THE CLIENT/SERVER MODEL IN DISTRIBUTED
COMPUTING

Jan van Leeuwen

March 1988

Rijksuhiversiteit Utrecht

E %
E§:§:§§ Vakgroep mformatica
')

R Budapestiuan @ 3384 CD

Corr. adres: Postbus 80. 012 3508 TA Utrecht
Telefoon 030-63 1454
The Netheriands

THE CLIENT/SERVER MODEL IN DISTRIBUTED
COMPUTING

Jan van Leeuwen

Technical Report RUU-CS-88-9
March 1988

Department of Computer Science
University of Utrecht
P.O.Box 80.012, 3508 TA Utrecht
The Netherlands

Contents

1

2

Introduction

Distributed Systems and Remote Operations

The Client/Server Model
3.1 Requestsandrepliest
3.2 Complications because of possible failures
3.3 Theuseoftimers 000 iituuunmnnoenese..
3.4 Sharingandconcurrencyttt i i
3.5 More complex atomic actions

Client/Server Architectures
4.1 Common Client Modules
4.2 Binding

4.3 Primitives and datastructures 0.,
4.4 Formatsand message Passing « v v v v v v b bt e e e
4.5 Common Server Modules 000t
4.6 Maintaining connections L o oo oo,
4.7 Failuresemantics it
4.8 Furthersupportservices,

Remote Function Modules

51 Buildingblocks e e
5.2 Structure of RFMs
5.3 Sharing e e e e e e e e e e e e
B4 Comnectors i i i it i ittt e e e e e e e e e
5.5 Configurations
5.6 Use of RFMs
5.7 Example

Binding and Unbinding
6.1 Naming
6.2 Binding e e e e e e e e
6.3 Establishing connections
6.4 Releasing connections0 0.,
6.5 Unbinding i i e e e e e e e e

......................................

Managing Atomic Actions

7.1 Implementation of atomicactions
7.2 Atftomiccommit protocols oo e
7.3 The (2-phase) individual commit protocol
74 Correctness proof i i e e e e e e e e

11
12
12
12
13
13
14
14

THE CLIENT/SERVER MODEL IN DISTRIBUTED
COMPUTING*

Jan van Leeuwen

March 1988

Abstract

A variety of design issues for distributed computer systems is explored in terms of
the Client/Server model. An attempt is made to expose the basic ingredients of the
Client/Server model, in order to facilitate further theoretical analyses and applications
in the design of complex systems. In addition, a detailed 2-phase commit protocol is
presented and verified in a form that is suitable for applications in distributed systems.

Keywords and phrases: distributed systems, computer networks, remote operations,
client/server model, message passing, atomic actions, two-phase commit protocol.

1 Introduction

Increasingly computer networks and distributed systems are being introduced in tradi-
tional application environments for computers. Both local and wide-area networks and
their supporting software are being produced to meet with customer demands, and a con-
siderable research effort is invested worldwide to solve the new and complex design issues
that come with the development of distributed information systems. In this paper we will
explore remote operations architectures, which allow for flexible client/server type interac-
tions between distributed application processes on top of an existing and reliable transport
level. In such architectures sets of primitives are provided for application association and
message passing following a request/reply protocol, with facilities for service authoriza-
tion and recovery. The remote operations architectures usually conform to internationally
agreed standards, for the general requirements of interconnection and interchangeability.

In order to deal with the complex issues of communication and control in a distributed
system, it is necessary to have a consistent architectural model underlying the design and
development of a system. Additional requirements are imposed by the agreed ISO/ECMA
standards for remote operations and transaction processing. In many distributed systems
the client/server paradigm is used to explain the underlying system view, suggesting the
possibility of a formal model and correctness proofs of the design. In this pPaper an attempt
is made to expose the essential ingredients of the Client/Server model which should be
taken into account, in a form that should facilitate the use and further study of the model

*This work was carried out under a research agreement with NCR Systems Engineering b.v., P.O. Box
492, 3430 AL Nieuwegein, the Netherlands.

for both practical and theoretical purposes. We assume some familiarity with the area of
computer networks (see e.g. Tanenbaum[30)]).

The Client/Server model can be recognized in many distributed system architectures.
Without much difficulty all aspects of distributed system design at the network level and
beyond can be brought to bear on the model. Yet, despite its ubiquity, no detailed study
seems to have appeared that presents a complete review of the Client /Server model. This
paper is a modest attempt to fill this gap. We will address a large number of issues that are
not well-documented in the current literature nor analysed very well theoretically, and the
paper hopefully serves as a stimulus for further research. We do not develop a prototype
model or design in ISO/ECMA frameworks here, but will outline a number of ideas that
might enhance the Client/Server model as a basis for distributed system design.

A remote operations system comes with two design aspects: an “applications archi-
tecture” describes the system from the perspective of an applications programmer, and a
“communications architecture” describes the available network functions. We adopt the
view that an application may consist of several, distributed application processes that
cooperate to achieve some goal. An application may exist “forever”, i.e., may have to be
supported for an indefinite period of time. An application (i.e., an application process)
will be activated by an external cause or by another application. Application processes
can activate network services that are generally available. Network services in turn can
activate other network support tasks. In addition, autonomous processes may exist that
play a role in standard network control and function maintenance.

Application processes communicate using the facilities of the communications archi-
tecture. To shield application processes from the details of the functions provided by the
communications architecture, one or more interface modules can be designed that provide
“higher lever” communications facilities.

In this paper we will describe the Client/Server model as a unifying framework for
the high level description and specification of communications and interactions between
processes. The model is geared to understanding general Client/Server architectures, but
carries the idea of the model much further. The model as we describe it only serves as a
structuring tool for a network architecture at the session and presentation layer level. The
model is heavily based on the “abstract object” approach to distributed system design (see
e.g. Watson [33]) and aims at viewing a number of aspects of Client/Server architectures
from this perspective. The abstract object approach has successfully been applied in other
contexts of networking (see Sloman & Kramer [27] for an extensive summary).

The paper is organized as follows. In section 2 we will briefly introduce the issue of
distributed computing, the Client/Server model and the notion of Remote Function Mod-
ules. In section 3 the Client/Server model is presented in more detail. In section 4 a large
number of architectural issues in computer networks are reviewed from the unifying view-
point of the Client/Server model. In section 5 we present some ideas for implementing the
Client/Server model in general environments, using the notion of Remote Function Mod-
ules. Section 6 discusses the complex issues concerning binding and unbinding. Finally, in
section 7 we consider more involved "atomic” interactions between clients and servers and
the need for atomic commit protocols. An integral development and correctness proof is
given for a standard 2-phase commit protocol that seems to be appreciably simpler and
more clarifying than similar treatments in the current literature (see e.g. [2,6]).

2 Distributed Systems and Remote Operations

A large number of computer-oriented hardware or software systems are referred to as " dis-
tributed systems”. Generally, the phrase is used to refer to any network of communicating
machines or processes designed to achieve some overall goal of a collection of users or an
organisation. It can refer to the supporting network hardware and software only (which
is a very common use of the term), or to a distribution of application programs and con-
trol functions over various sites with an underlying scheme for concurrent operations and
communication. In all cases there are complex issues of system operation and control not
found in traditional computer applications, and encountered in only a limited form in the
modern approaches to operating systems (see e.g. Peterson&Silberschatz [25]). There

are a number of different approaches that can be recognized in the design of distributed
systems:

(a) the Hierarchical model, and
(b) the Client/Server model.

.

In the Hierarchical model, an executing program can send subtasks to other machines
for execution. The model is suitable for applications that have a hierarchical structure
and is commonly found, for example, in distributed database systems (see e.g. [6]). The
model requires the supporting network to provide a service like "send subtask X to another
machine (or, to machine Y)” and some form of message passing between a program and
its subtasks. In some cases it is possible to send the complete code of a subtask to another
machine. More often it is possible to ”call” a stored copy of a program at the other machine
and pass it the necessary parameters and/or data in some form or another, like in systems
that implement remote procedure calls (RPC) as described in Birrell&Nelson[6]. Normally
program execution is not resumed until the result of a subtask has been received.

In the Client/Server model, each program may request services from designated service
providers (servers) that are shared with other users or application programs and that are
usually situated on other machines. Examples of servers are: name servers, file servers,
printer ‘servers and other special programs. Again the model requires the network to
provide a suitable interface for expressing and transporting service requests, and it is
common to use the logistics of remote procedure calls or a relaxed, asynchronous version
ofit. In particular, a server call should not keep the calling program from further execution.

From a systems point of view the Client/Server model subsumes the Hierarchical
model, although the requirements of control will be more complex. But in many respects
the Client/Server model seems to be the more fundamental paradigm in distributed com-
puting, as it appears at the basis of the network developments of ma jor vendors like IBMJ11]
and NCR.

The Client/Server model is based on the idea that in a distributed system environment
certain processes (clients) will be requesting functions from other processes (servers) and
that all distributed activity can be seen from tlis perspective. The model tends to declare
fixed processes (processors) as clients and others as servers, which will be adequate in
systems where Client/Server functions are logically and physically separated. This clearly
need not always be the case.

An obvious analogy with known notions from programming suggests to view Client /-
Server functions as logical entities that could well reside in a single process. More precisely,

we suggest to elevate the notion of Client/Server to the notion of a Remote Function
Module (RFM).

The RFM notion is primarily a tool for structuring the specification, and hence the
coding, of Client/Server applications. Remote function modules provide sets of functions
that can be naturally grouped together, for local or remote use. Remote function modules
can call on the services of other remote function modules.

Remote function modules facilitate abstraction, in the sense that its services can be
used without necessarily understanding the way they are coded. When remote function
modules are designed, irrelevant details can be suppressed by making use of other (lower
level) remote function modules. Thus remote function modules facilitate hierarchies of
abstractions, a known and powerful tool in system design.

In this paper the idea of remote function modules will be developed with three goals
in mind:

(i) local/remote transparency (local and remote access should appear the same),

(ii) extensibility (it must be possible to add remote function modules to an application
environment without great difficulty),

(iii) system structuring (desired services should be expressible in terms of remote function
modules).

Remote function modules are not necessarily coded the way they are described here.
RFM’s are primarily meant to structure, and do not necessarily guarantee efficient code
in the form suggested.

3 The Client/Server Model

Before embarking on RFM’s, it is useful to consider some further aspects of the Client /Server
model. The rationale for the Client/Server (or Customer/Server) model was first described
by Gentleman [9], who identified the issues that need to be resolved in any system designed
from this perspective. The Client/Server paradigm is now standard in distributed system
design (see Comer [7]).

The Client/Server model can be viewed as a model for process interaction. One process
(A), identified as the client, requests a service from some other process (B), which acts
as the server. The server, after performing the requested service, posts a reply to the
client. The client-server relationship between A and B exists only for the duration of the
interaction. Thus a process that acts as the client in one interaction may become the server
in another, and vice versa. We will later allow that servers request services from other
processes while processing a request and thus act as server and client simultaneously. The
Client/Server model is recognised in distributed systems based on the remote procedure
call (RPC) paradigm (see e.g. Lampson [20] and Birrell & Nelson [4]) or the nested
transaction paradigm (Moss [23]).

3.1 Requests and replies

The request of a client (A) must be passed to the server (B) in a specified way. Ideally it
should be immaterial to the model whether B is local to A or remote. The same formats
and procedures should apply in either case. In the Client/Server model, requests and

replies are passed as messages. (See e.g. Gentleman [9] for an appraisal of the various
semantic issues involved in message passing.) An important issue is whether the message
passing primitives are “blocking” or not. For example, after a request has been sent
out, the client may remain blocked until a reply has been received from the server. (It
is sometimes called “connection-less interaction”, because the association between the
client and the server only exists for the duration of the request.) In the non-blocking
case, the client typically engages in a sequence of message exchanges with the server
but does not need the reply to each individual request before a new request can be sent
out. (It is sometimes called “connection-oriented interaction”, because the client and the
server will normally commit a fair amount of resources to maintain the connection.) The
Client/Server model requires that a “session” is opened and maintained, in order for A
and B to interact in this way. Later in this paper there will be a detailed discussion of
the problems of connection management. There are various alternatives for the client to
observe replies in the case of non-blocking requests. (Essentially there are blocking and
non-blocking variants for it too, see e.g. the excellent discussion in Svobodova et al. [29].)

3.2 Complications because of possible failures

The Client/Server model is deceptively simple when communication failures and other fail-
ures are not taken into consideration. There There are various types of communication fail-
ure that can occur: messages may be lost or “stuck” (e.g. because of deadlock), messages
may be undeliverable (e.g. because one or more communication lines are down), and pro-
cesses may “die”. Failures complicate the simple interaction scheme of the Client/Server
model, because failures directly affect the request/reply mechanism. In particular, the
reply a client receives on a request should either be a valid reply from the server or an
indication that no valid reply from the intended server can be obtained because of some
(identifiable or non-identifiable) failure. In the Client/Server model, a client must receive
a reply (and no more than one) to every request it sends out, and the replies received
must correspond exactly to the “facts” for the associated requests. It follows that replies
are not simple and must be “interpreted’. In the model developed in this paper, replies
strictly follow the Client/Server paradigm.

3.3 The use of timers

Failures affect the Client/Server model in yet another way. In physical communications
systems, it is common to guard for failures by the use of positive acknowledgements and
timers. Acknowledgements can be merged in with replies, but timers are different entities.
Svobodova et al. [29] discuss the difficulty of “timeout parameters” for programming at
length, but there is no question that timers are often the simplest and most adequate
solution to communications control problems in concrete systems. For example, timers
are used in the implementation of reliable remote procedure calls (see e.g. Lampson [20]
or Shrivastava & Panzieri [26]) and “crash control” in transaction management systems
(see e.g. McKendry & Herlihy [22]). In typical distributed systems timers are available
implicitly (at the client side) or explicitly (at the server side) for request-handling purposes
and session maintenance. At the client side, a timeout value can be set with every request
to indicate how long one is willing to wait for a reply. A timeout is triggered when no
reply is received in the prescribed time-interval or when an exception has occurred in the
underlying transport layer. At the server side, a timeout value can be set with every

session. In this case the timeout value indicates how long the server is willing to wait
for “new” requests from one of its clients viz. from the particular session. (Although
not usually specified, it is assumed that the corresponding timer is reset to the timeout
value each time a new request in the session is received before timeout.) Multiple timers
must be implemented explicitly by means of incremental timeout queues (as described in
e.g. Tanenbaum [30]). In all cases timeouts are handled as interrupts, and some action
must be specified when a timeout occurs. At the client side it typically involves “retrying”
a request that was timed out, which leads to the problem of duplicate detection by the
server. At the server side a session that was timed out, is to be closed explicitly. In the
model described in this paper we will assume that timeout values can be specified for all
requests. (Semantically the use of timers by a server is part of the session-management
protocol and not of the Client/Server model.) The functionality of any Client/Server-
based system should only depend in a monotone manner on the value of the timeout
parameters.

3.4 Sharing and concurrency

An important aspect of the Client/Server model is the fact that servers can be shared.
It implies that any number of clients can independently request the services of a same
server process B, and (hence) some policy must be set for every server of how to handle
“simultaneous requests”. In case all client-server interaction is session-oriented (as in
most Client/Server architectures), the policy must essentially indicate whether a server can
support only one session at a time or multiple sessions simultaneously. In the Client /Server
architecture this has led to the distinction between “single-threaded” and “replicated”
servers, respectively. The effect of concurrent sessions must be equivalent to the effect of
some serial ordering of the sessions, in order to guarantee that semantically each session
can still be regarded as the unique association between one client and the server. It follows
that a server can be of the “replicated” type only when its semantics allows for it. When
server replicas do not share resources, the semantic constraints are trivially satisfied and
the effect is that of many clients having their own copy of the server and (thus) having
access to the same services individually. In the Client/Server architecture, a syntactic
difference can be made between single-threaded and replicated servers at the level of the
allowable primitives.

3.5 More complex atomic actions

Aside from “many-to-one” interactions, the Client/Server model may allow for “one-to-
many” interactions between processes. In this case, a client process (A) requests the
services of various servers and (hence) engages in multiple sessions simultaneously. It is the
client’s task to synchronize the various sessions, when necessary. Additional complications
arise if the simultaneous requests a client A sends out are not independent and constitute
“one” (intended) transaction. Typically, a request should only be processed if all requests
that are part of the transaction can be (by the various servers). This leads to the well-
known problems of transaction management (see e.g. Gray [10], Ceri & Pelagatti [6],
or [12]), viz. transaction commitment and recovery protocols. Atomic actions will be
discussed further in section 7.

4 Client/Server Architectures

We now elaborate on a number of architectural issues for the Client/Server model. While

some terminology is taken from [18], the material in this section has no particular relation
to it.

4.1 Common Client Modules

The environment for a Client/Server architecture is a distributed system of “service
providers”, i.e., processors of a known functionality connected by a local area network.
Application processes may invoke operations that are only available across the network, at
a remote site. The invocation of a remote operation triggers an involved mechanism that
is (or, should be) largely transparent to the application process, and whose sole purpose
is to perform the desired operation reliably and return the result to the invoker. (Note
that the “result” may be a diagnostic e.g. indicating that the desired operation cannot
be performed at the present time.) The Client/Server architecture as proposed in [18]
suggests that invocations must be handled by a Common Client Module, or CCM. The
CCM provides the same support to all application processes running on a given processor.
An application process can invoke a remote operation by passing a suitable “operation
request block” to the CCM. In fact, the CCM may maintain a queue of outstanding oper-
ation requests for each (local) application process. An operation request block must have
a well-known format, including fields for e.g.

(i) the logical name of the requesting application process (the client),
(ii) a unique identifier for the request (e.g. a sequence number),
(iii) the logical name of the desired remote operation,
(iv) class information about the desired remote operation,
(v) parameter values for the desired remote operation,
(vi) a pointer to the “operation result block”,
(vii) reserved fields for use by the CCM,
(viii) the size of the operation request block.

The operation result block corresponding to each operation request must have a well-known
format as well. (It obviously is sufficient for an application process to pass a pointer to

the appropriate operation request block when invoking a remote operation through the
CCM.)

4.2 Binding

The CCM must see to it that each operation request is shipped across the network to the
appropriate service provider, and that the result of the operation request is written back
into the corresponding operation result block. In order to ship a request across, the CCM
must “bind” the service provider. For now it is sufficient to view binding as the initiation
of a session between the client and a server process (the server). Binding can be implicit

or explicit. Clearly explicit binding requires that the (logical) name of the intended server
is known. The session between a client and a server process is identified by a unique
session-id which exists for the duration of the association.

4.3 Primitives and data structures

It follows that the CCM is a rather complex support module, when considered in its most
general form. The CCM must support e.g. the following primitives:
(i) Bind.req (“bind request”),
(ii) Bind.repl (“bind reply”),
(i) Oper.req (“operation request”),
(iv) Oper.repl (“operation result”),
(v) Cancelreq (“cancel an outstanding operation request”),
(vi) Cancel.repl (“result of cancelling an outstanding operation request”),
(vii) Unbind.req (“termination request for a session”),
(viii) Unbind.repl (“termination reply”). -
In addition the CCM may provide several other primitives, e.g. for inspecting the status
of a current session with non-blocking operation requests. The CCM maintains a session-
table with information on all current (active) sessions, including e.g. the unique session-id
of each session and various status indicators. The session-table is implicitly maintained by
the bind and unbind primitives. We defer a detailed discussion of binding and unbinding
to a later section. With each entry in the session-table the CCM may maintain a queue of
outstanding operation requests. The queues are implicitly maintained by the Invoke and
Oper.repl primitives. (Interrupts caused by time-outs on outstanding operation requests
could also be handled through the Oper.repl primitive, or a variant of it.)

4.4 Formats and message passing

There are several further issues involved in the design of a CCM. In order to ship an
operation request from a client to the intended server process, the CCM must generate a
message (or packet) and some kind of “interchange” must take place that will guarantee
that the message is delivered to the server (and, eventually, that the operation result is
delivered back to the client). Gentleman [9] gives an insightful discussion of the design
considerations for message formats. In the design of Client/Server architectures one may
assume that the problem of message formats is solved at a lower ”level” and that the
request /reply formats are “well-known”, relying on a standard transport level to handle
variable-length messages. The message formats will be related to the formats of the
operation request and operation result blocks in a simple manner (compare e.g. [11]).
In order that a message can be sent to the intended server, it is normally required that
the network address of the service provider and the “port number” of the intended server
are provided with the message (together, of course, with the return address for the reply
message). We defer a detailed discussion of naming and addressing to a later section.
Normally, the address information is maintained in a “connection descriptor” stored with
the unique session-id. Thus the necessary information for name-to-address binding must be
set up as part of the Bind.req and Bind.repl primitives. It also follows that the CCM must
possess (and maintain) a network directory with the “well-known” address and attribute
information of the available service providers on the network, in order that it can set up
associations. Note that at the application (i.e., client) level, operations and servers need

only be known by generic names or aliases. In many virtually all distributed systems, a
client process must name the intended server when invoking a (remote) operation.

Service providers (servers) may be invoked by remote clients to perform certain oper-
ations. In most distributed systems, servers must post their availability to the network as
part of a “start up” procedure at initialization time. Typically this is achieved by “open-
ing” the well-known socket for the server and authorizing the connection. In general servers
“export” their availability and various other attributes (like the operations they provide)
across the network and potential clients “import” this information into their network di-
rectory. Alternatively, it may be assumed that the servers on the network are “known”,
and the only status information that need to be maintained is whether particular servers
are available and can be connected to. (The status information will be part of a potential
client’s Bind.repl result block.)

4.5 Common Server Modules

In a Client/Server architecture, servers operate on a “receive any” basis (cf. Gentleman
[9]). The Client/Server architecture as proposed in [18] suggests that all messages (e.g.
bind requests and operation requests) received by a server must be handled through a
Common Server Module, or CSM. The CSM authorizes bind requests, maintains sessions,
“interprets” and dispatches operation requests to the server, and sends replies to clients.
The CSM is the server-version of the CCM, and combines the functionality of a session
handler and a request handler. We will not digress into the design of the CSM, but
some further issues related to it will be mentioned in the later discussion of binding and
unbinding. A CSM will be designed in a “server-independent” manner and (thus) needs
attribute information of the particular server it supports in a standard format, in order
that it can perform the necessary validations of operation requests and replies.

4.6 Maintaining connections

Once a client(A) has succeeded in “binding” a server process (B), the server is prepared
to receive and process any suitable operation request which the client sends. Operation
request messages are sent under control of the client’s CCM, by executing Oper.req com-
mands. A Client/Server architecture should support both blocking (“synchronous”) and
non-blocking (“asynchronous”) requests, and with suitable precautions both types of re-
quests must be allowed over the duration of a single session. It follows that the type (class)
of a request must be specified in every operation request block and operation request
message, to ensure the proper handling by the Oper.req primitive. It may be necessary
to know in a session how many operation request can be outstanding at a time, whether
it is blocking or non-blocking. Note that the operation result block of an outstanding
operation request contains the necessary status information which the client can check for
this purpose (in the model as described here). A Client/Server architecture may allow
that a client revokes a (non-blocking) operation request (cf. the Cancel.req primitive in
the model described here). In view of the earlier requirements only the unique session-id
needs to be supplied as a parameter, as it uniquely identifies the operation request in it
that is currently outstanding (if there is one). Of course one needs to specify the effect of a
Cancel.req at the server’s end very precisely, but quite apparently it can only “intercept”
(and cancel) an operation request before its processing has begun and cannot trigger an

10

“undo” if the processing of the request has started or is completed. Blocking requests
cannot be revoked.

In general a server will have to know whether an operation request is blocking or
non-blocking at the client’s end, for the purpose of connection and resource management.
In some architectures this is not necessary, and servers can be oblivious to the class
information of an operation. In this case the server primitives can remain of a simple
kind, and indeed need to be no more complicated than “receive” and “send”. Of course
servers can perform non-specific actions (like aborting all sessions) and inform clients, with
implicit effects for outstanding operation requests. The handling at the client’s end must
be part of the .repl primitives. The Client/Server architecture as proposed in [18] suggests
that all this is handled by the CCM and CSM modules, thus providing the client with a
request /reply mechanism of similar transparency as the well-known RPC.

4.7 Failure semantics

Again the possibility of failures complicates the Client/Server model and (hence) the de-
sign of the common interface modules in the Client/Server architecture as proposed in
[18]. For example, it must be carefully specified what performance of remote operation
requests is required under different conditions of communication or processor failure. If
only communication failures can occur, one typically requires either an “at-least-once”
semantics or an “exactly-once” semantics for remote operations. (The “exactly-once” se-
mantics is usually preferred and guaranteed in RPC-based remote operations architectures,
cf. Birrell & Nelson [4].) If processor failures can occur as well, several other options have
been proposed (cf. the detailed taxonomy in Spector [28]). A discussion of reliability
issues in the Client/Server model is deferred to a later section. In most Client/Server
architectures, all communication requests are handled by a reliable transport level. In

this case communication failures (errors and network problems) reported to a client are
all connection-oriented.

4.8 Further support services

A Client/Server architecture will usually require that the CCM and CSM provide various
additional support services, e.g. various network security functions and resource allocation
services. In this paper we will not discuss these services.

5 Remote Function Modules

The Client/Server model is based on a strict separation between client and server function-
ality. More precisely, the Client/Server model captures all aspects of distributed systems in
which processes communicate on a request/reply basis. It follows that the Client/Server
model is not restricted to systems with separate client and server nodes and equally well
permits that client and server functions reside on a single processor or in a single pro-
cess. Indeed a Client/Server architecture should permit client-to-client and server-to-server
communication using the client-server interaction primitives, and even server-initiated ses-
sions between servers and clients are possible. Thus it is necessary to distinguish between
clients and servers as they exist on the network and clients and servers as they exist at
some (logical) level of process interaction.

11

5.1 Building blocks

The apparent lack of uniformity in client and server structures makes it difficult to dis-
tinguish common buildings blocks on which the Client/Server model can be based. At an
abstract level all notions related to the theory of concurrent processes (see e.g. Peterson
& Silberschatz [25]) can be brought to bear on the Client/Server model, but this clearly
does not fully capture all requirements in a concrete network context. In this section we
will develop the notion of a Remote Function Module (RFM) and propose it as a basis
of the Client/Server model. RFMs are intended primarily for structuring purposes in the
design of Client/Server architectures. Thus, designs and specifications should be written
in terms of RFMs, but the implementation language need not support the concept as such
(as long as its semantics can be realized somehow). Every application, whether client or
server (in the network sense), will be composed of a number of local processes and RFMs.
At the same time, the necessary support environment for RFMs as we will describe it
implies a possible structuring of the CCM and CSM module-concepts.

5.2 Structure of RFMs

A RFM essentially is a set of functions that can be used by or use functions of RFMs at
other sites. Thus it consists of a set of entry functions (for local or remote use), a list of
remote function names, a set of auxiliary procedures (for internal use), an initialization
and driver routine (executed and initialized upon creation of the module) and local data
(accessible through the functions and procedures of the module only). RFMs resemble
tasks in Ada (see e.g. Barnes [1]) and modules in Modula-2 (see e.g. Wirth [34]), although
the implementation model will be different. RFMs are entire self-contained, except for
the possible references to remote functions. The use of (logical) function names rather
than RFM or server names and addresses gives RFMs a high degree of configuration
independence. Also, RFMs can easily be tested in isolation by providing “stubs” for
the remote functions it employs. Remote functions can be called by sending off operation
request blocks and waiting or checking for a reply, as explained in the previous section. We
will discuss momentarily how this should be specified at the RFM level. Note that RFMs,
even when they reside on the same processor, have no shared storage and communicate
using a mechanism very similar to RPCs.

5.3 Sharing

As its entry functions can be requested (“called”) by other RFMs, all RFMs are inher-
ently “shared objects” and thus must provide for shared usage. In typical Client/Server
architectures clients are not shared but servers are and, in our terminology, sharing is
implemented either by scheduling connections one-at-a-time (single-threaded servers) or
by providing a separate instance of the RFM for each connection that requests its services
(replicated servers). In the latter case, the separate instances may have to cooperate on
the (shared) data of the master RFM. In general the sharing of a RFM requires that an
“administrator” or “monitor” is added to handle the simultaneous access by other RFMs
(cf. Gentleman [9]). The administrator of a RFM basically maintains the request/reply
queues as shared buffers between the RFM and the requesting parties (as in the pro-
ducer/consumer problem, cf. [25]), and allows the RFM to handle one request at a time.
The administrator can implement any desired policy for selecting requests. ;From now on

12

we will assume that the shared usage of RFMs is arranged for by standard methods. For
a further discussion of the administrator concept, see Gentleman [9]. (In Svobodova et al.
[29] the related notion of a “guardian” is introduced for the very same purpose.)

5.4 Connectors

A RFM can only communicate with another RFM if an explicit “connection” (session,
association) between the two has been set up. Each connection is to be managed by a new
type of (shared) object, a “connector”. Basically a connector is an object that governs
the message traffic between the two RFMs that it connects and deals with all problems
caused by the two RFMs in this respect. To apply the concept in the Client/Server model,
it is necessary that we view the “network” as one RFM that is local to every processor
and that provides basic transport level services. It is thus no restriction to require that
a connector can only connect two RFMs that reside on the same processor. A connector
essentially maintains and manages a session between two RFMs in the network sense.
The complexity of a connector will depend on the type of RFMs it connects. (The usual
connection will be between a RFM and the network, viewed as a RFM.) Yet the main
idea of a connector is that it connects local RFMs and thus provides for a high degree of
configuration independence and ease of testability. As a RFM, the network is assumed to
provide all remote functions by their name and server address. Without much difficulty
a connector can maintain a stream of request/reply messages in the case of asynchronous
requests and a restriction to one outstanding request at-a-time per connection is not
necessary. (The restriction may still be enforced in case of memory limitations on a
supporting processor.)

5.5 Configurations

All connection and disconnection requests of the RFMs on a processor are handled by one
general (shared) object on this processor, called a “configuration manager” (following the
CONIC design of Kramer et al., cf. Sloman & Kramer [27]). We allow that connection
requests specify a sub-set of the functions to which access is desired on a RFM. The
configuration manager authorizes, administers and dispatches connectors and provides
dictionary services like the mapping of function to server names and of server names
to network addresses. In the terms of the previous section, the configuration manager is
designed to handle all bind and unbind requests. Note that if a RFM wants to communicate
with a “client” or a “server”, it has to request a connection to the network (as a RFM)
for the desired set of client or server functions. The configuration manager will interact
with the administrators of both RFMs before dispatching a connector. (In the case of
the network RFM this will initialize a network session with the desired client of server.)
In the same way connection requests by the network (as a RFM) are handled. Thus all
RFMs interface with the configuration manager in an identical manner. The configuration
manager can very well be extended and put in charge of more complex actions like the
creation (and eventually, the destruction) of copies of a RFM in case of shared access
through the “replication” policy. It seems better to handle this at the level of the RFM
administrator however. Of course the configuration manager will be in charge of the
creation (initialization) and destruction (termination) of RFMs in general.

13

5.6 Use of RFMs

The few abstractions on which the given view of the Client/Server model is based, are
simple and yet sufficiently powerful to accommodate an integral presentation of any
Client/Server architecture. For example, authorization requests are easily understood
in terms of the request/reply interaction between two suitably defined RFMs. The view
requires that all clients and servers are explicitly specified as RFMs, i.e., in terms of the
entry functions they provide for local and remote use. All additional services like logging
and security services can be fit into the framework. Note that such services can be realized
by either enhancing the internal specification of the RFMs (without changing their inter-
face to the other RFMs) or by introducing “filters” between RFMs. Even the functionality
of connectors can be enhanced to provide for additional facilities. For example, connectors
may be designed for governing one-to-many rather than one-to-one message exchanges and
the necessary concurrency control. It should be an interesting research project to develop
the complete Client/Server model along the lines suggested. All mechanisms described
can be implemented as a “common kernel” and thus are the basis of a possible design of
the CCM and CSM modules as proposed in the Client/Server architecture of [18].

5.7 Example

We end this section with a simple example of a possible connector, based on the connec-
tion management protocol of Fletcher & Watson [8]. It is assumed that the configuration
manager has opened a connection between a client RFM(A) and the network RFM or, in-
directly, a server(B) at the transport level. During the connection, A occasionally wants to
engage in a session with B and send it a sequence of asynchronous requests. For simplicity
we assume that A only expects acknowledgements as replies from B. The connector module
is a shared object between A and B that concerns itsélf only with the management of the
message traffic between A and B in the current connection. We only describe the connec-
tor at the client’s end. Thus, A can append new messages to a shared queue M[Low],.- -,
M[High-1] in the connector and the connector occasionally reports back which messages
have been ack’ed by B. In order to guard for message delays and failures in the network,
the connector employs a timer-based regime. It is assumed that the network maintains a
“lifetime” for each message and that the network automatically discards a message when
its life-time has reached a certain maximum value MPL. (The value of MPL will be cho-
sen such that each message can reach its destination within MPL time-units under normal
network conditions.) The connector maintains a timer St, which will be reset to S at
every “send”. A session begins with a first send, and ends the moment that St < o.
With each message M[i] in the shared queue is also associated a so-called retry-timer
Ut[i], which is initialized to a certain value U the moment the message is appended by the
client and never reset. Intuitively, U bounds the lerigth interval during which a message
may be retransmitted (if there is reason to believe that it was not properly received the
first time around). In our presentation of the protocol there is no limit on the number
of retransmissions allowed for a message during its retry interval. We note that at the
receiver’s end the connector will likewise maintain a timer Rt, which is reset to R at every
“receive”. A session begins with a first receive (provided it concerns a message with its
“start-of-sequence” bit on) and ends, as far as the receiver is concerned, the moment that
Rt < o. It is assumed that the connector sends an ack with R time after receiving a
message. From the theory of the Fletcher-Watson protocol it follows that we must require

14

that R> U+ MPL and S > 2MPL + R. The connector at the sender’s end provides the
following functions

client function send(M);

begin
Ut[High] := U;
M[High] := M;
High := High +1;
end;

server function ack(ESN);

begin
if ESN > Low then mark index ESN-1 as ack’ed;
Low := max{Low, ESN}

end;

connector function send;
begin
if High < Low then skip
else
if there exists no i with Low < i < High & Ut[{] > o then skip
else
begin
t := the smallest (or any) index with Low < i < High and Ut[i] > o;
transmit < (i = Low), i, M[i] > to B;
St:=8§
end
end;

connector function report;

begin
if Low-1 is marked as ack’ed then
begin
transmit < ok, Low-1 > to A;
mark Low-1 as reported (and unmark it as ack’ed)
end;
if Ut[Low] < - 2 MPL - R then
begin
transmit < probably lost, Low > to A;
Low := Low +1
end
end;

Note that the client and network RFMs and the connector driver process compete for
functions from this set. Only one function can be executed at-a-time. The notation
suggests which functions are accessible to which party. We omit the specification of the
connector at the receiver’s end (see Fletcher & Watson [8] or Tel [32]). It can be shown
that the combined connectors guarantee that there is no undetected loss of messages and

15

no problem with duplicates. Note that requests that are reported as “possibly lost” may
actually have arrived in B. But every request that is lost will be reported to A (and leads
to a new start of the message sequence). The precise parameter values and the connector’s
regime of function calls determine to large extent the efficiency of the protocol. The same
type of protocol can be recognised in the Client/Server architecture proposed in Janson
et al. [15]. In the Amoebe system (Mullender [24]) a version was used in the design of a
transaction protocol for the Client/Server model, with an even more elaborate use of timers
and the “no reply” policy used in the example above replaced by a strict request/reply
interchange per transaction.

6 Binding and Unbinding

We continue our exploration of the Client/Server model and discuss the issues dealing
with binding and unbinding. (We will use the Client/Server model as understood up
to section 4 and make no reference to the abstractions proposed in section 5.) In the
Client/Server model, binding is the act of connecting a “logical reference” to a “physical
object”. Binding involves naming and server location, port determination and activation,
and connection opening. Binding leads to a connection between client and server, and
facilitates the exchange of request/reply messages between the two. Unbinding is the act
of disconnecting (releasing) a binding.

6.1 Naming

The naming problem in distributed systems is well-known. Names are needed to (uniquely)
identify objects and operations but are often required to be location-independent. It fol-
lows that a mechanism (a mapping) is required to map names to addresses, in some way
or another. The naming policy adopted in a Client/Server model is important, and must
be convenient at the application level and efficient when it comes to binding. (Also, the
uniqueness or non-ambiguity of a name should be easy to verify during name assignment.)
Mullender [24] distinguished four different naming policies that prevail in distributed sys-
tems for determining system names for services:

(i) domain naming: a system name consists of a host name and an object name on this
host. The policy is simple but not very flexible, as it does not allow ob jects to move
through the network without changing their system name.

(ii) global naming: a system name is any globally unique name. In this policy names
are not bound to the location of an object, but now a (centralized or distributed)
name server is needed to complete the binding. The name server should be at a
well-known address, and is in charge of maintaining the name-location information.
The binding procedure may augment a system name by a port name (both at the
client’s and the server’s end) to further identify a temporary access point for the
connection.

(iii) static port naming: a system name is a “well-known” port. In this policy ports are
agsociated with services rather than objects. A client wishing to connect to a service
only needs to know the (network-wide) well-known port. The service provider sees
to it that an object (a process) is maintained for every port that is accessed.

16

(iv) dynamic port naming: a system name is a port that is created and managed by a
“user”. When a server decides to offer a service to the network, it generates a port for
that service, announces the port’s name to potential clients, and starts “listening”
to the port (i.e., it is willing to engage in a connection at this port). The action
of the server can be triggered by a signal from a particular client, which may have
allocated a reply port at its end (but which the server does not have to know).

6.2 Binding

Binding normally refers to the mapping of user-level names to system names. A system
name should be sufficient for the transport level to determine host addresses and routes.
Distributed name servers and dynamic port naming are current research topics. Port
determination policies for the Client/Server model are described in more detail in e.g.
Bershad et al. [3]. We will assume that the basic client and server processes are “pre-
activated”, and do not go into the details of “activation through binding” (or “auto-
activation”). In dynamic (extendible) networks the naming problem is more complicated,
because new hosts must be assigned new and preferably compact names that are unique on
the network. Typical solutions either use centralized name servers or employ a distributed
scheme in which existing nodes have sets of names available that can be assigned to new
nodes that are attached to it. (The latter leads to “dynamic domain naming”.)

6.3 Establishing connections

The next, essential part of binding concerns the opening of a connection (session, associ-
ation) between the client and the server. Naming and port determination are implicit in
the actions taken to establish a connection. The common protocols for binding (see e.g.
Knowles et al. [16]) are all based on a 2-way handshake, using the following primitives:

(i) CONNECT .request
(ii) CONNECT .indication
(iii) CONNECT .response

(iv) CONNECT.confirm

(Only in datagram networks should a 3-way handshake be used, for reliably opening and
closing connections. We do not consider this in the present paper.) The primitives are usu-
ally prefixed with a letter that identifies the layer of service in which they are implemented
(e.g. T for “transport layer”). Thus, at the session level a connection can be opened by per-
forming a T.CONNECT .request and waiting until a corresponding T.CONNECT .confirm
is performed. The ISO standard (see e.g. [14]) specifies in detail what components can be
distinguished in the whole process. The T.CONNECT.request can be viewed as a primi-
tive but will be implemented using lower level CONNECT.request and CONNECT.confirm
primitives. Using the model from before, the T.CONNECT.request (at the client’s end)
must begin by naming a reply port and setting up a connection record. Now two policies
can be followed, depending on the model assumptions:

(i) connect-to-server: the client possesses the well-known address of the server. It sends
the proper TPDU (“Transport-Protocol-Data-UNIT”) to the server and triggers its
T.CONNECT .indication procedure.

17

(ii) connect-to-port: the client waits until the service it wants announces its port name on

the network. When the port is known, the client sends off its T.CONNECT.request
to the port.

In both cases the T.CONNECT.indication primitive at the server will name a request
port which the potential client should address when sending messages. In general the
T.CONNECT.request primitive is used to convey a client’s requirements (in terms of
required resources), and the other primitives arrange for these requirements and inform
the requester of the quality of service that will be provided (if at all).

Once a connection (session, association) has been established, “data” can be transfered.
In most Client/Server architectures, data can be transfered in the standard “2-way simul-
taneous” mode. No tokens are needed and, indeed, no token management primitives need
to be provided. Logging services are required for recovery purposes, and “minor/major
synchronization” must be provided for in the session maintenance protocol.

6.4 Releasing connections

The protocols for unbinding (release, close) are now based on a slightly different hand-
shaking principle, using the following primitives:

(i) DISCONNECT.request
(ii) DISCONNECT .indication

Either party in a connection can initiate a DISCONNECT.request, but normally it will
be the connection initiator that does so after its use of the desired services. A DISCON-
NECT .request by the client results in an ACK as soon as the server detects that there
are no outstanding messages of the client. The server subsequently issues a DISCON-
NECT .request from its end and a similar procedure repeats. Ultimately both parties close
the connection.

6.5 Unbinding

A Client/Server architecture must likewise provide primitives for unbinding, following the
ISO standards. Unbinding is achieved by releasing the connection record and removing the

port that existed for the connection, by suitable actions at the sending and the receiving
end.

7 Managing Atomic Actions

The Client/Server model assumes that clients and servers interact strictly on a request /reply
basis. In applications it may be desirable that a client and a server interact in a more
complex manner during a session and engage in an activity (a set of operations or “an
action”) that affects the information stored at the client and the server simultaneously
and in an indivisible manner. Activities of this kind are called “transactions” or “atomic
actions”. Atomic actions would pose no particular problem if it weren’t for the fact that in
all realistic applications “exceptions” and “failures” (like link failures or site crashes) can
occur during an atomic action. We will use the term “failure” to refer to any abnormal
condition that arises during an atomic action. The possibility of failures requires that

18

the effects of an atomic action must be recoverable at all times throughout its elabora-
tion, until the atomic action can be regarded as “safely completed” at both ends. The
implementation of atomic actions thus requires two basic facilities (see e.g. Gray [10]):

(i) a recovery mechanism, i.e., a mechanism for “undo-ing” the effect of one or more
atomic actions. Recovery mechanisms are always based on the use of logs that record
information on the processing of atomic actions at each site, and on a method for
effectuating a rollback. Logs must be recoverable in case of failures and thus must
be kept on “stable storage”.

(ii) an atomic commit protocol, i.e., a protocol for detecting “safe completion” and
committing the effects of an atomic action at both ends. Atomic commit protocols
are atomic actions and thus must be recoverable themselves.

The occurrence of a failure at some site does not necessarily imply that the atomic actions
in progress must all be aborted and rolled back. It may be possible for a node to recover to
a consistent state, based on information in its log. (This is called “independent recovery”.)
After recovery, a site may wish to have an atomic action re-started.

7.1 Implementation of atomic actions

The implementation of atomic actions in the context of possible failures is a well-studied
problem. In this section we will only discuss some aspects of the atomic commit problem,
as it will appear in enhanced Client/Server architectures. An excellent introduction to
concurrency control and recovery in distributed databases was given by Bernstein et al.
[2]. Also, a detailed recommendation for the implementation of atomic commit protocols
appears in the CCR standard of ISO [13]. It suggests that atomic commit protocols follow
some version of the well-known 2-phase commit protocol due to Gray [10] and Lampson
& Sturgis [19], and use the following primitives:

(i) C - BEGIN

(i) C - PREPARE
(iii) C - READY

(iv) C - REFUSE
(v) C - COMMIT
(vi) C - ROLLBACK
(vii) C - RESTART

Our main goal will be to give a more refined and complete presentation of the Individual
Commit protocol than is usually given (cf. [2,6]. As it will require no extra effort, we
will describe the protocol for the more general case of a client-initiated atomic action
that involves multiple servers. It is assumed that the client remains the “coordinator”
(or “superior”) of the atomic action and thus of the atomic commit protocol. The client
will only initiate the commit protocol (with a C-PREPARE primitive) if it has reason to
do so, i.e., if the activity of the atomic action at its own site has ended (which implies

19

that the servers have provided their operation results insofar as needed by the client). At
all times during the atomic action, the client and the servers must be ready to honor a
C-ROLLBACK or C-RESTART request from any party in the atomic action. Note that

the servers only communicate with the client, but not with each other (during the atomic
actions).

7.2 Atomic commit protocols

Applied to an atomic action, an atomic commit protocol is a distributed algorithm for the
client and the servers that should guarantee that they all commit or all abort the atomic
action. Following Bernstein et al. [2] the situation for an atomic commit protocol can be
rephrased in more precise terms as follows. Each party (client or server) may cast exactly
one of two votes: C-READY (“yes”) or C-REFUSE (“no”), and can reach exactly one of
two decisions: C-COMMIT (“commit”) or C-ROLLBACK (“abort”). An atomic commit
protocol must satisfy the following requirements:

ACl1 : A party cannot change its vote after it has cast a vote.

AC2 : All parties that reach a decision reach the same decision.

AC3 : A party cannot change its decision after it has reached one.

AC4 : A C-COMMIT decision can be reached only if all parties voted and voted
C-READY.

AC5 : I there are no failures and all parties voted C-READY, then the decision
C-COMMIT will be reached by all parties.

AC6 : Consider any execution of the protocol in the context of permissible failures.

At any point in this execution, if all current failures have been repaired
and no new failures occur for a sufficiently long period of time, then all
parties will eventually reach a decision.

The requirements can be viewed as the minimal correctness criteria for atomic commit
protocols. (Except for AC1, the requirements are taken from Bernstein et al. [2].) AC1
through AC5 can usually be satisfied quite easily, but AC6 requires a suitable recovery
procedure to be part of the protocol. Note that after voting C-READY, a party (client
or server) can not be certain of what the decision will be until it has received sufficient
information to decide. Until that moment, we say that the party is “uncertain”. If a
failure occurs that cuts an uncertain party off, then this party is said to be blocked. A
blocked party cannot reach a decision until after the connection to the other parties has
been restored. Blocking is usually concluded if no messages arrive during a certain timeout
interval within the uncertainly period. (Heuristic commit protocols allow a blocked party
to make a calculated guess of the decision. In the Individual Commit protocol proposed in
[18] a blocked client is allowed to commit.) A different situation arises when a party fails
(crashes) during its uncertainty period. In this case a more involved recovery procedure
may have to be followed (see Bernstein et al. [2] or below).

7.3 The (2-phase) individual commit protocol

The standard (2-phase) atomic commit protocol is as follows, in terms of the recommended
CCR primitives. (Note that the desired steps of the recovery procedure after failure are

20

part of the overall protocol, but these are not included in the basic specification below.)

Individual Commit Protocol

Client’s Commit
c-0. Vote ready;
Phase 1
c-1. Write “prepare” record to the Log;
c-2. Send C-PREPARE messages to all servers; activate timer;
¢-3. {Await answer messages (C-READY or C-REFUSE) from all servers using
a timer and act as follows}
Case condition of
c-3.1. Timeout or C-REFUSE message received:
begin
‘Write “rollback” record to the Log;
Send C-ROLLBACK messages to all servers;
C-ROLLBACK
end;
c-3.2. All servers answered and answered C-READY:
continue with Phase 2
end;
{End of Phase 1}
Phase 2
c-4. Write “commit” record to the Log;
c-5. Send C-COMMIT messages to all servers ; activate timer;
c-6. {Await answer messages (ACK) from all servers using a timer and act
as follows}
CASE condition of
c-6.1. Timeout: Write “incomplete” record to the Log;
¢-6.2. All servers answered (ACK):
Write “complete” record to the Log;
end;
c-7. C-COMMIT;
{End of Phase 2}

Server’s Commit
Phase 1
s-1. Await a C-PREPARE message from the client using timer;
{The server will only pass this point if it has indeed received a
C-PREPARE message from the client or timed out}
s-2. If not timed out then Vote ready or refuse;
s-3. Case condition of
s-3.1. ready:
begin
Write “ready” record to the Log;
Send a C-READY message to the client;

21

continue with Phase 2
end;
8-3.2. refuse:
begin
Write “refuse” record to the Log;
Send a C-REFUSE message to the client
end
8-3.3. Timeout:
Write “refuse”record to the Log
end;
{End of Phase 1}
Phase 2
s-4. Await a decision message (C-COMMIT or C-ROLLBACK) from the client
using timer;
{The server will only pass this point if it has indeed received a decision
message from the client or times out}
s-5. Case condition of
8-5.1. a C-COMMIT message was received:
begin
Write “commit” record to the Log;
Send ACK message to the client;
C-COMMIT
end;
8-5.2. a C-ROLLBACK message was received:
begin
Write “rollback” message to the Log;
C-ROLLBACK
end;
8-5.3. Timeout:
take whatever action to deal with blocking
end;
{End of Phase 2}

Although it is not explicitly specified, each party can unilaterally decide for a C-ROLLBACK
at any time if it has not (yet) voted “ready”. We assume that the Client’s Commit pro-
tocol is only initiated by the client after it has voted “ready”. If a client never votes or
votes “refuse”, then it never sends a C-PREPARE message and the servers automatically
time out eventually in their protocol. (We could have treated the client as a server in
the protocol, but have chosen not to do so in order to save messages.) We require that
C-COMMIT messages are ack’ed, but this can be omitted from the protocol without any
harm. (We do not require that C-ROLLBA CK messages are ack’ed, but could incorporate
it easily if desired.) Voting essentially amounts to determining whether the local activities
in an atomic action have ended and properly been logged or not, but we only need it as an
“abstract” operation. Where ever a “Log” is specified in the protocol, the local (client or
server) log is meant. The Individual Commit protocol as desired reduces to the protocol
outlined in [18] for the case of one server. A “Phase 2” is not entered automatically after

22

a “Phase 1”7, but only on an explicit “continue”.

7.4 Correctness proof

It should be an interesting research topic to develop a completely formal “correctness
proof” for the Individual Commit protocol. We outline a less formal proof here. We refer
to line-numbers as c-0, c-1, etcetera.

Theorem 7.4.1 If no timeouts and no failures occur, then the Individual Commit protocol
is correct.

Proof.

The requirements AC1 through AC5 are trivially satisfied. For AC2, note that if any party
(client or server) decides spontaneously for C-ROLLBACK when it can, then all parties
must follow suit eventually and cannot decide for anything else. AC6 is vacuously true. O

The next step is to consider the possibility of timeouts and a limited type of failures,
namely “loss of protocol messages”. In all cases except one, message loss necessarily leads
to a timeout and thus it is sufficient to consider the latter only. The one exceptional case
can arise in c-3, when some messages (including a C-REFUSE) have arrived but some
have not and the clients acts on the C-REFUSE. In this case the client acts just like it
would have in the case of timeout (line c-3.1.). Note that heavily delayed messages are
considered “lost”.

Theorem 7.4.2 If timeouts and loss of messages can occur but no server gets blocked,
then the Individual Commit protocol is correct.

Proof.

The requirements AC1, AC3 and AC4 are trivially satisfied. For AC2, observe the fol-
lowing. If a server times out on s-1, it will never send a message and can only decide
C-ROLLBACK (if it ever decides, cf. s-3.3.). The client necessarily executes c-3.1. and
decides for C-ROLLBACK too. Other servers either time out on s-1 as well or receive the
C-ROLLBACK decision in s-4. By assumption no server times out on s-4 (the blocked
case). If the client times out on c-3.1., then it decides C-ROLLBACK and the servers can
only reach the same decision by the very same argument. If the client times out on c-6.1.,
the only possible decision in the system is C-COMMIT and all servers must be in Phase
2. As we assume no blocking, all servers will eventually decide C-COMMIT. Thus AC2 is
satisfied and, by the latter argument, AC5 as well. AC6 is vacuously true. O

In order to get any further we must some how deal with the problem of blocking. A
blocked server timed out on s-5.3. and thus knows that it is blocked, but it is uncertain
of the decision that may have been reached. In order to keep the Individual Commit
protocol correct, a Server’s Commit Termination Protocol must be added. The purpose
of the Server’s Commit Termination protocol is to enable a blocked server to determine
the (apparent) decision reached in the system. Several possible strategies for a successful
Server’s Commit Termination protocol have been proposed, all based on polling. (For ex-
ample, if another server can be reached and it appears to have timed out on s-1, then the
blocked server can decide C-ROLLBACK.) But no Server’s Commit Termination protocol
can guarantee that it will remove the possibility of blocking. (For example, if a blocked

23

node is cut off permanently, it will forever remain uncertain.) We assume that any server
can eventually reach the client again and thus a simple polling of the client will do as a

Server’s Commit Termination protocol (cf. requirement AC6). We conclude the following
result.

Theorem 7.4.3 If timeouts and loss of messages can occur, then the Individual Commit
protocol enhanced with the Server’s Commit Termination protocol is correct.

The final step is to allow timeouts and arbitrary failures, i.e., “loss of protocol mes-
sages” and “site crashes”. If a site crashes permanently, the Individual Commit protocol
will simply continue in the remaining sites and perform as if the messages of the crashed
site are lost from some point onwards. The Server’s Commit Termination protocol should
be extended in this case and somehow detect permanent crashes of the client. In gen-
eral there is no guaranteed solution that avoids blocking, if permanent crashes can occur.
Thus we assume that each site that crashes eventually recovers and resumes the commit .
protocol. We also assume that a site can actually recover to the point where it crashed,
using the information in its log. The only problem now is to determine how to continue
with the commit protocol, knowing that the other sites may have advanced in it after the
crash. We present a possible recovery protocol below.

Commit Recovery Protocol

Client’s Commit Recovery
cr-1. If the client crashed before c-4 then
begin
Write “rollback” record to the Log;
Send C-ROLLBACK messages to all servers;
end;
cr-2. If the client crashed after c-4 but before c-6.2. then
begin
Write “commit” record to the Log;
Send C-COMMIT messages to all servers; activate timer;

{Await answer messages from all servers using timer and act as follows }
Case condition of

Timeout: Write “incomplete” record to the Log;
All servers answered: Write “complete” record to the Log
end;
C-COMMIT
end;
cr-3. If the client crashed after c-6.2. then
begin
perform c-7 if necessary
end;

Server’s Commit Recovery
sr-1. If the server crashed before s-4 and without having executed s-3.1.

24

then
begin
C-ROLLBACK
end;
sr-2. If the server crashed after s-4 while being uncertain
then
begin
use the Server’s Commit Termination protocol to remove blocking
end;
sr-3. If the server crashed after s-4 while being certain
then
begin
perform remaining activity if necessary in the C-COMMIT or
C-ROLLBACK
(whatever applies)
end;

We assume that Write/Send commands in the Individual Commit protocol are atomic,
and thus no crash occurs “in between” a Write and the subsequent Send. (While the

assumption is reasonable, it would nevertheless be of interest to analyse the protocol if
this assumption is not made.)

Theorem 7.4.4 The Individual Commit Protocol enchanced with the Server’s Commit

Termination protocol and the Commit Recovery Protocol is a correct atomic commit
protocol.

Proof.

If the client crashes before c-4, then each server either has C-ROLLBACK as the only
option is uncertain. Thus cr-1 is a correct recovery action, in the sense of satisfying the
requirements. If the client crashes in its Phase 2, then each server has either decided
C-COMMIT or is uncertain. Replaying Phase 2 (in so far as it its Phase 1 and without
sending a C-READY message, then the remaining sites will have progressed on the as-
sumption that its messages are C-REFUSE or “lost”. It means that the remaining sites
are on their way to decide C-ROLLBACK, and sr-1 is fully consistent with this. If a
server crashed after having sent a C-READY message, then either it had decided (and the
decision is recovered) or is uncertain. Thus sr-2 and sr-3 are the actions to take. With
the earlier analyses it easily follows that the complete protocol satisfies AC1 through AC6
and hence is correct. (]

25

References

[1] Barnes, J.G.P., Programming in Ada , Addison-Wesley Publ. Comp., London, 1982.

[2] Bernstein, P.A., V. Hadzilacos and N. Goodman, Concurrency control and recovery
in database systems , Addison-Wesley Publ. Comp., Reading, Mass., 1987.

[3] Bershad, B.N., D.T. Ching, E.D. Lazowska, J. Sanislo and M. Schwartz, A remote
procedure call facility of heterogeneous computer systems , Techn. Rep. 86-09-10, Dept.
of Computer Science, University of Washington, Seattle, Wa., 1986.

[4] Birrell, A.D. and B.J. Nelson, Implementing remote procedure calls , ACM Trans.
Comput. Syst. 2(1984) 39-59.

[5] CCITT, Remote operations [—part 1]: model, notation and service definition , draft
version, CCITT-COM VII-116-E, 1987.

[6] Ceri, S., and G. Pelagatti, Distributed databases - principles and systems , McGraw-
Hill Book Comp., New York, NY, 1984.

[7] Comer, D., Operating system design - Volume II: internetworking with XINU ,
Prentice-Hall Inc., Englewood Cliffs, NJ, 1987.

[8] Fletcher, J.G., and R.W. Watson, Mechanisms for a reliable timer-based protocol ,
Computer Networks 2 (1978) 271-290.

[9] Gentleman, W.M., Message passing between sequential processes: the reply primitive
and the administrator concept , Software - P & E 11(1981) 435-466.

[10] Gray, J., Notes on data base operating systems , Report RJ2188, IBM Research Lab.,
San Jose, Ca., 1978.

[11] IBM, IBM programmer’s guide to the server/requester programming interface for the
IBM Personal Computer and the IBM 3270 PC , first edition, IBM Corp., 1986.

[12] ISO, Working draft transaction processing service definition ,1SO TC97/SC21 N1715,
1987.

[13] ISO, Specification of protocols for application service elements - commitment, concur-
rency and recovery , draft international standard, ISO TC97/DI1S9805.2, 1985.

[14] ISO, Basic connection oriented session service definition , ISO TC97/SC21 N266,
1984.

[15] Janson, P., L. Svobodova and E. Maehle, Filing and printing services on a local-area
network , in: proc. 8th Data Communications Symposium, 1983, pp. 211-220.

[16] Knowles, T., J. Larmouth and K.G. Knightson, Standards for open systems intercon-
nection , BSP Professional Books, Oxford, 1987.

[17] Kohler, W., A survey of techniques for synchronization and recovery in decentralized
computer systems , ACM Comp. Surv. 13(1981) 149-183.

26

