in a most
natural way. Problems arising from naming conventions, made necessary by nested
concurrency, are also elegantly solved by linear history semantics, see [FLP].

Francez, Lehmann and Pnueli claim that a “reasonable” extension to the model
can be made which will accommodate the distributed termination convention. In
other words, the linear history semantics presented for CSP-W must be extended in
order to deal with the distributed termination convention.

32

Chapter 5

An alternative linear history
semantics for CSP-W

In this chapter an alternative linear history semantics is given for CSP-W: it is
based on the same notions of local states and communication histories as presented
in chapter 4, but it differs in the way these ideas are elaborated. The definitions of
the domains, the orderings and denotations for several constructs differ considerably
and sometimes are completely different. Moreover, the meaning of an entire CSP-
W program will be a mapping from the set of combined states of the individual
processes to the powerset of the union of these combined states and {L,d}, where
L denotes an infinite loop, and d the fail state.

Essentially, information that was available in the expectation sets of the previous
chapter will now be stored in the communication histories. In this chapter a seman-
tics of CSP-W will be given based on this alternative approach of Soundararajan

[Sound].
5.1 Definitions and domains
Let S; be the set of local states in which the abort state a; is included. St is the

usual flat domain. Again, 1 denotes nontermination, which is treated differently
from abortion. ¥;, the set of possible communications of P;, is defined as follows:

% ={(B,P;,d,T)|j #iAT CO;Ade D} U
{(P;, P;,d,T) | j #iAT C O; Ad € D}

where O; = {(P, Py) | ' #i AJ' £ 5} U{(P, P) | 7' #)
and O} = {(P,, Py) | j' # i} U{(Py,) | ' # i A5 #)

The two types of records of communication correspond to output and input in-
structions, respectively. If an output or input instruction does not occur in a guard

33

of a selection or iteration statement, then T' = @ and the records of communication
are similar to those of chapter 4.

Now consider the case of an output instruction which occurs within a guard of a
selection or iteration statement. Records of communication corresponding to such
output instructions have the form (P;, P;,d,T) denoting not only that the value d
was communicated from P; to P;, but also that there were other options available
to FP; at this point. T is the set of other options. An element (Pj:, P;) in T indicates
that instead of outputting to P;, P; could have input from Pj:. Similarly, an element
(P, Py) in T indicates that P; could have output to Pj instead of to P;. The
records of communication corresponding to input instructions within a guard are
quite similar to those for output instructions within a guard. This motivates the
definition of %;.

H; is the domain of communication sequences of P;. This domain is rather
complex, because of the complexity of ¥;: H; = £ U X°, where X} is the set of all
finite sequences of elements of ; and £¢° the set of all infinite sequences of elements
of ¥;. The ordering on H; is the initial subsequence order: h; C h} iff h; is an initial
subsequence of k{. The empty sequence € (or []) is the least element of H;.

Now consider the domain Si* x H;. Here, the Cartesian product notation is used
despite the fact that S} x H; does not include all elements which have the form
(0i, ;). The precise definition of the domain is as follows:

S;L X H; = {(0‘;,h5)!0’,’€ S;"/\h;EEf}U{(.L,h;) | h; EE?"}

Thus, a proper state in S; cannot be paired with an infinite communication sequence.
The reason for this is that if P; has an infinitely long communication sequence then
its state must be L, because such a sequence can only be the result of a nontermi-
nating loop. Note that (L, h;), where h; is a finite sequence, is a perfectly reasonable
combination of a state and communication history.

This ‘almost’ Cartesian product of Si* and H; has an ordering different from the
usual ordering on Cartesian product domains. The ordering is defined by:

(oi, hi) E (o, b)) iff (oi = 0} ARy = RY)V (0 = L AR; C hY)
Now, all ingredients are available for the following, crucial definition:

DENOT ¥ P,(S} x H;) — P,(S* x H;) and
F :<process>— DENOT,

where P, denotes the ‘almost’ powerset (see below).
The order on the domain P,(Si x H;) is the Egli-Milner order. For X,X’' €
P,(S;L X H;):

X CX'iff (Vz € X3¢’ € X'(z C o)) A (Vo' € X'3z € X(2 T o))

34

P,(S{* x H;) denotes the set of elements X of the usual powerset P(Si+ x H;) for
which the following conditions hold:

(a) X isconvex,ie.z2CyCzAz€EXAze€X>yeX

(b) X is complete, i.e. if X is an infinite set and there exists z;, z,,... and 2}, z},. ..
such that for all j : ; C 241 A 2; € 2 A 2} € X then lub {z;,2,,...} € X

The first condition is rather artificial: the only reason for imposing this condition is
that it simplifies the theory considerably, e.g. lub’s of chains of elements of P,(S# x
H;) are unique. An unpleasant side effect of this condition is that some individual
processes will have slightly unnatural denotations. Fortunately, the denotations of
complete CSP-W programs are unaffected by the convexity requirement.

Essentially, the second condition states that if a process can communicate an
arbitrary number of times then it also can communicate forever. The reason for
imposing this condition is that it ensures the continuity of the functionals needed
in the definition of iterations.

Finally, two operators are defined, which will be used in the definition of the
selection and iteration statements. The first is the convex closure operator C;:
P(Sit x H;) = P(S# x H;), defined for any X C S+ x H;:

GlX]={y|IreX,2€ X (CyC2)}

The completeness closure operator C, with the same functionality is defined for
any X C S} x H;:

Cao[X] = X U {z [321,22,...,2],2,...(Vi(2; C zj1 Az; T 2iA
i € X)) Az =lub{zy,2,,...}) }

5.2 The semantic equations

All denotations f which are a result of F, will satisfy the following conditions:
(a) X=0= f(X) =90

(b) f(Ci[X1U X3]) = Ci[f(X1) U (X)) for all Xy, X, € P,(S#t x Hy).

(¢) ¥(o,k) € X 3(o", k") € F(X)(h C A"

(d) Y(o', ") € f(X) 3o, h) € X(h T A')

where (c) and (d) hold for all X € P,(St x H;).

As a notational convention we will write F(t](o, k) for F[P; :: t]}({(o,k)}). Since

35

F)(L, ki) = {(L,)} and F(t](a;, ki) = {(ai, h:)} and F[t}(X) = Ui nyex Fltl(o, k)
for ¢ being skip, assignment, an input or output instruction, we only need to define
F[t] applied to {(o,h)} for such ¢, where (0,h) € S+ x H;, 0 # L and o # a;. For
the other constructs ¢ this is not the case.

(1) skip
F(skip}(a, k) = {(o, h)}
(2) assignment
Flz := E(o,k) = {(0[E,/z], h)}

where E, is defined as in section 4.2 .

(3) output
F[P{\E)(o,h) = {(o,h + +[(B;, P}, E,, 0)))}

Recall that the fourth component of a record of communication is the set of other
options open to P; at this point. In this case it is the empty set, since P; has no
other options at this point.

(4) input
F(P;?z](o, h) = {(o[d/z), h + +[(P;, P.,d,0)]) | d € D}
(5) sequential composition
Flcommand1;command?](X) = F[command2)(F[command1]}(X))

(6) selection with all guards purely boolean

36

Every selection statement with all guards purely boolean has the form
SEL! = [by — commandl(... Ob, — commandm|. The semantics of SEL1 is
given by:

FISEL1)(X) = C1[X° U £i(Ca[X) U.... U fm(Ca[X™]) U Ca[X™]]

where
o X0={(o,h)|(0,h) e XA(0 =1L Vo=a,)}
¢ X/ ={(a,h)|(o,h)eEXAo# LAd#aA(})e},1<j<m

o X™1 = {(a;,h')|3(o,h) € X(6# LA #a; A
B =hA-(b)eA...A(bn)s)}

¢ f; = F[commandj],1 < j <m.

It is assumed that by,...,b,, are well-defined when ¢ # 1 and o # a;. X° contains
those pairs from X of which the state is L or a;. X7 contains those pairs from X
for which the j’th guard evaluates to true when evaluated in the state component
of such a pair. To X7 the denotation of commandj is applied. X™*+! contains the
pairs from X for which all guards evaluate to false. The state component of such a
pair is replaced by a;, which denotes an abortion.

(7) selection with all guards containing a communication

Every selection statement with all guards containing a communication has the form
SEL2 = [by;¢; — commandl10 ... Oby; cm — commandm]. If the boolean part
of a guard is absent, then it is taken as true by default. The semantics of SEL?2 is
given by:

FISEL2)(X) = C1[X° U f1(g1(CalX™])) U ... U frn(gm(C2[X™])) U Co[X™+1]]

where X°, X7 (1 < j <m), X™*, f; are defined as in (6).

Note that the definition of X™+! implies that an abortion occurs when the boolean
parts of all guards evaluate to false. The only difference with (6) consists of the
extra g;’s, which capture the effect of the communications in the guards. The def-
inition of g; depends on whether the j’th guard has an input or output instruction

37

as communication part. If the j’th guard has the form b;; P! E then
gi(o,h) = {(o,h + +[(P;, Pe, E5, T)))}

where T is the set of other options (communications in other guards, whose cor-
responding boolean parts are true):

T = {(P,Pe) | W <m(€OGA(b)s ACP(I) =K AK #k)} U
{(Pw,P) | 3 <m(l € IGA (b))s A CP(l) = ')}

where OG, IG are the sets of indices of the output and input guards, respectively.
CP(l) is the communication partner of P; in the I’th guard, i.e. CP(l) = k if the
I’th guard is by; Pe!E or by; P?z. If the j’th guard has the form b;; P?z then

9i(o,h) = {(old/z],h + +[(P, P, d,T)]) | d € D}

where T'= {(P;, P) | Al < m(l € OG A (b)) ACP(l)=k')} U
{(Pe, PY| A <m(e IGA (L) ACP() =K ANK #£k)}

(8) iteration

Let C be either SEL1 or SEL2. The semantics of the iteration statement *C
is the least fixed point of the following equation:

F+C)(X) = G1[X° U F+C|(Y}) U ... U FxC)(Y™) U Y™H]

where

e X0 is defined as in (6).

Yi = £;(g;(Ca[X])), 1 <j <mif Cis SEL2.

Y = f;(Co[X7]), 1<j<mif Cis SELI.

f;,9; and X7 are defined as in (6) and (7).

Y™t = Cy[{(o,h) | (0,h) E X Ao # L Ao # aiN
“(b1)e Ao A (bm)o }]

38

Note that the iteration only halts if the boolean parts of all guards are false. (Recall
that F[*C](@) = 0.) This is true for both types of iteration statement.

(9) parallel composition

The function M, defined below, assigns meanings to CSP-W programs. The mean-
ing of an entire CSP-W program is a function from the set of initial states, i.e. ,
the set of combined states of all processes, to the powerset of the union of these
combined states and {L,d}:

M :<program>— (Sy X ...x S; — P(ST x...x S; u{l,d}))
where S;7 = S; — {a;} (N.B. L € S,).

For a given initial state (01,...,0,), M yields the set of possible final states of
the program. If the program can go into an infinite loop, either because (one or
more) individual processes go into an infinite loop or because of infinite chattering,
L will be one of the elements in the set of final states. If the program can reach a
deadlock or if one (or more) of its processes aborts, the fail state d will be one of the
elements in the set of final states. M uses the semantics of the individual processes
given by F'. In this way, induction on the syntax is performed and compositionality
is achieved. The meaning of a program is defined by:

M{[|[P, :: commandl]| ... || P, :: commandu)| |(oy,...,0,) =
B(F[P, :: command1]({(e1,[])}),..., F[Pa :: commandn]({(on,[])}))

where B is the n-ary binding operator defined by
B(X1,...,Xn) =Y1UY,UY; (where X; € P,(.S'jl x H;), 1 <j<n).

Now the definitions of Y;, Y, and Y; follow, together with their intuitions.

Yi={(o1,...,00) |01 €EST A... A0 € S7A
Jhy, ..., ha(Vi((03, hi) € X;) A compat(hy,...,hs))}

where compat(hs, ..., k) = 3h(h € C* AVi(h/i = trim(h;)))
where
o C={(PyPyd)|i#jA1<4j <nAde D)

e h/i is the sequence obtained from h by omitting all elements except those of
the form (P;, P;,d) and (P;, P;, d).

e trim(h;) is the sequence obtained by dropping the fourth component of each
element of h;.

39

Y1 corresponds to a situation in which each process terminates properly, and the
communications as recorded in each of the sequences are compatible with the com-
munications in the other sequences. This is enforced in a subtle way. If the sequence
h exists, then it is a merge of hy,...,h,, such that a record of communication is
an element of h iff it is a member of the histories of both communication partners

involved (and of course, two records of communication in k; appear in the same
order in h).

Y2 ={d|3oy1,...,00,k1,..., ha(Vi < n((0i, ki) € Xi)A
Fi(oi = a; ARy, ... iy, hiyy, .o, BL(YS # (RS T hj)A
compat(h’l, tet 2-11 hia h:‘+17 MR h:;))))} U
{d|301,...,00, k1, .., ha(Vi < n((o, i) € Xi)A
3k, ..., AL (Vi < n(hi T hi)A compat(h), ...,k)A
incompat(hy,...,h")))}

where

o h} = drop(hj, h;) (where drop is defined as in section 3.2, h! is the sequence
obtained from h; by dropping the initial subsequence A} from it).

e incompat(hy,...,h) = Fi < n(h! # A
Vi,j <n((F#£JA R 21 AR 21) -
options(hY) N options(hY) = 0)

where

e [{(PyP)}UT if first(h) = (P, Py, d,T)
options(h{) = { {(PAP)IUT it fiest(k) = (P;, Brd, T)

— |A¥| is the lenght of AY.
— first(hY) is defined as in section 3.2

The first part of Y, corresponds to the situation in which one of the processes
aborts. The condition for this case is that at the moment the abortion occurred,
the communication sequences produced at that moment were compatible. This
condition is imposed, because it is possible that one of the processes aborts after
an unrealizable computation. Such an abortion is not an abortion of the entire
program.

The second part of ¥, corresponds to the situation in which the program cannot
continue, because several processes are attempting mutually incompatible commu-
nications. This includes the situation in which a process attempts a communication,
but its partner has already terminated and the program cannot make progress else-
where. In these situations the program reaches a deadlock.

40

Ya={Ll|3o1,...,0n,h1,..., ha(Vi < n((i, hi) € X;)A
3i(o; = LA
(hs € 55— Iy ..., Ry, Kgny. B (Vi # (B S BN
compat(Rfy- - -, K-y hgy iy - BL)))A
hi € B° = Vm3RY, ... By, Bepe, .. (Vi A G (B T R
Compa‘t(hll, A h_,j-—la |hj|m, h_’1'+1’ et h::)))
)}

where |h;|m is defined as in section 3.2.

Y3 corresponds to the case of an infinite loop. The part of Y3 following k; € 3
corresponds to the situation in which process P; goes into an infinite loop after go-
ing through a finite number of communications. The part of Y3 following h; € I
corresponds to the situation in which the infinite loop is due to infinite chattering.

This completes the definition of B (and hence the definition of the meaning of a
program).

5.3 Remarks and extensions

Proofs of continuity and monotonicity of the relevant functionals and functions,
proofs of properties (a), (b), (c), (d) of section 5.2 and the fixed point theory used
here can be found in [Sound]. In his paper, Soundararajan developed the domain
theory corresponding to the ‘almost’ powerset P,(S{+ x H;) from scratch. The result
is somewhat like the powerdomains of [Plotkin], except that these powerdomains are
much more general and complex; they include “recursive powerdomains”. Because
such complex domains are not needed here, Soundararajan preferred to develop his
own theory instead of using Plotkin’s powerdomain constructor.

Now consider the features of CSP which are absent in CSP-W. The model of
Soundararajan is perfectly able to deal with mixed guards, see [Sound]. In its present
form, the alternative linear history semantics of Soundararajan seems to be unable
to deal with nested concurrency. The problem is that the meaning of a parallel
composition is essentially different from the meaning of an individual process, in
particular other domains are involved.

The alternative linear history semantics is able of modeling the distributed ter-
mination convention, see [Sound]. However, in Soundararajan’s model of CSP-S,
the selection statement is not interpreted as obeying the distributed termination
convention: the selection statement does not abort if all communication partners
implied by a communication in a guard with true boolean part have terminated
(and at the same time there is no true, purely boolean guard), as it should with
our definition of the distributed termination convention. The selection of CSP-S
only aborts if the boolean parts of all guards are false, which only is correct if the
language does not feature the distributed termination convention. Fortunately, it is

41

rather straightforward to repair this unfelicity in the definition of the selection in
CSP-S.

In the model for CSP-W presented in this chapter, the communications between
processes are hidden, since they are internal to the entire program. The communi-
cations are not internal to the individual processes and therefore it was reasonable
to include the communication sequence of a process in the a priori semantics of this
process. Note the difference between the internalization in this chapter and the one
in chapter 4. In chapter 4, cornmunications were made internal by replacing them by
6. As a result, sequences of empty communications were included in the semantics
of a program (the length of these sequences could be interpreted as the number of
steps in a computation).

Now, a serious drawback of the alternative linear history semantics is discussed.
The elements of P,(Si* x H;) are required to be convex. This results in identical
denotations for the following processes:

F; :: [true — skipOtrue — P;!5; P;!5]; *[true — skip]
P; :: [true — skipOtrue — P;!500true — P;!5; P;!5]; *[true — skip]

This is rather undesirable, since it is obvious that these processes are distinct and
therefore should have distinct semantics. Soundararajan claims that it is possible
to develop a more complex theory without imposing the requirement of convexity.
Unfortunately, even such a theory has similar problems in more complex situa-
tions; for an example of such a situation, see [Sound]. For such complex situations,
Soundararajan believes that major changes have to be made if the processes are to
have distinct semantics in such situations.

The result of imposing the requirement of completeness is less severe: it seems
to make it impossible to define a “fair” semantics using the present approach. For
a discussion of this subject, see [Sound].

42

Chapter 6

A synchronization tree semantics

for CSP-W

In this chapter a denotational semantics for CSP-W is given based on the idea of
synchronization trees. In this model the possible computations of a process are
recorded in trees: if a process has different possibilities for continuing the compu-
tation then these possibilities will be expressed as different branches of a tree. This
leads to the construction of a semantic domain of synchronization (or history) trees.
The histories in question are histories of communication, i.e. , traces of records of
communication. At binding, the a priori meanings of processes will be composed to

a combined meaning of the entire program. These ideas of Francez, Hoare, Lehmann
and de Roever [FHLdeR] will be applied to CSP-W.

6.1 Definitions and domains

A record of communication (roc) is a triple (P;, P;,d), where d € D. The intended
meaning of this triple is as usual: a message d passed from P; to P;. The set of
all possible records of communication with source P; and destination P; is defined
by 2! = {(P,Pj,d) | d € D}, 1 < #,j < n, where ¢ # j and &} = §. The set of
indices of processes which are different from P; is defined by I'; = {1,...,n} — {i}.
The set of all possible rocs with source F; is defined by X; = Ujer, 2{ . Similarly,
the set of all possible rocs with destination P; is defined by &9 = Uier, 2{ . S; is
the set of states of P;, which includes fail: a special state which denotes a failing
computation.

Now, the complete partial order (cpo) T; (the domain of synchronization trees
corresponding to F;) is defined as the least solution (in the category of cpo’s) of a
domain equation. Readers unfamiliar with the technicalities of this kind of equa-
tions could consult [Stoy], [SM].

Ti=(Su(UBi-THu(UEIxT)u(ixT)ruTH), (6.1)
jer; Jery
where

43

X7 is the domain of finite, nonempty sequences over X — { L}, with
the following ordering: there is no bottom element, sequences of different
length are not comparable and sequences of the same length are ordered
coordinatewise by the ordering inherited from X (when defining X+
formally, partially undefined and infinite objects should be avoided, see
[LS]).

A} is obtained from a partially ordered set A by adding a new bottom
element to A.

U denotes the disjoint union of partially ordered sets (no bottom
element is added). This union is associative. An element of X;UX,U X3
is either in Xj or in X, or in X3 and hence corresponds to three cases.

If Ais aset and B a cpo then [A — B] is the cpo of all total functions
from A to B with the obvious ordering.

x denotes Cartesian product.

The intuition corresponding to the rather complex definition of the domain Tj is as
follows. By 6.1, a synchronization tree in T} is either bottom or a member of one of
five summands. The solution to equation 6.1 can be thought of as the domain of all
finite and infinite trees which have the following nodes:

()

leaves: these are labeled by elements of S; U {_L} and have no outgoing arcs.

(ii) input nodes: these have a number of outgoing arcs, each labeled by a record of

communication from . The number of arcs may be infinite, because infinitely
many input values may be possible.

(iii) output nodes: these have one outgoing arc, labeled by a roc from ;. This roc

(iv)

(v)

corresponds to the output value.

global nodes: these have a finite, positive number of outgoing arcs, each la-
beled by an element from I';. A label denotes a target process, because a
global node signals willingness to communicate (either to input or to output)
in a situation in which a process has a global choice to communicate with a
number of target processes. In a global choice, the choice depends on the envi-
ronment of the process containing the selection or iteration statement as well.
The communication partners are inspected with respect to their willingness to
communicate. The number of arcs is finite, because in CSP-W the number of
target processes involved in a global choice is finite.

local nodes: these have a finite, positive number of unlabeled arcs. Like
global nodes correspond to global nondeterminism, local nodes correspond
to local nondeterminism. In a local choice, a process can decide on its own
which alternative to choose. A process may choose between a number of
independent alternatives, each of which will be recorded in one of the subtrees
corresponding to the outgoing arcs of the local node. Because in CSP-W the
number of alternatives in a local choice is finite, the number of outgoing arcs
is finite.

44

Note that the five different kinds of node described by (i)-(v), correspond to the
five summands in 6.1 . Equation 6.1 induces the following ordering on T; (see [LS],

[Stoy]):

treel C tree2 iff tree2 may be obtained from treel by replacing some L-labeled
leaf by some tree’ € T;.

Note that the smallest element in this ordering is L. By is, ¢ I', z'é,, tg and 1L
we denote the m_]ectlons from the components to their correspondmg copies in Tj,
cf. [SS]. Thus, é5 : S; = T, 4} :[E} — Ti] — T;, etc. In fact, i} denotes the com-
position of two injections. The first injection maps a function in [Z% — Ti] onto an
element of the disjoint union J;{Z% — Ti]. The second injection maps this element
onto a synchronization tree. Now, the definition of DENOT follows.

DENOT ¥ §5; - T;, and
F :<process>— DENOT.

Intuitively, the meaning of a process is a mapping from an initial state to a synchro-
nization tree. F' is the function which assigns meanings to processes. The meaning
of an entire program will be a function in:

S1 X ... %X Sy = Pep((S1 % ... % Sp)U{L, fail,deadlock})

Using L, the occurrence of an infinite computation in any process P; can be recorded.
L denotes the ‘undefined’ n-tuple. In T}, L-nodes are used to describe approxima-
tions to other elements in T; and will appear in the approximations to the a priori
semantics of loops within P;. The state deadlock records the possibility of a deadlock
situation and the state fa:l records the possibility of an abortion in any process.

Pgp(D U {L}) denotes the collection C of all nonempty subsets V of D U {1}
satisfying: if V € C and V is infinite then L € V. The ordering on Pgys is the
following: for V4,V € Pey(D U {1})

ViC V; iff either L€ Vi and Vi, — {1} CVaor L&V and Vi = V4

Note that {_L} is the bottom element of Pgps. With this ordering Pgys is a complete
partial order, called the Egli-Milner order (see [Milner], [Plotkin}).

6.2 The semantic equations

As a notational convention we will write F[t](o) for F[P; :: t](o). We now define
F[t] for all sequential constructs ¢t of CSP-W.

(1) F[t}(fail) = is(fail) for all ¢.

45

In the sequel we assume that o # fail.
(2) skip
F[skip](0) = is(c)

The meaning of a skip statement, when applied to an input state, is a tree con-
sisting of a leaf, labeled by the input state.

(3) assignment

Flz := E)(0) = if V(E, 0) = fail then is(fazl)
else ig(o[V(E,0)/z])

V(E, o) is an auxiliary function, which computes the value of an expression F in
state 0. V(E, o) is defined to be fail when E is undefined. The meaning of the
assignment is a leaf with updated state. Hence, it does not create any new arcs.

(4) output

F[P;\E)(0) = i5((P, P}, VIE, 0]),is(0)))

Here it is assumed that the value of E is well-defined when evaluated in 0. We
obtain a tree with one output node, one outgoing arc labeled with the roc and a
leaf labeled by the unmodified state, which reflects that output has no side-effect.

At binding, the label of the arc will have to match the label of an input arc in the
tree corresponding to P;.

(5) input

F[Pj?z](0) = #}(Ar.is(o[r | 3/z]))

The meaning of an input instruction is a tree consisting of an input node with
possibly infinite outgoing arcs, each labeled by a possible input roc r. Each arc ends
in a leaf, labeled by an updated state. This update corresponds to the value in the
roc r of the arc. This records the side-effect of the input instruction. The value
component of r is denoted by r | 3.

(6) sequential composition

F[commandl;command2](s) = R[F[command1](¢), F[command2]]

where R : T; x [S; = T;] — T is defined by

46

R[tree, f] =

4 if tree=1

f(o) if tree = ig(0), for certain o € S;
, ; - 43

(. Blfun(r), 1) e

for certain fun € [E} — T
P (r Rlsubtree, 1)) if tree = 1% ((r, subtree)),

for certain (r, subtree) € £ x T;

i([(i, Rlsubtreel, f]), .., if tree = ig([(21, subtreel),.. ., (ix, subtreek))),

% for certain [(i;, subtreel),...,
(4, Rlsubtreek, f]))) (%k, subtreek)] € (T x T;)*
iL([R[subtreel, f],..., if tree = ig([subtreel, ..., subtreek]),
R[subtreek, f]]) for certain [subtreel,...,subtreek] € T

Rjtree, f] is the tree tree, in which each leaf labeled by o is replaced by the tree
f(o), where it is assumed that f(fail) = i¢s(fail). In the sequential composition
all possible computations of command2 can follow a possible, terminating compu-
tation of commandl. Thus, the meaning of command?2, i.e. , F[command?2], has
to be applied to all leaves of the intermediate tree produced by commandl, i.e. ,
Flcommand1](c). This is done by the replacement operator R.

The definition reflects that the operation of command2 depends on the final
state of commandl, in which it continues. R may be applied with F as an argu-
ment, because F[command1](fail) = ig(fail) holds by definition (see (1)). Hence,
the assumption about the argument f of R is satisfied. If commandl has a nonter-
minating computation, then F[command1l](c) will have an infinite path which is not
affected by R.

(7) selection with all guards purely boolean

Every selection with all guards purely boolean has the form

SELl = [by — commandl0]...O0b,, — commandm).

Let L, %&f {711 £j £mAV(bj,0) =true}. It is assumed that by,..., b, are well-
defined when evaluated in ¢. This will also be assumed in (8)-(10). The meaning of
SEL1 is defined by:

F[SEL1)(c) = if L, = § then i5(fail)
else i ([F[commandi,](o),. . ., F{commandi;](o)])

when L, = {41,...,i} (if L, = @ then k = 0).

If all guards are false, the computation is aborted and we obtain a tree consist-
ing of a leaf labeled by the fail state. Otherwise we obtain a tree with a local node

47

and k (> 1) outgoing, unlabeled arcs. The trees corresponding to the k¥ commands
of which the corresponding booleans are true, are attached to these k arcs. In this
way, local nondeterminism is recorded.

(8) selection with all guards containing a communication

Every selection with all guards containing a communication has the form
SEL2 = [by;¢; — commandlO... Obm;cn — commandm]. Let L, be defined as
in (7) and let CP be defined as in section 5.2 (7). Let L’ be the set of elements j
from L,, for which c; has the form Py!E. For elements j of L, EX PR(j) is defined
as the expression E within ;.

L7 is defined as the set of elements j from L,, for which ¢; has the form P?z. For
elements j from L}, VAR(j) is defined as the variable z within ¢;. Furthermore, if
a bj is absent then it is taken as true by default. The meaning of SEL2 is defined by:

F[SEL2|(0) =

if L, = 0 then i5(fail)

else ig([(CP(ir),i5" “(Ar.Flcommandis](alr | 3/VAR(i1)])),
.+, (CP(ix), i7" (Ar.F[commandig](o[r | 3/VAR(K)])),
(CP(51),ig") ((P Popgy, VIEXPR(j1), 0]), Fleommandji](0)))),
s (CP(G1),i6 W (((Piy Popiiy, VIEX PR(ji), 0]), Fleommandji)(c))))])

when L, = {j1,...,51} and L = {4y,..., %}

Note that in the else-part k and [may not both be zero. If the boolean parts
of all guards are false then the computation is aborted and we again obtain a tree
consisting of a leaf labeled by the fail state. Otherwise we obtain a tree consisting of
a global node with k+ I outgoing arcs. The trees corresponding to the kK commands,
of which the corresponding booleans are true and the corresponding communications
are input instructions, are attached to the k arcs. Each of these k trees corresponds
to a particular command and has an input node as a root. The subtrees below this
input node correspond to the possible input values of the input instruction: every
such subtree corresponds to the meaning of the (fixed) particular command applied
to the original state, in which the variable which is involved in the communication is
updated by a possible input value. The outgoing arcs of the input node are labeled
as in (5).

The trees corresponding to the ! commands of which the corresponding booleans
are true and the corresponding communications are output instructions, are attached
to the [arcs. All [trees consist of an output node with one outgoing arc labeled by
the roc corresponding to the output instruction, to which the subtree, which results
from the application of the meaning of the particular command to the unmodified
state, is attached. All k 4+ [arcs are labeled by the indices of the target processes,

48

implied by communications of which the corresponding booleans are true. In this
way, global nondeterminism is recorded.

(9) iteration with all guards purely boolean

Every iteration with all guards purely boolean has the form *SEL1. The mean-
ing of this iteration is given by the least fixed point of the following equation:

F[*SEL1)(c) =if L, = @ then ig(0)
else ir,([R[F|[commands)(o), F[«*SEL1]},
.+, R[F[commandi](o), F[*SEL1]]])

when L, = {i1,...,%}-

When all guards are false, the loop is exited. This is represented by a leaf in
the synchronization tree. (This leaf is labeled by a proper state.) Otherwise, a
local node is created and the alternatives of which the corresponding booleans are
true, are recorded. Every such alternative is followed by an execution of the whole
iteration. Recall that sequential composition is done by the replacement operator R.

(10) iteration with all guards containing a communication

Every iteration with all guards containing a communication has the form *SEL2.
Again, the meaning is given by the least fixed point of the following equation:

F[*xSEL2)(0) =

if L, = 0 then ig(o)
else ig([(CP(i1),i5 ") (Ar.R[F[commandi,](o[r | 3/V AR(,)]), F[*SEL2]])),
- (CP(ix), if P (Ar.R[F[commandi](o[r | 3/V AR(ir)]), F[*SEL2]])),
(CP(),io" M (((Ps, Popgi), VIEX PR(jy), o)),
R[F[commandji|(s), F[*SEL2]]))),
-+, (CP(t),ig" ™ ((Pi, Popgiy, VIEXPR(j), o)),
R[F[commandji)(s), F[*SEL2]])))])

when L = {j1,...,5i} and LY = {14,...,1}.

When the boolean parts of all guards are false, the loop is exited. Otherwise, a global
node is created and again the alternatives of which the corresponding booleans are
true are recorded together with the effect of the communication on the state. Every
alternative is followed by an execution of the entire iteration. The handling of input

49

and output guards is similar to (8).
(11) parallel composition

The meaning of an entire CSP-W program will be given by a function

M :<program>— (81 X ... X Sp — Pepm((S1 % ... X S,) U {L, fail,deadlock})).
M combines the a priori semantics of the individual processes given by F. For this
purpose, M uses an auxiliary binding function B. In this way, compositionality is
achieved. The computation of a program starts in state (o3y,...,0,) and may pro-
duce a set of n-tuples as final states. In this way, nondeterminism is represented.
The elements of {.L, fail,deadlock} were explained in section 6.1. The meaning of
a program is defined by:

M[|[P, :: commandl || ... || P, :: commandn]|]((c1,...,04)) =
B(F[P, :: commandl)(c,),...,F[P, :: commandn](o,))

where B : Ty X ... X T, = Peum((S1 % ... % S,)U{L, fail,deadlock}) is defined by:

B(treel,...,treen) =

1. if3(1<i<nAtreei=_L)then {L}else® U

2. if 3i(1 <i < n Atreei = is(fail)) then {fail} else @ U
3. {(o1,-..,00) | Vi(1 £t < n—treei =i5(0;))} U

4. iftreei = fun € i§([Z} — T}]) and
treek = ((Py, P;,d), subtree) € 15(Zi x Tx)
then B(treel,...,treei — 1, fun((Px, P;,d)),...,treek — 1, subtree, ..., treen)
elsed U

5. if treei = [treeil,..., treei™] € i (T})
then Uigjcm B(trees,.. . treei — 1,treei?, . .. treen)
elsed U

6. if treei = [(ky,treei?), ..., (km,treei™)]
then U;er, B(treel,..., treei — 1,treeis,... treej — 1,treej, ..., treen)
elsed U

7. if treei = [(k1,treei?),. .., (km,treei™)] and
treej = [(l1,treest),..., (I, treej")]
then U g)eL, B(treel,...,treei — 1,treet?,. .. treej — 1,treej?,... ,treen)
else) U

50

8. if “none of the other clauses are applicable”
then {deadlock}

else 0
where

o for all but the first clause it is assumed that Vi(1 < 1 < nAtree: # 1) and for
all but the first and the second clause it is assumed that Vi(1 < ¢ < nAtree: #

is(fail)).

L ¥1<i<mA
((trees? = fun € iy ([T, — T) A
treek; = ((Py;, Pi, d), subtree) € ip(Z}, x Ti,;)) V
(treei? = ((B;, Py, d), subtree’) € ig (5% x T)) A
treek; = fun’ € i([ZF — Ti,))))}

o L¥{(pq) hp=iAly=in
((trees® = fun € i3([Z% — Ti]) A
treej? = ((P;, P;, d), subtree) € ip(Z% x Tj)) V
(tree? = ((F;, Pj,d), subtree’) € i5(Z] x T;) A
treej? = fun’ € i§([Z] — T3])))}

Finally, the intuitive explanation of each clause in the definition of the binding op-
erator B follows:

1. This clause is needed for the continuity of B.

2. Once an abortion occurs in any process, it will be reflected in the value of B.
Recall from (1) that fail is preserved under the a priori semantics.

3. This clause corresponds to the case of successful termination of all processes,
each process reaches a final state o; € S;.

4. Here, the case of successful communication is handled: tree: contains an input
node (corresponding to input from P) and treek contains an output node (cor-
responding to output to P;). Then, tree: is replaced by the subtree indicated
by the input roc. This is done by applying treez, which is a function, to the
roc in the label of the outgoing arc of the output node of treek. Furthermore,
treek is replaced by its unique subtree. Finally, B is called recursively.

51

5. In the case of local nondeterminism, any of the subtrees of treei can be chosen
and bound to the other treej’s. Thus, an arbitrary 7, with 1 < j < m is chosen
and treet is replaced by its subtree treei’. Then, B is called recursively. Since
the union is taken over all possibilities, each treei’ will be considered.

6. This is a case of resolvable global nondeterminism: tree: is a global node,
reflecting that P; is willing to communicate with Py ,...,P,. B is called
recursively with all subtrees treei’ of tree: for which the following condition
holds: tree:? is an input node (corresponding to an input guard), addressing
Py; and treek; is an output node addressing F;, or treei’ is an output node
(corresponding to an output guard) addressing Py, and treek; is an input node
addressing P;.

Note that this binding step does not reflect the establishment of the corre-
sponding communication. This communication will be detected at the next
level of recursion, when treei? is confronted with treek;.

7. This is another case of resolvable global nondeterminism, this time in both P;
and P;. B is called recursively for each pair of corresponding i/o guards (i.e.
a guard in P; addressing P; and vice versa). Again, the actual communication
will be detected at the next level of recursion.

8. This case arises when a group of processes is involved in some cyclic com-
munication attempt, while all other processes have terminated. However, the
situation in which a process attempts a communication with a terminated pro-
cess is interpreted as a deadlock as well (if the program cannot make progress
elsewhere). This is the case when tree: is an input or output node and its
communication partner, say treej, is a final state in S;.

Likewise, the situation of unresolvable global nondeterminism is interpreted
as a deadlock. This is the case when tree: is a global node and all processes
Py ,..., P, adressed by tree: have terminated. These situations are recorded
as a deadlock state in the value of B. Note that we are able to detect a
nondeterministically possible deadlock state.

6.3 Remarks and extensions

The proofs of monotonicity and continuity of the relevant functionals and functions
with respect to the corresponding ordering (both F and B are defined recursively)
are either evident or can be found in [FHLdeR].

Now we discuss the features of CSP, which are absent in CSP-W. The model
of synchronization trees as presented here is not able to model mixed guards. The
reason for this is that a distinction is made between local and global nondeterminism
which are reflected by local and global nodes, respectively. Mixed guards do not fit
in this framework.

52

Likewise, nested concurrency is a problem in this model. In its present form,
the domains involved in the binding operator B and the domains involved in the
a priori semantics of a process are essentially different. If one would introduce a
binary binding operator, which constructs an intermediate tree from the trees of
two processes (such a tree could be considered as corresponding to a new process:
the combination of the other two), then such a tree may correspond to a process
with mixed guards in its guarded commands. For an example of this, see [FHLdeR].
But mixed guards cannot be modeled by the synchronization trees of this chapter.
Hence, nested concurrency cannot be modeled in this framework.

The distributed termination convention can be modeled by the synchronization
tree semantics, see [FHLdeR].

Note that after the processes of a program are bound, all the histories of com-
munication are forgotten and only final states are left.

Finally, the following remark: in this report, the approach of Francez, Hoare,
Lehmann and de Roever concerning input- and output nodes was not followed
as they described it. In particular, we use additional injection functions in or-
der to emphasize that the spaces of input- and output nodes are disjoint unions
as well. Francez et. al. omitted one of the two composed injections. Consider
their denotation for the input instruction P;?z: it maps the input state o to the
synchronization tree ij(Ar.is(o[r | 3/z])). Furthermore, their injection has func-
tionality (U;(Zi — Ti]) — T:. Francez et. al. omitted the injection from [£} — T}
to U;[Z% — Ti]. However, without this injection the communication partner P;
is not visibly recorded! At binding the following test is done in [FHLdeR]: “if
treei € i7([S% — T;])...”. This test is only possible at the moment of binding, if
the information of the communication partner is available by the extra injection of
Ar.ig(o[r | 3/z]) into the disjoint union. In our approach, input instructions with
different communication partners are handled differently. In [FHLdeR] this is not
visible.

The same argument does not apply to output nodes because the test “if tree: €
io(Ef x T;)...” is always possible, since in the second component of the roc in the
first component of the pair the communication partner was recorded.

Similar remarks can be made about input nodes in (8) and (10). Although the
communication partners are recorded in the global nodes, at binding the actual com-
munication takes place a level of recursion deeper than the resolution of the global
nondeterminism and at that later moment the information about the communica-
tion partner must be available in another way. Therefore, also in this case the extra
injection is crucial.

53

Chapter 7

Conclusions

In this report, four denotational semantics have been given for CSP-W, a language
based on Communicating Sequential Processes. The various semantics are patterned
after the models in [Broy 86], [FLP)], [Sound] and [FHLdeR], but required several
modifications in order to be applicable to the unified formalism of CSP-W. For
example, the model of Broy was applied to CSP-W and CSP-W resembles CSP
much more than the version of CSP used by Broy. Furthermore, various flaws in
the formal definitions of the four original variants of CSP were discovered. Finally,
all definitions used here are completely general: no definitions by example cases of
language constructs were used.

Because all four models are applied to one language, it is possible to compare
these models from a unified perspective. The topics of the comparison are:

1. Simplicity: of domains, orderings and denotations.

2. Abstractness: to which degree do ‘equivalent’ program fragments have iden-
tical denotations, on the condition that ‘inequivalent’ program fragments have
different denotations?

3. Generality: is it possible in the particular formalism to easily define language
constructs of CSP which are not present in CSP-W?

4. Compositionality: is the definition of the language obtained by induction on
the syntax?

5. Continuity: are all functions expressing the computation of programs contin-
uous? (This is necessary in order to apply the theory developed for proving
properties of programs.)

The four models are examined with respect to these five points:

1. The domains, ordering and denotations in the approach of [FLP] are the sim-
plest; sets of states and communication histories are used. Subset inclusion is
used as the ordering relation and the denotations are relatively simple as well.
In fact no ordering is needed at all, see [FLP).

54

The domain (the ‘almost’ powerdomain) and the ordering (the power domain
ordering) are more complicated in the approach of [Sound]. This approach
supports the intuition equally well as or even better than the approach of
[FLP]: no empty communications are used in the denotations of processes and
neither in those of entire programs. Although the information of the length of
execution of computations is thereby lost, this is an improvement since length
of execution of computations is a pure operational notion.

In the approach of [Broy 86] the ordering (power domain ordering) is compli-
cated and the intuitions corresponding to Broy’s model are not as simple as
the idea of states and communication histories.

The domain in the approach of [FHLdeR] consists of complex trees with pos-
sibly infinite branching degree and possibly infinite depth. Moreover, there are
two orderings (of which one is the power domain ordering), because of the
recursive definitions of F' and B, which operate on different domains.

Furthermore, the denotations in the approaches of [Broy 86] and [FHLdeR]
sometimes are rather complicated.

. This criterion is examined by means of an example. Consider the following
processes:

P z:=1; [r=1— skip O true — skip]
Puz:=1
P, :: z := 1; skip; skip; skip

All three processes have the same semantics in the approaches of [Sound] and
[Broy 86]. However, as mentioned in chapter 5, in the approach of [Sound] there
even are distinct processes, which have identical semantics. In the approach
of [FHLdeR] the semantics of the first process is a rather complex tree and is
different from the semantics of the other two. The latter two have identical
semantics. In [Broy 84] it is argued that the synchronization tree semantics
is not very abstract: it just abstracts from an operational semantics in the
sense that it abstracts from sequential notation and from the particular way
in which processes are defined (such as bound identifiers). It is shown in the
above example that this is an oversimplification. Finally, all three processes
have distinct semantics in the approach of [FLP].

. Let’s consider the three major language features of CSP, which are absent in
CSP-W:

The distributed termination convention: the formalism of Francez, Hoare,
Lehmann and de Roever quite easily handles the distributed termination
convention, but several extensions have to be made to Soundararajan’s
formalism in order to make it work (here, the formalisms are meant as
presented in this report). The distributed termination convention is not

55

handled in [FLP], but it is claimed that a “reasonable” extension will
suffice. Whether the distributed termination convention can be modeled
by the model of Broy is an open problem.

Nested concurrency: This feature comes for free in the approaches of [Broy
86] and [FLP). In the approaches of [Sound] and [FHLdeR], nested con-
currency is impossible without major changes.

Mixed guards: The approaches of [Broy 86], [FLP] and [Sound] easily handle
mixed guards, but it is impossible to fit them in the framework presented
in [FHLdeR|].

4. All four approaches define the language by induction on the syntax and thus
satisfy the criterion of compositionality.

5. In all four approaches, the resulting functions expressing the computations of
programs are continuous. However, it should be mentioned that this had to be
enforced rather artificially in the approach of [Sound]; with the consequences
as discussed earlier.

Now, some open ends are summarized:

e While the approach of [Broy 86] is superior in the important matter of abstract-
ness (in the approach of [Sound], the disadvantage of identical semantics for
distinct processes overshadows the abstractness of the approach), it remains to
be seen whether the distributed termination convention can be handled within
this framework.

e It also remains to be seen whether the major changes, needed to ensure dis-
tinct semantics for different processes in the approach of [Sound], yield a new
approach, in the sense that it does not coincide with for instance the approach

of [FLP].

Finally, a conclusion must be that if a “reasonable” extension suffices for the incor-
poration of the distributed termination convention in the approach of [Broy 86}, then
the approaches of [Broy 86] and [FLP] are equally general and the abstractness of
the approach of [Broy 86] balances the simplicity of the approach of [FLP].

Acknowledgements. I would like to thank Jan van Leeuwen for his continuous
support during the preparation of this paper. He suggested numerous improvements
in the presentation as well. Thanks are due to K.R. Apt for a helpful discussion in
an early stage.

56

Bibliography

[ABC]

[ANSI]

[BHR]

[BK]

[Broy 84]

[Broy 86]

[Dijkstra)

[EF]

[Egli]

[FHLdeR]

[FLP]

K.R. Apt, L. Bougé and Ph. Clermont. Two normal form theorems for
CSP programs. Information Processing Letters, 26, pp. 165-171, 1987.

American National Standards Institute, Inc. The programming language
Ada reference manual. Lecture Notes in Computer Science 155, Springer
Verlag, Berlin, 1983.

S.D. Brookes, C.A.R. Hoare and A.W. Roscoe. A theory of communicat-

tng sequential processes. Journal of the ACM, Vol. 31, No. 3, pp. 560-599,
1984.

J.A. Bergstra and J.W. Klop. Process algebra: specification and verifica-
tion in bistmulation semantics. In: Mathematics and Computer Science
II, (M. Hazewinkel, J.K. Lenstra and L.G.L.T. Meertens, eds.), CWI
Monograph 4, North Holland, Amsterdam, pp. 61-94, 1986.

M. Broy. Semantics of communicating processes. Information and Con-
trol, 61, pp. 202-246, 1984.

M. Broy. Denotational semantics of communicating sequential programs.
Information Processing Letters, 23, pp. 253-259, 1986.

E.W. Dijkstra. A discipline of programming. Prentice Hall, Englewood
Cliffs, New Jersey, 1976.

T. Elrad and N. Francez. A weakest precondition semantics for commu-
nicating processes. Lecture Notes in Computer Science, 137, pp. 78-90,
1982.

H. Egli. A mathematical model for nondeterministic computations. Tech-
nological University, Zurich, 1975.

N. Francez, C.A.R. Hoare, D.J. Lehmann, W.P. de Roever. Semantics of
nondeterminism, concurrency and communication. Journal of Computer
and System Sciences, 19, pp. 290-308, 1979.

N. Francez, D.J. Lehmann, A. Pnueli. A linear history semantics for
languages for distributed programming. Theoretical Computer Science,
32, pp. 23-46, 1984.

57

[Hoare 78]

[Hoare 85]

[LS]

[MA]
[Milner]

[Moitra)

[Plotkin]

[SM]

[Sound]

[SS]

[Stoy]

C.A.R. Hoare. Communicating sequential processes. Communications of
the ACM, Vol. 21, No. 8, pp. 666-677, 1978.

C.A.R. Hoare. Communicating sequential processes. Prentice Hall, En-
glewood Cliffs, New Jersey, 1985. '

D.J. Lehmann and M.B. Smyth. Algebraic specifications of data types: A
synthetic approach. Mathematical Systems Theory. (Summary in “Pro-
ceedings, 18th Annual Symposiumon F.0.C.S. Providence, R.1., pp. 7-12,
19777).

E.G. Manes and M.A. Arbib. Algebraic approaches to program semantics.
Springer Verlag, Berlin, 1986.

R. Milner. A calculus of communicating systems. Lecture Notes in Com-
puter Science, 92, Springer Verlag, Berlin, 1980.

A. Moitra. Automatic construction of CSP programs from sequential non-

deterministic programs. Science of Computer Programming, 5, pp. 277-
307, 1985.

G.D. Plotkin. A power domain construction. SIAM J. Comput., 5, No.
3, 1976.

C. Strachey and R. Milne. A theory of programming language semantics.
Chapman and Hall, London, 1977.

N. Soundararajan. Denotational semantics of CSP. Theoretical Com-
puter Science, 33, pp. 279-304, 1984.

D. Scott and C. Strachey. Towards a mathematical semantics for com-
puter languages. In “Proceedings, Symposium on Computers and Au-
tomata, Microwave Research Institute, 1971”.

J. Stoy. Denotational semantics of programming languages: The Scott-
Strachey approach. MIT Press, Cambridge, 1977.

58

