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Abstract: We define the notion of total algorithms for networks of processes. It
tumns out that total algorithms are an important building block in the design of distri-
buted algorithms. For many network control problems it can be shown that an algo-
rithm solving it is necessarily total, and that any total algorithm can solve the prob-
lem. We study some total algorithms and compare their merits. Many known results
and algorithms are thus put in a general framework.
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1 Introduction

The design and verification of distributed algorithms is a difficult task. To make this task
easier, modular design techniques have been advocated recently, see e.g. Gafni [Ga84], Segall
[Se83], and Tel [Te86). Modular design techniques not only facilitate the design and
verification of distributed algorithms, they also show that distributed algorithms for different
tasks may share some common aspects. In this paper we show that this is indeed the case for
some common network control problems.

We will define the notion of a total algorithm. A total algorithm is an algorithm where
the participation of all processes in the network is required before a decision can be taken. A
formal definition will follow later in this section. We study the relation between total algo-
rithms and a number of network control problems, namely Distributed Infimum computation,
Resynchronization [Fi79], Propagation of Information with Feedback [Se83], Election, and
Connectivity. For all these problems it will tumn out that (1) any solution to these problems is
necessarily total, and (2) any total algorithm can be used to solve these problems. Thus the
total algorithms are a key concept in the design of network control algorithms. Many total
algorithms are known. They differ in underlying assumptions about the network, in
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complexity, and in many other respects. We list a number of criteria for the evaluation of a
total algorithm. We present a number of (known) total algorithms and compare their merits.

This paper is organized as follows. In the remainder of this section we present the model of
computation and give basic definitions. The concept of total algorithms is formally defined. In
section 2 we study the relation between total algorithms and some network control problems.
In section 3 we give some total algorithms, together with a correctness proof. In section 4 we
conclude with final comments and remaining issues.

1.1 Definitions

We consider a finite set &P of processes, communicating only by exchanging messages. The
system is asynchronous, i.e., there are no clocks and messages suffer an unpredictable delay.
Message channels are point-to-point, i.e., we do not assume a bus-like communication facility
like e.g. ETHERNET. Because we will consider a wide variety of algorithms and models, we
make no assumptions on the topology of the network (e.g., ring, tree, complete network, etc.),
except that the network is (strongly) connected. For the same reason we make no assumptions
about the communication channels (e.g., FIFO, bidirectional, etc.), except that they are fault-
free. That is, every message sent will be received in finite time, exactly once, and unaltered.

An execution of an algorithm consists of a sequence a;,...,a; of events (cf. Lamport
[La78]). The order in the sequence is by definition the order in which the events take place in
the system. Of course the occurrence of these events is according to the program that the
processes are running. We roughly divide the events in three classes: send, receive and inter-
nal events. In a send event a message is sent, but no message is received. In a receive event
a message is received, but no message is sent. In an intemnal event no message is sent or
received. All events can change the internal state of a process.

Send and receive events correspond naturally in a one-one way. A send event a and a
receive event b correspond if the message, sent in a, is received in b. If this is the case,
event a must occur earlier in the sequence of events than event b, because a message can be
received only after it is sent. We define a partial order "precedes" on the events in an execu-
tion as in [La78].

Definition 1.1: Event a precedes event b, notation a — b, if
(iYa=b, or a and b occur in the same process and a happens earlier than b,
(ii) a is a send, and b the corresponding receive event, or
(iii) there is an event ¢ such thata — ¢ and ¢ - b.

(In contrast with [La78], we defined the relation as being reflexive.) Because a message can be
received only after it is sent, for any execution a;,..., g, g; —>a; implies i < j. For each p, let
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ép, the enroll event of p, be the first event that occurs in p (in a particular execution). We
say p is a starter if e, is a send or intemnal event, and p is a follower if e, is a receive event.

The algorithms we consider in this paper all compute some value or bring the network in
some special state. Hence we postulate the possibility of some special internal event in which
a processor "decides” on the value that is to be computed or "concludes" that the network is in
the desired state. The exact nature of this event is not of importance here. In the next section,
where we consider some network control problems, its meaning will become clear for each
problem. A decision is taken at most once in every process, and we denote the event in which
it is taken in process p by d,. Furthermore, a decision must be taken in at least one process.

Definition 1.2: An execution of an algorithm is total if at least one process p decides and for
all ¢ € PP, and for all p that take a decision, e, —d,. An algorithm is total if all its possible
executions are total.

Definition 1.2 formalizes the idea that participation of all processes is required to take a deci-
sion. Finally, we say an algorithm is centralized if it works correct only under the assumption
that there is only one starter. An algorithm is decentralized if it works correct, if any
nonempty subset of the processes can be starters.

2 The use of total algorithms

In this section we study the relation between total algorithms and some network control prob-

lems. We use the following well-known theorem to show that algorithms for some problems
are necessarily total.

Theorem 2.1: Let a,,..,a; be an execution of some algorithm A and let A1) Aok) DE
permutation of the events such that @o() = Ay implies i <j. Then Ag(1y--» Aogk) IS a possi-
ble execution of A also.

Informally, theorem 2.1 says that any reordering of the events in an execution that is consistent
with the partial ordering —, is also a possible execution.

2.1 Propagation of Information with Feedback

The problem of Propagation of Information with Feedback (PIF) is explained as follows
[Se83]. Starters of a PIF algorithm have a message M. All starters (if there are more than
one) have the same message. This message must be broadcast, i.e., all processes must receive
and accept M. The broadcast must be terminating, that is, eventually one or more processes

must be notified of the completion of the broadcast. This notification is what we referred to as
a "decision” in section 1.
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Theorem 2.2: Every PIF algorithm is total.

Proof: Assume P is a PIF algorithm and P is non-total, i.e., there exists an execution of P
where, for some process ¢, e, does not precede a decision. From theorem 2.1 it follows that
we can construct an execution where a decision takes place earlier than the acceptance of the
message by g, so P is not correct. [J

Theorem 2.3: A total algorithm can be used for PIF.

Proof: Let A be a total algorithm. Processes who want to do a broadcast act as starters in A.
To every message of the execution of A, M is appended. This is possible because (1) starters
of A know M by assumption and (2) followers have received a message, and thus learned M,
before they first send a message. All processes q accept M in e,. By totality of A, for all ¢
e, precedes any decision. Thus a decision event correctly signals the completion of the broad-

cast. (3

To decrease the number of bits to be transmitted, we remark that it suffices to append M to the
first message that is sent over every link.

2.2 Resynchronization

The Resynchronization (or, shortly, Resynch) problem was first described by Finn [Fi79]. It
asks to bring all processes of IP in a special state synch and then bring processes in a state
normal. The state changes must be such that all processes have changed their state to synch
before any of the processes changes state to normal, i.e., there is a point in time where all
processes are in state synch. In the Resynch problem we regard the state change to normal as
a "decision”. In [Fi79] it is required that all processes change their state to normal eventually.
We dropped this requirement. In some total algorithms only one process decides, in others all
decide (see section 3). However, if not all processes decide, while it is required that all do,
processes that decide can flood their decision over the network and thus force the other
processes to decide also.

Theorem 2.4: Every Resynch algorithm is total.
Proof: Assume R is a Resynch algorithm and R is non-total, i.e., there exists an execution of
R where, for some process ¢, e, does not precede a decision. From theorem 2.1 it follows

that we can construct an execution where a decision takes place earlier than the state change by
q to synch, so R is not correct. [

Theorem 2.5: Any total algorithm can be used for Resynch.

Proof: Let A be a total algorithm. We modify A as follows. Each process ¢ changes its state
upon first participation in A, i.e., upon e,. Each process p changes state to normal when it
decides, i.e., upon d,. The fact that A is a total algorithm implies the correctness of the



resulting Resynch algorithm. [

2.3 Distributed Infimum computation

Assume X is a partially ordered set with a binary infimum operator A. That is, given x; and
xz in X, it is possible to compute y = x; Ax,, with the property that

Dy <xp,y Sxy

@ forall z,ifz Sx;andz S x,thenz <y.
From the properties of total orderings it follows that A is associative, commutative, and idem-
potent. (On the other hand, if X is a set with a binary operator M, such that W is associative,
commutative, and idempotent, then there exists a partial ordering < on X such that B is just
taking infimums with regard to <.) Because of the properties of A it makes sense to generalize
the operator to finite sets. Denote the infimum over a subset Y of X by ,,i’;f, x. Ify = inf x

xeY
then
() forallxeY,y <x,
(2)ifforallxeY z <x,thenz <y.

The Distributed Infimum computation problem asks for the following: suppose all

processes p in IP have a value r, € X. Compute the infimum J = ing r,. In the context of
pPE

this problem, by a "decision" we mean the decision on the final result of the computation. In
the following theorem it is assumed that X contains no smallest element, i.e., for all x € X
there is ay such that - x <y.

Theorem 2.6: Every Infimum algorithm is total.

Proof: Suppose I is an Infimum algorithm and S is an execution of I where enrollment of q
does not precede a decision by p. Let x be the value on which p decides. Because no parti-
cipation of ¢ precedes p’s decision, we can simulate execution S up to p’s decision, even if
we give ¢ a different start value rq- Choose r, such that ~x < ry» We now have an execution
in which p decides on a wrong result. O

In most applications of infimums it is assumed that X does contain a smallest element. In this
case it is possible that there are non-total executions of some Distributed Infimum algorithm.
If a subset of the processes discover that the infimum over this subset is the bottom of X, they
can decide that the global infimum is bottom, without consulting the other processes. How-
ever, any execution yielding another result than bottom must be total. In fact, if some Distri-
buted Infimum algorithm contains no (hidden) tests on equality of partial results and bottom
that influence the message flow or a decision, then the algorithm is necessarily total. In prac-
tice this is the case for all Distributed Infimum algorithms.
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Theorem 2.7: Any total algorithm can be used as a Distributed Infimum algorithm.

Proof: Let a total algorithm A be given. Modify A as follows. Every process p is equipped
with a new variable ip, with initial value r,. Whenever a process sends a message (as part of
the execution of A) the value of ip is attached to it. Whenever p receives a message, with i
attached to it, p modifies i, by executing ip =i, Ai. Intemal and send events have no
effects on i,. For an event a4, occurring in process p, by i) we denote the value of i,
directly after the occurrence of a. Note that if @ is a send event, then i® is also the value,
appended to the message sent in a. For any p, i, is decreasing during the execution of A and
thus i’ < r,. Furthermore, by induction on — it is easily shown that a —b implies
i@ < i®), Thus, by the totality of A, for any decision event d, i < i’ < r, for each q.
So i) <J. 1t is easily seen that for all events a i®) 2 J. It follows that i = J, so0 upon a
decision event in process p, p can decide on the result i), O

The problem of Distributed Infimum computation as described here should not be confused
with the problem of Distributed Infimum Approximation (DIA) of [Te86]. Here we consider
fixed values r,. In the Distributed Infimum Approximation problem changing values x, are
considered. In order to let the infimum of changing values make any sense (in spite of the
changes) the changes are limited in such a way that the global infimum is monotonely increas-
ing in time. Algorithms for the DIA problem can be very complex, but a large class of them
were given by Tel [Te86]. These algorithms are all based on underlying solutions for the
(static) Infimum problem.

2.4 Election

For some applications it may be necessary that one process in the network is elected to per-
form some task or act as a "leader" in a subsequent distributed algorithm. An Election algo-
rithm selects one process for this purpose. In the context of this problem, by a decision we
mean the decision to accept some process as the leader. These decisions must be consistent,
ie., if several processes decide, they must decide on the same value. To make the problem
non-trivial it is always required that a solution is decentralized and symmetric. (If it is
assumed that there is only one starter, this process can immediately decide to choose itself as a
leader.) By symmetric we mean that all processes are running the same local algorithm. To
make a solution possible at all, it is always assumed that processes have distinct and known
identification labels. For simplicity we will assume that each process p "knows" its own name
p.

A large class of Election algorithms, the so-called Extrema Finding algorithms, always
elect the process with the largest (or, alternatively, the smallest) identity as the leader. (It is
assumed that there is a total ordering on the identities.)
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Theorem 2.8: Every Extrema Finding algorithm is total.

Proof: As theorem 2.6. Now give ¢ an identity larger than the one chosen to contradict that
the chosen identity is the largest. O

Theorem 2.9: Any decentralized and symmetric total algorithm A can be used as an Election
Algorithm.

Proof: As in the proof of theorem 2.7, A can be modified to yield the largest identity in the
network upon a decision. To satisfy the requirement that an Election algorithm is decentralized
and symmetric we assumed A to be decentralized and symmetric . O

Not all Election algorithms are Extrema Finding algorithms. Totality of a class of com-
parison algorithms can be proved, however. A comparison algorithm is an algorithm that

allows comparison as the only operation on identities. For a more precise definition, see Gafni
et al. [Ga84].

Theorem 2.10: Comparison Election algorithms for rings, for trees, and for general networks
with unknown size are total.

Proof: We prove the result for general networks. Assume some execution S of an Election
algorithm E decides on the identity of the leader in some network G without the participation
of a process ¢ in G. Now we construct a network G’, consisting of two copies G, and G, of
G, with one additional link ¢,q, between the corresponding copies of q. The processes in G,
can be renamed so that all identifiers in G’ are unique, while preserving the relative ordering
of identities within G,. Because A is a symmetric comparison algorithm, the execution S can
be simulated in both G, and G,, leading to an execution in which decisions are taken on two
values.

For rings and trees similar constructions can be given. O

The restriction to comparison algorithms mainly serves to exclude some weird algorithms
without any practical use: all useful Election algorithms (also the ones mentioned below) are
comparison algorithms. To show that the restriction is necessary, consider the following algo-
rithm. First a process tests whether its identity equals 1. If this is the case, the process
immediately decides and chooses itself as leader. If not, a "normal” Election algorithm is exe-
cuted. This algorithm allows non-total executions if a process with identity 1 exists.

It tums out that almost all Election algorithms known to date are total. However, efforts
to reduce the message complexity of Election algorithms and the search for fault-tolerant Elec-
tion algorithms have led to ingenious, non-total algorithms for some special networks. One of
these algorithms, notably Peterson’s [Pe84], works under the assumption that the network
topology is a torus. Under this assumption it is not possible to add nodes to the graph as in
the proof of theorem 2.10, because the resulting graph would no longer be a torus. Another
algorithm [Ba87] assumes the number of processes to be known, and again it becomes impos-
sible to add nodes. Both algorithms are based on the idea that a majority of the processes is



found ready to accept some process as the leader. Then a decision is made for this process.

Whatever happens in the uninspected parts of the network, a majority is never found there, so
that inconsistent decisions are impossible.

2.5 Connectivity

The purpose of a Connectivity algorithm is to compute IP, the set of all processes. Of course

it must be assumed that processes know their own identity. In fact Connectivity is a special

case of the Infimum problem, because P = uni(;g {r}. Therefore we give the following two
PE

theorems without proof:
Theorem 2.11: Every Connectivity algorithm is total.

Theorem 2.12: Any total algorithm can be used as a Connectivity algorithm.

For the latter purpose it is in general necessary to augment all messages with a list of proces-
sor identities. Messages may thus become quite long.

2.6 Traversal

The purpose of a traversal algorithm is to pass a token, initiated by a single starter, through
every node in the network and retum it to the starter. A traversal algorithm is total and cen-
tralized by definition. Moreover, it is sequential. That is, the starter sends out exactly one
message in the beginning, and thereafter a process can only send (at most) one message after
receiving a message. Thus, there is always at most one message in the system or one active
process. Finally the starter decides, when the token retumns to it after having visited all
processes. Any Traversal algorithm is total by definition, but the reverse is not true because a
total algorithm is not necessarily decentralized and sequential.

3 Some examples of total algorithms

This section contains a collection of total algorithms that can be found in the literature. In the
literature these algorithms do not appear as a total algorithm, but they are referred to as Distri-
buted Infimum algorithm, PIF algorithm, etcetera. Their correctness proof typically argues that
some variable has the value of some (partial) infimum, or the receipt of some message implies
that some subset of the processes has accepted the broadcasted message, that all processes will
learn the identity of some process, etc. Because in the previous section we demonstrated that
the totality is the key property of all these algorithms, we concentrate on this aspect only in the
correctness proofs. Some algorithms will be mentioned without proof, however.
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The many algorithms have varying properties, which makes some algorithms more suit-
able for some applications than others. We list a number of characterizing properties here.

Very important is the already mentioned distinction between centralized and decentralized
algorithms. Usually decentralized algorithms are preferred because there is no need for a spe-
cial process to start the execution. Unfortunately their complexity is often larger. For a ring
(of N processes) there is a centralized algorithm (algorithm A) that uses N messages, which is
(order) optimal, whereas for decentralized algorithms on a ring O (NlogN) is optimal (algo-
rithm H). For a general network (of N processes and E edges) there is a centralized algorithm
using 2E messages (algorithm C), which is (order) optimal, whereas for decentralized algo-
rithms on general networks O (NlogN +E) is optimal (algorithm G). Decentralization seems
to cost O (NlogN) messages. Surprisingly, the complexities of centralized and decentralized
algorithms for trees are the same.

We say that a distributed algorithm is symmetric if the local algorithm is the same for
each process. The notion of symmetry is closely related to that of being or not being decen-
tralized. In most centralized algorithms the starter runs a local algorithm, different from that of
the followers, and most decentralized algorithms are symmetric. Algorithm B below is sym-
metric, but not decentralized.

Algorithms are ofien designed for a special network topology, such as a ring, a tree, a
complete network, or for general networks. Assumptions about the communication channels
can also be made, such as that they are bidirectional, obey the FIFO discipline, or provide syn-
chronous communication. Sometimes it is assumed that processes have some knowledge about
the network, such as its diameter, or the names of their neighbors.

In some algorithms all processes decide, in others only one or few. In the original state-
ment of some problems, e.g., Resynchronization [Fi79], it is explicitly required that all
processes decide. If, in some total algorithm, not all processes decide, the deciding process(es)
can flood a signal over the network to make other processes decide also. Therefore this aspect
of total algorithms is of minor importance only.

The message and time complexity, and intemal storage used in a process are quantitative
aspects for the evaluation of an algorithm.

Algorithm A: A centralized total algorithm for a (unidirectional) ring. The starter sends out a
token on the ring, which is passed by all processes and finally returns to the starter. Then the
starter decides. Assume each process p has a boolean variable Rec, to indicate whether a
message has been received. Initially its value is false. Let < denote an empty message. As
usual, the sentence between braces is a guard which must be true in order for the event to exe-
cute. The program for the starter is:
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S,: { Spontaneous start, execute only once }
send <> 1o successor

»:  { A message <> arrives }
begin receive <> ; Rec, := true end

D,: { Rec, }
decide
and for all other processes:
R,: { A message <> arrives }

begin receive < ; Rec, = true end

S,: { Rec, }

send <> 10 Successor

For our analysis, assume the processes are numbered in such a way that process i+1 is the
successor of process i (indices are counted modulo N). Call f; the event in which i sends, 8
the event in which i receives, d; the event in which i decides (if this happens), and ! the star-
ter. We have ¢; = f), and ¢; = g; for other i. From the algorithm text we have gi—>f;ifi
is not I, and we have f; —g;,; because these are corresponding events. Only the starter
decides, and we have g; — d; directly from the algorithm text. Thus, using the fact that there
is only one starter, we find

aga=fid2gn=€eu-> 1.8 =€3f..->g >d,

which establishes the totality of A. The fact that a decision is at all taken in algorithm A is
trivial,

Our framework allows us to analyze the behavior of the algorithm in case two or more
processes act as a starter. Suppose /, and /, act as starters. Then we find

e, = fll - g,l+l = e,1+1 —)f,l'l'l e I8 =6 S fi ... 8, dlz

e,2= f’z - g,2+l = 812+1 - f12+1 e I = €; —)fi e ™> g’l - dll'
but clearly the execution is not necessarily total.

Algorithm A is a centralized algorithm for a (unidirectional) ring. No FIFO discipline on
links or knowledge about the number of nodes is assumed. It is not required that processes
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have identities. The message and time complexity are both N, and one bit of internal storage
suffices.

Algorithm B: A total algorithm for a tree network. Note that a tree network must have
bidirectional links in order to be strongly connected. A process that has received a message
over all links except one sends a message over this last link. Leaves of the tree have only one
link, and thus, they must always be starters. A process that has received a message over all
links decides. In the following formal description of the algorithm, Neigh,, is the set of neigh-
bors of p, and p has a boolean variable Recy, [q] for each g € Neigh,. The value of Rec,(q]
is false initially. Although this is not explicit in the following description, it is intended that
each process sends only once. Thus, a send action by p disables further send actions in p.

R,: { A message < from ¢ arrives at p }

begin receive <> ; Rec,[q] := true end

Sp:  { q e Neigh, is such that VreNeigh,,r#q: Recplq] }
begin send < to q end

D,: {forallge Neigh,: Rec,[q] }

begin decide end

In the following analysis, let f,, be the event that p sends a message to ¢, 8pq the event that
q receives this message, and d, the event that p decides. Let T,, be the subset of the nodes
that are reachable from p without crossing the edge pq (if this edge exists). By the connec-
tivity of the network we have

Tm = {p}lu reN‘:gl;l(:t—l{q} T,p (T1)
and
P= {p}U'ggz(_)‘:L T,. (T2)

Lemma 3.1: For all s € Ty, , &, — gy .-

Proof: By induction on —. Assume the lemma is true for all receive actions that precede g,, .
Let seT,. By Tl, s=p or seT,, for some r e Neigh,, r #q. We have Spg — 8pq
because these events correspond, €, — [,y because e, precedes all events in p, so € = 8pg
follows. By virtue of the algorithm 8rp — fpq for all neighbors r g of p, and by the induc-
tion hypothesis e, — g,,, forall s inT,,. So ¢, > 8pq follows. [J
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Theorem 3.2: For all s € P, ¢, —d,.

Proof: By T2, forall se P, s = p or s € T,, for some r € Neigh,. We have e, >d, as
above. If s € T,,, then we have 8rp — d, by the algorithm, e, — g&,, by the previous lemma,
and ¢; > d, follows. OJ

In contrast with algorithm A, in this case it is not obvious that a decision is reached at all. We
will show by a simple counting argument that this is the case.

Theorem 3.3: Assume that all events of algorithm B that are enabled will eventually be exe-
cuted. Then a decision is eventually taken.

Proof: We first show that as long as no decision is taken there is always a next event enabled
to be executed. There are 2E = 2(N— 1) Rec -bits in the network. Define, for a certain system
state, F to be the number of Rec bits that are false, F, the number of these in process p, K
the number of processes that have sent, and M the number of messages underway. Observe
F=2N-2+M-K. If M >0, there is a message underway and eventually a receive event
will occur. If M = 0, then F = 2N - 2- K < 2(N-K)+K. It follows that (1) under the
N — K processes that have not yet sent there is a process p with F, <2 or (2) under the K
processes that have sent there is a process with F, < 1. In case (1) this process will eventu-
ally send, in case (2) this process will eventually decide. Thus, while no process has decided,
there is always a next send, receive, or decide event that will eventually take place. But then,
because the total number of send actions is bounded by N (each process sends at most once),
it follows that a decision will be taken in finite time. O

Because all messages will be received and all processes send exactly once, a state is reached
where K = N and M = 0, thus F = N — 2. It follows that exactly two processes decide. It
turns out that these two processes are neighbors.

Again, our framework allows us to analyze the behavior of the algorithm if it is used on
a network that is not a tree. Theorem 3.2 remains true (its proof relies on identities T1 and
T2, and these follow from the connectivity of the network only), but theorem 3.3 fails (its
proof relies on the fact that the number of edges is N — 1). In fact, it is easily seen that if the
network contains a cycle, no process on this cycle will ever send. Thus no decision will be
taken.

Algorithm B works on a tree network with bidirectional links. The processes need not
have distinct identities, it is enough that a process can distinguish between its links. The algo-
rithm is simple and symmetric. Its message complexity is N, its time complexity is D (the
diameter of the tree). The intemal storage in a process is a number of bits of the order of its
degree in the network.

For the assumption in theorem 3.3 it is necessary that all leaves (except possibly one) are
starters. Hence not every nonempty subset of the processes suffices to start the algorithm, and
the algorithm is not decentralized. Algorithm B can easily be transformed to make it
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decentralized: starters flood a "wake-up" signal over the tree to trigger execution of the algo-
rithm is every process. Assuming that nodes relay the wake-up message to every neighbor
except the one they received the signal from, the number of wake-up messages is (N — 2)+s,
where s is the number of starters. For starters that are leaves the wake-up message can be
combined with the message of the algorithm, so that only (N — 2)+s’ new message are neces-
sary, where s’ is the number of starters that is not a leaf. This number of messages must be
added to the message complexity N of the given version of algorithm B.

Algorithm C: A centralized total algorithm for general bidirectional networks. This algorithm
is usually referred to as Chang’s Echo algorithm [Ch82]. The starter sends a message over all
links. Followers remember the link over which they first received a message as their father.
Upon receiving their first message followers send a message to all neighbors except their
father. When a follower has received a message over all links it sends a message to its father.
When the starter has received a message over all links it decides. In the following formal
description of the algorithm, let Rec, and Neigh, be as in the description of algorithm B. In
the program fragment labeled with S, several messages can be sent. This program fragment
describes a sequence of events, to be executed by the process, rather than a single event. We
use this notation for brevety. The same remarks apply to R, below and later fragments. The
program for the starter is:

S,: (* Spontaneous start, execute only once *)

forall g € Neigh, do send < to ¢

R,: { A message < arrives from ¢ }
begin receive <> ; Rec,[q] = true end

p: { Vq € Neigh,: Rec,[q]}
decide

The program for a follower is:
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R,: { A message <> arrives from ¢ }
begin receive <> ; Rec,[q] = true ;
if father, = nil then
begin father, = q ;
forall r € Neigh,—{q} do send < to r
end
end

S, {Vq e Neigh,: Rec,[q] }
send <> o father,

It tums out that algorithm C builds a spanning tree in the network, and than works as algo-
rithm B on this (rooted) tree. The following correctness proof is found in [Se83]. Consider a
complete execution S of algorithm C and observe that the father fields, once given a value
# nil, are never changed thereafter. Define a directed graph T, consisting of the processes as
nodes and all links from p to father, (for all p with father, # nil at the end of S) as edges.

Lemma 3.4: T is a rooted tree with the starter as root.

Proof: Observe that (1) each node of T has at most one outgoing edge, (2) T is cycle free
(because €father, = €p is easily derived from the algorithm), and (3) each non-starter has an
outgoing edge (because, if a process p sends to its neighbor ¢, ¢ eventually receives this mes-
sage and then (i) g is starter, (ii) ¢ assigns the value p to father,, or (iii) father, had a value
already). Because there is only one starter the result follows. [

Define T, to be the subtree under p, let dp, fpq» and g, be as before, and let / be the starter.

Theorem 3.5: For all ¢, e, > d;.

Proof: As in the proof of lemma 3.1 it can be shown that if rp is an edge, then for all ¢ in T,
€, — &y,. As in the proof of theorem 3.2 the result follows. [

By a counting argument similar to the argument in theorem 3.3 it is shown that the starter will
decide indeed.

Our framework allows us to analyze the behavior of the algorithm in case two or more
processes act as a starter. Then T will not be a rooted tree, but rather a rooted forest. Each
starter is the root of one tree. The decision of a starter is preceded by the enroll events of the
processes in the tree of which it is the root, and their neighbors. As in the case of algorithm
A, the execution is not necessarily total.

Algorithm C works for bidirectional networks of arbitrary topology. It is centralized, and
the processes need not have identities. The algorithm is simple. Its message complexity is
2E, its time complexity is D,
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Algorithm D: A decentralized total algorithm for general directed networks with known diam-
eter D. Each process sends D times a message to all of its out-neighbors. It sends the i+1%
message only after receiving i messages from all of its in-neighbors. A process that has
received D messages from all of its in-neighbors decides. A more precise description follows.
Let for each process p In, be the set of its in-neighbors, Out, the set of its out-neighbors, and
assume p has a counter RCount,[q] for each q e In,, and a counter SCount,. Initially all
counters are 0.

R,: { A message < arrives from q }
begin receive <> ; RCount,[q] = RCount,[q]+1 end

S,: {Vq €ln,: RCount,[q] 2 SCount, A SCount, <D }
begin forall € Out, do send < tor ;
SCount, = SCount, +1

end
D,: {Vqeln,:RCountq]l2D }
decide

In this algorithm more than one message can be sent over a link. Let, if an edge pq exists,
£ be the i'™ event in which p sends to ¢, and g be the i™ event in which g receives from
p. If a FIFO discipline on links is assumed these events correspond, so that trivially
-9, We do not assume a FIFO discipline so that the following result becomes non-
trivial.

Theorem 3.6: f,5)— g &),

Proof: Define m, such that fp(;" %) corresponds with g®), ie., in its A receive event g

receives p’s m,® message. We have f P(,,""')—) g). Each message is received only once, so all
my, are different. This implies that at least one of m,...,m; is greater than or equal to i. Let
m;2i, menfpg)—afp?’)—)gp(,{)—)gp(;). a

The truth of this lemma is not restricted to this particular case of algorithm D. I is an impor-
tant result, which can be used in the analysis of any algorithm for systems with non-FIFO
channels. It holds even in the case messages may get lost in the links. The only assumption

that must be made about the links is that every message is received only once, that is, that no
duplication of messages occurs. We continue the correctness proof of algorithm D.
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Theorem 3.7: For all s € PP, ¢, —d,.

Proof: Let pgpy.p;, ISD, be a path in the network. By the previous theorem we have
T — g 831 for i < I and by the algorithm we have 8o 5 £ for i <1-1. Thus
€po—> 81 p - Because the network diameter is D, for every s and p there is a path
s=po.pr=p of length at most D. Thus e, g\ ,. By the algorithm g , —d,, so that
the result follows. O

Theorem 3.8: Assume that all events of algorithm D that are enabled will eventually be exe-
cuted. Then all processes will decide.

Proof: First we show that, while not all processes have decided, there is always a next event
enabled to execute. If there are messages underway, a receive event will be enabled. Suppose
there are no message underway, note that this implies RCount,[r]= SCount, if rq is an edge.
Let S be the smallest of all SCount registers in processes, and p be such that SCount, = S.
If S = D a decision is enabled in all processes. If S < D then for all ¢ € In,, RCount,[q] =
SCount, 2 SCount, and SCount, <D, so a send event is enabled in p. Thus algorithm D
does not deadlock until all processes have decided. Furthermore, only a finite number of

events can take place, namely D E send, D E receive, and N decide events. It follows that all
processes will decide. O

In [Te87] it is shown that in order to avoid deadlock it is sufficient that at least one process is
a starter. In [Te87] more properties of this algorithm are proved and it explicitly shows its use
as PIF algorithm, Distributed Infimum algorithm, Resynch algorithm, etc. The behavior of the
algorithm on networks that are not strongly connected is also analyzed there.

Algorithm D is decentralized and works on any (directed) network. It is required that (an
upper bound for) the network diameter is known. The processes need not have distinct identi-
ties. The message complexity is D E, the time complexity of algorithm D is D .

Algorithm E: Another decentralized algorithm for general unidirectional networks. Each pro-
cess p maintains two sets of processor identities. Informally speaking, HO, is the set of
processes p has heard of, and OK,, is the set of processes such that p has heard of all the in-
neighbors of these processes. itially HO, = {p}, and OK, = @. HO, and OK, are
included in every message p sends. Upon receiving a message (containing a HO and an OK
set), p replaces HO, and OK, by the union of the old and the received version of the set.
When p has received a message from all of its in-neighbors, p inserts its own identity p in
OK,. When HO, = OK,, p decides. A formal description of the algorithm follows. Let In,
and Out, be as for algorithm D, and Rec,[q] as for algorithm C.

Sp: send <HO,,0K, > to some q € Out,
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R,: { A message <HO,OK > from g arrives atp }
begin receive <HO ,OK > ; Rec,lq] :=true ;
HO, = HO, VHO ; OK, =0K, VOK
end

Ayt { nglnp:Recp[q] }
0K, = OK,u{p}

D,: {HO, = 0K, }
decide

Let a, denote the (first) execution of the A event in process p. For any event b (occurring in

process p), let HO® and OK® denote the value of HO, and OK, immediately after the
occurrence of b.

Lemma 3.9: If e, — b then g € HO®).

Proof: The updates of the HO sets in processes and messages imply, as in the proof of
theorem 2.7, that for any two events b and ¢, ¢ » b implies HO© c HO®). By the algo-
rithm ¢ € HO®?, 50 the result follows. O

Lemma 3.10: If g € OK®) then for all r € In,, e, > b.

Proof: First we prove by induction on — that ¢ € OK® implies a, >b. Let p be the pro-
cess where b occurs. If b is a send or decide event, OK,, does not change in the event so an
earlier event b’ in p must have caused ¢ to be in OK,. Use induction and ¥ - b to con-
clude the result. If b is g, then p = ¢ or ¢ was in OK,, already before the occurrence of b.
In the first case the result is trivial, in the second case it follows as for send and decide events.
If b is a receive event then ¢ was in the OK set of the message that is received, or ¢ was in
OK, already before the occurrence of b. In the first case, use the induction hypothesis for the
corresponding send event, in the second case the result follows as above. Thus g € OK®)

implies a;, = b. From the algorithm it follows that for all r € In,, e, > a,, from which the
result follows immediately. O

Theorem 3.11: For all r, ¢, — d,.

Proof: Trivially e, = d,. If ¢ is a process such that e, —d,, thenby 39 q e Ho(d’), so by
HO = 0k’ we have g € 0K, and by 3.10 we find that for all r € In, ¢, —d,. The
result follows from the strong connectivity of the network. [J

The message complexity of algorithm E as given is unbounded, because a send event can in
principle be repeated infinitely often. We can restrict sending of messages by p in such a way
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that sending is allowed only if OK, or HO, has a value that was not sent to the same process

before. In that case the message complexity is bounded by 2N E messages. Under this res-
tricted sending policy we can prove:

Theorem 3.12: Assume all events of algorithm E that are enabled will eventually be executed.
Then all processes will decide.

Proof: We first show that, while not all processes have decided, there is always a next event
enabled to execute. If there is a link pg such that the current value of HO, and OK, has not
been sent over it, a send event is enabled. Assume (1) that for each link pg the current value
of HO, and OK,, has been sent over it. If there is a link pg such that this value has not been
received by ¢, a receive event is enabled. Assume (2) that for each link this value has been
received. Then for each ¢ the addition of ¢ to OK, is enabled. Assume (3) that this addition
has taken place for all ¢. From assumption (2) follows that HO, CHO,, thus by the strong
connectivity of the network, all HO are equal. From r € HO, for all r follows HO, = PP for
all p. From assumption (2) we can also derive that all OK sets are equal and, using assump-
tion (3), that OK, = IP for all p. But then for all p OK, = HO,, and a decision is enabled
in all processes. Thus the system does not deadlock before all processes have decided.
Because only 2N E send, 2N E receive, N addition, and N decision events are possible, it
follows that all processes will decide. O

Algorithm E is in fact Finn’s Resynch algorithm [Fi79]. To see this, first observe that
always OK Cc HO for all processes and messages. Thus, the two sets can be represented by a
vector as follows. In this vector there is an entry for each potential member of IP. The entry
can be 0, 1, or 2. A 0 entry means the process is neither in HO nor in OK, a 1 entry means
the process is in HO but not in OK, a 2 means that the process is in both HO and OK. The
test OK = HO now reads: the vector contains no 1's. Two differences between this algorithm
and Finn’s are important to mention. First, Finn assumes bidirectional links, where we assume
strong connectivity of the network. If links are assumed bidirectional, (weakly) connected
components of the network are strongly connected. Finn uses the algorithm to determine the
nodes in one component and synchronize this component only. A second difference is that
Finn’s algorithm also provides a mechanism to restart the algorithm after a topological change.
This, now fairly standard, mechanism was described separately by Segall [Se83].

A consequence of the material in this paper is that the Resynch problem [Fi79] can be
solved by an algorithm using fewer messages. In Finn’s work bidirectional channels are
assumed, so algorithm E can be replaced by e.g. algorithm G. For the resynchronization of
unidirectional networks the algorithm of Gafni and Afek [GA84] can be used instead. An
advantage of algorithm E over the others is its low time complexity.

Algorithm E is decentralized and works on any (directed) network. Processes must have
distinct identities. The message complexity is (at most) O (N E) messages (of size N
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identities) and the time complexity is D .

It is interesting to compare algorithms B, C, D, and E. Algorithm B assumes a tree
topology, algorithm C assumes there is exactly one starter, algorithm D assumes the network
diameter to be known, and algorithm E assumes processes have identities. It can be shown
that at least one of these assumptions is necessary: there exists no decentralized algorithm for
anonymous, general networks with no bound on the diameter.

To give the reader an impression of the wealth of known total algorithms we mention a few
more of them, without precise description or correctness proof.

Algorithm F: Distributed Depth First Search (DDFS) [Ch83]. DDFS is a centralized algo-
rithm for general bidirectional networks. It is sequential, i.e., DDFS is a Traversal algorithm,
Both its message and time complexity are 2E. The processes need not have distinct identities.

Intricate variants with an O (N) time complexity exist (see e.g. Awerbuch [Awe85]), but these
variants are no longer sequential. A version for directed networks exists [GA84].

Algorithm G: Gallager, Humblet, and Spira’s algorithm for distributed Minimum Spanning
Tree construction [GHS83]. This is a decentralized algorithm for general bidirectional net-
works. Distinct identities are required. The message complexity is O (NlogN +E), which is
provably optimal, and its time complexity is O (N1ogN). Noteworthy is the adaption by Gafni
and Afek to directed networks [GA84].

Algorithm H: Many algorithms have been given for Election on (unidirectional) rings. Their
complexity is typically O (NlogN). Peterson’s algorithm [Pe82] is noteworthy because it runs
on unidirectional rings and has a message complexity of O (Nlogs), where s is the number of
starters.

Of course this list can be made much longer. Only a few of the most important algorithms are
mentioned here,

4 Remaining issues

We discuss some remaining issues and relations with other problems.
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4.1 The Gossip Exchange problem

The Gossip Exchange problem is described as follows. Each of N uncles u,,..., 4y knows a
story. How many telephone calls are necessary to reach the situation where each of the uncles
knows each of the N stories? It is assumed that every uncle can make calls to every other
uncle, that one call connects precisely two uncles and that no uncle can be engaged in two
calls simultaneously, and that during a telephone call the two participating uncles exchange all
information they have. The problem is originally due to A. Boyd.

It is not difficult to see that 2N — 4 call suffice, and it was proven by Tijdeman that this
is optimal [Tij71]. In our terminology, the problem asks for a total algorithm where each pro-
cess decides, in a certain model of communication. This model is characterized by (1) a com-
plete communication network, (2) communication by "rendez-vouz" instead of asynchronous
messages, and (3) a synchronous execution model. The work of [Tij71] shows that under this
model a communication complexity of 2N — 4 is optimal for total algorithms.

This paper shows that any solution to the Gossip Exchange can also be used to broadcast
a message under the uncles, to compute some infimum over the uncles, or to "resynchronize"
them.

4.2 Constructions of decentralized total algorithms from centralized ones

In the usual statement of the Election problem it is required that a solution is decentralized. In
this section we give some constructions that build decentralized total algorithms from central-
ized ones: Extinction (see below), Korach et al.’s construction, and Attiya’s construction. In
all constructions, starting an election is done by starting a copy of the centralized algorithm, in
which messages are tagged with the initiator’s identity. The copies run concurrently and com-
pete, until finally a decision is taken in one of them. The initiator of this copy is then elected.

Construction 1: (Simple Extinction) We construct a decentralized total algorithm E from a
centralized total algorithm C. A starter p of E starts a copy C, of C, with all messages
tagged with p. Each p maintains m,, the highest identity p has seen so far (initially p). On
receipt of a message from C, tagged with ¢ < my,, p will start a copy of C (unless it did so
earlier), but not participate in C,, i.., it will not execute any event of the execution C,. If
q 2 my,, p will (eventually) update m, and participate in C,- If a decision is taken in C,, this
is regarded as a decision in E.

Let m be the highest identity of any process. By construction, only in C,, a decision can be
taken, and C,, will start eventually. If the message and time complexity of C are M and T,
respectively, then the message and time complexity of E are bounded by O (NM) and O (NT),

respectively. The reader is invited to construct an example where the complexity of E actually
meets these bounds.
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The Extinction construction can be improved as follows. A non-starter, receiving a mes-
sage, will not purge it, nor start its own C, and will not start one thereafter. Let M and T be
as before, and s be the number of starters. Then the message and time complexity of the con-
structed algorithm are now O (sM) and O (sT), respectively. The algorithms of Chang and
Roberts [CR79] and Hirschberg [Hi80] are obtained by applying Extinction to Algorithms A
and C, respectively.

Construction 2: (Korach et al., [KKMS85]) Starting from a traversal algorithm with message
complexity M, Korach et al. construct an Election algorithm with message complexity
O (M +N)logs).

Construction 3: (Attiya, [At87]) Starting from a Traversal algorithm with message complexity
f(N), Attiya constructs an Election algorithm for undirected networks with a message com-

N N
plexity of Y f(=).
k=1 K

Constructions 2 and 3 use fewer messages than construction 1, but they are less general, for

they require a traversal algorithm, whereas construction 1 can use a centralized, but not
sequential, total algorithm.

4.3 Repeated execution

In many applications of total algorithms repeated execution of the algorithm is necessary. See
for example the Distributed Selection algorithm of Santoro et al. [SSS87], or the construction
of Distributed Infimum Approximation algorithms from Infimum algorithms [Te86]. In these
applications it is required that subsequent executions of the algorithm are disjoint. Let A be a
total algorithm which is executed repeatedly, and ep(i) denote p’s enroll event in the i™ execu-
tion of A.

Definition 4.1: A series of executions of A is called disjoint if for all p,q, and i:
£ e ),

An easy way to achieve disjointness is by adopting the following rule:

Rule: A process may act as a starter in execution i+1 only if it has decided in execution i.

In any execution of A, for all ¢ there is a p such that p is a starter and e, —>¢,. This fact,
together with the rule, implies indeed that the subsequent executions are disjoint.

Centralized algorithms in which only the starter decides (algorithms A, C, and F from
section 3) require that once a starter is elected. This process will be the starter of all subse-
quent executions.

Decentralized algorithms, in which any number of processes can start (algorithms D, E,
G, and H), do not require such an election. If only one process decides in the execution, and
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the message complexity is small if there are few starters, all executions except the first have
low message complexity. For example, the first execution of algorithm H takes O (NlogN)
messages, all subsequent executions take N messages. This makes algorithm H particularly
interesting for repeated execution. The same holds for decentralized algorithms that are
obtained by applying the improved Extinction construction to some centralized algorithm.,

Algorithm B poses a special problem if it must be executed repeatedly. Here the leaves
of the tree must be starters, but they do not necessarily decide. A deadlock results. This prob-
lem can be remedied by adapting the algorithm as follows. A process that decides broadcasts a
message over the tree and all processes decide also on receipt of this message. Then the
leaves are ready to start a next execution.
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