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Abstract

The majority consensus algorithm of Thomas [Thom79] for concurrency control in mul-
tiple copy databases is proved correct, using system-wide invariants. The specification of
the algorithm is extended to a more formal and more complete form. It is shown that
the algorithm as given by Thomas does not guarantee internal consistency, but that a

slightly modified form does. We also describe a modification in which votes need not be
remembered.

Keywords: distributed databases, data replication, update synchronization, concurrency
control, timestamps, assertional proof, system-wide invariant.
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Chapter 1

Introduction

In this paper we explore the practical problems of a distributed database system in which
replicated files are kept. An update mechanism for distributed databases in which multiple
copies of the data are present should preserve the consistency of the data. Here two types
of consistency are important:

1. mutual consistency: different copies of a data item in the database contain the same
value at the same time.

2. internal consistency: for each copy certain predicates on the values of different items
hold at all times.

To ensure these properties, an update mechanism should be atomic (the update is executed
fully or not at all, but not partly), isolated (a transaction cannot use the results of another
transaction that is not yet accepted), durable (an accepted update is never undone), and
serializable [CePe85). Two definitions of serializable are given in Chapter 4.

Update mechanisms for distributed databases may be centralized or distributed. In
a centralized mechanism there is one node that controls the update. In a distributed
mechanism there is no such central node.

The most widely known mechanism for concurrency control in distributed databases
is two-phase locking [CePe85]. The simplest version of two-phase locking is centralized.
The coordinating process, often the process that initiated the update, first acquires locks
on all data items it needs, then performs its actions, and afterwards releases all the locks
it holds. Two-phase locking is often used together with a two-phase commit protocol to
ensure atomicity of the update. More extended versions of two-phase locking and two-
phase commit choose a new coordinator if the old one crashes.

A well-known distributed update mechanism for distributed databases is described by
Thomas [Thom79]. He suggested to assign timestamps to each data item in each copy, and
to each update request. To create an update request, data are read from one copy of the
database. The request then circulates through the network and tries to accumulate ”0K”
votes from the nodes. If a request acquires a majority of OK votes it is accepted, and the
update is executed at all sites. Otherwise the request is rejected. The idea underlying
Thomas’ algorithm is a fundamental one, and has been (and still is) applied repeatedly in
the design of distributed algorithms that involve some kind of distributed version control.

In [Thom79] only an informal argument for the correctness of this update mechanism
is given. This paper gives a formal correctness proof of the update algorithm in [Thom79]



using system-wide invariants. This technique has been successfully applied to the ver-
ification of many protocols, and gives considerable additional insight into the algorithm
[Kro78], [Knu81], [SvL85], [SvL87), [Tel87], [DrSc88]. Independently, a (less complete)
version of Thomas’ update algorithm was verified by Jonsson [Jon87] as an application of
a proof system for transition systems.

In Chapter 2 a more extensive description is given of the update mechanism of [Thom79],

in Chapter 3 we refine the description to a form suitable for the proof, Chapter 4 contains
the proof, and Chapter 5 the discussion.



Chapter 2

Description of the update
mechanism

2.1 Assumptions

In [Thom79] a number of assumptions about the network and the distributed database
are given. The network consists of sites, connected by communication channels. Each site
has a local clock. There is no global clock. Message delay is arbitrary.

The most important assumption is full replication: at all sites of the network a full
copy of the database is present. The database consists of a collection of named elements.
The nature of these elements is not important here. Each named element has a value and
a timestamp associated with it. The database copy at each site is accessible only through
a database managing process (DBMP), which resides at that site. Query and update
accesses to the database are initiated by application processes (APs). DBMP-DBMP and
DBMP-AP communication is only possible via messages.

Thomas uses two models for communication between DBMPs. In model 1 messages
are never lost. In model 2 a site may crash, and thus lose an unresolved update request
that was present in this site. It is assumed that no other information is lost.

2.2 The Update Mechanism
Thomas [Thom79] describes his majority consensus update mechanism by giving five rules:
1. DBMP/DBMP Communication Rule,
2. Voting Rule,
3. Request Resolution Rule,
4. Update Application Rule,
5. Timestamp Generation Rule.

If an AP wants to execute an update, it first requests values of database items plus their
timestamps from a DBMP. The set of data elements used by the AP is called the base
set. From these values the AP computes new values for the data elements to be updated.



The set of data elements to be updated is called the update set. The update set must be
a subset of the base set.

The AP now makes an update request. This request contains the timestamps of the
items in the base set, and the new values of the items in the update set. The update
request also gets a timestamp, using the Timestamp Generation Rule. This timestamp is
derived from the timestamps of the base variables, and the value of the local clock. The
AP sends this request to a DBMP.

A DBMP that receives an update request compares the timestamps of the base vari-
ables of the request to the timestamps of the items in its own copy of the database. It also
checks if this update conflicts with other request on which it has voted, but about which
it has not yet received a decision. Two update requests conflict if an item in an update
set of one request is also present in the base set of the other. The DBMP then uses the
Voting Rule to determine how to vote on the request, and adds its vote to a set of votes
attached to the request.

After voting, the DBMP checks whether the request has accumulated enough votes to
decide if the request should be accepted or rejected. If there are enough votes, the Request
Resolution Rule is used to decide whether the request is accepted or rejected. Request
plus decision are then broadcast to all other DBMPs. If there are not enough votes, the
request is sent to another DBMP using the DBMP/DBMP Communication Rule.

If a DBMP decides to accept a request, or receives the decision that an update request
is accepted, it applies the update using the Update Application Rule. Timestamps in the
database copy for the modified data elements are set to the timestamp assigned to the
update.

’

2.3 More detailed description of the rules
2.3.1 DBMP/DBMP Communication Rule

In [Thom79] two ways of forwarding update requests are given:
¢ Daisy chaining,
¢ Daisy chaining with timeout.

Daisy chaining is used if model 1 is assumed: no messages are lost. If a DBMP receives an
update request it votes, and if a decision is not yet possible, it sends it to one other DBMP
that has not yet voted. If model 2 is assumed (sites may crash and lose an update request)
extra provisions are needed. A DBMP sets a timer when it forwards an unresolved request
to another DBMP. If the timer expires before a decision about this request arrives, the
DBMP again sends the request to a DBMP that has not yet voted. This need not be the
same DBMP as before. After sending the DBMP again sets a timer.

2.3.2 DBMP Voting Rule

The voting rule is the basis for concurrency control. A DBMP receiving an update request
checks whether the timestamps of the base variables of the request are current, i.e. equal
to the timestamps of these items in its database copy. If this is the case, no conflicting
updates were executed since the request was initiated. Also the DBMP checks whether
the request conflicts with a pending request: a request on which the DBMP voted earlier



but did not yet receive the decision. If all base variables are current and there are no
conflicting pending requests, the DBMP votes OK. If a base variable in the request is
"older” than the corresponding item in the database copy, the DBMP votes REJ. If most
base variables of the request are current but some are ”too new”, then an accepted request
updating these items must be on its way to the DBMP. So the DBMP defers voting until
this other update is executed.

If a request conflicts with a pending request, the DBMP should not vote OK. If the
pending request is executed, it makes the base variables of the recejved request obsolete.
The DBMP could set the received request apart and defer voting until the decision about
the pending request has arrived. But this could cause deadlock if DBMP i has request A
pending and defers B, and DBMP j has request B pending and defers A. Therefore the
timestamp of a request is also used as a priority. If the received request conflicts with a
pending request of higher priority, the DBMP votes PASS, else it defers the request. This
results in the following DBMP Voting Rule:

1. Compare the timestamps for the request base variables with the corresponding time-
stamps in the local database copy.

2. Vote REJ if any base variable is obsolete.

3. Vote OK and mark the request as pending if each base variable is current and the
request does not conflict with any pending requests.

4. Vote PASS if each base variable is current but the request conflicts with a pending
request of higher priority.

5. Otherwise, defer voting and remember the request for later consideration.

If the timeout and retransmit communication discipline is used (model 2), it is possible
for a DBMP to be asked to vote on a request on which it has already voted. A DBMP is
forbidden from changing its vote in such a case.

2.3.3 Request Resolution Rule

The basic idea is that the request should be accepted if a majority of the DBMPs has
voted OK. The important property of majority consensus is that the intersection of any
two ma jorities has at least one DBMP in common. This means that for any two requests
that are accepted at least one DBMP voted OK for both. For model 1 the Request
Resolution Rule is:

1. After voting on a request (R):

a) if the vote was OK and a majority consensus exists:
Accept R and notify all DBMPs and the AP that R was accepted.

b) if the vote was REJ:
Reject R and notify all DBMPs and the AP that R was rejected.

c) if the vote was PASS and a majority consensus is no longer possible:
Reject R and notify all DBMPs and the AP that R was rejected.



d) otherwise:

Forward R and the votes accumulated for it so far to a DBMP that has not yet
voted on it.

2. After learning that a request (R) has been resolved:

a) if R was accepted:

i) Apply R to the local copy of the database using the Update Application
Rule.

ii) Reject conflicting requests that were deferred because of R.
b) if R was rejected:

i) Use the voting rule to reconsider conflicting requests that were deferred
because of R.

If model 2 holds and daisy chaining with timeout is used, more copies of a request may
be present in the network. To prevent that a request is both accepted and rejected by the
DBMP set, the DBMP Request Resolution Rule is adapted as follows:

1. b) if the vote was REJ and a majority consensus is no longer possible:
reject R and notify all DBMPs and the AP that R was rejected.

In model 1 one REJ vote suffices to reject a request. In model 2 a majority of REJ

and PASS votes is needed to reject a request, which makes REJ and PASS votes in fact
equivalent.

2.3.4 Update Application Rule

The Update Application Rule ensures that updates, executed on a data item in a copy
of the database, are executed in timestamp order. In fact it ensures that an update that
arrives too late, i.e., when another update on this item with higher timestamp is already
executed, is not executed any more on this item.

The Update Application Rule is:

1. To apply an update (R) to a variable (v) in a database copy, compare the timestamp
of R (T) with the timestamp of the variable in the database (Tv): i Tv<T, modify
v and set Tv to T; otherwise, omit the update to v since it is obsolete.

For updates with more than one update variable it may happen that some of the
assignments to data elements are performed and others are omitted as obsolete.

2.3.5 Timestamp Generation Rule

When a DBMP initiates a new request, it also generates a timestamp for this request.
These timestamps should be unique, and timestamps generated by one DBMP should
increase monotonically in time. A timestamp generated by a DBMP i is a pair (T,i), with
T a time and i a node identification. The relations equality, greater than, and less than
for timestamps are defined as follows:



Let T1=(C1,d1) and T2=(C2,d2) be timestamps.

Equality : T1=T2 iff C1=C2 and d1=d2.
Greater than : T1>T2 iff C1>C2, or C1=C2 and d1>d2.
Less than : T1<T2 iff C1<C2, or C1=C2 and d1<d2.

The timestamp generation rule used by a DBMP i to assign a timestamp to a request R
is:

1. Let T=14+max(time, max({Tb}))
where “time” is the time obtained by DBMP i from its local clock and the {Tb}
are the time-parts of the timestamps for R’s base variables. The timestamp for R is
(T,i). To ensure that its local clock increases and that it never regenerates the same
timestamp, DBMP i also sets its local clock to T.



Chapter 3

A Description using State
Variables and Events

To prove the update algorithm correct we need a description of everything relevant that
may happen in the system while the algorithm is executing. For a proof using invariants
this description must be in the form of state variables, and events that send and receive
messages and change the values of the state variables. To prove an invariant correct it
must be checked that all events preserve its correctness. Therefore events must be atomic.
Either all actions of an event are executed, or none at all. This raises the problem of
granularity of events. Events could be very small: they could consist of one action, like
sending, receiving, or modifying the value of one variable. This is comparable with the
situation in a real computer that does not use checkpoints. But a great number of small
events leads to a lengthy proof [Lam82]. Events consisting of more actions correspond
to a system with checkpoints. Big events have another disadvantage: it becomes difficult
to see the results of an event, and this also complicates the proof. We choose to make
events that start with the reception of a message, then optionally perform computations
and change values of state variables, and end with the sending of zero or more messages.
If sending of a message is not triggered by the reception of another message, then the
corresponding event consists of performing computations and changing state variables if
needed, and sending one or more messages.

In [Thom?79] the network consists of sites. Each site has a copy of the database and
a DBMS process to perform actions on this copy. An update request is initiated by
an Application Process (AP). We decided to make no difference between sites, DBMPs
and APs, and to take nodes as entities. Nodes contain a database copy, initiate update
requests, and read and write data items in this copy. So nodes have state variables and
perform events. We shall first describe these for model 1.

3.1 Model 1

A description of variables and events of nodes is given in Figure 3.1 and Figure 3.2.
Events and procedures are given in a Pascal-like notation. We assume that variables and
operations for sets are present. a into A means: insert element a into set A. a outof
A means: remove element a from set A. for all a € A do S0...Sn od means: execute
statements S0...Sn for each element a in set A, the elements taken in arbitrary order. In
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boolean expressions and has a higher priority than or .

A request consists of timestamps of the base variables and new values for update

variables. It also contains an update timestamp, and a set of votes. So the structure of a
request A is:

e A.BaseSet : contains the names of the base variables,

A.BaseTS(x) for each x € A.BaseSet : the timestamp of base variable x. It consists
of two parts: A.BaseTS(x).time and A.BaseTS(x).node,

o A.UpdateSet : contains the names of the update variables,

A.UpValue(x) for each x € A.UpdateSet : the new value for update variable x,

A.UpTS : the update timestamp of A. Like A.BaseTS(x) it consists of two parts:
A.UpTS(x).time and A.UpTS(x).node,

® A.VoteSet: contains (vote, node) pairs with nodes that voted already on this request.

There are two types of messages. A request message contains a request; a decision
message contains a request and a decision: Accepted or Rejected.

As the only things that happen in a link are entering a message into it and removing
a message from it, we did not model links as separate entities, but represented them by
state variables of the nodes. Because nodes do not discriminate between messages from
different links and do not receive messages in some prescribed order, we gave each node i
a state variable Bag(i), which contains the messages sent to i but not yet received by i.

A node also contains a local copy of the database, and a set of pending requests:

requests it has voted on, but about which it did not yet receive a decision. Fach node has
its own local clock. So the state variables of node i are:

e Bag(i) : messages sent to i but not yet received by i,

 Dbase;(x) for each item x in the database : the local copy of item x. It consists of
two parts:

— Dbase;(x).value : the value of this copy of item x,
— Dbase;(x).ts : the timestamp of this copy of item x.
e PendingSet(i) : the set of pending requests,
e Clock(i) : the local clock of i.

A node i also uses additional variables Vote and Decision. These are not considered as
state variables.

Nodes may receive an update request, receive a decision about an update request, or
spontaneously generate and send a new update request. So the events of a node are:

1. Receive request,
2. Receive decision,

3. Generate request.

11



Variables of node i:

Dbase;(x).value for each data item x
Dbase;(x).ts for each data item x
PendingSet (i)

Bag(i)

Clock(i)

Events of node i:

1) { A € Bag(i) and not Deferred(A) }
Receive(A);
Vote := DetermineVote(A);
Decision := Decide(A,Vote);
Execute(Vote,Decision, A);

2) { (A,Decision) € Bag(i) }
Receive((A,Decision));
if Decision=Accepted
then ApplyUpdate(A)
ﬁ.

Remove(A) from PendingSet(i);

3) A := MakeRequest;
Send(A) to NextNode(A);

Procedures of node i:

procedure Deferred(A) : boolean;
if 3x € A.BaseSet :

A .BaseTS(x) > Dbase;(x).ts

or Vx € A.BaseSet :

A .BaseTS(x) = Dbase;(x).ts

and ( VP € PendingSet(i) :

Conflict(A,P) =

P.UpTS > A.UpTS))
then Deferred := false
else Deferred := true
fi;
procedure DetermineVote(A) :

VoteType;
if dx € A.BaseSet:

A .BaseTS(x) < Dbase;(x).ts
then DetermineVote := REJ
elsif Vx € A.BaseSet:

A BaseTS(x)=Dbase; (x).ts
and VP € PendingSet(i):
not Conflict(A,P)
then DetermineVote := OK
elsif Vx € A.BaseSet:
A .BaseTS(x)=Dbase;(x).ts and

VP € PendingSet(i):
Conflict(A,P) —
A.UpTS > P.UpTS
then DetermineVote := PASS
fi;

procedure Conflict(A,B) : boolean;
if 3x:
x € A.BaseSet and x € B.UpdateSet
or x € A.UpdateSet and x € B.BaseSet
then Conflict := true
else Conflict := false
fi;

procedure Decide(A,Vote) : DecisionType;
Decide := Undecided;
Case Vote of
OK : if Majority(A.VoteSet)=OK
then Decide := Accepted
fi;
REJ : Decide := Rejected;
PASS : if Majority(A.VoteSet)=PASS
then Decide := Rejected;
Esac ;

procedure Execute(Vote,Decision,A);
Case Decision of
Undecided : (Vote,i) into A.VoteSet;
A into PendingSet(i);
Send(A) to NextNode(A);
Accepted : Broadcast((A,Decision));
ApplyUpdate(A);
Rejected : Broadcast((A,Decision));
Esac ;

procedure MakeRequest : RequestType;
var A: RequestType;
Put base variable names
into A.BaseSet;
for all x € A.BaseSet do
A.BaseTS(x) := Dbase;(x).ts od ;
Put all update variable names
into A.UpdateSet;
Compute new values;
for all x € A.UpdateSet do
A.UpValue(x):=
new value of x;
A.UpTS := MakeTimestamp(A.BaseSet);
A VoteSet := @;
MakeRequest := A;

Figure 3.1: Variables and events of nodes and procedures for model 1
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procedure ApplyUpdate(A); procedure Remove(A) from PendingSet;

for all x € A.UpdateSet if 3P € PendingSet :
do if A.UpTS > Dbase;(x).ts P.UpTS = A.UpTS
then Dbase;(x).value := A.UpValue(x); then A outof PendingSet
Dbase;(x).ts := A.UpTS fi;
procedure Receive(A);
od ; A outof Bag(i);
procedure MakeTimestamp(A): procedure NextNode(A): NodeType;
TimestampType; provides the id. of a node that is
var TS: TimestampType; not yet present in A.VoteSet;
TS.time := 1 + max(Clock(i), - .
max{A.BaseTS(x) | x € A.BaseSet}); procedure Ma_]c{nty(VoteSfet).
. MajorityType;
TS.node := i; . . Y
. . gives OK if a majority of OK votes
Clock(i) := TS.time; . .
MakeTimest = TS: 18 present in VoteSet,
fmesiamp = 155 PASS if a majority of OK votes
procedure Send(A) to i; is no longer possible,
A into Bag(i); Undecided otherwise.

Figure 3.2: Rest of procedures for model 1

If a node receives a request, it votes, and decides, or sends the request to another node
for voting. After making a decision, a node broadcasts the request plus the decision to
all other nodes, and applies the update if the decision was Accepted. A node receiving
a decision message removes the request from the PendingSet (if present), and applies the
update if the decision was Accepted. Generation of an update request consists of reading
the base variables and their timestamps, computing a timestamp for the request, and
sending the request to a node for voting.

The rules in [Thom?79], see also section 2.2, are translated into procedures. We will
describe these for each rule. In figure 3.1 and 3.2 the detailed ”code” is given.

3.1.1 Communication rule

If a node has voted and not taken a decision, procedure NextNode chooses in some un-

specified way a node from the nodes that did not vote yet on this request. This results in
daisy chaining.

3.1.2 Voting Rule

In [Thom79] a DBMP that received a request may vote OK, REJ, or PASS, or defer voting
and remember the request for later consideration. We modeled this by postulating that a
node can only receive undeferred requests. Procedure Deferred tests whether a request is
deferred with respect to the local database copy. A request is deferred if it contains "too
recent” base variables (and no obsolete ones), or if all its base variables are current and it
conflicts with a pending request with a lower timestamp. If a node receives an undeferred
request, procédure DetermineVote determines the vote according to the Voting Rule in
[Thom79]. Procedure Conflict is used to test whether the request conflicts with a pending
request.

13



3.1.3 Request Resolution Rule

When a node has voted on a request, it calls procedure Decide. This procedure decides
whether there are enough votes to take a decision, and makes a decision according to the
Decision Rule in [Thom79]. An unspecified procedure Majority decides whether there is
a majority of OK votes, a majority of OK votes is no longer possible, or there are as
yet too few votes. Majority is a function from sets of (vote,DBMP) pairs to {OK, PASS,
Undecided}. The essential properties that are required of it are:

o If Majority(V1)=OK and Majority(V2)=OK, then V1 and V2 have at least one
DBMP in common that voted OK in both cases.

e If Majority(V1)=OK and Majority(V2)=PASS, there is at least one DBMP that
voted OK in V1 and PASS or REJ in V2.

e If for all V2 that contain V1 Majority(V2) # OK, then Majority(V1) = PASS.

Procedure Execute takes action upon this decisioa. If the decision was Undecided, the
vote plus an identification of the node are added to the VoteSet of the request, a copy
of the request is placed into the PendingSet, and the request is sent to another node.
Otherwise the request plus the decision are broadcast to all other nodes. If the decision
was Accepted, the update is applied to the local database copy (see Update Application
Rule).

The second part of the Decision Rule in [Thom?79] gives the rules for a node receiving

a decision (event 2 in figure 3.1). Our description of this algorithm does not follow these
rules fully:

o If a request A was accepted, conflicting requests that were deferred because of A
are not rejected. Such requests are now no longer deferred, because A is no longer
pending, and may be received in a later event, and will then be rejected.

o If A was rejected, we do not in the same event use the voting rule to reconsider
conflicting requests that were deferred because of A. The requests are no longer
deferred, and may be received by the node.

These changes make our version a more general form of the algorithm in [Thom79], and
thus do not invalidate our proof of the algorithm in [Thom79].

Also, it is not specified in [Thom79] what happens to requests that are deferred because
some of their base variables are too recent. In our version of the algorithm they may be
received by the node as soon as the timestamps in the local database copy have increased
enough to make these base variables current or obsolete.

3.1.4 Update Application Rule

Procedure ApplyUpdate applies an update request according to the Update Application
Rule in [Thom79]: an update A to data item x in node i is only applied if A.UpTS >
Dbase;(x).ts.

14



3.1.5 Timestamp Generation Rule

Procedure MakeTimestamp generates a timestamp for a new request A according to the
Timestamp Generation Rule in [Thom?79]. A timestamp is a pair (T,i) with i the identifi-
cation of the node and

T =1 + max( Clock(i), max{ A.BaseTS(x).time | x € A.BaseSet }).

3.2 Model 2

In model 2 a node may vote more than once on a request, and must vote the same every
time on a same request. Therefore the nodes have an extra state variable: OldVoteSet,
which contains (Request.UpTS, Vote) pairs.

To handle it, event 1 is changed in such a way that a node looks first whether there is
already a vote for this request, and only calls DetermineVote if this is not the case.

Two new events are added:

¢ Event 4 models the timeout. At some unspecified time a node decides to send a copy
of a pending request to some arbitrary node that has not yet voted on this request.

o Event 5 models the loss of a request by a node. The node receives a request and
does nothing with it. No other information is lost.

Procedure Decide is changed. A node no longer decides Rejected upon one REJ vote,
but only if a majority of OK votes is no longer possible. This is needed because more
request messages for one request may be generated, and so more than one node may make
a decision about the same request. If a node could decide Rejected upon one REJ vote,
decisions of different nodes about the same request could be different.

In procedure Execute a request is removed from the PendingSet (if present), if a
decision is made by the node about this request. All other variables, events and procedures
are the same as in model 1. The changes are given in Figure 3.3.

3.3 Global Observer

An invariant is a predicate on state variables of the system. It gives no information
about the sequence of events in the system. As some of the claims in [Thom79] are about
the sequencing of updates, we need a mechanism to describe some aspects of the history
of an execution of the algorithm. Therefore we add a Global Observer. This Global
Observer records facts about the events that happen in the system, but does not influence
these events. Therefore the Global Observer has its own state variables, to which values
are assigned if certain events happen in the system. The Global Observer has its own
monotone clock, called GlobalClock.

The Global Observer records all requests A that are initiated. The variables used in
model 1 are:

o A.BaseSet
e A.BaseTS(x) for each x € A.BaseSet
e A.UpdateSet

15



New variable of node i:
OldVoteSet(i)

New and changed events
of node i, respectively:

1) { A € Bag(i) and not Deferred(A)}

Receive(A);

if (A.UpTS,0ldVote) € OldVoteSet(i)

then Vote := OldVote

else Vote := DetermineVote(A);
(A.UpTS,Vote) into OldVoteSet

fi;

Decision := Decide(A,Vote);

Execute(Vote,Decision, A);

4) { A € PendingSet(i) } /*timer expires*/
Send(A) to NextNode(A);

5) { A € Bag(i) } /*A is lost in node i*/
Receive(A);

Changed procedures:

procedure Decide(A,Vote) : DecisionType;
Decide := Undecided;
Case Vote of
OK : if Majority(A.VoteSet)=OK
then Decide := Accepted
fi;
REJ,PASS :
if Majority(A.VoteSet)=PASS
then Decide := Rejected;
fi;
Esac ;

procedure Execute(Vote,Decision,A);
Case Decision of
Undecided : (Vote,i) into A.VoteSet;
A into PendingSet(i);
Send(A) to NextNode(A);
Accepted : Broadcast((A,Decision));
ApplyUpdate(A);
Remove(A) from PendingSet(i);
Rejected : Broadcast((A,Decision));
Remove(A) from PendingSet(i);
Esac ;

Figure 3.3: Changes in variables, events, and procedures for model 2
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e A.UpTS
e A.VoteSet
The Global Observer also records:
e A.InitNode : the node that initiated A

e A.Decision : the decision taken about A.

A.DecisionTime : the global time when the decision was made about this request.

A .DecisionKnown(i) : registers whether node i received a decision about request A.

In model 2 more messages containing the same request may be present, so more sets
of votes and more decisions of one request are recorded by the Global Observer. The new
variables are: A.VoteSet(n) and A.Decision(n), one for each copy. Only the time of the
first decision about a request is recorded.

Values are assigned to the variables of the Global Observer when a request is initiated,
a decision is taken about a request, or a decision is received by a node. GlobalClock is
increased at the end of each event in which state variables of the Global Observer are
changed.

3.4 Initialization

When execution of the algorithm starts, each copy of a data item must have the same
timestamp. Also all copies must have the same value. No request messages, decision mes-
sages, or pending messages may be present. So the initialization may be given as:

Dbase;(x).value := initvalue(x) for data items x,
Dbase;(x).ts := InitTS(x) for data items x,
Clock(i) := InitClock(i),

Bag(i) := 0,

PendingSet(i) := 0.

The initial clockvalue for each node is arbitrary, but for practical reasons these clockvalues
and the timestamps of the data items in the database should not vary greatly, for then
many of the first requests will be rejected or deferred.

Before a request is initiated, the corresponding variables of the Global Observer have

values @ (set variables), oo (timestamps), false (boolean variables), or undefined (the rest).
The GlobalClock is initialized to an arbitrary value.
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Chapter 4

The Proof of Thomas’ Update
Algorithm

A correctness proof for an update algorithm must prove three things:
1. The algorithm ”does what it should do”,
2. The algorithm does not cause deadlock,
3. The algorithm eventually terminates if no more new tasks (requests) are generated.

Necessary properties for correct execution of an update algorithm for distributed databases
are atomicity, isolation, durability, and serializability [CePe85]. Atomicity of update trans-
actions is guaranteed in the majority consensus algorithm because an update is not applied
before the request is accepted. Isolation is guaranteed by the same reason. Durability is
guaranteed because the algorithm never undoes an update, and it is assumed that database
values are not affected by crashes.

The notion of serializability in the theory of centralized databases is well-understood.
In [CePe85] serializability for centralized databases is defined as follows:

Definition A schedule is a sequence of operations performed by transactions.

Definition A schedule is serializable iff it is computationally equivalent to a serial
schedule.

In [CePe85] two conditions are given that together are sufficient to ensure that two sched-
ules are computationally equivalent:

1. Each read operation reads data which are produced by the same write operations in
both schedules,

2. The final write operation on each data item is the same in both schedules.

More definitions exist for serializability in distributed databases. A commonly accepted
definition is the following [CePe85] :

Definition [CePe85] The distributed execution of a set of transactions T;...T, is seri-
alizable iff:
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1. all local schedules are serializable,

2. there exists a total ordering of T;...T,, such that each local schedule is equivalent
to a serial schedule that has an order of transactions consistent with this total
order.

This form of serializability guarantees that a data item is not modified between the time
a transaction reads a data item and writes it.
Thomas [Thom79] uses a slightly different definition of serializability:

Definition Let A;...A, be the set of accepted updates of an execution E of an update
algorithm. The execution E is serializable according to [Thom79] iff there exists an
ordering of A;...A, which, if executed on a one copy database with the same initial

values for the items, produces the same update values for the items as in execution
E.

To prove that executions of the majority consensus algorithm are serializable according to
this second definition, we need an extra definition [Thom79]:

Definition Let A and B be update requests.
A must precede B, notation A<B, iff A # B and
(A reads a variable x that is also in B’s UpdateSet, and the timestamp of A’s reading
of x is smaller than the timestamp of B’s update,
or
A updates a variable x that is also in B’s BaseSet, and the timestamp of A’s update
is smaller than or equal to the timestamp of B’s reading of x.)

Hence, for A # B: A<B <
3x(x € A.BaseSet and x € B.UpdateSet and A.BaseTS(x)<B.UpTS )
or Ix(x € A.UpdateSet and x € B.BaseSet and A.UpTS <B.BaseTS(x)).

We will prove that the relation ”must precede” for a set of accepted updates of an execution
of the majority consensus algorithm can be transformed to a total order that preserves
this relation.

Full mutual consistency would be reached if all copies of the database are the same per
data item at each moment. But this is niot possible in the majority consensus algorithm,
because the decision to execute an update request is taken at one node, and there is no
bound on message delay. Therefore the decision about a request will reach the nodes at
different times. Two accepted updates may even arrive at two nodes in reverse order. If
nodes i and j decide at about the same time to accept requests A and B, respectively, node
i first executes the update of A and then of B, and node j first executes B and then A.

A weaker form of mutual consistency is: all copies of a database item have the same
sequence of values in time, but changes do not necessarily occur at the same moment. But
even this is too strong for the majority consensus algorithm, because two updates need
not arrive at different nodes in the same order. However, the following can be proved: the
updates, executed on a copy of a data item, are a co-infinite subset of all updates of this
data item, and are executed in a fixed order.

We give a proof of the consistency property for both model 1 and model 2. For model
1 we prove:

1. Only one node decides about a request.
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2. The accepted updates of an execution of the majority consensus algorithm are seri-
alizable according to the definition in [Thom79)}.

3. Updates, executed on a data item in one copy, are a co-infinite subset of all updates,
executed on this item, and are executed in a fixed order.

The algorithm does not cause deadlock.
The algorithm eventually terminates if no more new requests are generated.
If no more new requests are initiated, all database copies converge to the same value.

The algorithm takes correct decisions.

© N e ook

Every request is decided.

For model 2 we prove the same statements, with one exception. Statement 1 becomes:
1. All decisions made about a request are the same.

These statements are proved using invariants. An invariant is a predicate on state variables
of the system. An invariant should hold at any moment during an execution of the
algorithm that is being analyzed. An invariant is proved correct by verifying that it holds
at initialization and that no event can make it false.

Many of the invariants we prove are of the form X = Y, e.g.
A € PendingSet(i) => 3j : A € Bag(j) or (A,Decision) € Bag(i).
Proving such invariants consists of:

1. Checking that the invariant holds after initialization. Often this is trivial because
the premise does not hold.

2. Verifying that an event cannot make the premise A true while the conclusion B is
false.

3. Verifying that an event cannot make the conclusion B false while the premise A is
true.

For step 2 and 3 we list all actions that could make the invariant false (the ”dangerous”
actions), and check each event in which one or more of these actions could occur. In the

proof we repeatedly refer to the specification of Thomas’ algorithm given in figure 3.1 and
3.2, by using the indices and names introduced there.

4.1 Proof for model 1

4.1.1 A decision about a request is only taken once

Lemma 1.1 There is at most one request message present of request A.

Proof:
The dangerous actions are:
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e A request message is sent.

1) i receives request message A, votes, and sends a request message. Then i sends
no more than one message.

3) i initiates a new request. Then there was no message of this request in the system,
and i sends only one request message during the event. O

Theorem 1 Only one decision is taken about a request A.

Proof:

If i decides on request A, i receives a request message with A, and sends no request
messages during the event. There is at most one request message present (lemma 1.1),
and a request message is only generated once, hence no second decision can be taken. O

4.1.2 Serializability

We prove that the set of accepted updates of an execution of the algorithm is serializable
as defined in [Thom?79]. We first prove that timestamps of requests are unique. We use
A,B.... to denote requests:

Lemma 2.1 CreatingNode(A)=i => A.UpTS.time <Clock(i).

Proof:

The dangerous actions are:

e CreatingNode(A):=i.
3) i creates request A. Then A.UpTS.time gets a value, and Clock(i):= A.UpTS.time.
So the conclusion holds after the event.

e A.UpTS changes its value.
3) i creates request A. This case is already treated.

¢ Clock(i) changes its value.

3) i creates another request B. Then Clock(i) increases its value, so the conclusion
still holds after the event. O

Lemma 2.2 A # B = A.UpTS # B.UpTS.

Proof:
The dangerous actions are:

e A.UpTS changes its value.
3) Node i initiates request A.
If B is not yet initiated, then B.UpTS = oo.
If B is initiated by another node than i, B.UpTS.node # A.UpTS.node.
If B is initiated by i, then B.UpTS.time <Clock(i) before the event (lemma 2.1). And
A.UpTS.Time := 1 + max(Clock(i), max{A.BaseTS(x).time | x € A.BaseSet}). So
A.UpTS.time > B.UpTS.time, and A.UpTS # B.UpTS.

e B.UpTS changes its value.
Analogous. O
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If node i has already voted on request A, then A is in PendingSet(i), or i knows the decision
about A:

Lemma 2.8 (Vote,i) € A.VoteSet => A€ PendingSet(i) or A.DecisionKnown(i).

Proof:
The dangerous actions are:

o (Vote,i) is put into A.VoteSet.
1) i receives A and votes. If i votes OK or PASS and takes no decision, then A is
put into PendingSet(i). If i takes a decision A.DecisionKnown(i) becomes true.

e A is removed from PendingSet(i).
2) i receives (A,Decision). Then A.DecisionKnown(i) becomes true. O

If the update of A is executed in node i and x is an item in A’s UpdateSet, then the
timestamp of x in the database copy is greater than or equal to the timestamp of A:

Lemma 2.4 A.Decision=Accepted and A.DecisionKnown(i) and
x € A.UpdateSet = :
Dbase;(x).ts >A.UpTS.

Proof:
The dangerous actions are:

e A.Decision := Accepted.
1)ireceives A, x € A.UpdateSet, i votes OK, decides Accepted, and A.DecisionKnown

:= true. Then the update of A is executed in i and if Dbase;(x).ts < A.UpTS then
Dbase;(x).ts := A.UpTS.

o A.DecisionKnown(i) := true.
1) i receives A and decides Accepted. This case is already treated.

2) i receives (A,Accepted). Then i executes the update of A and if Dbase;(x).ts <
A.UpTS then Dbase;(x).ts := A.UpTS.

¢ Dbase;(x).ts changes its value.
2) i receives (B,Accepted). Then Dbase;(x).ts increases. O

If i voted OK on request A and item x is in A’s BaseSet, then the timestamp of x in the
local database copy is greater than or equal to the timestamp of x in A.

Lemma 2.5 (OK,i) € A.VoteSet and x € A.BaseSet => Dbase;(x).ts >A.BaseTS(x).

Proof:
The dangerous actions are:

e (OK,i) is put into A.VoteSet.
1) i receives request A and votes OK on A. This is only possible if all base variables
of A are current w.r.t. i’s database copy, so Dbase;(x).ts = A.BaseTS(x).

e Dbase;(x).ts changes its value.
2) i receives (B,Accepted) and x € B.UpdateSet. Then Dbase;(x).ts may only in-
crease (see procedure ApplyUpdate). O
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If a decision message for request A is on its way to a node, or a node has received the

decision, the (global) time when A was decided is smaller than the current global clock
value: '

Lemma 2.6 3i:(A,Decision) € Bag(i) => A.DecisionTime < GlobalClock.

Proof:
The dangerous actions are:

e (A,Decision) is put into Bag(i).
1) some node receives A, decides, and places (A,Decision) into Bag(i).
Then A.DecisionTime := GlobalClock, and GlobalClock is increased.

e GlobalClock changes its value.
1)2)3) GlobalClock only increases. O

Lemma 2.7 3i: A.DecisionKnown(i) =
A.DecisionTime < GlobalClock.

Proof:
The dangerous actions are:

o A.DecisionKnown(i) := true.

1) i receives request A, votes, and decides. Then A.DecisionTime := GlobalClock.
and GlobalClock is increased.

2) i receives (A,Decision). Then A.DecisionTime < GlobalClock before the event,
and GlobalClock only increases during the event.

¢ GlobalClock changes its value.
1)2)3) GlobalClock only increases. O

Lemma 2.8 A.DecisionTime # oo = A.Decisiontime < GlobalClock.

Proof:
The dangerous actions are:

e A.DecisionTime := value (# o0).
1) i receives A, votes, and decides. Then A.DecisionTime := GlobalClock, and
GlobalClock is increased.

e GlobalClock increases its value.
1)2)3) GlobalClock only increases. O

The next two lemmas say that if request A must precede request B and there is a node
that voted OK for both, the decision about A was taken before the decision about B (in
global time), or B was rejected.

Lemma 2.9 x € A.UpdateSet and x € B BaseSet and A.UpTS <B.BaseTS(x)

and (OK,i) € A.VoteSet and (OK,i) € B.VoteSet —>
A.DecisionTime < B.DecisionTime.
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Proof:
The dangerous actions are:

e (OK,i) is put into A.VoteSet.
1) i receives A and votes OK. If i has already voted OK on B, then Dbase;(x).ts
>B.BaseTS(x) (Lemma 2.5). And A.BaseTS(x) < A.UpTS <B.BaseTS(x) (for the
first inequality see procedure MakeTimestamp). So i does not vote OK on A (pro-
cedure DetermineVote). Contradiction.

e (OK,i) is put into B.VoteSet.

1) i receives B and votes OK. If i has already voted OK on A, then A € PendingSet(i)
or A.DecisionKnown(i) (lemma 2.3).

Suppose A € PendingSet(i). A and B conflict, so i does not vote OK on B (see
DetermineVote). Contradiction.

Suppose A.DecisionKnown(i). Then A.DecisionTime < GlobalClock (lemma 2.7).
If B is decided in this event then B.DecisionTime := GlobalClock. If B is not yet
decided then B.DecisionTime = oo.

¢ A.DecisionTime changes its value.
This happens only once, from 0o to a finite value.

¢ B.DecisionTime changes its value.
1) i receives B and decides.
If A.DecisionTime < B.DecisionTime, then A.DecisionTime has a finite value <
GlobalClock (lemma 2.8). And B.DecisionTime:= GlobalClock. 0

Lemma 2.10 x € A.BaseSet and x € B.UpdateSet and A.BaseTS(x) < B.UpTS
and (OK,i) € A.VoteSet and (OK,i) € B.VoteSet =
A.DecisionTime < B.DecisionTime
or B.Decision = Rejected.

Proof:
The dangerous actions are:

e (OK,i) is put into A.VoteSet.
1) i receives A and votes OK. If i voted already on B, then B € PendingSet(i) or
B.DecisionKnown(i) (lemma 2.3).
Suppose B € PendingSet(i). A and B conflict, so i does not vote OK on A. Contra-
diction.
Suppose B.DecisionKnown(i) and B was accepted. Then Dbase;(x).ts >B.UpTS
(lemma 2.4). If A.BaseTS(x) < B.UpTS, then A.BaseTS(x) < Dbase;(x). Then i
does not vote OK on A. Contradicticn.
Suppose B.DecisionKnown and B was rejected. Then the conclusion holds.

e (OK,i) is put into B.VoteSet.
From this point the proof is identical to the proof of lemma 2.9. O

Now we are able to prove that, if A and B are accepted and A must precede B, then A
was decided before B.
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Lemma 2.11 A<B and A.Decision=Accepted and B.Decision=Accepted —>
DecisionTime(A) < DecisionTime(B).

Proof:

If A and B were both accepted, there is a node j with (OK,j) € A.VoteSet and (OK,j)
€ B.VoteSet. If A<B, then 3x : x € A.UpdateSet and x € B.BaseSet and A.UpTS
<B.BaseTS(x), or 3x : x € A.BaseSet and x € B.UpdateSet and A.BaseTS(x) < B.UpTS.
In the first case DecisionTime(A) < DecisionTime(B) because of lemma 2.9. In the second
case this holds because of Lemma 2.10. O

We now prove: if A must precede B, then A reads its base variables before B updates
them, and A writes its update variables before B reads them.

Lemma 2.12 Dbase;(x).ts = t ( # initTS(x) ) =
JA : x € A.UpdateSet and A.UpTS=t and A.Decision=Accepted
and A.DecisionKnown(i).

Proof:
The dangerous actions are:

e Dbase;(x).ts := t.
1) i receives request X, x € X.UpdateSet, X.UpTS=t, and Dbase;(x).ts < X.UpTS.

Then i updates Dbase;(x), and DecisionKnown(i) := true. So the conclusion holds
after the event.

2) i receives (X,Accepted), x € X.UpdateSet, X.UpTS=T, and Dbase;(x).ts < t.
Then i updates Dbase;(x), and again the conclusion holds after the event. O

Lemma 2.18 B.CreateNode=i and x € A.UpdateSet and x € B.BaseSet
and A.UpTS <B.BaseTS(x) =
A was already executed at i before B was created at i,
or 3C: A<C and C<B and C was already executed at i.

Proof:
When i creates B, B.BaseTS(x) := Dbase;(x).ts. If Dbase;(x).ts # initTS(x), then a

request C exists with x € C.UpdateSet and C.UpTS=Dbase;(x).ts and C is executed at i
(lemma 2.12).

Suppose A.UpTS=B.BaseTS(x). Then A.UpTS=C.UpTS, so A=C (Lemma 2.2).
Suppose A.UpTS < B.BaseTS(x). Then A<C, for x € A.BaseSet and x € C.UpdateSet
and A.BaseTS(x) < A.UpTS < B.BaseTS(x) = C.UpTS. And C<B, for x € C.UpdateSet,
and x € B.BaseSet and C.UpTS <B.BaseTS(x) (C.UpTS = Dbase;(x).ts = B.BaseTS(X)).
O

Lemma 2.14 A.CreateNode=i and x € A.BaseSet and x € B.UpdateSet
and A.BaseTS < B.UpTS =
B has not been executed at i when A is created.

Proof:
When i creates A, A.BaseTS(x) := Dbase;(x).ts. Suppose B was already executed in
i. This means that B.Decision = Accepted and B.DecisionKnown(i). So Dbase;(x).ts
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>B.UpTS (lemma 2.4). But B.UpTS > A.BaseTS(x) = Dbase;(x).ts. Contradiction. So
B is not executed at i when A is created. O

Now we are able to prove serializability according to the definition in [Thom79]:

Theorem 2 For each execution of the majority consensus algorithm there exists a
sequence of the accepted updates A;...A,, which, if executed on a one copy database
with the same update values for the items produces the same update values for the
items as in the original execution.

Proof:

Define a total order (1) on A;...A, as follows:

A;DA; iff A;.Decisiontime < Aj.DecisionTime. If A;< Aj, then A;JA; (lemma 2.11).

If A;...A,, are executed on a one copy database in the sequence defined by this total order,
A; is executed before A; if A;JA;. To ensure that the same update values are computed
in the multi copy execution, only the order of conflicting updates is of importance. If
A<B, there is no C such that A<C and C<B, and A writes an item that B reads, then
A must write this item before B reads it. This indeed happens because of lemma 2.13. If
A reads an item that B writes, then A must read this item before B writes it. This is the
case because of Lemma 2.14. O

4.1.3 Update sequence on one copy of an item

Updates on one copy of a data item may be a subset of all updates on this item, but they
must be executed in a fixed order. Let A and B be accepted updates from an execution

of the majority consensus algorithm, and let 1 be the total order defined in the proof of
Theorem 2.

Theorem 8 If A<B and x € A.UpdateSet and x € B.UpdateSet and A and B are both
executed on item x in node i, then A is executed before B in node i.

Proof:

Suppose B is executed before A. When the decision about A arrives at i, Dbase;(x).ts
>B.UpTS (lemma 2.4). If A<B and x € A.UpdateSet, then A.UpTS <B.BaseTS(x). So

A.UpTS < B.UpTS <Dbase;(x).ts, and the update of A is not executed on item x (see
procedure ApplyUpdate). O

4.1.4 Deadlock Freedom

To prove that no deadlock occurs during the execution of the majority consensus algorithm,
we first need some lemmas:

Lemma 4.1 (A,Accepted) € Bag(i) => (A,Accepted) € Bag(j)
or Vx € A.UpdateSet : Dbase;(x).ts >A.UpTS.

Proof:
The dangerous actions are:
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o (A,Accepted) is put into Bag(i).
1) Node k receives request A, votes OK, and decides Accepted. If k # j, then
(A,Accepted) is put into Bag(j). If k=j, then j executes the update of A. If x
€ A.UpdateSet and Dbase;j(x).ts < A.UpTS, then Dbasej(x).ts := A.UpTS (see
ApplyUpdate). So after the event Dbase;(x).ts >A.UpTS for all x € A.UpdateSet.

o (A,Accepted) is removed from Bag(j).
2) j receives (A,Accepted) and executes the update of A. Then after the event
Dbase;(x).ts >A.UpTS for all x € A.UpdateSet.

o Dbase;(x).ts changes its value (x € A.UpdateSet).
2) j receives (B,Accepted). Then Dbasej(x).ts can only increase. O

Lemma 4.2 Dbase;j(x).ts < Dbase;(x).ts =
3A: (A,Accepted) € Bag(j) and x € A.UpdateSet and A.UpTS = Dbase;(x).ts.

Proof:
The dangerous actions are:

o Dbase;(x).ts becomes greater than Dbase;(x).ts.
2) i receives (B,Accepted), B.UpTS > Dbase;(x).ts, and B.UpTS > Dbase;(x).ts.
Then Bag(j) contains (B,Accepted) (lemma 4.1).

o (A,Accepted) is removed from Bag(j).
2) j receives (A,Accepted) and executes the update of A. Dbase;(x).ts < A.UpTS,
so Dbase;j(x).ts := A.UpTS, which makes the premise false.

o The value of Dbase;(x).ts changes.
2) i receives (B,Accepted). This case is already treated. O

If a bag contains a request message A with an item x in A’s BaseSet with a time-
stamp higher than x’s timestamp in node j, then there is a B such that Bag(j) contains
(B,Accepted) and x is in the UpdateSet of B and B’s timestamp is the same as x’s time-
stamp in the copy in node j:

Lemma 4.8 x € A.BaseSet and Dbase;(x).ts < A.BaseTS(x) ==
3B : (B,Accepted) € Bag(j) and x € B.UpdateSet and B.UpTS = A.BaseTS(x).

Proof:
The dangerous actions are:

e Such an A is initiated.
3) Node k initiates request A. Then A.BaseTS(x) := Dbasex(x).ts, so Dbase(x).ts
> Dbase;(x).ts. Then (B,Accepted) € Bag(j) for a B with the required properties
(lemma 4.2).

o (B,Accepted) disappears from Bag(j).
2) j receives (B,Accepted) and executes the update. Then Dbase;(x).ts := B.UpTS
(=A.BaseTS(x)). So the premise becomes false. O

Lemma 4.4 A € PendingSet(i) = 3j : A € Bag(j) or (A,Decision) € Bag(i).
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Proof:
The dangerous actions are:

e A is put into PendingSet(i).
1) i receives A, votes OK or PASS, and puts A into PendingSet(i). Then i also sends
a message with A to some node (places a message with A into some bag).

e A is removed from Bag(j).

1) j receives A and votes. If j decides, it sends decision messages to all other nodes.
If j does not decide, it sends a request message with A to another node.

o (A,Decision) disappears from Bag(i).
2) i receives (A,Decision). Then A is removed from PendingSet(i). O

If there is still a request message, then there is still an undeferred request message, or a
decision message. )

Lemma 4.5 A € Bag(i) =
3B,j : B € Bag(j) and not Deferred(B)
or 3C.k : (C,Decision) € Bag(k).

Proof:

Let A be the request message with the smallest timestamp, and let A € Bag(i). Suppose A
is deferred. Then Ix € A.BaseSet with A.BaseTS(x) > Dbase;(x).ts, or 3B € PendingSet(i)
with B.UpTS < A.UpTS and A and B conflict. In the first case there is still a decision

message in a bag (lemma 4.3). In the second case there is also a decision message (lemma
44). 0O

Theorem 4 If there is still a request message, a pending request or a decision message,
an event of the majority consensus algorithm is possible.

Proof:

A decision message can always be received. If there is a pending request, there is also a
request message or decison message (lemma 4.4). If there is a request message, then there
is an undeferred request message, or a decision message (lemma 4.5). O

4.1.5 Termination

Each event of the majority consensus algorithm initiates, votes on, decides, or executes
one request. So events may be considered as associated with one request.

Lemma 5.1 Only finitely many events are associated with each request.

Proof:

A request A is created only once. Each node receives at most once a request message of
A, because there is only one cop of a request message, and this is sent only to nodes that
have not yet voted on it. And the number of nodes is finite. Also a decision about this
request is taken only once (theorem 1), so a finite number of decision messages is created,
one for each node, except for the node that made the decision. O
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Theorem 5 The majority consensus algorithm terminates if no more new requests are
generated.

Proof:

With each request finitely many events are associated (lemma 5.1). An event starts with
the reception of a message, or consists of the generation of a new request. If a finite
number of requests was generated in a finite time, and each message sent is received in a
finite time, then the algorithm terminates in finite time. O

4.1.6 Convergence of database copies

Theorem 6 If no more new requests are generated, all database copies converge to the
same value.

Proof:

For each item x consider the accepted request A with x € A.UpdateSet and with the
highest timestamp. If (A,Accepted) arrives at a node i, then Dbase;(x).ts < A.UpTS, for
otherwise there would be a request B with a higher timestamp that updates x (lemma
1.12). And decision messages are never lost, so each node receives (A,Accepted). So A is
executed on x, and no other update will be executed afterwards. So for each item x in

each copy the final update is the update of the request with the highest timestamp that
has x in its UpdateSet. O

4.1.7 Correct decisions

When a request A is accepted, there is no node that would vote REJ on this request. This
means that there is no node that has a higher timestamp for an item in its copy than the
timestamp of that item in A.BaseSet.

Theorem 7 When node i accepts a request A, there is no node j with x € A.UpdateSet
and Dbase;(x).ts > A.BaseTS(x).

Proof:

Suppose there is such a node j. Then A request B has been executed in j with x €
B.UpdateSet and B.UpTS = Dbase;(x).ts (lémma 1.12). So there is a node k that voted
OK for A and for B. Suppose k voted first on A. Then A was pending when k voted on B
(lemma 1.3), so K does not vote OK on B. Contradiction.

Suppose k voted first on B and then on A. Then B is pending at k or B has already been
executed at k when k votes on A. In both cases k does not vote OK on A. Contradiction.
O

4.1.8 Every request is decided
Theorem 8 Every request is decided.
Proof:
If every node receives a request sent to it in finite time, and procedure Majority gives

eventually OK or PASS, a decision will bé made in finite time, and all nodes will hear of
this decision in finite time. O
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4.2 Proof for model 2

In model 2 a request may be lost in a node (event 4). Therefore a node with a pending
request may repeat sending this request (event 5). A node stores its vote on a request and
uses this vote when another copy of this request arrives (event 1). A node now decides
”Rejected” if a majority of OK votes is no more possible (procedure Decide). If a request
is pending in a node that decides about this request, the pending request is removed
(procedure Execute).

4.2.1 More decisions about one request

Here we cannot prove that only one decision about a request is made. There may be more
request messages corresponding to a request, so a decision about a request could be made
more than once. Instead we prove that all decisions made about a request are the same.

Theorem 1* All decisions made about a request are the same.

Proof:
Suppose there are two different decisions about a request A. Then one VoteSet contained

a majority OK and another contained a majority REJ/PASS. So there was a node that
voted both OK and REJ or PASS on the same request. But this is not possible. O

4.2.2 Serializability

The proof of serializability in model 2 is almost the same as in model 1. The proofs of
some lemmas are changed slightly:
In the proof of Lemma 2.3 is added:

e A is removed from PendingSet(i).

1) i receives A, decides, and A is also pending at i. Then A.DecisionKnown(i)
becomes true.

Lemma 2.5 is changed to:

Lemma 2.5* 3n: (OK,i) € VoteSet(n) and x € A.BaseSet —>
Dbase;(x).ts >A.BaseTS(x).

And the proof is changed to:

e The first (OK,i) is put into a VoteSet of A.
1) i receives request A for the first time, and votes OK. i has called procedure
DetermineVote because timestamps of requests are unique (lemma 2.2). Procedure
DetermineVote only produces OK if all base variables .....

In Lemma 2.9 and 2.10 (OK,i) € A.VoteSet and (OK,i) € B.VoteSet becomes: 3n: (OK,i)
€ A.VoteSet(n) and In: (OK,i) € B.VoteSet(n).

The proofs of Lemma 2.9 and 2.10 are changed in the same way as the proof of Lemma
2.5.

Changes in the proof of Lemma 2.11 are:

If A and B were both accepted, there is a node j with (OK,j) in a VoteSet of A and (OK,j)
in a VoteSet of B.
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4.2.3 Update sequence on one copy of a data item

Updates on one copy of a data item are executed in a fixed order. The proof is equal to
the proof in 4.1.3.

4.2.4 Deadlock Freedom

The proof for model 2 that no deadlock occurs is slightly different from the proof given
for model 1.

Lemma 4.1* (A,Accepted) € Bag(i) => (A,Accepted) € Bag(j)
or Vx € A.UpdateSet: Dbase;j(x).ts >A.UpTS.

Proof:
Equal to the proof of Lemma 4.1.

Lemma 4.2* Dbase;(x).ts < Dbase;(x).ts ==
3A : (A,Accepted) € Bag(j) and x € A.UpdateSet and A.UpTS = Dbase;(x).ts.

Proof:
Equal to the proof of lemma 4.2.

Lemma 4.3%

x € A.BaseSet and Dbase;(x).ts < A.BaseTS(x) =
3B : (B,Accepted) € Bag(j) and x € B.UpdateSet and B.UpTS = A.BaseTS(x).

Proof:
Equal to the proof of lemma 4.3.

Lemma 4.4* If A € Bag(i) and there are no pending messages or decision messages,
then A is not deferred.

Proof:

Suppose A is deferred. Then there is an x € A.BaseSet with A.BaseTS(x) > Dbase;(x).ts.
So there is still a decision message (lemma 4.3*) O

Theorem 4* If there is a request message, pending request or decision message, an
event of the majority consensus algorithm is possible.

Proof:

A decision message can always be received.

f node i contains a pending request, node i may send a request message with this request.
If there is a request message in Bag(i), and there are no pending messages or decision
messages in the system, the request message is undeferred w.r.t. i (lemma 4.4%). O
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4.2.5 Termination

For model 1 we proved that only finitely many requests are associated with each request.
This is not so in Model 2. Nodes with a pending request A may generate new copies
of request A and send them to other nodes. Now we can prove in the same way as in
4.1.5 that with each request copy only finitely many events are associated. To prove
termination we now need two extra assumptions:

1. In finite time after the creation of a request a decision about this request reaches
each node,

2. A node with a pending request A sends only finitely many request messages A in
finite time.

For the first assumption it is needed that not all request messages are lost, one request
message succeeds in obtaining enough votes, and no decision messages are lost. If these

assumptions hold, the majority consensus algorithm of model 2 terminates if no more new
requests are created.

4.2.6 Convergence of database copies

The proof is the same as for model 1.

4.2.7 Correct decisions

Theorem 7 is changed to:

Theorem 7* When a request is accepted for the first time, there is no node j with
x € A.UpdateSet and Dbase;(x).ts > A.BaseTS(x).

The proof stays the same, but "k voted on A (or B)” should be interpreted as "k voted
for the first time on A (or B)”.

A consequence of this theorem is that the first VoteSet of a request in which a majority
is built up that leads to a decision ”Accepted” contains no REJ votes. Later VoteSets
may contain REJ votes. Suppose a node does not vote on the copy of the request that
produces the first decision receives this decision. Suppose the node executes the update,
and then receives another copy of this request. The node will then vote REJ, because the
base variables of this request are now obsolete. However, there is only a minority of nodes
that may vote REJ, for a majority of the nodes already have a vote OK for this request,
and will use this old vote if they receive another copy of this request.

4.2.8 Every request is decided

If a newly initiated request is lost by the first node that receives it, then it is not pending
anywhere, and cannot be re-sent. So we must assume that a request is not lost in the
first node that receives it, or that the node that initiated the request keeps a copy of the
request and sets a timeout.

We must also assume that not all request messages disappear. Then one message will
in finite time be decided, and all nodes will hear of this decision in finite time.

32



Chapter 5

Discussion

We formalized the majority consensus algorithm of Thomas [Thom79], and gave formal
proofs for the claims in [Thom?79], and some other claims. In most of our proofs we used
the basic ideas of the informal proof in [Thom79], although several details had to be added
to the algorithm nd (clearly) the invariants were not derived there. Essential assumptions
in our proof are the following.

For both models the Majority function must satisfy the following properties:

o If Majority (V1) = OK and Majority(V2) = OK, then 3i : (OK,i) € V1 and (OK,i)
€ V2.

o If Majority(V1) = OK and Majority(V2) = PASS, then 3i : (OK.,i) € V1 and (Vote,i)
€ V2 and Vote # OK.

e If YV2 D V1 : Majority(V2) # OK, then Majority(V1) = PASS.
For model 1:

e every niessa.ge arrives in finite time at its destination.
For model 2:

¢ no decision messages are lost,

e a request message is not lost before the first node has voted on it, or the creating
node keeps a copy and sets a timer,

e anode with a pending request A only sends finitely messages with A in a finite time,
¢ not all copies of a request message are lost,
e every message that is not lost arrives in finite time at its destination.

We proved that on each copy of a data item a subset of the same set of updates is
performed in the same order. If no more new requests are issued, the last update of each
copy is the same. So a weak form of mutual consistency is reached.

Thomas [Thom79] claims that serializability, as defined by him, also guarantees internal
consistency. But this is not the case. If we look at a whole copy of the database, not at
one item, updates are not performed in the same order at all sites. Suppose we have two
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data items x and y, with predicate x+y <10, and two updates A and B. A reads x and y

with timestamps 1 and 1 and values x=5 and y=5. A gets a timestamp 2 and computes

a new value: y := 2. B reads x and y with timestamps 1 and 2 and values x=5 and y=2.

B gets timestamp 3 and computes a new value: x := 8. If B was initiated at node i, then

A was executed at i before B was initiated there. But there may be another node j that

first receives B and then A. Then after execution of B and before execution of A x=8 and
=5 at j.

Luckily a small modification of the algorithm suffices to guarantee internal consistency.
Each update that modifies a variable that is present in a predicate, should also write all
other variables that are present in the predicate. Then changes in the values of different
variables of a predicate do not occur independently any more. In our example node j
would first execute update B: x := 8 and y := 2. Upon reception of update A node j
would not update x and y any more, because their timestamps are now no more smaller
than the timestamp of A.

For model 2 we proved that, if the first decision about a request is Accepted, no node
has voted REJ on this copy of the request. So we could omit the condition that all
decisions on one request should be the same, and decide Rejected after one REJ vote. But
then also another modification to the algorithm is needed. If the first decision about a
request is Rejected, then also all other decisions about this request will be Rejected. A
request is rejected because it has obsolete base variables, caused by the execution of a
conflicting request, or it obtained a majority of PASS votes. But if the first decision is
Accepted, a later decision may be Rejected. If a node i executes an update of a request A,
and then receives another copy of A, it will vote REJ, because the base variables of A are
now obsolete. If another node j first receives a decision message (A,Rejected), j discards
its pending message A too early. This pending message should be kept until j receives
(A,Accepted), otherwise j could wrongly vote OK on a request B that conflicts with A.
Therefore each copy of a request message should have an identification, e.g. a node id plus
a sequence number, and a node should only discard a pending message (A,id) if it receives
a decision with the same id.

In model 2 a node keeps a copy of each vote it has made. If all decisions about a
request A must be the same, these votes must be kept until there are no more request
messages of A present. This is difficult to detect. If we only require that all decisions
about a request, made before all nodes know the decision, are the same, the votes may be
discarded when all nodes know the decision. This could be done by sending the decision
message over a logical ring instead of broadcasting it.

In the modification we proposed, where also for model 2 one REJ leads to a decision
Rejected, votes need not be kept at all. Nodes may determine their vote anew every time
a request arrives. A node will never first vote REJ and then something else. But it is
possible that a node first votes PASS, and later, when the conflicting request is rejected
and removed from the PendingSet, votes OK. So then it is possible that the first decision
is Rejected because there was a majority of PASS votes, and a later decision is Accepted.
If one node votes REJ, the decision cannot become Accepted any more.

The algorithm is resilient to a number of error types. It is sufficient that one request
message succeeds in acquiring a majority voteset. So a succession of pairs of nodes must
be able to communicate. At the moment that two nodes communicate over a link, all
other nodes and links may be down.
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