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Abstract

This document is a report of a feasibility study, initiated by the Dutch weather
forecast service (KNMI) and the department of computer science of the university
of Utrecht, of the possibilities of parallelizing numerical weather prediction programs
for execution on a grid of transputers.

Our investigations concern programs, in which a set of partial differential equa-
tions, describing the behavior of the atmosphere, are numerically solved.

Two different implementation models are presented, together with a criterion
for choosing the fastest model. Speedup formulas are derived by which speedup for
both models can be calculated.

Applied to HIRLAM, a specific weather prediction program, these results show
that both internal and external communication time are negligible with respect to
calculation time. As a consequence, for this program, speedup is almost linear in
the number of transputers used.
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Chapter 1

Introduction

The future state of the atmosphere can in principle be computed from the current
state by solving a system of partial differential equations which models the behavior
of the atmosphere. Such a solution process, using numerical methods, is called a
numerical weather prediction. When such a solution process is applied to a fictitious
current state, it is called numerical simulation.

In the late 1930’s, it became understood, that even a rather simple model, de-
scribing the conservation of absolute vorticity following the motion of air particles,
suffices for a useful approximate description of large scale motions of the atmosphere.
It is generally assumed that various physical processes can be incorporated more
easily in the integration of the basic primitive equations than in the integration of
modified equations (i.e. integration of the divergence and vorticity equations). Thus,
today the primitive equations are mostly used for practical numerical prediction by
meteorological services[2, p1].

Most weather predictions are based on numerical weather prediction, which is
very time-consuming. It is therefore of particular importance that these calculations
are performed in an efficient way.

1.1 Computer Architectures

The first successful weather forecast based on numerical weather prediction in the
late 1940’s was obtained from the absolute vorticity conservation equation using the
first electronic computer ENIAC (Electronic Numerical Integrator And Computer).
Much faster computers and improved understanding of computational problems now
also enable long term integrations of the basic primitive equations.

Solving partial differential equations requires vast amounts of processing. There-
fore, meteorologists were always among the first users of new computer architectures.
Nowadays most numerical weather prediction programs are executed on vectorpro-
cessing pipeline computers.

While a wide variety of algorithms and software has been developed for pipeline
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computers, only recently much research and experimentation with large scale mul-
tiprocessor systems has been started. A multiprocessor system consists of a number
of processors, each with its own memory. Processors can execute different instruc-
tions. Thus if the multiprocessor system is used for one program, different parts of
the program (called tasks) are assigned to different processors. As for memory, each
processor has a local memory that can not be accessed directly by other processors.
Some multiprocessor systems also have a shared memory that can be accessed by
all processors.

When processors are executing tasks of the same program, there might be a need
for communication: intermediate results computed by one processor are needed by
another processor. In case a multiprocessor has a shared memory, this can be used
for the communication. In the other case, each processor is directly connected with
a number of other processors by links.

Modern pipeline computers like the CRAY and CYBER-205, are very expensive.
This is mainly because the technology used is very sophisticated. For multiprocessor
systems, performance can simply be increased by adding extra processors, while for
pipeline computers performance can not be changed. In theory, performance for
multi processor systems can be increased infinitely. The individual processors used
for multiprocessor systems do not need not to be fast, but the price/performance
ratio must be as low as possible. Besides that, such a system is more flexible than
a pipeline computer.

1.2 Objectives

The questions to be addressed in this report is how and in what sense weather
prediction can benefit from the use of a multiprocessor system and how performance
predictions can be made. In order to be more specific we will consider the following
issues:

Partitioning Is there an obvious way to partition the computations in numerical
weather prediction into a number of tasks, each task to be assigned to one processor,
so that the load for each processor will be approximately equal?

Communication The need for communication results from dependencies between
tasks that are assigned to different processors. For most multiprocessor systems
without shared memory, communication via links is rather time consuming compared
to computation. Care should be taken that partitioning of the computation process
does not lead to excessive communication requirements. It is therefore important to
know what dependencies can occur in numerical weather prediction programs.

Distribution In a multiprocessor system it is in general not the case that each
processor is directly connected to every other processor. This implies that sending
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some data from one processor to another might require the data passing through
several other processors, thus increasing overhead. In the multiprocessor system it
is therefore important to assign communicating tasks to processors that are close to
each other.

Finite number of processors It might be that an obvious partition of the com-
putation leads to a number of tasks that exceeds the number of processors. Thus
several tasks must be assigned to the same processor or a new partition must be
made. On the other hand, when the number of processors exceeds the number of
tasks, a different partition is even necessary, which generally causes extra commu-
nication.

Implementation model If several tasks are assigned to the same processor, these
tasks have to communicate. There are several ways to implement this “internal”
communication.

Adding processors One advantage of a multiprocessor system is the ease with
which processors can be added, thus increasing the performance of the system. It
is important to be able to predict how the addition of processors affects the overall
computation time of a fixed numerical weather prediction program.

1.3 Results

As a vehicle for experiments we used the transputer microprocessor. The transputer
microprocessor is especially designed for building parallel systems. The transputer
is relatively cheap, and among the fastests microprocessors currently available. Be-
cause of these properties, a multiprocessor system of transputers could be well suited
for performing numerical weather prediction in a cost-effective way.

As an example of a weather prediction model, we had access to a program
from the ECMWF (European Centre for Medium Range Weather Forecast), called
HIRLAM. HIRLAM is a weather prediction program, containing modern numerical
techniques. It is currently in use as a research model. Therefore HIRLAM is an
appropriate program for testing the suitability of a parallel transputer system for
numerical weather prediction.

The HIRLAM program uses a 3-dimensional grid to model the atmosphere. This
3-dimensional structure is reflected in the computation. Basically, the computation
consists of a series of updates of variables associated with gridpoints. Therefore, the
most obvious way to partition computations is by taking the calculations associated
with one gridpoint as a separate task. When the number of these tasks exceeds the
number of available processors, each processor should process a number of tasks.

In numerical weather prediction, many numerical methods can be used for the
solution of the partial differential equations. In explicit finite-difference schemes,
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variables at gridpoints are dependent of known values at other gridpoints. From
numerical viewpoint, it suffices to use values at neighboring gridpoints only (local
dependencies). In implicit finite-difference schemes variables at gridpoints are also
dependent of unknown values at other gridpoints. Thus there is interdependency of
variables at many gridpoints (global dependencies).

The disadvantage of implicit schemes is that it requires communication between
many tasks, and therefore between tasks assigned to processors that are not close
to each other in the multiprocessor system. Explicit methods do not have this
disadvantage. However, a smaller time step in the integration procedure is necessary
because of stability requirements. This loss in computation time can be easily
compensated for in a multiprocessor environment. We have restricted ourselves
to explicit computations.

In the HIRLAM model the number of tasks exceeds the number of transputers
and there are more dependencies in vertical direction than in the horizontal direc-
tions. Therefore the tasks associated with a vertical column of gridpoints should be
executed on the same transputer. Typically, even the number of columns exceeds
the number of transputers, so a cluster of columns should be assigned to the same
transputer. To lower dependencies between transputers, and therefore communica-
tion overhead, such a cluster has to consist of neighboring columns. Inspection of
the communication requirements with respect to the distribution of tasks among
transputers, reveals how the shape of these clusters should be chosen in order to
minimize the amount of communication between transputers.

There are different ways to implement the computations associated with a cluster
of neighboring columns. Two different implementation models are presented, as well
as a criterion to determine in advance which implementation model will be faster.

For both implementation models expressions for the execution time were derived,
and these were used to derive expressions for the speedup, in case the number
of transputers would be increased. These formulas contain a number of machine-
dependent constants and a number of application-dependent constants.

The machine-dependent constants were measured by running benchmarks on the
transputer system. The application-dependent constants of the HIRLAM program
were obtained by close inspection of the program text, and by using estimations
based on the running time of the HIRLAM program on a Harris HCX-9 computer.

Substitution of these constants in the formulas for execution time and speedup
show that the time for communication is negligible with respect to calculation time.
As a consequence, for the HIRLAM program, speedup is almost linear in the number
of transputers used.

Because of the parallel nature of the computation process associated with solv-
ing partial differential equations, numerical weather programs can be easily and effi-

ciently implemented on a system of transputers, provided that a good programming
environment is available.



1.4 Report Overview

As a first step we investigated what kind of numerical calculations are used in
programs solving a set of partial differential equations, describing fluid models. Two
different methods to solve these equations are introduced in chapter 2.

In chapter 3 one of these methods, the finite-difference method, is analized.
This is the method used in the HIRLAM program. In particular, the aspects that
are relevant with respect to the implementation of numerical weather prediction
are investigated. These aspects include explicit, semi-implicit and implicit finite-
difference schemes and the distribution of the dependent variables in space and
time.

Chapter 4 is a description of the HIRLAM model using the theory of chapter 3.

The transputer microprocessor is introduced in chapter 5. In this chapter the use
of transputers for numerical weather prediction is motivated and some properties of
the transputer are discussed.

In chapter 6 the implementation of grid-based computations due to using stag-
gering and explicit finite-difference schemes for approximating partial differential
equations is investigated. It is argued that the most appropriate network topology
for the computations is a 2-dimensional grid of transputers, each one calculating
a subgrid of the discrete model. Two different models for implementing the cal-
culations for such a subgrid on one transputer are presented, together with some
possible optimalizations. A criterion is determined by which it is possible to choose
the fastest implementation model for a given application. Formulas to predict the
execution time for both implementation models are derived. These formulas are
used to derive a formula for the speedup.

In chapter 7 the results of chapter 6 are applied to the HIRLAM program. Fig-
ures with the expected running time for the HIRLAM program running on a grid of
T414, respectively T800 transputers, are presented. Also, a figure with the expected
speedup for a grid of T800 is included.

Finally, in chapter 8 conclusions are drawn and some suggestions for future work
are presented.






Chapter 2
Discrete Fluid Models

2.1 From Continuous Fluid Models to Discrete
Fluid Models

We restrict ourselves to continuous fluid models, described by a system of par-
tial differential equations together with boundary and initial conditions, which are
recognized as initial boundary value, or propagation problems. A typical physical
example of a propagation problem in fluid models is the propagation of pressure
waves in the fluid. Propagation problems are mainly described by parabolic and
hyperbolic equations(1, p4].

The ultimate aim of discrete methods is the reduction of continuous models
to equivalent discrete models, which are suitable for treatment by a high speed
computer. The discretization is purely mathematical when the continuous problem
formulation is transformed to a discrete formulation. There are two basic approaches
to make this transformation: the finite-difference method and the spectral method.

2.2 Finite Difference Method

Applying a finite-difference method, derivatives are replaced by finite difference
approximations. Therefore a continuous domain is replaced by a pattern, usually
a rectangular mesh of discrete points, and a finite-difference method is also called
a gridpoint method. In the next step of the transformation again there are two
basic approaches: the Eulerian and the Lagrangian formulation of the differential
equations.

The Eulerian formulation In the Eulerian formulation, the independent space
variables are related to a fixed spatial coordinate system. The fluid is visualized as
moving through this fixed reference frame and is characterized by a time dependent
velocity field, which is to be determined by solving an initial value problem[1, p213].
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The Lagrangian formulation The Lagrangian formulation is characterized by
attaching the coordinate mesh to the moving fluid. Consequently, the independent
space variables are related to a reference frame fixed in the fluid and changes with all
the distortion and motion of the fluid. The fluid particles are permanently identified
by these variables, called Lagrangian variables. Particle positions are among the

dependent variable we wish to determine by solving an initial value problem [1,
p213].

Euler versus Lagrange Although the Eulerian and Lagrangian formulations are
equivalent, this may not be true of the two solutions obtained from the distinct
finite-difference approximations. The major disadvantage of the Eulerian method
arises when interfaces occur separating fluids of different density. The Lagrangian
system does not have the spatial coordinate mesh fixed in advance and can accom-
modate a required refinement of the mesh as computation advances. Although the
Lagrangian approach simplifies the equations of motion, the major disadvantage
of the Lagrangian method is the distortion of the mesh as time advances, causing
unacceptable inaccuracies[1, p213-221].

2.3 The Spectral Method

When using finite-difference techniques for evolutionary problems we only consider
the values of the dependent variables at the gridpoints. An alternative approach is to
expand the dependent variables, such that the spatial dependence of the variables is
expressed in terms of a series of orthogonal functions. By substituting the expanded
formulation into the system of equations, the equations reduce to a set of ordinary
differential equations and the coefficients of the series can be computed as functions
of time. Thus, in spectral models not the dependent variables at discrete points are
simulated, but the coeflicients of the series, called spectral components.

Formerly there was a general agreement that as for efficiency the spectral method
could not be competitive with finite-difference methods, but nowadays this situation
has changed completely. More information about the spectral method can be found
in a review article[11].



Chapter 3

Finite Difference Method

In the finite-difference method the expressions which approximate the derivatives
are defined using only values of the dependent variables at discrete (time) intervals.
The simplest way of introducing a set of gridpoints in a bounded one-dimensional
continuous domain D, having length L, is to require that the gridpoints divide D
into an integer number of intervals J of equal length Az. This length is called the
grid interval or grid-length.

For simplicity we start by considering a function u of one independent variable
z. We are looking for approximations of u(z) at discretization-points z = jAz,
j=0,1,...,J and define u; ~ u(jAz) to be the approximate value of u at discretization-
point jAz.

3.1 Finite Differences

Now let us consider the differences of values u; that will be used to construct ap-
proximations of derivatives. These differences are called finite-differences and can be
calculated over one or more of the intervals Ar. Depending on the relation of the
points from which the values are taken to the point where the derivative is required,
finite-differences can be centered or uncentered.

An example of an uncentered difference is the forward difference:

Au,- = Ujp1 — Uj
More often centered differences are used such as:
6uj+§ = Ujp1 — Uy

In a centered difference the difference between values is symmetrical about the point
where the difference is being calculated.

Differential equations can be approximated at discrete points by simply replacing
the derivatives by appropriate finite-difference quotients. For example, for the first
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derivative, one can use the approximation:

du) _ Ui —
dr J._ Az

The finite-difference quotient here is, of course, only one of the many possible ap-
proximations to the first derivative at point j.

3.2 Finite Difference Schemes

The algebraic equation obtained when the derivatives in a differential equation are
replaced by appropriate finite-difference approximations, is called a finite difference
scheme. Because a finite difference scheme is a blueprint for a computer program, a
finite-difference scheme could be called a finite difference algorithm as well.

Designing a finite-difference scheme one has to observe several, often conflicting
criteria, which can be summarized as follows:

1. Correctness
2. Computational economy

Of course the final decision is always a compromise between these requirements. The
first criterion, however, is obviously the most important one and has been studied
extensively. Obviously, in our project the second criterion deserves special attention.

The subject of finite-difference solutions of linear advection equations is a vast

research area in many fields of fluid dynamics. Therefore we start with this linear
advection equation:

= tec—=0 (3.1)

where u is a function of two independent variables z and ¢, and ¢ is a positive
constant. (3.1) Describes local change by transport of the variable u at a constant
velocity c (the phase speed) in the direction of the z-axis.

3.2.1 Space Difference Schemes

Applying a space differencing scheme, the partial differential equation can be rewrit-
ten into a differential-difference equation. In figure 3.1 some results are tabulated.

It is now widely understood that the major computational problems in finite
difference solutions of (3.1) are those encountered due to space differencing. These
problems are the problems of the phase speed (the computed phase speed is less
than the true phase speed) and of the computational dispersion (the phase speed of
the analytic solution is a constant c, whereas the phase speed of the numerical wave
solution is dependent of the wavelength)[3].
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space dﬁerencing scheme | differential-difference equation
forward (Ell = __c_.;“ .i.‘.;.f I
backward (&), = —Ac-’—-'—’l
centered (_..5'4 ); = _c".i;t;Z:i—l

Figure 3.1: The advection equation space differenced.

3.2.2 Time Difference Schemes

To define some schemes we consider again equation (3.1). We now assume u to
be a function of two independent variables x and t, where ¢ represents time. We
define u? ~ u(jAz,nAt) to be the approximate value of u at gridpoint jAz and at
instance of time nAt.

k-Level Schemes

k-Level time differencing schemes are defined to be schemes that relate values of the
dependent variable at two instances of time n — k + 2 and n + 1 (and possibly time
instances in between). With k-level schemes we can approximate the exact formula:

(n+1)At )
u(jAz,(n +1)At) — u(jAz,(n — k + 2)At) = / 3u(.7A:c,t)dt

3.2
(n—k+2)At ot (32)

When the dependent variable has only one occurrence of time instance n + 1 in the
resulting finite difference scheme, such a scheme is called explicit, else it is called
implicit. In numerical integration mostly two- and three level schemes are used. To
start the integration, for two level schemes, a single initial condition is needed. Some
two level time differencing schemes applied to the differential-difference equation
obtained with centered space differencing of figure 3.1 are tabulated in figure 3.2.
For three level schemes an additional initial condition is needed, which can be found
by applying a two-level scheme as the first step in the integration procedure.

two-level time differencing schemes
utti_yn u?, , —u?
forward L F It 3 B
At 24
backward | 4= A
ackwar L L = —c-L iz
.Y 2A
T e
1 — e & i - 'y —
trapezoidal | 4—2 = —2¢(-13= + 4

Figure 3.2: The advection equation time- and space differenced.

Although it is possible to construct a finite-difference scheme for (3.1) by an
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independent choice of finite-difference approximations to space and time, not all
combinations are useful.

As an example forward integration together with centered space differencing
gives an unstable scheme for (3.1). This can be understood by substitution of a
tentative solution:

u; = Re [U(t)e™i57] (3.3)

into the forward difference scheme of figure 3.2:
n+1 n ; At ; n
urtt =U"+ z(—c—A—xsm(kAa:))U (3.4)

where U(t) is the amplitude of a wave with wavenumber k. According to the von
Neumann method for stability analysis the amplification factor is:

A=1- i(c%sin(kAx)) (3.5)

which has to suffice the von Neumann necessary condition for stability:
Al =1

which reflects the amplitude requirement of the true solution (no growth of ampli-
tude). '

Therefore the scheme is only stable for kAz = n mod 7. Because there are
usually more wavenumbers contained in the solution the finite-difference scheme is
called unstable.

Computational mode According to (3.4), applying a three-level scheme we have:

U" = AU™! (3.6)
Urtt = \yn! (3.7)

Solution of (3.7) gives two solutions A; and A;. In genmeral, a k-level scheme will
give k — 1 solutions of the form (3.6). A solution of this type corresponding to a
single value of A is called a mode. If a solution of the form (3.6) is to represent an
approximation of the true solution then ) tends to 1 as At tends to 0. Solutions
associated with );, where ); tends to 1 are usually called physical modes because
we are always solving equations describing physical processes. The other solutions
are not approximations to the true solution, and are called computational modes.

Leap frog scheme By applying the leap-frog scheme to:

du _ Ujp1 — Ujq
(dt )j = T oAz (3.8)
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we get the explicit finite-difference scheme

ik S S ek = (3.9)
2At 2Az

Because the leap-frog scheme is a three level scheme with centered space dif-
ferencing it has a computational mode, which is spurious and source of error. The
CFL-condition for a computational stability is |9A9;‘| <1.[2, p3]

Although the leap-frog scheme is probably at present the most widely used

scheme in atmospheric models it is not the most economical scheme for any sys-
tem of equations.

Forward-backward scheme The forward-backward scheme is a two level scheme
that can be applied to a system of equations by first integrating one variable forward
and then the others backward.

A convenient example for illustrating this scheme is the system of one dimensional
linearized shallow water equations, describing the simplest case of gravity waves in
the atmosphere:

ou Oh
Fy + g(—a-a—: =0 (3.10)
Oh du

where u, h, g, H are the velocity, height, gravitation and the water depth respec-
tively. Equations (3.10) and (3.11) represent the second law of Newton and the
equation of continuity (conservation of mass) respectively.

A forward-backward approximation to (3.10) and (3.11) using centered space
differencing is:

n+1
upt —w B2, - b2,

4 =0 3.12
A 9T 9As (3.12)
Rl _ pn untl _ yntl
J J j+1 J=1 _ 3.
At + H A 0 (3.13)

where the variables u and h are integrated forward and backward respectively.

Because the time-step in the forward-backward scheme required for stability is
twice the time-step imposed by the CFL criterion for the leap-frog scheme, the
forward-backward scheme needs half the computation time needed for the leap-frog
scheme([2, p54].

Lax-Wendroff scheme The Lax-Wendroff scheme is a very special scheme in
that it can not be constructed by an independent choice of finite-difference approxi-
mations to the space and time derivatives. It is second order in both space and time,
explicit and since it is a two level scheme there is no computational mode.

13



To obtain a Lax-Wendroff scheme for equation (3.1) first two provisional values
are calculated at the middle of the two rectangular meshes denoted by an circle in
figure 3.3. The calculation of the provisional values is done using centered space

i
Sk SR S SR A
! ! ! !
1 1 ] ]
. ! ! ! !
ntap------ ®------- oo P------- :
I 1 ] 1
I ) ) 1
t ] ] )
] ] ] 1
! ! ! !
n e —e- —- *- *® z
j-1 i—-3 i+t3 i+l

Figure 3.3: The space-time grid used for the construction of the Lax-Wendroff
scheme.

and forward time differencing taking for ul, 3 and ul_ ! arithmetic averages of the

values u? at the two nearest gridpoints:

"+;' 1l7..n n
Uiy — 3(Wa +uf) Y g (3.14)
%At - Az ’
% 1 n n
uj_i' 21('“] + uJ.-l) _ _cu;? _— ‘U?_l (3.15)

Using these provisional values another step is made, centered in both space and
time:

u, :
3 3 _ it} i-%

= ~ (3.16)

Substitution of the provisional values from (3.14) and (3.15) into (3.16) gives the

equation:
uttl — yn u?; —u? 1 u?y, — 2u? + u?
J J . _adtl j-1 , = LN . J J-1 3.17
© t3e (Bz)? (37)

At 2Azx
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The Lax-Wendroff scheme has been fairly widely used in atmospheric models[2, p24-
25). Obviously the principle draw-back is the two step feature, which requires twice
as much computation time as the leap-frog scheme, because the stability condition
and consequently the imposed time step is the same as for the leap-frog scheme.

Nonlinear Partial Differential Equations

Many of the numerical methods for linear equations can be also applied to nonlinear
equations. Questions of stability and convergence are more complicated. For non-
linear problems, stability depends not only on the form of finite-difference system,
but also generally upon the solution to be obtained. The system may be stable for
some values of ¢ and not for others[l, p73-74]. Philips discovered the cause of the
instability to be aliasing, a phenomenon where by a wave generated by a non-linear
interaction that is too short to be represented on the grid is falsely represented
(aliased) as a longer wave-length. Repeated aliasing over many time-steps may give
rise to a rapid growth of energy (instability) through feedback into the wave-length
band 2Az tot 4Az[12, p170].

One-dimensional non-linear advection equation The advection equation (3.1)
generalizes to the non-linear equation of transport:

oL (3.18)

where u is a function of two space variables z and ¢.

It was found by experience that the use of the Lax-Wendroff scheme does suppress
non-linear instability and that it is sufficient to use an intermittent Lax-Wendroff
step at quite long intervals[2, p37]. Another way of avoiding non-linear instability
is to use the Lagrangian formulation for the advection term instead of the Eulerian

formulation, because in the Lagrangian formulation ¥ = 0 and (3.18) becomes
linear.

3.3 Staggering

Staggered grids are grids with a spatial distribution of variables, such that not all
variables are carried at each gridpoint. Staggering enables centered space differ-
ences and forward time differences to be used to approximate derivatives, without
developing instability.
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3.3.1 One-Dimensional Staggering

Consider the differential-difference equations:

Ou) _  hjy—hja

(at)j = —gmi o (3.19)
ah _ Ujp1 — Uj-1

( 6t)j = - (3.20)

that we obtain when the space derivatives in (3.10) and (3.11) are approximated by
centered finite-difference quotients using values at the two nearest gridpoints.

Assuming a grid with two dependent variables that are both carried at every
gridpoint, clearly two independent solutions are calculated, which may diverge from
each other. On the contrary, one solution is obtained if (3.19) and (3.20) are applied
to a grid with the dependent variables u and h carried at alternate points in space
as depicted in figure 3.4.

h u h u
@ ® ® ®

oR

Figure 3.4: A staggered grid

Therefore the computation time needed to solve (3.10) and (3.11) on a staggered
grid is reduced by a factor of two compared to computation on a non-staggered grid.

At first glance the staggered grid has a serious draw-back in that the aliasing
error is twice as big, but the eliminated waves are precisely the waves with large
phase speed errors and negative group velocities|2, p44].

3.3.2 Two-Dimensional Staggering

We now consider the two-dimensional linearized shallow water equations:

du oh
v oh
Ooh Ou Ov

Having three dependent variables and only two dimensions, a large number of spatial
arrangements of the variables are possible. Various possibilities are depicted in
figure 3.5.
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Figure 3.5: Various arrangements of dependent variables in a rectangular grid
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Because grid A is a superposition of two E-grids and an E-grid is a superposition
of two C-grids, E is a staggered grid of A and C is a staggered grid of E. Arakawa,
Winninghof and Lamb investigated the impact of the grid-type on the simulation
of important physical processes, e.g. gravity waves and the geostrophic adjustment
process, by second-order accurate finite-difference approximations. They concluded
the C-grid to be the superior grid both in computation time and in simulation
properties|2, p45-50].

3.3.3 Implementation of Staggering on Vector Computers

Concerning programming staggering is rather straight forward. Instead of comput-
ing u at odd gridpoints and h at even gridpoints, for the one-dimensional case, the
concept of staggering can be made transparent to the program by storing each vari-
able in a separate array. As a result for instance the physical gridpoint, carrying u,
as left neighbor of a physical gridpoint carrying h can both be accessed by using
the same array subscripts. Using this implementation model two physical neighbor
gridpoints can be considered as one logical gridpoint; the logical grid interval will
therefore be twice the physical grid interval. This way staggering can easily be
implemented on vector-computers. Extra economy is reached by saving half of the
constant increments used for subscripting.

The same arguments hold in case of two dimensional staggering with respect to
the staggered Arakawa C-grid of figure 3.5. In case of a logical gridpoint consisting
of a physical gridpoint carrying h, a left (west) neighbor carrying u and a below
(south) neighbor carrying v, for computing %, u, v only southward a.nd westward,
eastward, northward communications are needed respectively.

3.3.4 One-Dimensional Time Staggering

The leap-frog scheme with centered space differencing clearly has a computational
mode in time if the dependent variable is calculated for all gridpoints at every time-
step. Only one solution is obtained if the dependent variable is calculated for half
of the gridpoints at one instance of time and for the gridpoints in between at the
next instance of time. The concept of time-staggering can be made more clear by
reconsidering the linearized shallow water equations (3.10) and (3.11). Elimination
of the variable u gives a wave equation:

0%h 9%h

57— 9Hz7 =0 (3.24)
We can perform the same elimination on the forward-backward finite difference
equations (3.12) and (3.13) by execution of the following procedure:

1. Subtract from (3.13) an analogous equation for time instance n — 1 instead of
n
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2. Divide the resulting equation by At.

3. Substitute (3.12) for u values written for grid-points j + 1 and j — 1 instead
of j.
We obtain: " )
n n n— n
RT" — 2h% + h] —2h} + A},
(At)? (2Az)?
Note that each of the two equations (3.12) and (3.13) is of first order of accuracy in
time, where approximation (3.25) is of second order of accuracy.
If we apply the leap-frog and space centered finite-difference scheme to the system

of equations (3.10) and (3.11), and follow an elimination procedure like the one used
for deriving (3.25) we obtain:

— gH32 =0 (3.25)

Rt — 2h77 + 773 h3rs — 2k + RIS
_ =0 3.26
AP N YN (3.26)

Both the finite-difference schemes (3.25) and (3.26) are second order approximations
to the wave equation. However, in (3.25) the second time derivative is approximated
using values at three consecutive instances of time; in (3.26) it is approximated using
values at every second instance of time, that is, at time intervals 2A¢. Thus, while
the time-step required for stability with the leap-frog scheme was half that with the
forward-backward scheme, (3.26) shows that the variables at every second instant
of time can be omitted[2, p54-55]. This temporal distribution of variables is called
time staggering. The time staggered leap-frog scheme uses the same amount of
computation time as the pure forward-backward scheme.

3.3.5 Two-Dimensional Time Staggering

Next we consider an extension of the two-dimensional system of linearized shallow
water equations, by adding Coriolis terms to (3.21) and (3.22):

du oh
dv oh
oh ou Ov
'5{+H(5;+5§)=0 (3.29)

If this system of equations is approximated using the E-grid of figure 3.5, the leap-
frog scheme and centered space differencing with all the variables calculated at
every instance of time, then two independent solutions would be obtained. The
solution involving the variables of the Eliassan space-time grid in figure 3.6 would be
independent of the solution involving the variables that we left out. Thus, the space-
time grid formed by using the E-grid at every instance of time can be considered a

19



superposition of two elementary subgrids of the figure 3.6 type. However figure 3.6
can also be considered as a superposition of two subgrids, called Richardson grids,
where in each of these Richardson grids only the height is kept at one instance of
time and the velocity components at the next.

A single Richardson grid is considered a time staggered version of the C-grid of
figure 3.5 and suffices for the solution of the pure gravity-wave system (equations
(3.21), (3.22) and (3.23)). Thus, using the above difference system, in an Eliassan-
grid the pure gravity wave system has two independent solutions, while for the

extended gravity wave system these solutions are coupled only by the two Coriolis
terms|2, p53].

U

e

Y / (! /
nAt / h q/
(n —1)At t/ / "/

>a

T

Figure 3.6: A space-time (Eliassan)-grid staggered in both space and time

3.4 Computational Economy of Explicit Schemes

With equal resolution, i.e., with equal wave length of the shortest resolvable wave,
all rectangular grids require about the same computational effort per time step.
Namely, the total number of tendencies of the dependent variables that have to be
calculated does not depend on the grid choice. However, on grids which require
more averaging in order to calculate the pressure gradient force and divergence
terms, the gravity waves are decelerated, and consequently, longer time steps can
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be used with the explicit time differencing schemes. Unfortunately, higher economy
is thus achieved at the expense of reduced accuracy.

An inconvenient feature in case of gravity waves is the long computation time
required for a solution using explicit schemes for time differencing. The time step
imposed by the stability criterion for explicit schemes is generally considered to be
much less for an accurate integration of slower quasi geostrophic motion. With these
time steps the errors due to space differencing are much greater than those due to
time differencing. '

A forward-backward scheme is comparable in computation time with the leap-
frog time differencing in the Eliassan grid, but with time-steps twice those allowed
for the leap-frog scheme. Even these time-steps are considerably shorter than those
required for accurate integration of quasi-geostrophic motions and even with these
economical schemes the time differencing error is still much less than the space
differencing error for typical current atmospheric models.

The computational efficiency can be further improved by a suitable choice of the
time integration scheme. Today, there are two widely accepted procedures offering
about the same economy. These are semi-implicit and split explicit approaches. A
description of the semi-implicit method can be found in appendix B.

3.4.1 Explicit Splitting

The complexity of the system of hydrodynamic equations, that is, the simultaneous
presence of a number of physical factors, may cause some difficulties. First, applying
an implicit scheme we would obtain a system of equations for variables at instance
of time n + 1 that is practically impossible to solve. Second, if different physical
factors are present in this system, we will normally wish to use different schemes for
terms associated with them. Thus considering the following linearized system with
advection and gravity wave terms:

ou oh ou
FTy + 954 + €32 = 0 (3.30)
oh du oh

we might wish to use one scheme for the advection terms and another scheme for
the gravity wave terms. In such a situation, even though both of the schemes to be
used are stable if considered separately, we can not be sure that the scheme obtained
as a combination of the two will also be stable. These problems can be avoided by
using the splitting method. The idea of this method is to construct schemes for a
complex system of equations so that within each time-step the system is split into
a number of simpler subsystems, which are then solved consecutively. In the case
of (3.30) and (3.31), within a given time-step, we could first solve the system of
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advection equations:

ou ou
5 + Coe = 0 (3.32)
oh oh

Denote the provisional values A™t!, u"+! obtained in this way by u*, h*. Use these
values at the beginning of the time-step for solving the remaining subsystem:

du Ok

ot T 955 =" (3:34)
du du
u | g _ 35
at THg =0 (3:35)

The values A", un+! obtained after solving also this other subsystem, are now
taken as actual approximate values of these variables at time instance n + 1. The
procedure is repeated in each following time-step.

When applying the splitting method, we do not necessarily have to use equal
time-steps for each of the subsystems. This may well be the main advantage of
the splitting method: we can choose a relatively long time step for the subsystem
modeling a slow process, advection in the present example, and then use a number of
smaller steps to calculate the faster process. Since the advection process is the most
expensive in computation time, within the primitive equations, significant economies
can be accomplished in this way. A disadvantage of this method is that calculation
of the effects of different physical factors one at a time usually leads to an increase
in the truncation error[2, p58-59).
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Chapter 4
The Hirlam Model

For those who are not familiar with the Hirlam model it might be easier to read
appendix C before reading this chapter.

The HIRLAM LEVEL 1 forecast model is a numerical weather prediction model
based on the Swedish and Danish limited area model (S/D-LAM). The model in-
cludes the integration of the primitive equations and consequently space differencing.
Because these calculations are performed in the procedure DYN, DYN is of our main
interest in this chapter.

The Hirlam model has been totally recoded in order to improve the efficiency
on vector-machines and to prepare the dynamical part so that alternative numerical
methods can be implemented more easily[10].

4.1 The Continuous Hirlam Model

Horizontal coordinate system The model is programmed for a spherical rotated
coordinate system (), ) (longitude, latitude), but in the formulation two metric
coefficients (h, hy) (functions of § and ) respectively), have been introduced. This
is done to prepare the model for any orthogonal coordinate system or map projection
with axis (z,y)[10, pl.5).

Vertical coordinate The model is formulated in the general hybrid-coordinate
in the vertical
A
n=—-+ B (4.1)
where p, the reference pressure for the vertical coordinate. The sigma-coordinate is
obtained by substitution of A = p, p, = p, and B = 0 into (4.1) (p, is the surface

pressure). Thus the sigma-coordinate is pressure normalized with surface pressure.
We are expected to give speed-up expectations for Hirlam using sigma-coordinates.
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Prognostic variables For each time instance, in the integration procedure of the
primitive equations, the following variables are calculated:

® p, - surface pressure

o T - temperature

e ¢ - moisture

e u - wind in the east direction

e v - wind in the north direction

4.1.1 The Continuous Equations

The continuous equations are given, in Eulerian formulation, for a spherical rotated
coordinate system and the general vertical hybrid coordinate 5. An explanation
of the symbols can be found in the Documentation Manual of the Hirlam Level 1

Forecast Model. The continuous equations are:

e The equations of motion:

Ou .Ou R4T,0ln(p) 1 0
Ov .0v Ry4T,0ln(p) 1 0
5 = —fH+u- "5 " ahy By ah,,a_y(¢ +E) (43)
where
1 o d
€ = o () - 2 (44)
¢ = gz (4.5)
= % (u2 + vz) (4.6)

The linear and non-linear horizontal advection terms are contained in the first

and fourth sub-term of (4.2) and (4.3), because:

v du

u Ou

T ah, 9z ah,dy ah, 0z (%)
1 OF u Ov v Ov
U By - ahidz  ahy 3y (4.8)

The remaining part of the fourth subterms is a result of the vertical coordi-
nate transformation as is pointed out in appendix C. The second sub-terms
represent linear vertical advection terms and the third the horizontal pressure
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force terms. The Coriolis terms are contained in the first sub-term of (4.2) and
(4.3). The quantities £, f + ¢ are called the relative and absolute vorticity, re-
spectively. Equations (4.2), (4.3) and (4.13) are equivalent with the primitive
(three-dimensional) equations of motion.

e The continuity equation:

a9 dp ~ dp a (.0p
2249 (V) + 2 (12) =0 (49)
where the divergence operator is defined as:
- 1 0 0
T 9 9 4.10
V-V = o (i + (b)) (1.10)

For a derivation of (4.9) we refer to appendix C.

e The thermo dynamical equation:

o u _a_T v QT_ ,6T+ sT,w
3t~ ah,0z ah, 0y "on @ (1+(0—1)q)p

+Pr+Kr (4.11)

e The moisture equation:

_6_:1___ u Jq vaq ,3

Bt —ma ah ay 3 —+ P+ K, (4.12)

The first three sub-terms of (4.11) and (4.12) are the linear advection terms,
where the transported variables are temperature and moisture, respectively.

The hydrostatic assumption is formalized by the hydrostatic equation:

09 _ _RdT, 0p
on p On

(4.13)
For a derivation of (4.13) we refer to appendix C.

Slgma-coordmates Substitution of the sigma-coordinate o = Z for n in (4.9)
gives:

Bp, -4 a .
3t =~V (2sV) — 5=(p5) (4.14)
The boundary conditions on "the vertical velocity”,
do
0= —
t



o At the surface; p = p,; hence 0 = 1 and ¢ = 0.
e Top of the atmosphere; p = 0; hence o = 0 and 6 = 0.
With these conditions (4.14) may be integrated over the entire atmosphere, or over

part of it, as follows
6p,

= / V - (psV)dor (4.15)

which is an equation for the surface pressure tendency.

Integrating from o = 0 to an arbitrary level o will give an equation for the
vertical velocity ¢ at level o

-a-’-’ﬂ =— / V. (p,V)do — pué (4.16)

If the value of 28 is obtained from (4.15), it can be used in (4.16) to calculate &,
which in turn can be used in the momentum equations, the thermo-dynamical equa-
tion and the moisture equa.tlon These steps are part of the procedure to determine
the local time changes of V', T and ¢ in the Hirlam numerical weather prediction
model.

The reason that & = 0 at the surface, is that the flow along the surface must be
horizontal (i.e. ¢ = 1). It is this simplified lower boundary condition that provides
the advantage of the o-coordinate. An immediate result is a concise form (4.15) for
computing the surface pressure tendency.

4.2 The Discrete Hirlam Model

The discretization of the continuous model is performed by replacing a bounded three
dimensional continuous domain by a three-dimensional grid (34x34x9). Thus the

finite-difference method is used, although the discrete Hirlam model was originally
proposed to be a spectral model.

Horizontal grid structure The horizontal grid-structure, a staggered Arakawa
C-grid, is depicted in figure 4.1.

Vertical grid structure The vertical grid structure is depicted in figure 4.2.

Space difference scheme Hirlam uses centered space differencing and therefore
the accuracy of the finite difference approximations is second order in space.
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Figure 4.1: Horizontal grid of the HIRLAM LEVEL 1 limited area model

Time difference scheme Hirlam uses leap-frog time-differencing (chapter 3) to
calculate the (explicit) values for the prognostic variables, explicit splitting (chapter
3) and optionally implicit adjustment (appendix B) as a correction to explicit values.
Finally the Asselin time-filter (appendix C) is used to remove the computational
mode in time associated with the leap-frog scheme. Because of using leap-frog time

differencing, the accuracy of finite-difference approximations is second order in time
as well.

Boundary treatment Boundary relaxation (appendix C) with a 6-hourly data
input interval and relaxation-factor a chosen as

_ 2 )
a=1 tanh(N_4

where j is the number of gridpoints from the boundary point and N being the width
of the boundary relaxation zone.
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Figure 4.2: Vertical structure of the HIRLAM LEVEL 1 limited area model

4.3 The Sequential Hirlam Program

4.3.1 Program structure

begin (* main *)
read slabs from start data file unit
read slabs from boundary file unit
create first pair of boundary data sets
check humidity for critical values
if nlsimp then store In(p,) (* instead of p, *)
calculate boundary relaxation function
copy start data to time-step n
compute coriolis parameter and mapping factors
initialize semi-implicit scheme
for nsteps:=1 to nstop+1 do
begin (* time-loop *)
(* leapfrog (semi-implicit) scheme cycle *)
(* run one extra time step for time-filtering of data *)
(* dynamical process calculations - DYN *)
computation of surface pressure tendency
for k:=lowest level to highest level do
begin (* big outer loop *)
(* calculate new values of p,, T', u, v and q *)
compute constants
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virtual temperature at level k
compute geopotential at level k
compute divergence at level k
computation of vertical advection terms on T', ¢, u and v
compute omega for energy conversion term
compute absolute vorticity + energy
add horizontal advection to the tendencies
update geopotential part two from level k to level k — 1
update sum of divergence from lowest level to level k
end (* DYN *)
if not nlphys then make an explicit time-step in tstep on T, u, v and ¢
else physical process calculations (* PHCALL *)
if nlhdif then horizontal diffusion on 7', u, v and ¢ (* HDIFF *)
(* method is non linear fourth order diffusion *)
if nisimp then semi-implicit calculations and boundary relaxation (* SICALL *)
(* correct the adiabatic, explicit values *)
else boundary relaxation
(* the explicit case *)
if nistat then compute statistics (* STATIS *)
Asselin time-filter on p,, T, u, v and ¢
(* to remove computational mode associated with the leap frog scheme *)
copyn+1tononp,,t, u, vand q
print out statistics
check writeup time
check boundary time
if nlsimp then store In(p,) (* instead of p, *)
check forecast time at time-step nstop
end (* time loop *)
end (* main *)

4.3.2 Statistics

Each time-step procedure STATIS is invoked, which outputs the CPU-time and the
percentage of total CPU-time of the five most time-consuming procedures. Fig-
ure 4.3 shows partial output, which is generated by running the original Hirlam
program on the HCX-9.

The current Hirlam program has a bug (by the time of this writing) which
causes a crash in time-step 3. This bug appeared when we ran the program, with
the implicit adjustment calculations (SICALL) turned off.
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MAIN DIMENSIORS:

NLON = 34
NLAT = 34
NLEV = 9
NSLAB = 16
NSTEP 0 BEGINS HERE:
TDATA NBDTINM NBDDIF
.0 900 43200
DYR 2.2833328247 S
PHCALL: 8.7833337784 S
HDIFF : .6833324432 S
SICALL: .3500003815 S
STATIS: . 25600000000 S
1 TIMESTEP TOOK 12.4166669846
NSTEP 1 BEGINS HERE:
TDATA NBDTIM NBDDIF
900.0 1800 43200
DYR 2.1999988556 S
PHCALL: 8.6166667938 S
HDIFF : .6998988556 S
SICALL: .3333339691 S
STATIS: .2666664124 S
1 TIMESTEP TOOK 12.2666645050
NSTEP 2 BEGINS HERE:
TDATA NBDTIM NBDDIF
1800.0 2700 43200
DYR 2.2000026703 S
PHCALL: 8.6498977112 S
HDIFF : .6833343506 S
SICALL: .31666566494 S
STATIS: .2666664124 S

1 TIMESTEP TOOK

18.3892574310

70.7382683618
5.5033483505
2.8187949657
2.0134227276

SECONDS

17.9347763062

70.2445755006
5.7085134048
2,.7173869746
2.1739113331

SECONDS

17.9348030080
70.51682734986
5.5706596375
2.5815131664
2.1738106178

12.2666683197 SECONDS

NSTEP 3 BEGINS HERE:
TDATA NBDTINM NBDDIF
2700.0 3600 43200

Negative argument for ALOG

Figure 4.3: Partial output of the original Hirlam program.
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4.3.3 Computer code organization

During the design of the model it was decided to keep all three instances of time
of the prognostic variables in core. The main reason for this was to have a more
flexible data-organization compared with the old code which had only one latitude
line in core. It has the additional advantage that the model will run efficiently on
those vector machines which need very long inner loops. Moreover, it was necessary
to do so to prepare the model for planned future experimentation which needs the
whole horizontal field in core.

This will to some extent make a limitation for the size of the area (or rather the
number of horizontal points and levels) and two steps have been taken to counteract
this. First, only those points which are needed in the boundary fields are stored and
pay the little extra overhead due to inconvenient data storage. Second, the dynamic
and physical part of the model are also organized somewhat differently in order to
minimize the needs of the workspace. In the dynamics (DYN) the computations
are done mainly layer by layer scanning through all the horizontal points in the
innermost loops. However, for the physical subroutine (PHYS), only a so-called
“slab-area”, which cover a number of latitude lines and all levels, is considered and
the physical subroutine is called several times during one time-step to complete the
computations for all slab-areas. In this way the size of the slab-area can be varied

so that the workspace for the physics will run efficiently with long inner loops[10,
p3.1].
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Chapter 5

The Transputer

5.1 Why Transputers?

Like many other simulation problems, numerical weather prediction requires vast
amounts of processing. Furthermore, the demand for processing power is hard to
fulfil, because more processing power can always be used to increase accuracy or
response times.

Nowadays many extensive grid-based computations are performed using vec-
torprocessing supercomputers. These machines are in general very expensive and
therefore only a few big corporations or authorities can afford such machines.

For many grid-based computations, the capacity of a “super computer” can be
achieved by using a large number of small computers, each working on a small
area of the grid, interconnected by a network. The performance/price ratio for
small computers is, in general, better than for supercomputers. If the overhead due
to inter-processor communication is limited, a network af small computers could
provide the performance of a much bigger computer at lower costs.

The transputer microprocessor is especially well suited for network applications.
It has been designed to make the use of parallel processes and inter-processor com-
munication easy to use and fast. Moreover, transputers are relatively cheap and very
little extra hardware is necessary to build a network of them. Therefore, networks
of low cost are easy to build using transputers.

Each transputer in a transputer-network can possibly run a different program.
This gives such a system a great flexibility, which could for instance be used to
perform different calculations at the border of a grid. With vector machines such
exceptions are clumsy and inefficient to implement.

Computations with embedded conditions also cause problems for vector com-
puters, but not for a transputer-network. The conditional expressions at different
gridpoints possibly evaluate to different truth values. A vector-computer therefore
has to perform both branches of a conditional statement for each gridpoint and must
select the desired one afterwards. This inefficiency can be avoided with a distributed
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system of transputers.

Another advantage of such a network is the ability to increase the performance
gradually by adding more computers. However, this ability is possibly limited by
the number of gridpoints, because a number of extra communications may become
necessary when the calculations for a gridpoint are divided across different trans-
puters.

In the next sections, we will look at transputers in greater detail.

5.2 What is a Transputer?

The British chip manufacturer INMOS recently developed a new range of micro-
processors [13]. These microprocessors are especially designed for building parallel
computers. These chips were named transputers, because they are, according to
INMOS, similar to transistors in the sense that both are elementary building blocks
for complex systems. The first transputers were produced in 1985.

At present there are three different types of transputers available. The trans-
puter T212 is a 16-bit processor, which is mainly meant to be used in controller-
applications. Two other members of the transputer family are the T414 and the
T800; they are both 32-bit processors. Transputers have a RISC-architecture (Re-
duced Instruction Set Computer) and are available with performances of 5 to 10
MIPS. Transputers have a number of nice features that make them especially well
suited for multiprocessor environments.

A transputer is in fact a complete computer on one chip. It contains a processing
unit, 4K of very fast (50 ns) static RAM (2K for T414), 2 timers, 4 high speed serial
links with DMA (Direct Memory Access) capability, operating bidirectionally at 10
or 20 Mbit/s and a memory interface for controlling up to 4 Gbyte of external
memory. As an extra the T800 has an integrated, very fast (1.5 Mflops for a 20
MHz device [15]) floating point unit.

5.3 Properties of Transputers

What makes a transputer so well suited for building distributed systems are the four
integrated serial links. These links enable high-speed communication and synchro-
nization between different transputers. Because the links are serial, no more than a
simple cable is needed to connect two transputers.

Communication via these links is completely controlled by hardware. After a
process has set up a link-communication, the communicating process is suspended
until the communication is completed. The hardware takes care of reading and writ-
ing data from and to memory by DMA. This DMA does hardly decrease processing
speed, even when all four links operate at the same time.

Another nice feature is the on-chip RAM. This memory is fast enough to keep
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up with the processing unit, whereas external memory references will slow down the
processor. For some applications, it might not even be necessary to use external
memory. In that case, the cost for building a network of transputers is greatly re-
duced. The required interconnections for such a network are minimal; only the power
supply, clock and reset signal and of course the four links have to be interconnected.
No extra components are necessary in this case.

A transputer can boot from a ROM or from a link. For members of a transputer
network, the latter method has the advantage of not requiring a boot ROM for every
transputer. The desired boot method is selected by wiring a pin to logic “0” or “1”.
When booting from a link is selected and the transputer is reset, the first block of
data the transputer receives via one of its links is loaded into the internal RAM and
executed. To start up a whole network, one must first boot one transputer which
has a connection with the host. After that, this transputer is instructed to send a
boot-program to its neighbors, etc.

The transputer has the built-in capability to manipulate processes. There are
instructions to start and stop processes [14]. These instructions manipulate a linked
list which contains all the processes which are ready to execute. A simple form
of time-sharing is also built-in; processes that are running longer than some fixed
time-interval are moved to the end of the list and the next process is picked from
the beginning of the list for execution. When a process has to wait for a timer or for
a communication, it is temporarily removed from the list of processes and the next
one is started. A context-switch between two processes takes, because it is built-in,
less than 1 us. It follows that the use of processes is very simple and also does not
lead to much overhead.

Communication between processes is also very simple. With a single instruction
one can send or receive a message, using a channel. Communication via a channel
takes place unidirectionally, according to the so-called rendez-vous principle: the
sender and receiver should simultaneously engage in the communication. If one
of them is not ready to communicate, the other must wait. A waiting processes
will automatically be removed from the list of ready processes. Communication is
the only way to synchronize processes. Because an identification of the suspended
process is stored in a memory word associated to the channel, it is not possible for
more than one process at either side to use a channel at the same time.

This form of asynchronous communication gives rise to data-driven execution.
Although asynchronous communication is not as efficient as synchronous communi-
cation between processes which are synchronous in time, it is a convenient program-
ming tool, which enables the programmer to abstract from instruction timings.

There are two types of channels: internal channels for communication between
processes on the same transputer; ezternal channels for communication between pro-
cesses on different transputers. External channels are mapped onto a link; internal
channels are mapped onto an arbitrary memory word. The same communication
instructions can be used for internal and external channels; for the program, the
difference is transparent.
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Because of the hardware restrictions mentioned above, at most one external
channel in each direction can be mapped onto a link. In order to get more “external”
channels, it is necessary to implement a number of “virtual” channels on one link.
Virtual channels can be implemented by using “multiplexer” and “demultiplexer”
processes on each side of the link. A multiplexer process communicates at one
side with a number of processes via internal channels and at the other side with a
demultiplexer on another transputer via the link.

The communication between a multiplexer and the corresponding demultiplexer
at the other side of a link, can be done in two different ways. The first approach is
to send an identification of the virtual channel with each value. Another approach
is to agree on sending values in a fixed order. Of course, the latter method can only
be used if it is known beforehand how the virtual channels will be used.
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Chapter 6

Grid-Based Computations on a
Network of Transputers

6.1 Choosing a Network Topology

When designing a network for a parallel computation, one should keep in mind two
important objectives:

1. It should be possible to divide the computation in such a way that each pro-
cessor has to do approximately the same amount of work, because the time to
complete the whole computation equals the time the longest computation part
needs to complete.

2. The need for communications between different processors, and in particular
the waiting time caused by these communications should be minimized.

In the case of a computation on a grid, the first objective is achieved easily. The
calculation times at the gridpoints will in many cases be approximately the same,
so the grid points can be distributed evenly across the available processors

The second objective might cause more problems, because it is sometimes pos-
sible to avoid communications by modifying the algorithm. Communications are
then replaced by some extra calculations. Thus there is a tradeoff between com-
munication and computation. In order to achieve maximum performance, one must
know precisely what the communication costs and the cost of the extra calculations
are, and how they relate to each other. Moreover, one must take into account that
communication between two processors which are not directly connected requires
the processors in between to involve in the communication. This places an extra
burden on these processors.

Many algorithms on grids, including the finite differencing methods used for nu-
merical weather prediction require only local information on each grid point; that is
information stored at that grid point, or information from one of its direct “neigh-
bors”. For these cases the obvious network architecture is a grid of processors, where
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each processor will do the calculation for some rectangular area. It depends on the
relationship between the amount of vertical and horizontal communications needed,
what the optimal shape of these rectangular areas is. Although other distributions
of gridpoints over the available processors are possible, they will result in more
external communications, and thus in more overhead.

Because a transputer has only four links, it is not possible to form a grid of
transputers of dimension 3 or more. A more-dimensional grid however, can always
be projected onto a 2-dimensional grid, which can then be distributed over a 2-
dimensional grid of transputers.

We will use only orthogonal projections. The choice which dimension(s) to
project depends on a number of properties of the program, such as:

e The amount of communication in each direction. The dimension in which the
most communication takes place, is a good candidate for projecting, because
this gives the greatest saving of communications between transputers. Exter-
nal communication is always slower than internal communication, so lowering
the number of these communications has a positive effect on the speedup.

o The shape of the.space of gridpoints. By choosing the dimensions with the
least number of gridpoints for projecting, the resulting 2-dimensional grid
has a maximum number of gridpoints. As a result, more transputers can
be used without being forced to split gridpoints computations over different
transputers, which possibly results in a large number of extra communications.

o The use of global data. To avoid data-duplication, gridpoints using the same
global data should preferably reside on the same transputer.

In the remainder of this chapter, we will consider grid-based computations on a
network of transputers, in which only local communications take place. The grid
may be 1- or 2-dimensional, but we will concentrate on 2-dimensional grids. The
total number of gridpoints will be denoted by N, the total number of transputers
by P. P will never be greater than N.

Each transputer will do the computations for some rectangular subgrid of the
total grid. We will call these gridpoints the local grid of a transputer. The actions
needed for calculating the new state of one gridpoint consist of a sequence of com-
munication steps and calculation steps. The communication steps are needed if the
next calculation step needs some value from a “neighbor” gridpoint. Because the
actions for each gridpoint are equal, this implies that at the same time the neighbor
on the opposite side also needs a value from this gridpoint. Thus one communication
generally involves a send and a receive action with two opposite neighbors.

In the next sections we will first treat the impact of staggering on projecting a
physical grid on a grid of transputers. After that, we will look at different ways
of calculating the gridpoints of a local grid on one transputer. In the last sections
we will draw our attention to the effect of the number of transputers on the total
execution time.
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6.2 Implementation of Staggering on a Grid of
Transputers

The proposed implementation of staggering in section 3.3.1 yields an efficient pro-
gram for both vector computers and a grid of transputers. When calculating a space
centered (with respect to a staggered variable) finite-difference scheme, only one
neighbor variable is needed. Thus besides a gain of a factor two in computation
time by removing the computational mode, the proposed programming model re-
duces both internal and external communication by a factor two compared to the
program that implements staggering directly.

In this chapter we will use the term “gridpoint” to denote a logical gridpoint, as
is introduced in section 3.3.3.

6.3 Two Computational Models

Each transputer has to do the calculations for the gridpoints of its local grid. It is,
in general, not possible to calculate the new state of each gridpoint one after the
other. The calculations are mutually dependent, so they must be performed quasi
parallel, with interleaved communication steps.

The most obvious way to implement these calculations on a tramsputer is to
create a separate process for each gridpoint. The exchange of values between neigh-
bor gridpoints can be accomplished by using internal “channels” for inter-process
communication. This model will be called the parallel model.

The other possibility is to use one process for all gridpoints on a transputer, by
storing the gridpoint data in arrays indexed by the relative position of the grid-
point. Each calculation step will typically be a loop which iterates over the grid
and communications are realized simply by using array subscripts. We will refer to
this second model as the sequential model. In the following sections, we will discuss
these two different models in detail.

6.3.1 The Parallel Model

The parallel model is a conceptual simple one. One writes a program to be executed
at one gridpoint using only local variables. Values from neighboring gridpoints are
requested using communication via channels.

For each gridpoint a process executing this program has to be created and run
in parallel with the others. Using the built in timesharing facilities of a transputer
this is easy to do. There is no need to control or synchronize these processes, they
synchronize automatically through their communications.

Figure 6.1 shows as an example a parallel implementation of a 2-dimensional
grid-based computation.
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FOR t := 1 TO Nsteps
BEGIN
BEGINPAR
BEGIN
SEND U TO east;
SEND U TO west;
SEND U TO north;
SEND U TO south
END;
BEGIN
RECEIVE U_west FROM west;
RECEIVE U_east FROM east;
RECEIVE U_south FROM south
RECEIVE U_north FROM north;
END
ENDPAR;
U := £(U, U_west, U_east, U_south, U_north)
END

Figure 6.1: Parallel implementation of a 2-dim. grid-based computation

The gridpoints processes at the boundary of a local grid, have to communicate
with their counterparts on a neighbor transputer. Because there is only one commu-
nication link at each side, it is necessary to implement a number of “virtual channels”
on one physical link by using multiplexers (see section 5.3). Each gridpoint process
at the boundary will then communicate with its corresponding gridpoint process on
another transputer via a virtual channel.

Multiplexers at the boundary of the global grid must be special. They should
only simulate a multiplexer process and should not communicate over their link.
These dummy multiplexers should ignore values they receive from the gridpoint
processes and send values corresponding to the boundary conditions used to a grid-
point processes requesting a value.

Communications deserve special attention. As noted before, each communication
step consists of a send action and a receive action from the opposite direction.
Consider what happens when these two actions are performed sequentially. When
for example each process starts with a send to their right neighbor, they all have
to wait until their right neighbor performs a receive, which results in a deadlock
situation. This situation can be prevented by executing the send and the receive
actions concurrently.

Another approach is to run two different variants of the program for alternating
gridpoints. The only difference between these two variants should be that the first
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always starts with send actions, while the second starts with the receive actions.

When using the first approach, it is possible to create the two processes for
the send and receive actions afresh for each communication, but this causes some
overhead. The alternative is to create a send and a receive process once, and let
them do all communications.

The problem with the latter approach is the synchronization needed between
the calculations and the two communication processes. The only way to do this is
using communications via a channel. Thus the second alternative saves two process
creations per communication step, but at the cost of two extra channel communica-
tions.

A disadvantage of the parallel model is the data duplication caused by the com-
munications. Each communication of a value in a particular direction requires an
extra variable at each gridpoint. In section 6.4.1, the different variants of the parallel
model are compared.

6.3.2 The Sequential Model

In the sequential model there is only one process per transputer and the data for
all local gridpoints is stored in arrays. Each calculation step is performed for all
local gridpoints, typically by iterating over the arrays. Internal communication
steps are not necessary, because “neighbor values” can be found in the arrays. Only
neighbor values that reside on another transputer deserve special attention. The
simplest solution is to extend all arrays by one column and one row on every side.
A communication step then consists of a copy af a complete row or column from a
neighbor transputer to this extended border.

An important issue is the order of the iteration over the arrays. When for instance
the calculation of some variable depends on the previous value of this variable at
the gridpoint to the left, then one clearly should not calculate new values left-to-
right but right-to-left. If the calculation depends on both the previous left and right
values, we are forced to use a temporary array for the results of one row and copy

the contents of this array back to the original array when the row is completely
calculated.

Compared with the parallel model, there is some overhead caused by array sub-
scripting and loop control. The overhead can be reduced by copying values that will
be used a number of times into a plain variable, which can then be used instead
of the original array subscript. Other possible optimizations are for instance the
use of arrays of arrays instead of multidimensional arrays. In section 6.4.2, different
optimizations of the sequential model are compared.

Figure 6.2 shows a sequential implementation of a 2-dimensional grid-based com-
putation.
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FOR t := 1 TO Nsteps
FOR x := 1 TO GridX
FOR y := 1 TO Gridy

BEGIN
U_west := U[x-1](y];
U_east := U[x+1][y];
U_south := U[x][y-1];
U_north := U[x] [y+1];
Ulx] [yl := £(U[x][y], U_west, U_east, U_south, U_north)

END

Figure 6.2: Sequential implementation of a 2-dim. grid-based computation

6.4 Comparing the two Models

In order to compare the execution speed of the two models, we should construct test
programs which perform the same computations on the same grid size, but using
the two different computational models.

In these test programs, all variables used should be forced into the external
RAM, for instance by declaring a dummy variable of 4K first. The internal RAM
is much faster than external RAM, so the test results will not be accurate if some
variables are in internal RAM while others are in external RAM. Furthermore, many
applications, including the Hirlam program, require much more memory than 4K,
so most variables will be in external RAM anyway.

Because the amount of link communication is the same for both models, it is
possible to compare the two models using only one transputer. The external com-
munications using links will therefore be omitted, but the parallel test program will
include the four multiplexer processes.

Internal communications will take more time in the parallel model than in the
sequential model. On the other hand, variable accesses in the sequential model will
be slower. The decision which model to choose for a particular problem therefore
depends on the amount of communications versus the amount of variable references.
We will define Q to be the ratio of the number of references to local variables, and
the number of communications.

The test programs will perform calculations on a 2-dimensional grid of size 10 x
10. Each test program consists of a communication step followed by a calculation
step, which are performed 10 times in order to get more reliable results. The com-
munication step consists of communications in all four directions. The calculation
step is a loop with a calculation using four local variables. Q will be a parameter
of the test programs; it will control the number of iterations of this loop. The total
execution time is plotted as a function of Q.
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The resulting graph will consist of a straight line, where the slope of this line
gives information about the time needed to perform one iteration of the calculation
loop. The vertical offset is the time needed to perform the communications (plus a
little loop overhead).

As said before, a number of optimizations are possible for both models. For a
comparison of the models, we should choose the fastest variants of the two models.
This will be done in the next two sections.

6.4.1 The Optimal Parallel Model

The program par.c which can be found in appendix D, measures the time for three
different variants of a parallel implementation of a grid-based computation. These
three variants are implemented with the functions pari, par2 and par3. The time
is measured as a function of Q.

For the first two variants, the send and receive actions are performed by separate
processes. There are two different ways to achieve this. The first method is to create
these processes anew for every communication step; the second method is to create
them outside the outer loop. The latter method has to use two extra channels per
gridpoint to synchronize these processes with the calculation process. The third
variant uses explicit alternating communication, caused by executing different code
on adjacent gridpoints.

The reported times are net times; the constant startup time is subtracted from
each measuring, so only the time for 10 loop-iterations is counted. The results in
figure 6.3 show that for all values of Q, the function par3 performs slightly better.
The reason why the slopes of the plotted lines are not exactly parallel, is caused by
the fact that the variables in the three functions do not have the same position in
the function’s “workspace”. References to variables outside the first 16 words of the
workspace are slower because they need an extra “prefix” instruction.

6.4.2 The Optimal Sequential Model

For the sequential model, a number of optimizations are possible. In the program
seq. c (see appendix D), three different approaches are compared. The first approach
(function seq1) uses normal 2-dimensional array subscripts to access a variable.
The second approach (function seq2) uses a 1-dimensional array which is aliased
to a column of the 2-dimensional array at the start of each column. The functions
seq3a and seq3b implement yet another optimization. In these functions no array
subscripts are used, but pointers instead. These pointers are initially set to point
to the first array element and are incremented each iteration.

When the same array subscript or pointer dereference is used a number of times,
it might be attractive to make a copy of the value into a plain variable, and to use
this variable instead. The number of occurrences of a variable, above which this
approach results in a gain in efficiency, depends strongly on the compiler used and
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Figure 6.3: Results of Parallel Program

on the question whether the value is modified during the computations, in which
case it has to be copied back.

With the program optim.c (appendix D), the minimum number of occurrences
of a variable, for which this optimization is advantageous is determined. The values
determined are valid only for the compiler we used [18]. Separate values are deter-
mined for 2-dimensional arrays, 1-dimensional arrays and pointers. Both the case
that a variable is only read, and the case that a variable is modified and has to be
copied back are covered. The next table shows the results:

2-dim | 1-dim | pointer
read-only 3 3 4
read/write | 4 4 6

In the remainder of this section, we will assume that the number of times the
same variable is used, is too small for these optimizations.

There are two versions of optimization using pointers, for the number of times
a variable is used has a great impact on performance. This difference is caused
by the increment operations which are needed for every variable used. The two
functions therefore differ in the number of times a variable is used. The function
seq3a simulates a computation where each variable is used only once; the function
seq3b does the same for two references to each variable, so the number of increment
operations is halved.
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Figure 6.4: Results of Sequential Program

The results of the four different methods used in this program are plotted in
figure 6.4. The function seq3b is a little faster than seq2, but seq3a is slower,
although there is little difference. Because the performance of seq2 is independent
of the number of times each variable is used, this seems to be the most appropriate
variant of the sequential implementation model.

6.4.3 Comparison of the two Optimal Models

When we compare the methods par3 and seq2 by drawing their results together in
figure 6.5, we see that there is no absolute “winner”. Function seq2 performs better
for Q < 15 and function par3 performs better for @ > 15.

The figure also shows that the communication costs for par3 are approximately
three times as high as for seq2 , but this is compensated by faster variable references
for larger values of Q.

It is good to note however, that these results depend strongly on the compiler
used. Because the slopes of the two lines in the figure are so close, the intersection
point will rapidly move if another compiler generates different code.
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6.5 Using More Transputers

So far, we only looked at the organization of the calculations for the local grid of
one transputer. Now we will take a look at the behavior of a network of transputers,
together performing the computations for the whole grid.

First we need a few definitions, which are listed in table 6.1. We will assume

number of gridpoints in horizontal direction
number of gridpoints in vertical direction
total number of gridpoints; equal to N, - N,
number of transputers in horizontal direction
number of transputers in vertical direction
total number of transputers; equal to Py - P,
size of the local grid in horizontal direction
size of the local grid in vertical direction

< 8 "U:U:Uzgg

Table 6.1: Definitions for Transputer Grids

that NNV, is dividable by P;, and N, is dividable by P,. For grid sizes where this is
not the case, it is always possible to extend the grid at the boundary with dummy
gridpoints. Figure 6.6 shows an example of a grid of size 8 x 8, which is divided
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among 4 X 4 transputers. For this example, N, = N, = 8, P, = P, = 4 and
T=y=2.

N, Py
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Figure 6.6: Example of a transputer-grid

Because all transputers perform the same calculations, they will run almost syn-
chronously. Therefore, it suffices to use the execution time of one processor as a
measure of the execution time of the complete transputer network. It is possible to
express this time for the optimal variants of the two implementation models from
the previous section as a function of the grid sizes z and y and a number of other
parameters. These parameters apply to the local grid of size z X y of one transputer;
they are listed in table 6.2.

We can now give a formula for the time needed to perform the computations for
the optimal variant of the parallel model (par3 ):

TP = Twtc Ty
+ Co Toan-z-y
+ Cv . Tchan Ty
+ (Co-y+Cy- ) (Tenan + F - Think) (6.1)
= 2Y(Teatc + CoyTehan) + Cezt(Techan + FTtink) (6.2)

The first term of (6.1) represents the total calculation time for all local gridpoints.
The second and third term give the time needed to do the internal communications
in horizontal respectively vertical direction, including the communications with the
multiplexer processes.
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Cc::t

Application Dependent Constants
total number of calculation steps

number of communications in horizontal direction per gridpoint
number of communications in vertical direction per gridpoint
total number of communications per gridpoint

(abbreviation for C, + Cy)

total number of external communications

(abbreviation for C, -y + Cy - z)

number of subscripts of 1-dimensional arrays, needed only in the
sequential model, per gridpoint (V = Q - Cyy)

fraction of link-communication time which is not overlapped with
internal processing (0 < F <1)

total calculation time for one gridpoint

Application Independent Constants

additional costs for referencing a 1-dimensional array instead of a
plain variable

time needed to access a “neighbor value” by doing a subscript in a
2-dimensional array

time for performing one internal communication (a send plus the
corresponding receive)

time for performing one iteration of a loop over the local grid

additional costs for doing a link-communication instead of an in-
ternal communication

Table 6.2: Definitions for Execution Time Calculations
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The last term denotes the time needed for external communications in horizon-
tal and vertical direction, which are done by the (de)multiplexer processes. The
parameter F has a value between 0 and 1. The value of T}, is approximately the
time the hardware needs to send and receive a value over the links. Because the
link-hardware works concurrently with the processor, link-communication is partly
overlapped with processing. If F' = 0, link-communication is completely overlapped;
if F = 1, there is no overlapping at all.

If £ =1 or y = 1, the vertical respectively the horizontal multiplexer processes
can be eliminated. In that case y can be replaced by y — 1 in the third term,
respectively  can be replaced by z — 1 in the second term.

For the chosen sequential model (seq2 ), a similar formula can be derived:

T%*9 — (Tcalc+V'T3uba+C'11loop)'x'y
+ (Ca: + Cy) : Tarrau Ty
+ (Cz-y+Cy-z): (Tehan + Tiink) (6.3)
= wy(Tcalc + VTsuba + CTIoop + CzyTarray) + Cezt(Tchan + Tlt'nk) (64)

As with TP the first term of (6.3) gives the calculation time. Additional
time compared with the parallel model is needed for subscripting (as a result of the
optimization in an 1-dimensional array), and for iterating. The number of loops over
the grid equals the number of calculation steps C, which also equals the number of
communication steps.

The second term represents internal communication which is done by subscript-
ing in a 2-dimensional array. The third term is like the last term of (6.1), except that
the parameter F' has disappeared. This is because in the sequential model com-
munication is done sequentially, by the same process which does the calculations,
so communication and calculation do not overlap. Depending on the application it
might be possible to overlap some calculations with external communication. How-
ever, this is the responsibility of the programmer, whereas in the parallel model it is
inherent.

As can be seen in the formulas (6.2) and (6.4), the time needed for external
communications is proportional to C,y+Cyz, while the time for internal processing is
proportional to = -y. To minimize the overhead caused by external communications,
the shape of a local grid should be chosen in such a way that C,y + Cyz is minimized
with respect to z - y. So for the case that C, ~ C,, z and y should be chosen
approximately equal.

6.6 Speedup Calculations
To see what the effect on the processing time of adding extra transputers is, we will

compare the processing times for different numbers of transputers, using the same
global grid in all cases. When the number of transputers in the horizontal direction
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(P:) is increased by a factor p and the number of transputers in the vertical direction
(P,) is increased by a factor ¢, the speedup for the parallel model is given by:

5% (p,q)
T*(pz, qy)
Teer(z,y)
pqu(Toalc + Ca:chhan) + (Czqy + Cypz)(Tchan + FTlink)
2Y(Teatc + CzyTehan) + (Coy + Cyx)(Tehan + FTiink)
((pq — q)Czy + (pq - p)Cvx)(Tchan + FTlink)
xy(Tcalc + Czchhan) + (Csy + Cyw)(Tchan + FTh'nk)

The speedup calculation for the sequential model is analogous:

5*(p,q)

T*(pz, qy)

Teea(z,y)

pqu(Tcalc + VToubs + CTloop + CzyTarray) + (Czqy + Cypz)(Tdum + Th'nk)
xy(Tealc + VTsubs + CT‘loop + CzyTarray) + (ny + Cyz)(Tchan + Tlmk)
_ ((pg — 9)Czy + (pg — P)Cy)(Tehan + Tiink)

xy(Tcalc + VTauba + CTloop + CzyTarray) + (Czy + ny)(Tchan + Tlink)
(6.6)

= pq— (6.5)

= P4

As the number of transputers increases, the size of the local grid decreases. For
small local grids, the time devoted to external communications will increase with
respect to processing time. When the amount of external communication dominates
the total processing time, Cezt(Tchan + Think) respectively Cezt(Tehan + FThink) will be
much greater than the other terms in the denominators. In this case, the speedup
for both models reduces to:

(pg — 9)Cay + (pg — p)Cyz 6.7)
C.y + Cyz '

S(p,q) ~ pq—

This formula gives a lowerbound for the speedup attainable. If we choose p and ¢
equal, this reduces to:

Sp,p)~p (6.8)

For the case that C, =~ C,, = and y should be chosen approximately equal, so that
(6.7) reduces to:
ptq

: (6.9)

S(p,q) ~

6.7 Variables for Speedup Calculation

A number of variables in the speedup formulas do not depend on the type of com-
putation performed, but they only depend on the hardware and the compiler used.
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These variables are: Tyubsy Turray, Lehans Tioop and Tiink. The first four variables can
simply be measured using an appropriate benchmark program running on a single
transputer. To determine Tj;x, a network of transputers is needed.

The program bench.c (see appendix D) determines the first four variables for
the parallel C compiler from UNICOM [18] generating code for an T414, running at
20 MHz. The value for T, is determined by subtracting the time needed for a fixed
number of variable references from the time for the same number of 1-dimensional
array references. For the other variables, the constant overhead is subtracted from
each measure, so all values are net.

To determine Tj;,i, a separate program named link.c was written (see ap-
pendix D). This program runs on two adjacent transputers. The second transputer
does nothing but echoing values it receives via one of its links. The other transputer
sends values to this transputer and waits until they return. In this way the time for
two link-communications can be measured. To determine Tj;nx, the value of Typan
has to be subtracted from this time.

The next table shows the results of these benchmarks:

Tows = 0.61 puseconds
Tarray = 3.36 p seconds

Tehan = 6.03 pu seconds
Tioop = 0.57 p seconds
Tink = 5.15 pu seconds

6.8 Conclusion

Two different implementation models for grid-based computations were introduced,
together with a criterion by which the fastest model for a given application can be
selected, on a basis of the ratio of local variable usage and the number of communi-
cations.

Formulas were derived to calculate the execution time for each model, using
a number of program dependent constants, and a number of hardware/compiler
dependent constants. The latter constants for our configuration were measured in
section 6.7. With these formulas, expressions for the speedup of both models were
derived, together with a lowerbound for the speedup.

Inspection of the formulas for the execution time shows that to minimize the
overhead caused by external communications and thus maximize speedup, the shape
of a local grid should be chosen in such a way that C,y + C,z is minimized with
respect to z - y.
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Chapter 7

Parallelization of the Hirlam
Program

In the Hirlam program some terms of the primitive equations are solved implicitly.
This results in numerically solving a Helmholz equation and the need of global com-
munication. These calculations are performed in procedure SICALL. It is possible
to leave out these calculations, but then the time step has to be chosen smaller
(approximately a factor 3) to avoid instability. It is the aim of this project that
this increase in computation time can be gained back by parallelizing the Hirlam
program.

7.1 Communication in the Hirlam Program

The Hirlam program uses a 3-dimensional space of gridpoints to model the behavior
of the atmosphere above a rectangular area on earth. These gridpoints (except the
ones at the boundary) have to communicate with their neighbor gridpoints in all
six directions. As was explained in section 6.1, we have to project one of these
dimensions onto the other two.

In the Hirlam program, communication takes place in all three dimensions, but
the amount of vertical communication exceeds the amount of horizontal communi-
cation. Also, in typical applications of the Hirlam program, the number of gridpoints
in the vertical direction is much lower than in both horizontal directions. Further-
more, a great number of constants and variables used do not depend on the height.
Obviously, the best solution is to project the vertical dimension onto the horizontal
plane, so the gridpoints modeling a vertical column of air are always calculated on
the same transputer.

The remaining point is how to distribute these “columns” over the transputer
grid in the case the number of columns exceeds the number of transputers. In section
6.5 we have seen that when each transputer takes care of a local grid of size z x y,
the external communication time is minimized if (C, - y + Cy - z) is minimal with
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respect to = - y.

Because the behavior of the atmosphere is inherently symmetric in the two hor-
izontal directions, the number of communications in both directions C, and C, will
be approximately the same in the Hirlam program. Performance therefore will be
maximal when z and y are chosen approximately equal. Of course, the sizes of the
local grids of the different transputers should all be roughly the same, because the
speed of the total system is dictated by the slowest transputer.

At a few spots in the Hirlam program, diagonal communications take place.
These communications have to be replaced by two-step communications. To avoid
unnecessary waiting as a result of diagonal communication, the programmer should
take care that the particular information is transferred in the previous communica-
tion phase to a real neighbor.

Figure 7.1 shows the structure of the Hirlam program. Upper case names de-
note subroutines. The program starts with reading the input data and initializing
variables. After that, a big loop is entered, in which a new state is calculated each
iteration. Every six hours, new boundary data is read in.

In the figure, the subroutines in which communications take place, are marked.
The subroutines DYN, VDIFFX and HDIFF contain local communication, whereas
the subroutine STATIS contains global communication. This subroutine contains
the calculations of some statistical values, like the average pressure tendency. Be-
cause these calculations are not essential, STATIS can be omitted in a transputer im-
plementation. Consequently, only local communications are needed in a transputer
implementation of the Hirlam program in explicit mode. The subroutine BDMAST
is a replacement for the subroutine SICALL in case the implicit calculations are
turned off.

7.2 Choosing the Implementation Model

In the previous section, we saw that the Hirlam program contains communication at
four stages during each time step. The decision which implementation model is the
most appropriate for the Hirlam program, depends on the value of @, introduced
in the previous chapter. We therefore have to take a closer look at the number of
array references and the number of communications in the Hirlam program. The
subroutine with the most communication is DYN, as a result of the integration of
the primitive equations, so we will look at DYN first.

7.2.1 Calculation of () for Subroutine DYN

DYN mainly consists of two loops over the (vertical) levels, the first of which is used
for initializing. Inside these two loops there are various loops over the horizontal
grid. As a result of optimizations, all 2-dimensional variables are “flattened” and
stored in 1-dimensional arrays, so these loops are also 1-dimensional.
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* * O * *

read start data
read boundary data 1
read boundary data 2
initialization :
* BDINIT
* MAPFAC
* INIPHY
loop for each time-step :
* DYN (local communication)
* TSTEP
* PHCALL:

*

* % ¥ ¥ OF ¥ ¥

* X F ¥ K ¥ *

HYBRID

RADIA

VDIFFX(1) (local communication)
VDIFF

VDIFFX(2) (local communication)
KUO

COND

QNEGAT

HDIFF (local communication)

BDMAST

STATIS (global communication)

array copying

PRSTAT

6 hourly input of new boundary data
output results STATIS

Figure 7.1: Structure of the Hirlam Program
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Figure 7.2: Communication in Subroutine DYN
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Figure 7.2 shows the communication pattern of DYN. Listed are the neighbor
values needed in a particular loop. A mark ‘O’ after a variable name indicates
that the neighbor value is “old”, which means that this value was used before. It is
possible to avoid the “O-communications” by saving the received neighbor values for
subsequent use. A mark ‘N’ means “new”, so a communication is always necessary
here. A neighbor value is marked with ‘N’ the first time it is needed, or if the
variable was recomputed after the last usage.

Four values from diagonal neighbors are needed. These values must be send in
two steps, so these communications must be counted twice.

Without the ‘O’ values, the total number of horizontal communications in the
east-west direction, C,, and in the north-south direction, Cy, are both 2+ 21.NLEV,
where NLEV is the number of vertical levels.

In the figure we also see that there are seven communication steps, two of which
are outside the vertical loops. The number of communication steps therefore is
2+5-NLEV. The values exchanged during each communication step are listed at
the right of the figure. A prefix ‘W_’ means that the value of the following variable in
westward direction is needed; the prefixes ‘E_’, ‘N_’ and ‘S_’ have analogous meaning,.
For diagonal communications, a double prefix is used. For instance, ‘N_E_ZAHXHY”
denotes the value of the variable ZAHXHY of the eastward neighbor of the northward
neighbor.

The value of V, which stands for the number of array references, is for DYN
21 4187 - NLEV. The value of Q, computed with these values, is 4.5, independent
of the value of NLEV. Applying the results of section 6.4.3, we can expect that the
best implementation model for DYN will be the sequential model.

7.2.2 Estimation of Q) for the Hirlam Program

The question now arises, whether the sequential model is also the best choice for the
rest of the Hirlam program. Of course, the sequential parts are better implemented
parallel, but mixing the two implementation models in the same program causes ex-
tra overhead due to the switching back and forth between the two implementations.
For a switch from a sequential part to a parallel part, array elements have to be
copied into plain variables, while for a switch back, all variables have to be copied
back (if they were modified).

To calculate the value of Q for the whole program, we have to know the values
of C;y and V. The number of communications in the subroutines VDIFFX and HD-
IFF are much lower than in DYN. VDIFFX(1) contains 2 - NLEV communications,
VDIFFX(2) 12 - NLEV communications and HDIFF contains 6 + 16 - NLEV com-
munications. The total number of communications in the Hirlam program therefore
is:

Cyy =10 4+ 72. NLEV

To get a rough estimate of the value V for the Hirlam program, it is possible to
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extrapolate the value for DYN to the whole program. As can be seen on the sample
output in figure 4.3 of the Hirlam program running on the HCX-9, DYN takes about
18.5 % of the time used for one time step (STATIS not counted). When we assume
that the other parts of the Hirlam program contain approximately the same mean
number of array references per second, an estimate for V will be:
187 - NLEV
Va ————— 1011 -NLEV
18.5%
Using this value for V and the above value for C,,, an estimate for Q can be

T~ 10+ 72-NLEV
For this value of @, the sequential model is slightly better, although the difference
with the parallel model is minimal.

7.3 Performance Expectations

We would like to know what running times we have to expect, when running the
Hirlam program on a grid of transputers. In chapter 6, formulas were given for the
execution time as a function of a number of variables. One of these variables is Ty,
the total calculation time for one gridpoint. Because this variable will probably
dominate total processing time in the Hirlam program, it is particularly important
to determine T,,.

7.3.1 Determining T, for subroutine DYN

First Teqie will be determined for subroutine DYN. The values of C,, Cy and V for
DYN are known, 80 Tcqic can be determined by implementing DYN on a transputer
and measuring the running time, for it is the only unknown in the formulas for the
execution time (6.2,6.4).

We have implemented subroutine DYN in C on one transputer, without external
communication and using the sequential model with pointers. This program can be
found in appendix E. The reason we used the variant with pointers instead of the
variant with 1-dimensional arrays is that in DYN, many variables are used more
than once, so that this variant is probably the fastest, although the formula for it
would be slightly more complicated than for variant seq2. The running time on a
T414 was 120 ms per local gridpoint, with NLEV = 9, so =2 = 120ms.

zy
We recall the formula for the execution time of the sequential model (6.4):

T = xy(Tcalc + VTauba + C:rloop + CzyTarray) + Cezt(Tchan + T'link) (71)

Because the program does not use external communications, the second term of this
formula can be dropped. To determine T,q. we must subtract (VTyuss + CTioop +
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CzyTarray) from the measured 120 ms. The above formula is actually for the variant
with 1-dimensional arrays and not for the pointer variant. However, as can be seen
in figure 6.4, the execution times of these two variants do not differ too much for
Q@ = 4.5, so we can use it anyway.

The three terms to subtract can be computed, using the constants determined
in section 6.7, as follows (assuming NLEV = 9):

VTyss = (21+187-NLEV)-0.61us = 1039us
CTioop = (3+17-NLEV):0.57us = 89pus
CryTarray = (4+42-NLEV).3.36us = 1284pus

The value C generally is the number of calculation steps, because this normally
equals the number of loops over the grid. In the current implementation of the
Hirlam program, there are more loops than calculation steps and because we did
not change the loop structure during conversion to C, the number of loops is greater
than necessary. Therefore, the real number of loops is used here, instead of the
number of communication steps (which is 3 + 5 NLEV).

Surprisingly, the three values just computed, are very small compared to the

measured running time of 120 ms, only about 2 % of it! The value of Teqic for DYN
therefore is

Teatc = 120ms — 1039us — 89us — 1284us = 118ms
The communication time for subroutine DYN, in case external communications
do take place, is
Cezt(Tchan + T'linlc) = (Czy + ny)(Tchan + T'lonk)
(z + y)(2 + 21 - NLEV)(6.03us + 5.15us)
= (z+y)2135us

which is about 3.5 % of the total processing time, for a 1 x 1 local grid, 1.7 % for a
2 x 2 grid, etc. Clearly, external communications are not a bottleneck in DYN.

7.3.2 Estimating T, for the Hirlam Program

If we want to know Ty, for the whole Hirlam program, we have to implement it
completely on a transputer. However, as was done in section 7.2.2, it is possible to
get an estimate of Tuq by extrapolating the Teyic for DYN to a Toaie for the whole
program. The assumption that T, is approximately proportional to the measured
execution time on the HCX-9 is quite reasonable. The value of Tigi for the Hirlam
program under this assumption becomes:

118ms

Tte A —erm
cale ™ 18.5%

& 638ms
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Using the estimated value of V and counted values C, C, and Cy for the whole
program, we can also compute the values for the other three subterms of the first
term of (7.1). The value for C which is used here, is the minimum number of cal-
culations steps needed for the implementation of the Hirlam program. The current
implementation in Fortran uses more steps (loops). The values for NLEV = 9 are:

VTwss = (1011.NLEV)-0.61us = 5550us
CTioop = (4+10-NLEV).0.57us = 54us
CoyTarray = (10 +72.NLEV)-3.36us = 2211pus

Also, the second term of (7.1) can now be computed:

Cext(Tchan + T‘Iink) = (Czy + Cyz)(Tchan + I'link)
= (z +y)(5+ 36 - NLEV)(6.03us + 5.15us)
= (z+4y)3678us

When we substitute all these values into (7.1), we get:
T = zy(638ms + 5550us + 54us + 2211us) + (v + y)3678us (7.2)

From this equation, we can conclude that internal communication cost (2211us) is
very low, compared to calculation time (638ms). Also, the external communication
is not costly. It accounts for only 1.1 % of the total processing time for a local grid
of size 1 X 1, 0.6 % for a grid of size 2 X 2, etc. External communication therefore,
will not be a bottleneck in the Hirlam program.

The total running time of a transputer implementation of the Hirlam program,
for a 34 x 34 x 9 grid is plotted in figure 7.3, as a function of the total number of
transputers Py - P,, using (7.2). The values for P, and P, in this figure are equal.
When P, and P, do not divide 34, not all transputers process the same number of
gridpoints.

To reveal more detail, the values from this figure are plotted a second time in
figure 7.4, this time without the first two points.

7.4 Performance with T800 transputers

In the preceding section, we have seen that the calculation time dominates total
execution time. Acceleration of the calculations will therefore have a direct effect
on the execution time for the Hirlam program. Most calculations in the Hirlam
program are floating point calculations. Floating point operations are relatively
slow on a T414, as compared to a T800 transputer, so performance will be much
higher on a network of T800 transputers than on a T414 network.
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Figure 7.3: Estimated Running time for Hirlam on a T414 network
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Figure 7.4: Estimated Running time for Hirlam on a T414 network (enlarged)
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To get an indication of the running time of the Hirlam program on a grid of
T800 transputers, we have determined a factor by which some typical floating point
calculations (taken from DYN) are performed faster on a T800 than on a T414.

Because our transputer system did not contain T800 transputers, and the C
compiler we used is not (yet) able to produce code for a T800, we had to use another
system for this test. This system is an IBM-AT with a slot-card containing two
T800 transputers, which can be programmed in OCCAM-2, using the MEGATOOL
programming environment.

The determined speedup for using OCCAM-2 on a T800 instead of C on a T414
was approximately 16. However, the OCCAM-2 compiler seems to produce better
code than the C compiler, because a comparison between the two systems, using a
version of the program with integers instead of floating point variables, showed that
the OCCAM-2 version was approximately 10 % faster.

When we decrease the value of Ty in formula (7.2) by this factor, we get:

T° = zy(40ms + 5550us + 54us + 2211us) + (z + y)3678us (7.3)

From this formula, it can be calculated that for a grid of T800 transputers the
external communication time will account for at most 13 % (1 x 1 local grids) of the
total execution time.

The estimated running time for the Hirlam program on a grid of T800 transput-
ers, is plotted in the figures (7.5) and (7.6).

7.5 Speedup Calculations for the Hirlam Pro-
gram

Instead of plotting the total execution time in figure 7.5, it is also possible to plot the
speedup as a function of the total number of transputers, which is done in figure 7.7.
The speedup values for all possible values of P, - P, are plotted. In the case where
the same total number of transputers can be formed by different combinations of P,
and P,, the combination with the smallest difference between P, and P, is chosen.

This figure clearly shows the almost linear speedup for the Hirlam program as
the number of transputers is increased, up to one transputer for every gridpoint.
The point in the upper right corner corresponds to the speedup for P, = P, = 34,
so there is one transputer per gridpoint. For the points with a speedup of about

500, the maximum local grid-size is 1 x 2; for a speedup of approximately 250, the
maximum local grid-size is 2 x 2, etc.

Each of these “lines” in the figure corresponds to a particular maximum local
grid-size. To maximize efficiency, P, and P, should be chosen in such a way that the
corresponding speedup value is the very first point of a “line”. For these values of
P, and P,, the total number of transputers used for a computation with a particular
maximum local grid-size is minimal, and the speedup is almost equal to P, - P,.
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7.6 Conclusion

Section 7.2.1 shows that the parts of the Hirlam program where communication
takes place, such as the subroutine DYN, are best implemented using the sequential
model. As was argued in section 7.2.2, implementing parts of a program sequentially
and other parts parallel, may cause much extra overhead. The estimated value
of Q for the Hirlam program indicates that both implementation models will be
approximately equally fast.

Furthermore, one subroutine of the Hirlam program (DYN), was implemented
on a transputer in order to derive an estimate for the running time of the whole
program on a grid of transputers. On a network of T414 transputers, both the
amount of internal and external communication turned out to be neglectable with
respect to the calculation time. With T800 transputers, the overhead due to external
communication will also be moderate. As a result, speedup for the Hirlam program
will be almost linear in the number of transputers.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The question to be answered by this report is whether it is feasible to implement
a weather prediction model like HIRLAM on a network of transputers and if so,
whether it can be done in such a way that performance is linear in the number of
transputers involved in the calculation.

In chapter 6, two implementation models for grid-based computations, the par-
allel and the sequential model, were presented, together with a number of possible
optimizations. Which model is best suited for a given application depends on the
ratio of the number of variable references and the number of communications. With
suitable test programs, a criterion is determined by which the fastest model can be
selected for a given application. For the Hirlam program, it was estimated that both
implementation models are approximately equally fast.

From the formulas for the execution time in section 6.5 it follows that for in-
herently symmetric computation models like atmospheric models, the shape of the
subgrid processed by one transputer, should be square, in order to minimize inter
processor communication, and therefore maximize speedup. The shape of the global
grid is irrelevant here.

With appropriate benchmark programs, a number of hardware/compiler depen-
dent constants were measured, which occur in the formulas for the execution time.
With these constants, it was estimated that for the Hirlam program, running on
a grid of T414 transputers, the time used for internal communication is less than
1 % of the total processing time, and the time used for external communication is
maximal 1 %, decreasing when the local grid gets bigger. As a consequence, the
speedup will be almost linear in the number of transputers. Also, performance will
hardly decrease if z and y are not chosen equal.

Because floating point operations on a T800 are approximately 16 times faster
than on a T414, the relative overhead due to external communication is somewhat
larger for a grid of T800 transputers. However, in the worst case (1 x 1 local grids),
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it only accounts for approximately 13 % of the total execution time, so even when
using T800 transputers, external communication will not be the bottleneck.
Besides the principal questions answered by this report, the feasibility study has
initiated several spinoffs like the development of transputer support software, the
starting of transputer related projects and extensive contacts with some companies.

8.2 Future Work

Several points of further research, have become clear during the feasibility study:

o Further development is needed in implementing HIRLAM completely on trans-
puters, taking the results of this report as a starting point. The next question
to be answered concerns the impact of global communication on a transputer
implementation of the Hirlam model.

® A programming environment for transputers and, more general, parallel sys-
tems needs to be developed. The emphasis will be on the development of
(specification) languages for writing software and operating software.

o It needs to be investigated if the concept of time staggering instead of time
filtering, is advantageous for an implementation of the Hirlam model.

® More investigation has to take place to find out if and how various classes
of differential equations with a numerical solution algorithm on a grid can
automatically be implemented on a grid of transputers.
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Appendix A

Mathematical Principles used for
Finite Differencing

A.1 Finite Differences

Partial derivatives can be approximated by finite-differences in many ways. All such
approximations introduce errors, called truncation errors. By development of the
Taylor series for u(z + Az, y) about (z,y) we get a forward difference equation:

_ Ou (Az)? 8%u
u(z + Az,y) = u(z,y) + Aa:gz(x, y)+ 50 5;2-(.1:,3/) +

Car G p+o@ayr  (ax)

Equation (A.1) gives:
u(z + Az,y) — u(z, y) _ Ou (Az) 8%y
Az =2 Nt o 5@y +
(Az)? 8u
3! 023
Taking the left-hand side of (A.2) as an approximation to 24(z,y) we introduce a

truncation error, usually written in the asymptotic O notation, O(Axz). By this way
we get a first order forward finite-difference approximation.

(z,9) + O(Az)? (A.2)

A.2 Computational Errors

Strictly speaking the truncation error belongs to the finite-difference schemes and not
to the solution. This point is emphasised here, because as in analytic methods, the
boundary conditions are essential to the proper solution. These boundary conditions
must be approximated by finite-differences, thereby introducing an additional or
boundary truncation error([1, p23-24].
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The error in the solution due to the replacement of the continuous problem by the
discrete model is called the discretization error. The over-all discretization error is
the smallest order of all those approximations used unless they are somehow related.

When the discrete equations are not solved exactly, an additional error is in-
troduced, the round-off error. The sizes of the discretization interval affects the
discretization error and the round-off error in opposite sense. That is the reason
why in general one can not assert that decreasing the mesh size always increases the
accuracy(l, p23-24].

Finally, discrete approximations contain an aliasing error. Knowing only the
values at grid-points waves with wavelength smaller than 2Axz are falsely represented
as waves with wave length bigger than 2Az. To understand how such a wave is falsely
represented we can make the following analysis:

sin(kz) = sin((2kmazr — (2kmas — k))z

where kpyay = Z—"x, the maximum wave number that can be represented on a grid
with grid-length Az. Applying the difference formula for the sinus and substituting

kmas = Az’

inkz = si 2m (27r k) co 21ra:sin(27r k)a:
sin x—snAmxcos s T sA:z: Ao

Substituting z = jAz:
sinkjAz = — sin (2kmqez — k) jAZ

Thus a wave with wavenumber k > k,,,, is falsely represented as a wave with wave
number k* = 2kpaz — k < kpnas.

A.3 Consistency, Convergence and Stability

Computational errors may lead to numerical instability. Any numerical scheme
which allows the growth of an (initial) error, is unstable. Stability of a scheme
is a property of great practical significance. Second order approximation schemes
do not necessarily lead to better numerical results than the first order approxima-
tion schemes. In certain applications a second order approximation is an unstable
method, while a first order approximation is stable[1, p17].

Consistency A finite-difference scheme is said to be consistent with the differ-
ential equation if the truncation error tends to zero (as Az,Ay — 0). There are
consistent schemes, of a high order of accuracy, that still give solutions diverging
unacceptably fast from the true solution. Thus consistency is not strong enough to
characterize correctness of finite-difference schemes.

Following Richtmeyer and Morton (1967) we ask two questions:
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1. What is the behavior of the error u? — u(jAz,nAt), when, for a fixed total
time nAt, the increments Az, At tends to zero.

2. What is the behavior of the error u?} — u(jAz,nAt), when, for a fixed values
of Az and At, the number of time steps n increases.

Convergence The answer to the first question depends on convergence of the
numerical solution; if the error tends to zero as the grid is redefined (as Az, At — 0)
the solution is called convergent. If a scheme gives a convergent solution for any
initial condition, then the scheme is also called convergent(2, p5-6]. Consistency
of a scheme does not guarantee convergence, because of the possibility that the
characteristic defining the true solution is outside the domain of dependency (all
gridpoints that are involved in the finite-difference calculation) of the approximated
solution of a gridpoint. From this we infer that a gridpoint at the origin (containing
an initial condition) can be outside that domain and therefore can not affect the
numerical solution. Then the error can be arbitrarily large.

Stability The answer on the second question depends on stability of the numerical
solution. When we know that the true solution is bounded, as in the equations we
are interested in, we can use a definition referring to the boundedness of the error
u? —u(jAz,nAt). We say that a solution u? is stable if this error remains bounded
for increasing n, with fixed values of Az, At. A finite-difference scheme is stable if
it gives a stable solution for any initial condition[2, p5-6].

The Lax equivalence theorem Lax studied the relation between consistency,
stability and convergence of finite-difference approximations of linear initial value
problems. The major result of that study is called the Lax equivalence theorem:
Given a properly posed initial boundary value problem and a finite difference ap-
proximation to it that satisfies the consistency condition, then stability is a necessary
and sufficient condition for convergence.

Non-linear instability In a numerical approximation for non-linear terms, using
a grid with grid point distance Az, the wave number that can be represented is
bounded to a maximum value k,,,, = 2. By substitution of a sinusoid:

u(z,t) = Re [U(t)e"“]

with wave number k, %k,,,a, < k £ knaz, in the non-linear advection term:

uau
oz
a wave with wave number 2k is introduced:
o e
u% = U(t)%ke'2*=
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Consequently the introduced wave (by a non-linear interaction) has a wavelength
that is too short to be represented on a grid with gridpoint distance Az.
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Appendix B

Implicit and Semi-Implicit
Schemes

An inconvenient feature in case of gravity waves is the long computer time required
for a solution using explicit schemes for time differencing. The time-step imposed
by the stability criterion for explicit schemes is generally considered to be much
less for an accurate integration of slower quasi geostrophic motion. With these
steps the errors due to space differencing are much greater than those due to time
differencing[1, p62].

A forward-backward scheme is comparable in computation time with the leap-
frog time differencing by the Eliassan grid, but with time-steps twice those allowed
for the leap-frog scheme. Even these time-steps are considerably shorter than that
required for accurate integration of quasi-geostrophic motions and even with these
economical schemes the time differencing error is still much less than the space
differencing error for typical current atmospheric models. Therefore -we consider
implicit schemes which are stable for any choice of time-step, so that the choice of
time-step is solely based on accuracy.

B.1 Semi-Implicit Scheme
The semi-implicit scheme goes a step nearer to a fully implicit scheme by treating

implicitly those terms in the equations of motion that are primarily responsible for

the propagation of gravity waves. In a semi-implicit scheme the advection terms are
treated in explicit fashion.

B.2 Implicit Scheme

To apply an implicit method it is necessary to solve the difference system for all vari-
ables at instance of time n + 1 simultaneously. Consider again the two-dimensional
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system of linearized shallow water equations (3.27), (3.28) and (3.23). By applying
the trapezoidal time differencing scheme we get:

u""‘l = u" - gAt%(azhn + 5zhn+1) (Bl)

N gAt%(ﬁyh" + 6,h™H) (B2)
1

S S A — HAtE [(5zu + 6y'v)") + (6::“ + 6yv)n+1)] (B3)

where 6, is a centered space differencing operator.

The quantities 6,(u"+) and 6,(v"*!) can be eliminated from the third equation
by applying operators §, and by to equations (B.1) and (B.2) respectively, and by
substituting the result into equation (B.3). This gives a finite difference approxima-
tion to the Helmholz equation:

(V)*h + ah + b(z,y) = 0 (B.4)

for the height which is to be solved, where V2h is approximated by the finite differ-
ence Laplacian 8,(6;%) + 6,(8,h). To solve such an elliptic equation, it is necessary
to know the values of k(z,y) at the boundaries of the computation region. For a nu-
merical solution we write a finite-difference approximation of the Helmholz equation
at each of interior gridpoint where the variable k is carried. .

In this way we obtain a system with one equation for each interior gridpoint.
In each of the equations, except the equations for points adjacent to the boundary
there are five of these unknowns. There are no difficulties in principle in solving such
a system of linear equations, but, for efficiency reasons, sometimes the relaxation
method is preferred.

B.2.1 Relaxation Method

A widely used standard method to solve the Helmholz equation numerically is the
relaxation method. The essence of the relaxation method is to start an iteration
process with an arbitrary tentative solution to approximate the true solution. This
method consists of the following steps:

1. An arbitrary guess is made for the field An+!. Usually the field of the preceding
time step A", is taken as a first guess.

2. At each of the grid points the value A"*! g changed so as to satisfy the finite-
differenced Helmholz equation. These changes can be made simultaneous at all
gridpoints (simultaneous or Richardson relaxation), or sequentially (sequential
or Liebmann relaxation).

3. The preceding step is repeated as many times as needed to make the change
at every point less than some preassigned small value.
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Simultaneous relaxation calculates guess values for all gridpoints before continuing.
Sequential relaxation calculates a guess value for one gridpoint and this guess value
is used to determine the guess value in the next grid point. To be useful the iteration
must converge but it is not considered to be effective unless the convergence is rapid.
Experience shows that the convergence is faster for sequential relaxation. On the
other hand simultaneous relaxation can be expressed as a vector operation and
therefore computed fast on vector machines.

The Helmholz equation can also be numerically solved by direct methods, like the
Gauss elimination method. A direct method can be more efficient than the relaxation
method, especially when it is difficult to start with a good guess. Therefore they
are typically used when relaxation requires a very long computation time, as may
happen, for example, in convection studies. When implicit schemes are used for
simulation or prediction of large scale atmospheric motions, the time needed for
relaxation is several times less than the time needed for other steps of the integration
procedure, so that only a small fraction of the total computer time will be saved by
using a faster direct method. For that reason the use of direct methods, requiring a
larger programming effort, is not popular for these models.

With the semi-implicit scheme it is also possible to construct an economical grid
analogues to the Eliassan grid for the leap-frog scheme; the appropriate space-time
staggering of the variables was pointed out in [7].

Implicit and semi-implicit schemes are undoubtedly the most efficient schemes
used in atmospheric models. To achieve this efficiency we have to put additional
effort into solving an elliptic equation. Furthermore, they are associated with an
appreciable deceleration of gravity waves. Thus, the implicit schemes do not seem
suitable for the study of details of the geostrophic adjustment process. On the other
hand, this deceleration does not appear particularly harmful for the simulation and
prediction of the large scale geostrophic motions compared to other sources of error
that are normally present in numerical models. The computation time saved by
implicit differencing can be used to reduce the grid size of the computation. This
would decrease the phase speed error for all the waves, including the gravity waves.
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Appendix C

Modeling the Dynamics of the
Atmosphere

As a propagation problem, dynamical numerical weather forecasting requires a closed
set of appropriate physical laws expressed in mathematical form, suitable initial and
boundary conditions and an accurate numerical method of integrating the system
of equations forward in time. In this appendix we will discuss some aspects of these
topics that are relevant in the context of this report. For a more rigorous treatment
of atmospheric modeling the book by Haltiner and Williams[12], probably the most
widely available text, can be mentioned.

C.1 The Primitive Equations

The primitive equations, which models the behavior of the atmosphere are:

[

. The equations of motion

N

. The continuity equation

w

. The equation of state
4. The first law of thermo-dynamics

5. The moisture equation

The equations of motion The equations of motion based on Newton’s second
law, which states that the acceleration per unit mass equals the sum of the forces
per unit mass. The principle forces in atmospheric motion are the pressure-, the
gravitation-, the coriolis- and friction force. The equations of motion can be ex-
pressed in the form:
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du 13dp

'E = —;5; — fau+ F, (C'l)
dv 18p
Ft- = —;-a; - fh‘U + Fy (0'2)
dw 19p

where u, v and w components of the wind in east, north, and vertical direction
respectively; fy, f, the horizontal and vertical component of the Coriolis force; F,,
Fy and F, components of the friction force ; p is the pressure. From (C.1), (C.2)

and (C.3) we can deduce the hydrostatic one layer equation by assuming hydrostatic
equilibrium.

The hydrostatic assumption For large scale motions of the air, the atmosphere
may be assumed to be in hydrostatic equilibrium, that is, vertical acceleration may
be neglected along with the vertical component of the Coriolis force. By assuming
hydrostatic equilibrium, it follows immediately that for any point in the fluid:

gp(h—2)=p

where h is the height of the free surface. Therefore:

o _13p
Y5z = p Oz

With this equation, neglecting friction terms, we can deduce the hydro-static one
layer equations:

du  du  du  Oh

ot Vo Ty T futeg; =0 (C4)
ov ov v Oh
a+u5;+va—y—fu+ga—y—0 (C5)

where u, v represent velocity components in the = and y direction. These equations
are sufficient to describe horizontal frictionless motion. Because of the hydrostatic
assumption (and constant density), the horizontal pressure force is independent of
height. By assuming that the velocity field is initially independent of height, it will
remain so; thus the vertical advection terms have been omitted in (C.4) and (C.5).

The continuity equation The continuity equation expresses conservation of
mass:

ou dv Ow 10p
£+5y-+5;——;5-t' (C.6)
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With the incompressibility assumption, (C.6) is linear:

Ju v Ow
Integrating (C.7) with respect to z gives:
Ju dv
(%+a—y)h+w,.—wo_o (C.8)

In accordance with the boundary condition w must vanish at the lower boundary(i.e.
wo = 0). On the other hand, the vertical velocity w = % at the upper boundary
represents the rate at which the free surface is rising. Thus w;, = %, and (C.8)

becomes: ou 8 dh oh ok ok
u v
"(£+a—y)=7=—(a+“a+”ﬁg) (C9)

Equations (C.4), (C.5) and (C.9) constitute a system of three unknowns, u, v and
h. These equations are called the shallow water equations.

The other primitive equations The equation of state expresses the relationship
between the three thermodynamic variables p, p and T. The first law of thermo-
dynamics expresses the principle of conservation of energy. These four primitive
equations suffice to model a dry atmosphere. For a more realistic model of the
atmosphere the moisture equation needs to be included.

C.2 Coordinate System

Application of the equations of motion to real problems, in particular, numerical
weather prediction, requires a map in terms of a coordinate system. Since the large-
scale motions of the atmosphere are quasi-horizontal with respect to the earth’s
surface, spherical coordinates are quite useful. Choosing the right vertical coordinate
is more delicate as will be made clear in the next subsection.

C.2.1 Vertical Differencing of the Primitive Equations

In the primitive equations there are non-linear terms associated with horizontal ad-
vection and vertical advection. In addition, it is generally attempted to incorporate
a realistic topography of the earth’s surface into the system as the lower boundary
condition.

These situations make vertical (and horizontal) differencing of the primitive equa-
tions particularly difficult. Therefore we must properly choose a vertical coordinate,
a vertical grid structure, a vertical difference scheme satisfactory for all possible
types of motion, the vertical extent of the model, and finally, vertical spacing and
resolution of the grid[6].
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Vertical coordinate The height z is not the most convenient vertical coordinate
for many purposes. Vertical coordinates that have been used with advantage are:
pressure p; lnp-l.; pressure normalized with surface pressure, o = £ or the more
general hybrid 5-coordinate (Hirlam). By using an alternate vertical coordinate the
partial differential equations can be transformed to a more convenient formulation.

As an example, using a 5-coordinate, we are able to make the following trans-
formations. First we need some expressions for transformation of z to 7 coordinate:

V,A = V,A+3—‘3-Z—Z—V.,z (C.10)
?_3_4; _ %‘-% (C.11)
G- Gumm), e
“ (%4)"+17V,,A+ﬁ%;- (C.13)

where V is the horizontal velocity, 7 the vertical velocity in the 5-system and A can
be a scalar or a vector. (C.13) is the total derivative in 5-coordinates.

e The equations of motion: By virtue of (C.11) the horizontal pressure force
transforms as follows:

1 1 10p 1
P p P nP 29z " P nP n® ( )

where ¢ = gz is the geopotential. Equation (C.14) can be recognized as part
of the equations of motion of the Hirlam model.

e The hydrostatic equation:

18p
;5; +g9=0 (C.l5)

can be rewritten, applying (C.11) into:

13pdn

—_— =0 C.16

pOndz t9g ( )
This equation can be further rewritten as:

19 0z

pOn  “ 9y
and can be recognized as (4.13), the hydrostatic equation of the Hirlam model
used in chapter 4. Using sigma-coordinates this reduces further to:

(C.17)

1 9
;p, E; =0 (018)

where ¢ = gz. Notice that (C.18) is linear.
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® The continuity equation (C.6):

dlnp ~  Ow

Application of (C.11) and (C.12) to the divergence terms of (C.19):

V.ps 2 _g 5 07

Ow 9y
0z v

92 317 nZ + %a—z (C.20)

Applying (C.13) to w = %%:

= <_2> +V Vo2 +i— (C.21)
n

@_g(az) 7.y 0z Vo 98z .3(3z)

__—+ — —
On e On dn "an On

Substituting the foregoing equation in (C.20):
ow 0z 99

* . (0 L .0
.- Y _v.. 24Py 152192, 9
VeVt g, =V Vig (6t+V "+"an) an oy

(C.22)

(C.23)

Furthermore, since
on_ 05,
0z an

oz
d(ln (3))
dt
which can now be combined with ﬂla“t—’-’l in (C.19) to give:

i (o) _a(ag)
d —  dt
Thus the transformed continuity equation becomes:
I

d Op ~

the middle term is just

which can be rewritten into:

d {dp Sdp  dndp
= (517) +Va Vgt 5y =0 (C.25)

which can be furthur rewritten into the continuity equation (4.9) of the Hirlam
model, which is used in chapter 4.
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C.3 Time Filtering

Using finite-difference schemes for non-linear equations the separation of solutions at
alternate time-steps generates two-grid-interval noise in time. This high frequency
noise also appears in atmospheric models as a result of difficulties in observing
initial conditions of large scale atmospheric motions. The observed initial conditions
contain measuremental errors, are influenced by subgrid scale motions that are not
resolved by the model grid, and, finally are completely absent over relative large
areas of the globe.

To increase the damping of the noise in atmospheric models time filtering is used.
This requires at least three consecutive values of the function U(t) to be filtered are
needed. If a filter is continually applied during a numerical integration, the value
U(t — At) has already been changed prior to changing U(t). It is then appropriate
to consider the filter:

Usieerea(t) = U(t) + %S(Uﬁumd(t — At)— 2U(t) + U(t + At))

where S is the filter parameter. This filter is called the basic time-filter.

An analysis of the effect of the time-filter for some particular choices of time
differencing schemes (the leap-frog, implicit and semi-implicit schemes) can be found
in a paper of Asselin[2, p61,62).

C.4 Limited Area Modeling

Most operational meteorological organizations use a limited area model both as an
operational model and as a research tool. At the ECMWF(European Centre for
Medium Range Weather Forecast), the LAM was implemented as a research vehicle
to study the nature of particular phenomena, and to investigate and test a variety
of new techniques before introducing them into the global operational model.

The solution of the mathematical problems and the fulfillment of technical re-
quirements in using a LAM can be very difficult. The boundary values and a ’bound-
ary scheme’ for the treatment of the lateral boundary are the first requirement for
a LAM. Many of the techniques and problems associated with limited area numer-
ical weather prediction models are common to those of other atmospheric modeling
efforts(8].

C.4.1 Boundary Relaxation

The effect of inadequate treatment of the lateral boundaries is the creation of insta-
bilities that can destroy the forecast in quite a short period of time. While the first
two methods can be shown to be inappropriate, the relaxation method has been
found to be effective without any major drawback][9).
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To illustrate this scheme consider the equation:

0X
25 TF(X)=0

The time differencing scheme is the following:

Xn+1 _ Xn—l
2At

+ F(X") = —k(Xn+1 - Xpreccribed) (026)

The term on the right-hand side determines the degree to which the solution relaxes
towards the prescribed value Xprescrived- Therefore near the boundaries k is chosen
to have a large value, whereas away from the boundaries k is small. Solving the
associated homogeneous equation gives the explicit solution:

Xiohution = X"71 — 2AtF(X™)
Substitution in (C.26), gives:

Xl =(1- ) Xt ion + Xt e

where
_ 2Atk
“ = Ty 2AMk
The profile chosen for « is specified by:

a=1- tanh(%)

where j is the number of grid-lengths to the nearer boundary. With these relaxation
factors, while the outermost value of X is replaced completely, the others are a
combination of internal and external values; the importance of the latter decreasing
rapidly. In every time-step linear interpolation is used to update the boundary data
between the 12-hourly intervals data is taken[9].
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Appendix D

Test Programs

D.1 Program par.c

/*

* par.c

*/

#include <locsys.h>

#define Xgrid 10

#define Ygrid 10

#define REPEAT 10

#define Qmax 80

#define PARXY(f) par { REP10(REP10,1); }

#define PARX(?) par { REP10(APP,1); }

#define PARY(f) par { REP10(APP,2); }

#define APP(f,x) £(x)

#define REP10(a,b) a(b,o);a(b,i);a(b,2);a(b,3);a(b,4);\
a(b,6);a(b,6);a(b,7);a(b,8);a(b,9)

char Dummy [4096] ;

channel ch_right[Xgrid+1] [Ygrid]; /+ communication rightwards */

channel ch_left([Xgrid+1][Ygrid]; /* communication leftwards */

channel ch_uplXgrid] [Ygrid+1]; /* communication upwards */

channel ch_down[Xgrid] [Ygrid+1]; /* communication downwards */

/% multiplexer / demultiplexer buffers: +/

float

int
int

em_buf [Ygrid],
wm_buf [Ygrid],
nm_buf [Xgrid],
sm_buf [Xgrid],

qQ;
do_nothing;

ed_buf[Ygrid], /»
wd_buf[Ygrid]l, /=
nd_but[Xgrid], /»
sd_buf[Xgrid]; /»
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#pragma par

pari (x, y)

{ channel *FromWest, *FromEast, *FromNorth, *FromSouth;
channel *ToWest, *ToEast, *ToNorth, *ToSouth;
float dummy, U -north, U_south, U_west, U_east, U;
int r, q;

ToWest = &ch_left[x1[y]l;
FromWest = &ch_right[x][y];
ToEast = &ch_right[x+1]([y];
FromEast = &ch_left[x+1][y];
ToSouth = &ch_down[x][y];
FromSouth = &ch_up([x][y];
ToNorth = &ch_up[x][y+1];
FromNorth = &ch_down[x][y+1];
if (do_nothing)

return;
for (r = 0; r < REPEAT; r++) {
par {
{ *ToSouth = U;
*ToNorth = U;
*ToEast = U;
*ToVWest = U;
}
{ U_north = *FromNorth;
U_south = *FromSouth;
U_vest = *FromWest ;
U_east = *FromEast ;
}
}
for (q = 0; q < Q; q#+) {
dummy = U;
dummy = U;
dummy = U;
dummy = U;
}
}
}
par2 (x, y)
{ channel *FromWest, *FromEast, *FromNorth, *FromSouth;

channel *ToWest, *ToEast, *ToNorth, *ToSouth;
channel SendReady, RecReady;

float U_north, U_south, U_west, U_east, U;
int ri, r2, r3, q;

ResetChan(& SendReady);
ResetChan(& RecReady);
ToWest = &ch_left[x][y]l;
FromWest = &ch_right[x][y];
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ToEast = &ch_right[x+1] [y]

FromEast = &ch_left([x+1][y];

ToSouth = &ch_down[x] [y];
FromSouth = &ch_up[x][y];
ToNorth = &ch_up(x][y+1];

FromNorth = &ch_down[x] [y+1];

if (do_nothing)

channel *ToWest, *ToEast, *ToNoxth, *ToSouth;
float dummy, U_north, U_south, U_west, U_east, U;

int r, q;

ToWest = &ch_left[x][y]l;
FromWest = &ch_right [x] [y]
ToEast = &ch_right[x+1] [y]

FromEast = &ch_left[x+1][y];

ToSouth = &ch_down[x] [y];
FromSouth = &ch_up[x][y]l;
ToNorth = &ch_up[x][y+1];

FromNorth = &ch_down[x] [y+1];
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return;
par {
for (r1 = 0; r1 < REPEAT; ri++) {
*ToSouth = U;
*ToNorth = U;
*ToEast = U;
*ToWest = U;
SendReady = 0;
}
for (r2 = 0; r2 < REPEAT; r2++) {
U_north = *FromNorth;
U_south = *FromSouth;
U_west = *FromWest ;
U_east = *FromEast ;
RecReady = 0;
}
for (r3 = 0; r3 < REPEAT; r3++) {
float locdummy;
RecReady;
for (9 = 0; q < Q; q++) {
locdummy = U;
locdummy = U;
locdummy = U;
locdummy = U;
}
SendReady;
}
}
}
par3 (x, y)
{ channel *FromWest, *FromEast, *FromNorth, *FromSouth:




}

if (do_nothing)
return;
it ((x ~y) & 1)

for (r = 0; r < REPEAT; r++) {

*ToSouth = U;
*ToNorth = U;
*ToEast = U;

*ToWest = U;

U_north
U_south
U_vest
U_east
for (q

*FromWest ;
*FromEast ;

dummy = U;
dumny = U;
dusmy = U;
dummy = U;

}

else

*FromNorth;
*FromSouth;

0; 9 <Q; q++) {

for (r = 0; r < REPEAT; r++) {

U_north = *FromNorth;
U_south = *FromSouth;

U_west *FromWest ;
U_east *FromEast ;
*ToSouth = U;
*Tolorth = U;
*ToEast = U;
*ToWest = U;
for (q = 0; q
dummy
dummy
dusmy
dummy

U;
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test (f)

{

void (*£)();

channel *In = ChannelFrHost(), *Qut =

int overhead, time;

do_nothing = TRUE;
for (Q = 0; Q < B; Q++) {
overhead = timer;
PARXY((*1))
overhead = timer - overhead;
}
do_nothing = FALSE;
for (Q = 1; Q <= Qmax; Q++) {
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Q; q++) {

ChannelToHost();




time = timer;

PARXY((*1))

time = timer - time;

*0ut = (Q << 24) | (time - overhead);

main ()
{ int X, y;

for (x = 0; x < Xgrid+1; x++)
for (y = 0; y < Ygrid; y++) {
RosetChan(tch_right[x][y]);
ResetChan(&ch_left[x][y]);
}
for (x = 0; x < Xgrid; x++)
for (y = 0; y < Ygrid+i; y++) {
RosotChan(&ch_up[x][y]);
ResetChan(&ch_down[x] [y]);
}
par {
west_mux();
vest_demux();
east_mux();
east_demux();
south_mux();
south_demux();
north_mux();
north_demux();
{ test(pari);
test (par2);
test(par3);

T multiplexers: ————————- */

#define east_get(y) em_buf([y] = ch_right[Xgrid] [y]
east_mux ()

{ while (TRUE) {
PARY(east_get)
/#* send em_buf over right link =/
}
}
#define west_get(y) wm_buf([y] = ch_left[0] [y]
west_mux ()
{ while (TRUE) {
PARY(west_get)
/% send wm_buf over left 1ink */
}
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}

#define south_get(x) sm_buf[x] = ch_down[x][0]
south_mux ()
{ while (TRUE) {

PARX(south_get)

/* send sm_buf over lower link */

}

#define north_get(x) nm_buf[x] = ch_up[x] [Ygrid]
north_mux ()
{ while (TRUE) {

PARX(north_get)

/* send nm_buf over upper link */

}
}
e de-multiplexers: —————-wee-- */
#define west_put(y) ch_right[0][y] = wd_but[y]
west_demux ()
{ while (TRUE) {
/* receive wd_buf from left link =/
PARY(west_put)
}
}

#define east_put(y) ch_left[Xgrid][y] = ed_but[y]
east_demux ()
{ while (TRUE) {
/* receive ed_buf from right link */
PARY(east_put)

}

¥define south_put(x) ch_up[x][0] = sd_buf[x]
south_demux ()
{ vhile (TRUE) {
/* receive sd_buf from lower link %=/
PARX(south_put)

}

#define north_put(x) ch_down[x] [Ygrid] = nd_buf[x]
north_demux ()
{ while (TRUE) {
/* receive nd_buf from upper link %/
PARX(north_put)
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D.2 Program seq.c
/*
* seq.c
*/
#include <locsys.h>
#define Xgrid 10
#define Ygrid 10

#define REPEAT 10
#define Qmax B0

char Dummy [4096] ;

float UlXgrid+2][Ygrid+2];

int Q;

int do_nothing;

seql ()

{ int X, ¥, r, q;

float dummy, U_north, U_south, U_vest, U_east;

if (do_nothing)
return;
for (r = 0; r < REPEAT; r++)
for (x = 1; x <= Xgrid; x++)
for (y = 1; y <= Ygrid; y++) {
U_north = U[x][y-1];
U_south = U[x][y+1];
U_west = U[x-1][y];
U_east = U[x+1][y];
for (@ = 0; q < Q; q#+) {
dummy = U[x][y];
dummy = U[x][y];
dummy = U[x][y];
dummy = U[x][y];

seq2 ()

{ int X, ¥, 1, q;
float dummy, U_north, U_south, U_west, U_east;
float *Ux;

if (do_nothing)
return;
for (r = 0; r < REPEAT; r++)
for (x = 1; x <= Xgrid; x++) {
Ux = Ulx];
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for (y = 1; y <= Ygrid; y++) {
U_north = Ux[y-1];

U_south = Ux[y+1];
U_west = U[x-1][y]l;
U_east = U[x+1][y];
for (q = 0; q < Q; q++) {
dummy = Ux[y];
dummy = Ux[y];
dummy = Ux[y];
dummy = Ux[y];
}
}
}
}
seq3a ()
{ int X, ¥, r, q;
float dummy, U_north, U_south, U_west, U_east;
float  *Upi, #Up2, *Up3, *Up4;
if (do_nothing)
return;
for (r = 0; r < REPEAT; r++) {
Upl = Up2 =Up3 = Up4 = & U[0][0];
for (x = 1; x <= Xgrid; x++) {
for (y = 1; y <= Ygrid; y++) {
U_north = U[x][y-1];
U_south = U[x][y+1];
U_vest = U[x-1][y];
U_east = U[x+1][y];
for (g = 0; q < Q; q++) {
dummy = *Upi++;
dummy = *Up2++;
dummy = *Up3++;
dummy = sUp4++;
}
}
}
}
}
seq3db ()
{ int X, ¥, 1, 4;

float dummy, U_north, U_south, U_west, U_east;
float  *Upi, *Up2;

if (do_nothing)
return;
for (r = 0; r < REPEAT; r++) {
Up1l = Up2 = & UL0][0];
for (x = 1; x <= Xgrid; x++) {
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for (y = 1; y <= Ygrid; y++) {
U_north = U[x][y-1];
U_south = U[x][y+1];
U_west = U[x-1][y];
U_east = U[x+1][y];
for (q = 0; q < Q; q++) {

dummy = *Up1;
dummy = *Up1++;
dummy = *Up2;
dummy = *Up2++;
}
}
}
}
}
test (f)
void (*£)();
{ channel *In = ChannelFrHost(), #*0ut = ChannelToHost();
int overhead, time;
do_nothing = TRUE;
overhead = timer;
(*2)O;
overhead = timer - overhead;
do_nothing = FALSE;
for (Q = 1; Q <= Qmax; Q++) {
time = timer;
(*£)(;
time = timer - time;
*Qut = (Q << 24) | (time - overhead);
}
}
main()
{ test(seql);
test(seq2);
test(seq3a);
test(zeq3db);
}

D.3 Program optim.c
/*

* optim.c

./

#include <locsys.h>
#include <stdio.h>
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char Dummy [4096] ;

#define REPEAT 10000
#define TICK 64000 /#* nano-seconds per tick */

float mat2[10][10];
float mat1[10];

sub2 (repeat, count) /* subscript in 2-dim array */

{ int r,c,i=2,j=2;
float dummy;

for (r = 0; r < repeat; r++)
tor (c = 0; c < count; c++)

dummy = mat2[i]([j];
}
sub2opt_ro (repeat, count) /* 2-dim subscript with optimization r.o. */
{ int r,c,i=2,3j=2;
float copy, dummy;
for (r = 0; r < repeat; r++) {
copy = mat2[i][j];
for (c = 0; c < count; c++)
dummy = copy;
}
}
sub2opt_rw (repeat, count) /* 2-dim subscript with optimization r/w */
int r,c, i=2,3j=2;
float copy, dummy ;
for (r = 0; r < repeat; r++) {
copy = mat2[i][j];
for (c = 0; ¢ < count; c++)
dummy = copy;
mat2[i] [j]1 = copy;
}
}

subl (repeat, count) /* subscript in 1-dim array */
int r, c, i=2;
float  dummy;
for (r = 0; r < repeat; r++)
for (c = 0; c < count; c++)
dummy = mati[i];
}

sublopt_ro (repeat, count) /* 1-dim subscript with optimization r.o. */
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{ int r,c, i=2;
float  copy, dummy;

for (r = 0; r < repeat; r++) {
copy = mati[i];
for (c = 0; ¢ < count; c++)
dummy = copy;

}
}
sublopt_rv (repeat, count) /* 1-dim subscript with optimization r/v */
int r, ¢, i=2;
float copy, dummy ;
for (r = 0; r < repeat; r++) {
copy = mati[i];
for (¢ = 0; ¢ < count; c++)
dummy = copy;
matifi] = copy;
}
}
poin (repeat, count) /* pointer dereference */
{ int r, c;
float dummy, *p;
P = & dummy;
for (r = 0; r < repeat; r++)
for (c = 0; ¢ < count; c++)
dummy = *p;
}
pPoinopt_ro (repeat, count) /* pointer dereference with optimization r.o. */
{ int r, c;
float copy, dummy, *p;
P = & dummy;
for (r = 0; r < repeat; r++) {
copy = *p;
for (c = 0; ¢ < count; c++)
dummy = copy;
}
}
poinopt_rw (repeat, count) /% pointer dereference with optimization r/w */
int r, c;

float copy, dummy, *p;

P = & dummy;
for (r = 0; r < repeat; r++) {
Copy = *p;
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int

)

print (value)

{
}

for (c = 0; ¢ < count; c++)
dummy = copy;
*p = copy;

time (f, count)
void (*£)();
int t1, t2;

t1l = timer;

(*1) (REPEAT, count);

t1 = timer - t1;

t2 = timer;

(*1) (2+«REPEAT, count);

t2 = timer - t2;

return (TICK * (t2 - t1)) / REPEAT;

value += §;

Printf(" %2d.%d%d", value/1000, (value%1000)/100, (value%100)/10);

test (name, f)

main ()

char *name;
void (*2);
int i;

printf("%s\t:", name);

for (i = 0; i < 7; i++)
print(time(f, i));

printf("\n");

printf("======= optim.c ===z===\p");
test("sub2\t", sub2);
test("sub2opt_ro", sub2opt_ro);
test("sub2opt_rw", subopt_rw);
test("subi\t", subi);
test("sublopt_ro", sublopt_ro);
test("sublopt_rv", sublopt_rw);
test("poin\t", poin);
test("poinopt_ro”, poinopt_ro);
test("“poinopt_rw", poinopt_rw);
printf (" \n");
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D.4 Program bench.c
/*

* bench.c

*/

#include <locsys.h>
#include <stdio.h>

char Durmy [4096] ;

#define COUNT 50000
#define TICK 64000  /* nano-seconds per tick */

float mat2[101[10];
float mati1[10];
float plain;
channel ch, *chp;

empty (count) /# do nothing #*/
int n;

for (n = 0; n < count; n++)

.
k4

}
subs (count) /% 1-dimensional array access */
{ int i, n;

float dummy;

i=2;

for (n = 0; n < count; n++)

dummy = mati[i];

}

single (count) /# plain variable access */
int n;
float dummy;

for (n = 0; n < count; n++)
dummy = plain;
}

array (count) /# get a neighbor value in a 2-dimensional array */
{ int i, j, n;
float  dummy;

i=j=2;
for (n = 0; n < count; n++)
dummy = mat2[i+1]([j];
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loop (count) /* pertorm one loop over the local grid */
{ int i, j, n;

for (n = 0; n < count/25; n++)
for (i = 0; i < B; i++)
for (j = 0; j < B; j++)

}

chan_get (count)
int n;
float  dummy;
channel #loc_in = chp;

for (n = 0; n < count; n++)
dummy = *loc_in;

3

chan_put (count)
int n;
float dummy;
channel *loc_out = chp;

for (n = 0; n < count; n++)
*loc_out = dummy;

}
#pragma par
chan (count) /* perform one channel communication */
{ par {
chan_get(count);
chan_put(count);

}
}
#pragma seq
int time (f)

void (*£)();
{ int t1, t2;

t1 = timer;

(*1) (COUNT);

t1l = timer - t1;

t2 = timer;

(*£) (2+COUNT) ;

t2 = timer - t2;

return (TICK * (t2 - t1)) / COUNT;
}
print (name, value) /* simulate missing %f directive of printf =/
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char *name ;
{ value += §;
Printt("¥%s\t= %d.%d%d micro-seconds\n",
name, value/1000, (value%1000)/100, (value¥100)/10);

}

main ()

{ int i;
chp = & ch;
ResetChan(chp);
print:f (Y"======= bench.c ======\n") ;
print("Tsubs", time(subs) - time(single));
print("Tarray", time(array) - time(empty));
print("Tchan", time(chan) - 2 * time(empty));
Print(“Tloop"”, time(loop) - time(empty));
printf (" \n");

}

D.5 Program link.c

/*
* link.c
*/

#include <locsys.h>
#include <stdio.h>

#define LEFTLINK 0
#define UPLINK 1
#define RIGHTLINK 2
#define DOWNLINK 3

char Dummy [4096] ;

#define COUNT 50000
#define TICK 64000 /* nano-seconds per tick */

channel chi, ch2;
int link_time, chan_time;

echo (in, out, count)
channel *in, *out;
{ int n;
float dummy;
channel *loc_in = in;
channel *loc_out = out;

for (n = 0; n < count; n++) {
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dummy = *loc_in;
*loc_out = dummy;

}

bench (in, out, count)
channel #*in, *out;
{ int n;
float dummy;
channel *loc_in = in;
channel *loc_out = out;

*loc_out = dummy;
for (n = 0; n < count - 1; n++) {
dummy = *loc_in;
*loc_out = dummy;
}
dummy = *loc_in;
}

empty_echo (in, out, count)
channel *in, *out;
{ int n;

for (n = 0; n < count - 1; n++)
;

}

empty_bench (in, out, count)
channel *in, *out;
{ int n;

for (n = 0; n < count; n++)

.
?

int time (f, in, out)
void (*£)();
channel *in, #*out;
{ int t1, t2;

t1l = timer;

(*1)(in, out, COUNT);

t1l = timer - ti1;

t2 = timer;

(*£)(in, out, 2*COUNT) ;

t2 = timer - t2;

return (TICK * (t2 - t1)) / COUNT;
}

#pragma par
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txr00 ()

{ par {
echo(&chi, &ch2, 3*COUNT);
{
link_time = time(bench, LINKIN(RIGHTLINK),
LINKOUT(RIGHTLINK)) / 2;
chan_time = ( time(bench, &ch2, &chil)
- time(empty_echo, &ch2, &chi)
- time(empty_bench, &ch2, &chi)
)/ 2;
}
}
}
#pragma seq
trio ()
{ ocho(LIlKIl(LEFTLIlK), LINKOUT(LEFTLINK), 3+COUNT) ;
}
print (name, value) /* simulate missing %f directive in printf %/
char *name;
{ value += §;

printf("%s\t= %d.%d%d micro-seconds\n",
name, value/1000, (value¥%1000)/100, (value’%100)/10);

}
main ()
{ int *x, »y;
ResetChan(&ch1);
ResetChan(&ch2);
GetCoordinates(LEFTLIlK, RIGHTLINK, DOWNLINK, UPLINK, &x, &y);
if (x==08&ky ==0) {
printf (Y======= link.c ======z\n") ;
tr00();
print("link-time", link_time);
pPrint("chan-time", chan_time);
print("Tlink", link_time - chan_time);
printf(» \n");
} else
tri10();
}

99



160




Appendix E

Implementation of DYN in C

E.1 Program DYN.c

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/%
/*
/*
/*
/*
/*

SUBROUTINE DYN;
*#4%* DYN - SUBROUTINE TO PERFORM ALL DYNAMICAL COMPUTATIONS
BRONNO DE HAAN HIRLAM 870207
DYN CALCULATES NEW VALUES OF PS T U V AND Q
**  INTERFACE
CALL DYN
DYN WILL BE CALLED IN GEMINI
**  METHOD
RESEARCH MANUAL 3: ECMWF FORECAST MODEL
DYNAMICAL PART
IN CONTRAST TO THE ORIGINAL ECMWF CODE THIS CODE IS BASED ON
OPERATING WITH HORIZONTAL LAYERS. WE START FROM BELOW ( = LEV)
IN THE FIRST (SMALL) PART WE COMPUTE THE TENDENCY FOR PS , NEXT
IN THE (BIG) PART WE COMPUTE THE OTHER TENDENCIES.
Converted to C 29-03-88 by Dick Streefland & Hans Middelkoop

#include <stdio.h>

extern double atof();

#define GRIDLOOP for (x=1; x <= MLON; x++) for (y=1; y <= MLAT; y++)

#define MLONR 34
#define MLAT 34
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#define MLEV 9
#define MLONPT MLON+2
#define MLATPT MLAT+2
#define NLTVIR 1

#ifdef HARRIS
#define INITVAL 1E-13

#else

float INITVAL;

#endif

#ifdef HARRIS
extern 1long clock();

#endif
initi (v)
float v[MLEV];
{ int k;
for (k = 0; k < MLEV; k++)
vik] = INITVAL/(k+1);
}
init2 (v)
float v[MLONPT] [MLATPT];
{ int i, js
for (i = 0; i < MLONPT; i++)
for (j = 0; j < MLATPT; j++)
v[il[j] = INITVAL;
}
init3 (v) '
float  v[MLEV] [MLONPT] [MLATPT];
{ int i, j: k;
for (k = 0; k < MLEV; k++)
for (i = 0; i < MLONPT; i++).
for (j = 0; j < MLATPT; j++)
vix][il1[j] = INITVAL;
}
float  *ALFAp, *ALNPSZp, *BETAp, *DIVKp, *DIVSUMp, *DLNPKp,
*DPKp, *DPSDTp, *DQDTp, *DTDTp, *DUDTp, *DVDTp,
*EDPDEp, *EKp, *FPARp, *HXVp, »HYUp, *OMEGAp, *PHISp,
*PHIp, *PKMp, *PKPp, *PPp, *PSZp, *QZp, *QZpm, *QZpp, *RAHXHYp,
*RDPKp, *RHXUp, *RHYVp, *TVp, *TZp, *TZpm, *TZpp, *UUp, *UZp,
*UZpm, *UZpp, *VVp, *VZp, *VZpm, *VZpp, *ZAHXHYp,
*ZKp, *ZLOGMp;
float  RAHXHY[MLONPT] [MLATPT], ZAHXHY[MLONPT] [MLATPT],
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main()

HXV[MLONPT] [MLATPT], HYU[MLONPT] [MLATPT],
RHXU[MLOXPT] [MLATPT], REYV[MLONPT] [MLATPT],

DPK [MLONPT] [MLATPT], PHI [MLONPT] [MLATPT],
DIVSUM[MLONPT] [MLATPT], PKM [MLONPT] [MLATPT],

PKP [MLONPT] [MLATPT] ,ZLOGM [MLONPT] [MLATPT],

ZLOGP [MLONPT] [MLATPT], RDPK[MLONPT] [MLATPT],

PP [MLONPT] [MLATPT], DLNPK[MLONPT] [MLATPT],
DIVK[MLONPT] [MLATPT],0MEGA [MLONPT] [MLATPT],

ALFA [MLONPT] [MLATPT], BETA[MLONPT] [MLATPT],
TVIMLONPT] [MLATPT], EDPDE[MLORPT] [MLATPT],

DPSDT [MLONPT] [MLATPT], DTDT[MLEV] [MLONPT] [MLATPT],
DUDT [MLEV] [MLONPT] [MLATPT], DVDT[MLEV] [MLONPT] [MLATPT],
DQDT [MLEV] [MLONPT] [MLATPT], UU[MLONPT] [MLATPTI],
VV[MLONPT] IMLATPT], ZK([MLONPT] [MLATPT],

EK [MLONPT] (MLATPT], UZ[MLEV] [MLONPT] [MLATPT],
VZ[MLEV] [MLONPT] [MLATPT], QZ[MLEV] [MLONPT] [MLATPT],
TZ [MLEV] [MLONPT] [MLATPT], PHIS[MLONPT] [MLATPT],
PSZ[MLEV] [MLONPT] [MLATPT], FPAR[MLONPT] [MLATPT],
ALNPSZ [MLONPT] [MLATPT], ABYB[MLEV+1], BHYB[MLEV+i],
ADLNPK [MLEV] ;

long time;
int x, y, K;

float AKM, BKM, CLN, CPD, FCPVD1, RDLO, RDLA, ZLNTOP,
ZLNTP, ZRDLA, ZRDLAH, ZRDLAR, ZRDLO, ZRDLOH, ZRDLOR, ZREPM1,
ZDLY¥PK, ZRDLO4, ZRDLA4, ZLNTP2, DAKH, DBK, DBKH, ZRGASH;

#ifdef HARRIS

HEHEHEEREEEEREEREERR

*
[
i)
0
[

define CO_0 0.0
define CO_1256 0.125
define CO_256 0.25
define CO_5 0.5
define C1_0 1.0
define C2_0 2.0

define C4_0 4.0

define RDLAM 10E-5 /# dummy */
define RDTHE  10E-5 /+ dummy */
define CLN2R1 10.0  /* dummy */
define REAR 6.371E+68

define CAPPA 0.2857143

define RGASD 287.04

define RGASV 461.51

define CPV 1869.46

float co_0
float CO_126
float C0_25

atof("0.0");
atof("0.1256");
atof("0.26");

float CO_6 atof("0.5");
float C1_0 atof("1.0");
float C2_0 atof("2.0");
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#endif

float C4_0 = atof("4.0");
float RDLAM = atof("10E-E");
float RDTH = atof("10E-5");
float CLN2R1 = atof("10.0");
float REAR = atof("6.371E+6");

float CAPPA
float RGASD
float RGASY
float CPV

atof("0.2857143");
atof("287.04");
atof("461.51");
atof("1869.46");

INITVAL = atof("1E-13");

/* initialization */
init1(ABYB); init1(BHYB); init1 (ADLNPK);

init2(RAHXHY); init2(ZAHXHY); init2(HXV); init2(HYU);
init2(RHEXV); init2(RHYV); init2(DPK); init2(PHI);
init2(DIVSUN); init2(PKM); init2(PKP); init2(ZLOGN);
init2(ZLOGP); init2(RDPK); init2(PP); init2(DLNPK);
init2(DIVK); init2(0OMEGA); init2(ALFA); init2(BETA);
init2(TV); init2(EDPDE); init2(DPSDT); init2(UV);
init2(VV); init2(ZK); init2(EK); init2(PHIS);
init2(ALNPSZ); init2(FPAR);

init3(DUDT); init3(DVDT); init3(DTDT); init3(DQDT);
init3(VZ); init3(QZ); init3(VU2); init3(TZ); init3(PSz);

/*

*/
printf("DYN starts\n");

#ifdef HARRIS

#else

#endif

/*

VL

time = clock();

time = timer;

RDLO = RDLAN;
RDLA = RDTH;

INITIALISATION OF PHYSIC CONSTANTS */

CPD = RGASD / CAPPA;

/%

*/
COMPUTATICN OF D PS /D T */

& vulo][0];
& vvlol[o];

UUp
VVp

nn

104



ZAHXHYp = & ZAHXHY[0] [0];
RAHXHYp = & RAHXHY[0][0];
RHXUp = & RHXU[0][0];
RHYVp = & RHYV[0][0];
GRIDLOOP {
*UUp++ = CO_O;
*VVp++ = CO_O;
*ZAHXHYp = REAR / (*RHXUp++ # *RHYVp++);
*RAHXHYp++ = C1_0 / *ZAHXHYp++;
} /* GRIDLOOP */

for (K = 0; K < MLEV; K++) {

DAKH = (AHYB[K+1]-AHYB[K])*CO_S;
DBKH = (BHYB[K+1]-BHYB[K])*CO0_5;
DPKp = & DPK[0][0];

PSZp = & PSZ[K][0][0];

GRIDLOOP {

#DPKp++ = DAKH + DBKH # *PSZp++;
} /% GRIDLOOP */

UUp = & UUL0][0];

VVp = & Vv[0][0];

DPKp = & DPK[0][0];

UZp = & UZ[K] (0] [0];

VZp = & vZ[x][0]l[0];

GRIDLOOP {
*UUp++ = #UUp - #UZp++ * (#DPKp+DPK[x+1][yl);
*VVp++ = *VVp - *VZp++ = (#DPKp+DPK[x] [y+1]);

} /* GRIDLOOP */

} /* LEVELLOOP */

UUp = & UUL0][0];

vvp = & Vv[0][0];

DPSDTp = & DPSDTL0] [0];

HXVp = & HXV[0][0];

HYUp = & HYU[0][0];

RAHXHYp = & RAHXHY([0][0];

GRIDLOOP {

*DPSDTp++ = *RAHXHYp++ *

( (  *UUp++ # *HYUp++ - UU[x-1]1[y] * HYU[x-11[y] )* RDLO
+ ( *VVp++ * *HXVp++ — VVIx][y-1] * BXV[xI[y-1] )* RDLA );

} /* GRIDLOOP */

/* END OF COMPUTATION OD DPS /D T
/*
/* START BIG OUTER K LOOP
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INITIALISATION

PHIp = & PHI[0][0];
PHISp = & PHIS[0][0];
EDPDEp = & EDPDE[0] [0];
PKMp = & PKM[0][0];

PSZp = & PSZ[K][0][0];
ALNPSZp = & ALNPSZ[0][0];
ZLOGMp = & ZLoGM[0][o0];
DIVSUMp = & DIVSUM[0]([0];

GRIDLOOP {
*PHIp++ = *PHISp++;
*EDPDEp++ = CO_O0;
*PKMp++ = *PSZp++;
#ZLOGMp++ = *ALNPSZp++;
*DIVSUMp++ = CO_0;

} /* GRIDLOOP */

T =2 S S S S fsS &S, s ESssSssSsSEs==zs=sss======s==s=:==s=&==-=

AHYB([K];
BEYB[K];
BHYB[K+1]-BHYB[K] ;

[ ]

fa]

=
nun

PSZp
PKMp
PKPp
DPKp
RDPKp
DTDTp
DUDTp
DVDTp
DQDTp

& Psz[kl[o][o];
& PKM[0][0];
& PKp[o][0];
& pDPkol[0];

& RDPK[0][0];

& DTDT[K] [0l [0];
& DUDT[K] [0] [0];
&
&

DVvDT (X1 [o] [0] ;
DQDTIK] 0] [0];

GRIDLOOP {
*PKPp = *PKMp;

*PKMp = AKN + BKM * *PSZp++;

*DPKp = *PKPp++ - *PKNp++;

*RDPKp++ = C1_0 / *DPKp++;

*DTDTp++

*DUDTp++

*DVDTp++ = CO_O;

*DQDTp++ = CO_O;
} /* GRIDLOOP =/

CO_0;
Co_0;

PPp = & PP[0][0];
DLEPKp = & DL¥PK[0][0];
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/*
/%

/*

/*

/*

/*
/*

ALFAp =
BETAp =
ALNPSZp

ALFA[0] [0];
BETA[0] [0];
& ALNPSZ[0][0];

L
new

it (X == 0) {

*/
ZLNTOP = CLN2R1;
ZLNTP2 = C2_O*ZLNTOP;

GRIDLOOP {
*PPp++ = *ALNPSZp++;
*DLNPKp++ = ZLNTP2;
*ALFAp++ = ZLNTOP;
*BETAp++ = ZLNTOP;

} /* GRIDLOOP */

*/
} else {

*/
ZDLNPK = ADLNPK[K];

GRIDLOOP {
*DLNPKp = ZDLNPK;
*PPp++ = *ALNPSZp++;
*ALFAp++ = #DLEPKp * CO_5;
*BETAp++ = *DLNPKp++ * CO_5;
} /* GRIDLOOP */

*/
} /% it x/

*/

COMPUTE VIRTUAL TEMPERATURE AT LEVEL K */
COMPUTE PHI AT FULL K LEVEL */

TVp = & TV[0][0];
TZp = & TZ[K][0]1[0];
QZp = & Qz[x][o0l[o];
ALFAp = & ALFA[0][0];
PHIp = & PHI[0][0];
it (NLTVIR) {

ZREPM1 = RGASV / RGASD - C1_0;
GRIDLOOP {
*TVp = *TZp++ * (C1_0 + ZREPM1 * #*QZp++);
#PHIp++ = *PHIp++ + *ALFAp++ * RGASD * *TVp++;
} /+* GRIDLOOP */

} else {
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/*

/*
/*
/*

GRIDLOOP {

*TVp = *TZp++;

*PHIp++ = *PHIp+ #ALFAp++* RGASD # *TVp++;
} /* GRIDLOOP */

} /* it »/

UUp = & UUlo][0];
UZp = & UZ[K][o0][0];
DPKp = & DPK[0][0];
HYUp = & HYU[0][0];
GRIDLOOP {
*UUp++ = CO_6 * ( DPK[x+1][y] + *DPKp++ # *UZp++ * *HYUp++);
} /* GRIDLOOP */

VVvp = & vv[0][0];
VZp = & VZ[K][0][0];
DPKp = & DPK[0][0];

HXVp = & HXV[0][0];
GRIDLOOP {

*VVp++ = CO_5 * ( DPK[x][y+1]+ #*DPKp++ * #VZp* #*HXVp++);
} /* GRIDLOOP */

COMPUTE DIVERGENCE AT LEVEL K */

UUp = & UUL0]1([0];

Vvp = & vv[0][0];
RAHXHYp = & RAHXBY[0][0];
DIVKp = & DIVK[0][0];

GRIDLOOP {
*DIVKp++ = *RAHXHYp++ * ( ( *UUp++ - UU[x-1]1[yl ) * RDLO
+ ( *VVp++ -VV[x][y-1] ) * RDLA );
} /* GRIDLOOP */

COMPUTATION OF VERTICAL ADVECTION TERMS */
INFLOW FROM BELOW */
IF (K.EQ.NLEV) GOTO 630 */

if (K !'= MLEV-1) {
DTDTp = & DTDTIK][0][0];
DUDTp = & DUDT[k] [ol[0];
DVDTp = & DVDTIK] [0][0];
DQDTp = & DQDT[K] [0J[0];
UZp = & UZ[K1[ol[0];
UZpp = & Uz[Kk+1][0][0];
TZp = & TZ[K][0][0];
TZpp = & TZ[K+1][0][0];
QZp = & Qz[K1[0][0];
QZpp = & Qz[K+1]1[0][0];
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/%

/*
/*

/*

VZp = & vzZ[K][o][0];
VZpp = & VZ[K+1]1[0][0];
DPKp = & DPK[0][0];
RDPKp = & RDPK[0][0];
EDPDEp = & EDPDE[0] [0];
GRIDLOOP {
*DTDTp++

*DUDTp++

*DVDTp++

} /* GRIDLOOP */
} /% IF »/

IF (K.EQ.1) GOTO 660
it (K 1= 0) {

IF = NO INFLOW FROM ABOVE AND NO UPDATE NEED

+DTDTp - CO_E + +RDPKp * +EDPDEp *

( *TZpp++ - *TZp++ );
*DQDTp++ = *DQDTp - CO_5 * *RDPKp++ * *EDPDEp *
( *QZpp++ - *QZp++ );

*DUDTp - CO_5 /( #DPKp +

DPK[x+1][y] ) =

( *EDPDEp + EDPDE[x+1][y] ) *
( *UZpp++ - *UZp++ );

*DVDTp - CO_5 /( #DPKp++ + DPK[x][y+1] ) #

( *EDPDEp++ + EDPDE[x][y+1] ) *
( #VZpp++ - *VZp++ );

UPDATE VERTICAL VELOCITY TERM

DIVKp = & DIVK[0][0];
DPSDTp = & DPSDT[0][0];
EDPDEp = & EDPDE[0][0];
GRIDLOOP {

*EDPDEp++ = #EDPDEp + DBK # *DPSDTp++ + #DIVKp++;

} /* GRIDLOOP =/

INFLOW FROM ABOVE

DTDTp = & DTDTIK] [0] [0];

DUDTp = & DUDT([K][0][0];
DVDTp = & DVDTIK] [0][0];
DQDTp = & DQDT(KI[01[0];

UZp = & vz[K][0][o0];
UZpm = & UzZ[K-1][0]1([0];
TZp = & TZ[K][0][0];
TZpm = & TZ[K-11[0][0];
QZp = & Qz[x][o][o0];
QZpm = & Qz[K-1][0][0];
VZp = & VZ[KI[0][0];
VZipm = & VZ[K-1][0][o0];
DPKp = & DPK[0]J[0];
RDPKp = & RDPK[0][0];
EDPDEp = & EDPDE[0][0];
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GRIDLOOP {

*DTDTp++ = *DTDTp - CO_5 * #RDPKp* +EDPDEp+
( *TZp++ -*TZpm++ );

*DQDTp++ = *DQDTp ~ CO_5 » *RDPKp * *EDPDEp #*
(*QZp++ - *QZpm++);

*DUDTp++ = #DUDTp - CO_5 /( *DPKp + DPK[x+1]1[yl ) #

( *EDPDEp +EDPDE[x+1][y] ) *
( *UZp++ - *UZpm++ );
*DVDTp++ = #DVDTp - CO_6 /( #*DPKp++ + DPK[x][y+1] ) *
( *EDPDEp++ +EDPDE[x] [y+1] ) *
( *VZp++ - *VZpm++ );
} /% GRIDLOOP */

} /% IF »/
COMPUTE OMEGA FOR ENERGY CONVERSION TERM

OMEGAp = & onEcA[o][d];
it (NLTVIR) {

FCPVD1 = CPV/CPD-C1_0;

QZp = & Qz[x1[o][o0];

GRIDLOOP {
*0MEGAp++ = CAPPA / ( C1_0 + FCPVDis *QZp++ );
} /* GRIDLOOP */
} else {
GRIDLOOP {
*0OMEGAp++ = CAPPA;

} /* GRIDLOOP *»/
} /% it =/

OMEGAp = & OMEGA[0] [0];

DPSDTp & DPSDT(0] [0];
TVp = & TV[0][0];
VVvp = & vv[o]l[o];
UUp = & vulo][0];

PPp = & PP[0]J[0];
DIVKp = & DIVK[01[0];
DIVSUMp = & DIVSUM[0][0];
RDPKp = & RDPK[0][0];
DLXPKp = & DLNPK[0][0];
BETAp = & BETA[0][0];
RABXHYp = & RAHXHY[0][0];
GRIDLOOP {
*OMEGAp++ =
*OMEGAp # *RDPKp++ * (  *TVp *
( *DLNPKp++ * (  #DIVSUMp++ + #DPSDTp++ )
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/*
/*

+  *BETAp++ » *DIVKp++
+ CO_26 * *RAHXHYp++ =
¢ *UUp++ *
TVIx+11[yl + *Tvp ) »
PP{x+1][y] - »PPp )
UULx-1] [y] *
*TVp + TVIx-11[y] ) =
*PPp - PP[x-1]1[y]l] ) ) * RDLO
+ ( *VVp++ »
TVIx][y+1] + *Tvp ) =
PP[x][y+1] - #PPp )
Vix] [y-1] *
*TVp++ + TVIxI[y-1] ) #

I NN A W N

NN NN

} /% GRIDLOOP */
END OF COMPUTATION OF OMEGA

COMPUTE ABS VORTICITY + ENERGY

EKp = & EK[0][0];
UZp = & UZ[X][0][0];
VZp = & VvzZ[K1[01[0];

HXVp = & HXV[0]([0];
REXUp = & RHXU[0][0];
HYUp = & HYU[0][0];
REYVp = & RHYV[0][0];
GRIDLOOP {
*EKp++ = C0_25 *
( C UzZ[K][x-1][y] =+ UZ[K] [x-1] [y] * HYU[x-1][y]
+ *UZp * *UZp++ & *HYUp++
) = *RHYVp++ +
( VZIK] [x][y-1] = VZIK][x] [y-1] * HXV[x] [y-1]
+ #VZp * *VZIp++ * #HXVp++
) * *RHXUp++

} /* GRIDLOOP */

ZRDLO4 = C4_O+RDLO;
ZRDLA4 = C4_O+RDLA;
UZp & Uz[x1[ol[o0];
VZp & VZ[x1[ol[o];
REXUp = & RHXU[0][0];
RHYVp = & RHYV[0][0];
ZKp = & zZK([0][0];
FPARp = & FPAR[0][0];
ZAHXHYp = & ZAHXHY[0][0];
DPKp = & DPK[0][0];
GRIDLOOP {

*ZKp++ =

nn

-]
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/*

( *FPARp++ *
( *ZAHXHYp++
+ ZAHXHY[x+1][y] + ZAHXHY [x] [y+1] + ZAHXHY [x+1] [y+1]

) +
( ZRDLO4 =*
( VZ[K][x+1]{y]l / REYV [x+11(y] - *VZp++ / *REYVp++ )
- ZRDLA4 *
( UZ[K][x][y+1] / REXV [x][y+1] - *UZp++ / *RHXUp++ )
)
)/
( *ZAHXHYp++ * *DPKp++
+ ZAHXHY [x+1] [y]+DPK [x+1] [y]
+ ZAHXBY [x] [y+1]+DPK[x] [y+1]
+ ZAHXHY [x+1] [y+1]*DPK [x+1] [y+1]
)
} /* GRIDLOOP */
ADD HORIZONTAL ADVECTION TO THE TENDENCIES */
ZRDLOR = RDLO/REAR;
ZRDLAR = RDLA/REAR;
ZRGASH = RGASD#CO_5;
ZRDLOE = RDLO*CO_5;
ZRDLAH = RDLA*CO_5;

DUDTp = & DUDTIK][0][0];
DVDTp = & DVDTIK][0][0];
DQDTp = & DQDTIK][0] [0];
DTDTp = & DTDTIK][0][0];
REXUp = & RHXU[0][0];

RHYVp = & RHYV[0][0];
UUp = & UUL0][0];
VVp = & Vv[0][0];
PPp = & PP[0][0];
TVp = & TV[0][0];
TZp = & TZ[KI[01[0];
QZp = & Qz(x1[o][0];
ZXp = & ZK[0][0];
EXp = & EK[0][0];

PHIp = & PHI[0][0];
RDPKp = & RDPK[0][0];
RAHXEYp = & RAHXHY[0][0];
OMEGAp = & OMEGA[0][0];

GRIDLOOP {
*DUDTp++ = *DUDTp + *RHXUp++ *
( co_125 * ( 2K[x][y-1]+ *2Kp )
* ( *VVp + VWWix+1]1[y]l + VV[x][y-1] + Vix-1][y-1] )
- ZRDLOR *

( PHI[x+1][y] - *PHIp++ + EK[x+1] [y] - *EXp
+ ZRGASH * (*TVp + TV[x+11[y]) * (PP[x+1]1[y]l - *PPp)));
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*DVDTp++ = #DVDTp ~ *RHYVp++ #
( €0_126 * ( ZK[x-1][y] + *ZKp++ )
* ( UU[x-1] [y+1]1+UU(x] [y+1]
+UU[x-1] [yl+ *UUp )
+ ZRDLAR  *
( PHI[x][y+1]- #PHIp++ + EK[x][y+1]- *EKp++
+ ZRGASH * (*TVp++ + TV[x][y+11) * (PP[x][y+1] - *PPp++)));

*DTDTp++ = #DTDTp - +RDPKp * +RAHXHYp *
( ZRDLOH * ( *UUp * ( TZ[X] [x+1][y]l- *T2p )
- UWIx-11[yl * ( TZ[K][x-1][y]- *TZp ) )
+ ZRDLAH * ( *VVp * ( TZ[K][x][y+1]- *TZp )
= Wix][y-1]1 * ( TZ[X][x][y-1]- *TZp++ ) ) )
+ *0MEGAp;

*DQDTp++ = +DQDTp - +RDPKp++ * #RAHXHYp++ *

( ZRDLOH * ( #UUp++ * ( QZ[K] [x+1]1[y] - *Qzp )
= UULx-110y]l * ( Qz[X]1[x-1][y] - *QZp ) )
* ZRDLAR * ( »VVp++ * ( Qz[K][x][y+1] - +Qzp )
= Wix][y-1] * ( Qz[K]([x][y-1] - *QZp++ ) ) );
} /* GRIDLOOP %/

/% UPDATE PHI PART TWO FROM LEVEL (K) TO LEVEL (K-1/2) */

/* UPDATE SUM OF DIVERGENCE FROM LEVEL NLEV TO LEVEL K */

/* : */
it (K>0) {

/* */

PHIp = & PHI[0][0];

BETAp = & BETA[0][0];

TVp = & TVI0][0];

DIVSUMp = & DIVSUM[0][0];

DIVKp = & DIVK[01[0];

GRIDLOOP {
*PHIp++ = #PHIp+ *BETAp++ * RGASD * *TVp++;
*DIVSUMp++ = #DIVSUMp+ #DIVKp++;

} /* GRIDLOOP #*/

AR */
} /% it »/

/* e */
} /* GRIDLOOP */ .

/*================================== */

/* END OF BIG OUTER LOOP OVER K */

#ifdef HARRIS
time = clock();
#else
time = (timer - time) * 64;
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#endif
printf("DYN ready.\n");
print? ("Time used : %4 milli-seconds \n", (time+500)/ 1000);
time /= MLON * MLAT;
printf(“Per gridpoint: %d u-seconds \n", time);
} /% main */
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Appendix F

Test and working environment

This appendix describes the environment in which the development of the test soft-
ware w.r.t. the HIRLAM model has taken place.

F.1 Hardware

In order to support and stimulate small high technology companies it was decided
to use hardware from the hi-tech company Parsec, selling special purpose systems
as well as general purpose hardware related with transputers. The system finally
delivered consists of the following items:

¢ A Rack with power supply and backplane.

® 4 Double eurocard processor boards. Each board has 4 transputers with 1 Mb
of RAM for each transputer!.

¢ 1 Double eurocard board containing a transputer to/from RS232 link adapter

Each processor-board offers the possibility to put either the T414 or the T800
version of a transputer on the board, the second being the fastest but not yet avail-
able in a reliable version. In this way the upgrade to the fastest possible configuration
is relatively easy.

The links of each transputer can be freely connected to any other transputer, so
any network structure can be built from the supplied hardware. In the case of the
calculations involved with the weather prediction model a mesh? architecture was
chosen, in order to obtain an easy mapping from the HIRLAM model to the actual
hardware. One of the transputers at the edge of the network is connected via the
RS232 adapter to the host machine, in this case a HCX-9, a UNIX machine from
Harris.

The architecture of the test hardware amounts to the picture shown in figure F.1.

1At the time of this writing only one board has 4 T414 transputers.
2Network where transputers are connected like a square grid.
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— |T414| 1 MB T414 lhgl

HCX-9

T414| 1 MB| T414| 1 MB

RS232

Figure F.1: Hardware Configuration

F.2 Software

Development of software was done on the HCX-9 connected to the transputer net-
work. For the transputer system a cross-compiler in development for the language C

was supplied by Parsec [18]. This compiler was used for further programming the
transputers.

F.2.1 Support

In order to enhance the capabilities offered by the C-compiler, considerable effort
was made to provide a reliable programming environment. Eventually the software
development system included the following;:

e C cross-compiler on the HCX-9.

¢ Bootstrapping software to load compiled C programs on a complete network
of transputers.

¢ A monitor to communicate with the transputers and perform several other

functions like booting, analyzing the network, and simulation of some C stan-
dard I/O routines on the HCX-9.

This development took place in close cooperation with Parsec, which also used the
environment and a resulting demonstration program on the CE-BIT in Hannover.
Together with Harris, Arcobel and Parsytec, a project was started in order to create
a fast communication medium between the HCX-9 and the transputer network as a
replacement for the slower RS232 connection.
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