AN OPTIMAL POINTER MACHINE
ALGORITHM FOR FINDING NEAREST
COMMON ANCESTORS

J. van Leeuwen & A.K. Tsakalides

April 1988
s Riksuniversiteit Utrecht
< e ;
;ﬁ 3& 3 Vakgroop mlormat#éa
2T Budapestisan8 3584CO
Corr. adres: Postbus 80.012 fA Utrecht

Telefoon 030-53
The Netheriands 1454

AN OPTIMAL POINTER MACHINE ALGORITHM
FOR FINDING NEAREST COMMON ANCESTORS

J. van Leeuwen & A.K. Tsakalides

Technical Report RUU-CS-88-17
April 1988

Department of Computer Science
University of Utrecht
P.O.Box 80.012, 3508 TA Utrecht
The Netherlands

An Optimal Pointer Machine Algorithm

for finding Nearest Common Ancestors

Jan van Leeuwen* and Athanasios K. Tsakalidis**

Technical Report, April 1988

Computer Technology Institute, Patras, Greece

* Dept. of Computer Science, University of Utrecht, P.O. Box 80.012, 3508
TA Utrecht, The Netherlands.

** Dept. of Computer Science, Universtity of Patras and Computer Technol-
ogy Institute, P.O. Box 1122, 26110 Patras, Greece.

ABSTRACT: We present an optimal pointer machine algorithm for
computing the nearest common ancestor of any two given nodes in a
static arbitrary tree with n nodes in O(loglogn) timme. The algorithm
requires O(n) preprocessing time and only O(n) space.
1. Introduction ’

Suppose a rooted tree T with n nodes is available for preprocessing. We
consider the following problem: answer on-line queries of the form ”Which
node in 7' is the nearest common ancestor of two given nodes = and y?”. We
shall denote the answer to such a query nca(z,y) and refer to the problem of
computing 1t as the static nca-problem. ;

Several versions of the nca-problem have been considered in the literature,
differing in whether the nca queries are handled off-line or on-line , whether
the tree T is static or not and, in the dynamic case, in the kind of dynamic

1

operations (linkings and cuttings) allowed on trees. These versions of the nca-
problem have been investigated by [Aho, Hopcroft, Ullman, 76], [Maier, 79],
[van Leeuwen, 76], [Harel and Tarjan, 84], [Sleator and Tarjan, 83], [Schieber
and Vishkin, 87] and [Tsakalidis, 88].

In this paper we are interested in a solution of the static nca-problem that
runs efficiently on pointer machines. We combine the results of [van Leeuwen,
76) and [Tsakalidis, 88] and provide an optimal pointer machine algorithm for
computing each nca query in O(loglog n) time, with linear preprocessing time
and space. It follows from a result in [Harel and Tarjan, 84] that this query
time is optimal. The computation model will be discussed in more detail later
in this section.

Given an arbitrary static tree T' with n nodes, we obtain the solution to
the static nca-problem by the following steps: First, T' will be embedded into
a balanced tree BT of depth O(logn) and arbitrary degree and nca(z,y) is
computed in BT. Given the nca(z,y) in BT, it is then possible to compute
the nca(z,y) in T in O(1) time , by using the information kept during the
embedding. Secondly, we preprocess BT in such a way that it is possible to
compute nca(z,y) in BT in O(loglogn) time. More precisely, the query time
is O(log min{dbt(z),dbt(y)}), where dbt(z) is the depth of a node z in BT.

The paper is organized as follows. In the remainder of this section we define
the model of computation we are working with and present the optimality proof
of Harel and Tarjan for the sake of completeness. In section 2 we explain the
embedding of T into BT and in section 3 we give the necessary preprocessing
of BT in order to support the query time mentioned.

In our discussion we shall use n to denote the current number of nodes
in the tree 7. Our model of computation is a pointer machine as defined by
[Tarjan, 79], which is different from a random access machine or RAM [Aho,
Hopcroft, Ullman, 74]. In a pointer machine memory consists of a collection
of records. Each record consists of a fixed -number of cells. The cells have
associated types, such as pointer, integer, real, and access to memory is only
possible by ”pointers” and not by address arithmetic. Note that in a RAM the
memory consists of an array of cells, i.e. we can access a cell by its address,
using address arithmetic when neccessary.

For measuring time we use the uniform cost measure, in which each arith-
metic and pointer operation requires O(1) time. We assume that each number
used can be completely stored in a cell. We also assume that the tree is rep-
resented by a list structure (which may change in the course of computation),
with each tree node being represented by a single record. The structure may
contain additional records which do not represent specific tree node. Each
record contains a fixed number of pointers, independent of n. As an input for
a nca query, the algorithm is given pointers which point to the records corre-
sponding to the tree nodes ¢ and y of which the nearest common ancestors is
required. In order to answer the query, the algorithm must return a pointer
which points to the record corresponding to node nca(z,y). We consider the

2

on-line version of the problem in which queries arrive on-line and we assume
that the algorithm remembers nothing between consecutive queries.

[Harel and Tarjan, 84] demonstrate the weakness of a pointer machine in
comparison to a RAM in the following way. They consider the nearest common
ancestor problem on static trees and show that any pointer machine algorithm
requires Q(loglog n) time per nca query. Additionally they give an algorithm
running on a RAM which solves the nca-problem in O(1) time per query using
O(n) preprocessing time and O(n) space.

The following Theorem with its proof is due to [Harel and Tarjan, 84] and
garantees the optimality of the O(loglogn) query time for the case of pointer
machines.

Theorem 1: Let T be a complete binary tree with n leaves. Any pointer
machine requires Q(loglogn) time to answer any nca-query in the worst case,
independent of the representation of the tree.

Proof: Let n = 2", with A the height of T. Let us fix our attention on the
time just before a query. The key point is that, from any node in the data
structure, at most 271! —1 nodes are accessible in j steps or less. Let &k be such
that any possible nca query can be answered in k steps or less. For each leaf =
of T' let A, denote the set of nodes representing tree nodes that are accessible
from z in k steps or less. Let w be a nonleaf node of T and let u and v be its
two children. We claim that either w belongs to A, for every leaf = that is a
descendant of u, or w belongs to Ay for every leaf y that is a descendant of v.
Otherwise w would be accessible from neither = nor y in k steps for well-chosen
leaves z and y in the subtrees of « and v, and an nca query on z and y would
be unanswerable in k steps.

We conclude that w belongs to A, for at least half the leaves 2 that are
descendants of w. If w has height i > 1, then w has 2' leaf descendants, and
thus w occurs in at least 2°~! sets A,. Since there are 2"~* nodes of height
? for any 7 with 1 < ¢ < h = logn, we see that nodes of height 7 contribute

2h=i2i=1 = 2h=1 = /2 occurrences to the collection of sets A,. Summing over
all heights ¢ from 1 to h, we find that

n
Z |Az| > Elogn,

where L is the set of leaves of T'. Since for any leaf ¢ we have |A.| < 2%, we
get ‘

. n
n2k+t > Elogn,

which implies that & > loglogn — 2
|]

We will show that there exists a pointer machine algorithm that achieves
the optimal bound of theorem, with only linear preprocessing time and linear
space.

2. Embedding an arbitrary tree into a balanced tree

In this section we explain a technique of embedding an arbitrary tree T
with n nodes into a balanced tree BT with height O(logn), while keeping
information about the ancestral relations of nodes [cf. van Leeuwen, 76].

The technique will be explained by the following three steps and is pre-
sented in subsequent subsections: |

Step 1: (Section 2.1) A data structure for a forest of trees is presented which can
merge two trees at their roots, by making the root of one tree a son of the
root of the other tree, in such a way that the new tree remains balanced.
Hence, each tree which is the result of merging two other trees appears in
two versions; first as a non-balanced merged tree (the "real” version) and
secondly as a balanced merged tree (the "imaginary” version).

Step 2: (Section 2.2) Information is stored in such a way that if a nearest common
ancestor is found in the balanced merged tree, then we can compute the
nearest common ancestor in the non-balanced merged tree in O(1) time.

Step 3: (Section 2.3) Given an arbitrary static tree T', we present a preorder traver-
sal of T' and we merge the subtrees visited according to steps 1 and 2. The
resulting tree BT has height O(logn) and the property that if we find
nca(z,y) in BT, then nca(z,y) in T can be computed in O(1) time.

2.1 A data structure for a forest of trees

Like in [Aho, Hopcroft, Ullman, 76], efficiency in representing a forest is
gained by keeping a shadow structure that codes frequently needed information
of the forest in a sufficiently balanced or compressed manner. However, the
data structure which we shall use here is fundamentally different from the
organisation used in [Aho, Hopcroft, Ullman, 76].

At each moment the record kept for each node in the forest will contain

much more information than ”just” a pointer.to its current father as it shown
below.

In fact, ¢; may not be the "real” root of this tree at all but only a "rep-
resentative” which is used to make the tree balanced. Thus, the physical tree
observed from the father-son relations in the data structure may not be the
"real” tree at all. Additional information is stored in each (internal) node to

4

enable us to work with this tree and still get every information needed of it
as if it were the real tree. For each node a structure is kept that consists of a
record with global information and a list (or "filter”) to which a selection of
its descendants are ”attached”. An important fact is that the direct sons of g
(except if they are leaves) are not directly connected to that node, but pass the
“filter” which is kept in the structure for g;. More precisely, with each ¢g-node
we have the following global structure, which is easily formulated as a "type”
in PASCAL. (We use g¢; to refer to the node, Q; to refer to its record.)

sTT T T T T e e e e e e e e e ~
{)
|
|
l |
I q; | NAME |
l ///” 8 FATHER
| REAL ROOT :
| WEIGHT |
!
| |
}
l |
! |
. l N
| e e
| RE/IM s |
| —_t }
|]
\ !
5 o &b ’
'Figurel

The records in the linked list contain a few more fields than shown in Figure
1, but this will be discussed later.

Some parts of this structure are self-explanatory. Notice the point that
sons are entered in a linked list, part of the node, before being connected to
the main record. ’

Sons are entered in the linked list in the order in which they must be
attached to the "node” according to the appropriate interpretation of MERGE
- instructions, which are explained below.

Definition 1:

MERGE(qi,g;) is an operation between the roots ¢; and q; which makes
¢; the rightmost son of g;.

Qi- WEIGHT denotes the number of internal nodes and leaves stored in
the tree rooted at g;.

Effectively, the operation M ERG E(g;, g5) is transforming the forest from

i 4;

q

into

Consider what would happen in case a MERGE(q;,q;) - instruction is
executed.

Suppose the records are

If Q;. WEIGHT < Q;. WEIGHT we simply attach g; to g; by setting
Q; WEIGHT = Q;. WEIGHT + Q;. WEIGHT and setting Q;. FATHER
equal to the address of a freshly allocated record at the end of the current
list of g; registrating a real link (because this attachment is indeed what was
intended by the MERGE - instruction). We do not change the contents of
Q;. REAL ROOT here, and it seems as if we attached g; to that node.

Note that Q. FATHER is always defined according to the physical (ap-
parent) tree.

Figure 2 illustrates the operations mentioned.

93 NAME

9 FATHER
REAL ROOT
WEIGHT

O

Figure 2

In case we have Q;. WEIGHT > Q;. WEIGHT, we have to operate in a
different way, because in order to keep the tree balanced we must do the exact
opposite of what the MERGE - instruction wants us to. Thus we attach g; to

g; but record the link as smaginary (because we should really proceed the other
way round). We set

Q:- REAL ROOT = Q;. REAL ROOT (which is the most important
step here)

Q:. WEIGHT = Q;. WEIGHT + Q;. WEIGHT

and Q,;. FATHER points to the address of a freshly allocated record at the
end of the current list of g; registering an imaginary link. We illustrate this in

7

Figure 3.

43 NAME

o FATHER

. REAL ROOT
WEIGHT

0%
Figure 3

In steps like these the value stored in field REAL ROOT can change.

At certain steps in algorithms later which traverse the tree following FA-
THER - links we may want to know the ”real root” at the time of entering a
particular son. It could be stored in an additional field of the particular record
in the list, but for later purposes it is still insufficient.

Instead, we will store even more information and now fix the records in
the list of the form

ROOT

" MOST RECENT IM
O/ oh__._-o

In the course of the construction , ROOT will always denote the " REAL
ROOT?” of the attached g-node, and "MOST RECENT IM” will point to the
list-element containing the most recent imaginary link to the left. (In particular,
in case the record itself has IM in field 2, the pointer will simply hold the address
of the record itself).

It is important to observe that as the list is built and records are added on
the right, the contents of the field ”MOST RECENT IM” can be determined
solely on the basis of information in the current record and in the tmmediately

8

preceding record.

Effectively, keeping track of the MOST RECENT IM field is a form of path
- compression, of the only type permissible here.

The initial information g-nodes carry can be described as follows:

T T e e e e — e

\

NAME
FATHER

REAL ROOT
WEIGHT

NIL

NIL
NIL

\
|
I
l
x
l
l
|
|
I
|
|
I
|

Figure 4

The description of the data structure also explains how MERGE - instruc-
tions will be carried out.

It should be noted that the apparent tree that is built, is constructed
essentiallly following the regime of a UNION(-FIND) programm with balanced
unions [Aho, Hopcroft, Ullman, 74]. Thus we conclude

Proposition 1: The "height” of any apparent physical tree in the given forest-
implementation is O(logn). : »

2.2 Finding Nearest Common Ancestors

The algorithm for answering nca - requests consists of two essential stages.
First we find the nearest common ancestor in the apparent tree, and next we
use the information stored at the ancestral node to determine which one is the
“real” nearest common ancestor.

It is important to note here what we really want to find in the apparent
tree. We do not just want to obtain the nearest common ancestor, but rather
the ezplicit list-element in the filter (the list) through which we enter the nearest
common ancestor.

Given two nodes z and y in the apparent tree, let p and ¢ be the respective
ancestors of z and y which are sons of nca(z,y).

Now we follow the pointers p. FATHER and q. FATHER, entering the
"filter” of node g¢; at records S and T (by inspecting a counter stored in yet
another field of these records we can find out that S precedes T in the list,
although different ways of establishing this may be given).

Because p # g, we know that S # T and we may assume the situation as
sketched in Figure 5.

oo T T T T T T T T \
!
| 2
! 93 NAME |
: FATHER I
: REAL ROOT [
\ WEIGHT I
[|
| {
! S T 1
l |
| 4 |
‘ !
|
I . |
| i
!
i —]] l
! [
! |
/
Nl e e i —— o o — —— o ——— — — et ———— o — o - a— - Qi
P q
Figure 5

The “real” nearest common ancestor of z and y lies somewhere in the
subtree headed by ¢;, and we claim that we can find out where it is from direct
inspection of the record - information.

Proposition 2: The ”real” nearest common ancestor of ¢ and y is
T. MOST RECENT IM. ROOT.

Proof: Suppose the "real” tree looked as follows at the time record S was
added to the list

10

somewhere there is a node
g; and (because we just
" merged”) the node z

By construction the “root” of the real tree at this moment is S. ROOT (if
the link was imaginary) or S. MOST RECENT IM. ROOT (if the link in S
was real).

Now consider two cases.

Let us first assume that

S. MOST RECENT IM = T. MOST RECENT IM.
That means that all links stored after S must be real, and the situation can be
reconstructed (in the real tree) as follows

(note that y is somewhere in the subtree headed by g or, in other words,

“headed” by T')

B

q; and z

| [

~ the"real tree corresponding
to g, somewhere containing y

all links are real;

therefore this is a valid
representation of the real tree

at the time T was added onto the list

Clearly, the nearest common ancestor of = and y is the ”real” root of the
tree at the time S was added, and thus equal to

S. ROOT (if the link stored in S was imaginary),

or

S. MOST RECENT IM. ROOT (otherwise).

In the first case, however, MOST RECENT IM was made to point to
S itself (the consistency of which will now be apparent) and in both cases the
real root 1s

11

S. MOST RECENT IM. ROOT =T. MOST RECENT IM. ROOT
as it was shown.

Let us next assume that

S. MOST RECENT IM #T. MOST RECENT IM.

That means that some links stored after S must be imaginary and the apparent
tree must be "rotated” back to obtain the real tree.

Let the record pointed to by 7. MOST RECENT IM be U. This record
will be somewhere between S and T (and let us assume it is # T). The
following argument holds just as well when U = T'. There was an imaginary
link stored in U, and thus the real tree at the time U was added is of the form

the real tree "headed” by U

here are the

previously, stored

items, including somewhere
the nodes ¢; and z

Note that in the apparent tree we recorded:

By construction of the data structure the ”real” tree at that time was
(A =)U. ROOT
All links stored after U (but up to T') must be real, and the real tree must

12

be as follows

the ”real” tree headed
by T, containing y

the real tree

containing z
e————

real links

Therefore A is the real nearest common ancestor of and y, and it is equal
to

U.ROOT = T. MOST RECENT IM. ROOT

as was to be shown. "

2.3 Preprocessing on the static tree T

The following procedure PREM ERGE visits the given tree T in a pre-
order traversal and merges every time the visited father with its sons. The
resulting tree is the balanced tree BT. In addition to the information given
in section 2.1 we also use the information v. REPR, which points to the re-

cent root of the compressed tree which includes node v after a sequence of
MERGE-instructions.

Let » be the root of T

13

Proc PREMERGE(r);

begin
comment Let son(v) be a son of v; '
Let bit(v) = 1if v is completely visited and equal to 0 otherwise;
Let father(v) be the father of v in tree T and v. FATHER
the father of v in the compressed tree;
end of comment;
forall vin T

do
v. WEIGHT :=1;
v. REPR := v;
if v is a leaf then bit(v) := 1
od;
if b3t (v)
then

MERGE(v, father(v). REPR);

if father(v). REPR. WEIGHT < v. WEIGHT

then father(v). REPR := v fi;

Set bit(father(v)) = 1 if for each son s of father holds: bit(s) = 1

else
for each son of v
do
PREMERGE(son(v))
od
fi

end

Figure 6b illustrates the result of the procedure PREM ERGE when ap-

14

plied to the tree of Figure 6a. Nodes are identified by their preorder-number.

Figure 6b: The balanced tree BT

3. The preprocessing of BT

In this section we show how to preprocess the balanced tree BT in which
tree T is embedded in order to be able to quickly answer nce queries. We base
our construction on the following theorem proved in [Tsakalidis, 84] using the
following operations on the nodes of the tree: '

1. Insert-Node(z,y): Insert a new node = as the rightmost son of y in the

tree.

2. Pre(z,y): Return true iff z occurs before y in a preorder traversal of the
tree.

3. Post(z,y): Return true iff z occurs before y in a postorder traversal of the
tree.

4. Ancestor(z,y): Return true iff z is an ancestor of y in the tree.

15

These operations will be performed on-line, i.e., each operation is com-
pletely executed before the next operation is considered.

Theorem 2: If the positions of the nodes referred to in the operations are
given, then we can perform a sequence of m arbitrary Insert-Node in an initially
empty tree structure BT in time O(m), and each Pre, Post and Ancestor
operation needs time O(1). The space used is O(m).

Proof: (Sketch)

In addition to the usual implementation of the tree BT we store the nodes
of BT in a list K, which combines the information about the preorder and
postorder traversal of BT. The implementation chosen for the list K allows
us to perform m arbitrary insertions on given positions in time O(m) and to
answer in O(1) time whether a given element z lies to the left or to the right
of another given element y in the list K.

Each tree node z is represented by two elements z; and z2 in K and has
two pointers which point to these elements; the order of the element z; [22]
correspondes to the time instant, at which the node z is visited for the first [last]
time by a traversal of BT. Then a question about the ancestor-relationship
between z and y can be answered by two questions on the relative positions of
z1,y1 and x2,y2 In constant time, because

Ancestor(x,y)=true iff Pre(x,y)=true and Post(x,y)=false

and the following holds:
Pre(x,y)=true iff #; occurs before y; in K, and
Post(x,y)=true iff 5 occurs before y; in K.

Each insertion of a node z in T will be followed by the respective insertions
of elements z; and z2 in K. All lists used need no more than O(m) space. (For
a detailed proof, see [Tsakalidis, 84].) "

3.1. The Data Structure
Let BT be a tree.

Definition 2: A path or search path from the root R of BT to a node z is a
sequence of nodes vg,::-,v; with vo = R, vy = @ and father(v;) = v;_, for
1 < % < k, where father(R) = nil. If d(z) denotes the depth of node z, i.e.,
the distance of node z from R, then d(z) = k is the length of the search path
from R to z.

A segment S of a search path is a sequence of nodes v;,:::,v;4+, with
father(v;) = vj_q for i+1 < j < i+ s. Then s is the length of the segment S.
The highest [lowest] node of a segment is the node with the minimal [maximal]
distance to the root R of BT.

A segment is called block if its lowest node has an additional pointer which
connects it with its highest node. Blocks or segments can overlap if they have
the last highest nodes in common.

16

Our problem is to efficiently compute the nearest common ancestor of two
given nodes z and y of BT (denoted by nca(z,y)).

Let d(z) < d(y) and vg,...,vx = = be the search path of z. We can start
from z and we search between vy, ..., v} for the minimal ¢ such that

ancestor(v;+1,y) = false and ancestor(v;,y) = true.
Then v; = nca(z,y) and, according to Theorem 2, each comparison about
ancestral relationship among y and a node visited can be tested in O(1) time.

We try to speed up this search on the search path. If the search path were
stored in arrays we could use binary search. But we are working on a pointer
machine and arrays are not allowed. In order to simulate this binary search we
have to equip some nodes with pointers. Since additional pointers need more
space, we try to save space by grouping the nodes into blocks of special length.
D.1,--+,D.4 present the data structure used.

(D.1) The tree BT is represented by a list structure.

(D.2) The nodes of BT are also stored in a list K precisely as it is described
in Theorem 2. List K allows us to know in O(1) time whether two given
nodes z and y have any ancestor-relationship in T'.

(D.3) The nodes of BT are grouped into blocks of special length. Each newly
inserted node v in BT belongs to a block of length at most f(d(v)) (f :
N — N); this block is defined as a segment of the path from v upon to
the root of BT. Blocks on the same search path are disjoint but blocks on
different search paths can overlap if these paths overlap.

(D.4) For each block B we define its representative r; r is a node of B and
the highest ancestor in BT of all nodes of B. It is equipped with at
most log(d(r)) pointers pointing to some ancestors of » which are declared
as representatives of higher blocks. In order to save space we group the
representatives 71,...,7; into a horizontal block so that all r;’s,1 <1 < k,
have the same depth and if e is a representative which is the nearest
common ancestor of all »;’s, 1 < 7 < k, in BT then there is no other
representative on the paths from »; upon to re. We specify r; (the one
on the left) as the main representative. Only r; is equipped with the
pointers mentioned before.

For more details and illustrations concerning the data structure used and the
necessary information we refer to [Tsakalidis, 88].

Next we give precisely the information stored in the pointers of the main
representatives. The main idea is to simulate the binary searching as it can be
performed on the RAM on the pointer machine in the case that the pointers
point to the same direction. For each pair of nodes z,y we determine the
searching direction on the path wvg,...,v1,v0 from the node ¢ = v, to the
root vo according to the value of ancestor(v;,y) and we continue this search
following the proper pointer of the main representative.

17

Definition 3: Let r be a main representative node and RD(r) its represent-
ative — depth, defined as the number of representatives on the path in BT
between 7 and the root of BT. Then p;(r) points to the representative s which
is an ancestor of r with RD(s) = RD(r) — 2¢ for 0 < i < log RD(r).

We consider now the embedding of an arbitrary tree T into the balanced
tree BT.

In addition to the information of the embedding of T' where each node
includes the proper information (see section 2) and pointers to the respective
sons, we store the following information for the nodes of BT
I.1: Each node includes a father pointer.

I.2: d(v) is stored in each node v.

1.3: Each node v includes:

a) A pointer pr(v) to the representative node r(v) of the block into which

v belongs.

b) a cell which stores the distance bd(v) from v to r(v), i.e., bd(v) is the

number of nodes between v and r(v) on the path in 7T'.

I.4: a) A main representative node includes the pointers p; according to the
definitions given. These pointers are realized as doubly linked list. More
precisely, let » be a main representative and pg,...,px its pointers which
point to the representatives rq,...,r;. Then » includes a pointer to pg
and all pg,...,pr are realized as a doubly linked list, i.e. there is a pointer
from p;_; to p; and from p; to p;—;.

b) A representative r includes a horizontal pointer hp(r) which points

to the respective main representative of the same depth and a vertical

pointer vp(v) which points to the nearest main representative which is a

descendant of r.

c) Each pointer list po,pi1,...,pr of a main representative r is equipped
with a doubly linked list qo,491,...,q%x. The ¢;’s are defined as follows. Let s
be arepresentative; then mr(s) denotes either s if s is a main representative
or otherwise the node hp(s). Then ¢;(r) points to the i-th pointer of the
main representative mr(p;(r)), if this pointer exists, otherwise ¢;(r) does
not exist, i.e. there is a pointer from p;(r) to ¢i(r) and g¢;(r) points to
pi-pointer of mr(p;(r)), if this pointer exists.

1.5: Each node A includes two pointers which point to the elements 4; and A,
in the list K respectively as it was explained in Theorem 2.

L6: Each node v includes a pointer which points to the respective node in the
set structure D if the node v is deleted from T.

3.2 The Algorithm and its Cdmplexity

Given the balanced tree BT, we have to preprocess it by inserting all its
nodes anew and constructing the data structure. For an inserted node, we have
to arrange the block and the pointer of the newly created representative. The

18

following algorithm Insert(z,y) inserts the new node z as the rightmost son
of a given node y.

Proc Insert(x,y);
begin
if T is empty then make z the root of T' fi;
Make z the rightmost son of y by adding a new pointer from y to z;
Define the father-pointer on z (I.1)
Set d(z) :=d(y) + 1; (1.2)

if f(d(z)) = f(d(y)) and
y belongs into a block of length < f(d(y)) co check I.3.b for y;
Ly: then Insert ¢ into this block by defining the pointer
of I.3.a which points to the same representative of y;
bd(z) := bd(y) + 1; co information 1.3.b on ;
L;: else Create a new representative z.
co let s be the next representative which is ancestor of z;
s := pr(y);
if is a main representative co check if vp(s) is undefined;
then vp(s) := 2z

Arrange all the pointers p;(z)’s and ¢;(z)’s;
co Lemma 1 explains exactly this arrangement;

else hp(z) := vp(s);
fi
fi
Insert z in the list K;
end

For preprocessing BT we traverse BT in a breadth-first manner and insert
each node visited by means of procedure Insert(z,y).

Next we estimate the complexity of a sequence of m insertions and dele-
tions in a tree BT. First we give a lemma that is necessary for estimating the
cost of the arrangement of the pointers for I.4.a.

Definition 4: Let the representative path of a node v be the sequence of
representatives on the search path from v up to the root and the ancestor
representative of v any representative lying on the representative path of v.

Lemma 1: Let rq be a newly created main representative on the representative
path 74,74_1,...,71,70, where 7¢ is the root of 7. Then the arrangement of all
pj(ra)’s and ¢j(ra)’s according to I.4.a and L4.c costs O(logd) time.

19

Proof: Immediately from Theorem 3 and Lemma 2. a

More precisely, the query time is O(log min{dbt(z),dbt(y)}), where dbt(z)
is the depth of node z in the balanced tree BT.

References

AHO, A., J. HOPCROFT, J. ULLMAN, "The Design and Analysis of Com-
puter Algorithms”, Addison-Wesley Publ. Comp., Reading, MA, (1974)

AHO, A., J. HOPCROFT, J. ULLMAN, ”On finding Lowest Common An-
cestors in Trees”, SIAM Journal of Computing, Vol. 1, No 1, pp. 115-132
(1976)

DIETZ, P., and D. SLEATOR, "Two Algorithms for Maintaining Order in a
List”?, in : Proc. 19-th Annual ACM Symp. on Theory of Computing, New
York, pp. 365-372, (1987)

HAREL, D., and R.E. TARJAN, ”Fast Algorithms for finding Nearest Common
Ancestors”, SIAM Journal of Computing, Vol. 13, pp. 338-355 (1984)

MAIER, D., ”An Efficient Method for storing Ancestor Information in Trees”,
SIAM Journal of Computing, Vol. 8, No 4, pp. 599-618 (1979)

SCHIEBER, B., and U. VISHKIN, ”On Finding Lowest Common Ancestors:

Simplification and Parallelization”, Technical Report 63/87, New York Univer-
sity, New York, (1987)

SLEATOR, D., and R.E. TARJAN, ”A Data Structure for Dynamic Trees”, J.
of Comput. System Sci. 26, pp. 362-391 (1983)

TARJAN, R.E., A Class of Algorithms which require non-linear time to main-
tain Disjoint Sets”, J. Comput. System Sci. 18, pp. 110-127 (1979)

TSAKALIDIS, A K., "Maintaining Order in a Generalized Linked List”, Acta
Informatica 21, pp. 101-112 (1984)

TSAKALIDIS, A.K., ”The Nearest Common. Ancestor in a Dynamic Tree”,
Acta Informatica 25, pp. 37-54 (1988)

van LEEUWEN, J., "Finding Lowest Common Ancestors in less than Loga-
rithmic Time”, unpublished report (1976)

22

