Bit-serial Systolic Squaring Algorithms

Mark R. Kramer

-CS-88-2
April 1988

Rijksuniversiteit Utrecht

LWike
%*:ﬁ’ Vakgroep informatica
s d‘¢ Padualaan 14 3584 CH Utrecht . . e
Corr. adres: Postbus 80.089, 3508 TB Utrecht

Telefoon 030-531454
The Netherlands

Bit-serial Systolic Squaring Algorithms

Mark R. Kramer

Technical Report RUU-CS-88-20
April 1988

Department of Computer Science
University of Utrecht
P.0.Box 80.089, 3508 TB Utrecht
The Netherlands

Abstract

In this report a number of bit-serial systolic squaring algorithms are derived by
systematic reasoning. Two algorithms are worked out in detail. The algorithms are
especially well suited for hardware implementation.

The space and time complexity of all algorithms presented here is linear in the
length of the numbers to be squared. This compares favourably to systolic bit-
parallel squaring, where the space complexity is quadratic, while the time complexity
is linear. Furthermore, the systolic arrays presented here are easy to expand to
process numbers of greater length.

1 Introduction

With increasing densities of integrated circuits ever more complex functions may be
offered in hardware at ever lower costs.

At the same time, to take advantage of integration, it is necessary to make regular
designs using many identical simple elements. Although some global communication
structures may be implemented efficiently, local communications on grids or arrays
are necessary to exploit the full parallelism offered in VLSI. Kung introduced the
idea of systolic algorithms to meet these requirements ([Ku79,KL79}).

A systolic algorithm consists of an array or grid of almost identical cells. These
cells operate in lock step and communicate synchronously with neighbouring cells.
Usually data is pipelined through the array like blood is flowing through the arteries
(hence the name “systolic”), but in some systolic algorithms global broadcasting is
used as well. External I/O is usually performed at the boundaries of the array by
special cells that behave to the rest of the array as if they were ordinary systolic
cells.

In [Hu86] a bit-parallel systolic squaring algorithm is presented. Its time com-
plexity is linear in the length of the numbers to be squared, while its space complexity
is quadratic. This algorithm was designed to be used as part of a 3D-graphics en-
gine, but it turned out to be faster than necessary. The question arises whether it is
possible to find a slower algorithm by saving a significant amount of hardware.

This is a special instance of the trade-off between time and space (area or mem-
ory) that occurs at many places in algorithm and hardware design. At the lower levels
of hardware-design this trade-off is encountered as the choice between bit-parallel
and bit-serial computations. In this report we present a number of bit-serial algo-
rithms that use only a linear amount of hardware. The processing time is increased
by a constant factor, compared to the bit-parallel algorithm.

Two of the algorithms are worked out in detail in section 5 (see also figures 8
and 9). In sections 3 and 4 these algorithms, together with a whole family of related
approaches, are derived in a systematic manner. The following section gives some
preliminaries from which we start the investigations.

Section 6 states the space and time complexity of the algorithms presented.
Finally, in section 7 some possible other approaches are briefly described.

2 Squaring, multiplication and convolution

Taking the square of a number (in any representation) is just taking the product of
that number with itself, so one could also use a multiplication algorithm to square
a number. However, because of the additional information that the operands are
identical, we can hope to save time and/or space by using a special squaring algo-
rithm. The algorithm presented in [Hu86] in fact gives a reduction of a factor 2 in
space and a factor 1.5 in time as compared to a parallel systolic multiplier.

As we will show now there is a relation between multiplication and convolu-
tion. This is particularly important because a number of serial systolic convolution
algorithms have been published, on which we would like to build.

2.1 The relation with convolution algorithms

Multiplication of binary numbers (or numbers in any other positional representation)
is related to convolution of vectors in the following way:

Convolution of a vector z (={z;}) by a vector w (={w;}) to form vector y (={y:})
is defined by

¥yi = ij *Ti-j
J

where all non-existing w,’s and z;_;’s are treated as 0.
Alternatively this may be written as

Ye= D wi-z;

i+i=k

A similar pattern is found in multiplication of binary numbers a = ¥; q; - 2 and
b=Y;b;- 2 to form the product p = ; p; - 2°. This product may be written as

Dk = Z a;-bj+ck

i+)=k

In this formula ¢; denotes the carry from lower order bits. In fact the pi obtained
has to be split in a result bit and a carry cxy1, which in turn will be used in
computing pr+1. By the use of special full adders as in [Hu86] each temporary
result, as it is generated, may be split in a least significant bit and a carry. Thus
binary multiplication may be viewed as convolution plus carry-handling.

In [Ku82] Kung gives a number of systolic convolution algorithms, all based on
a linear array of cells. The weights (w, i.e. one operand), inputs (z, i.e. the other
operand) and results (y) each constitute a stream of data elements (w;, z; and yj re-
spectively). Each of these streams may be moving through the array independently.
In some of these algorithms one of the operands is stationary, however, while in some
others the results are stationary. We could easily adapt any of these algorithms to
the multiplication problem, provided that the results flow in a direction such that
lower order results come first. This is necessary to be able to process the carries
appropriately.

Unfortunately, in each of Kung’s convolution algorithms where the results move
in the desired direction, one of the operands is stationary. This would result in a
multiplication algorithm in which one of the operands is to be preloaded in parallel.
In a squaring algorithm preloading is not strictly necessary, since both operands
are identical in that case. Instead, the stationary operand may be loaded from the
moving operand. However, this would rise the need for additional control. Therefore

such a convolution algorithm does not seem the right starting point for an efficient
squaring algorithm.

In the next sections squaring algorithms are presented in which results as well as
the two operands are moving. Because those algorithms rely on the fact that iden-
tical operands are used it may be hard to generalise them to convolution algorithms
in which operands as well as results move.

2.2 Optimisations for squaring

To obtain an efficient bit-serial squaring algorithm we need something like a con-
volution algorithm in which the results as well as both operands are moving. To be
able to process the carries appropriately, the streams should be moving in a direction
such that lower order bits precede higher order bits.

Furthermore we want to take advantage of the fact that the operands are identi-
cal. Firstly, we observe that the product a;-a; is computed twice unless ¢ = j, so we
might as well compute it only once, giving it double weight for ¢ # j. Secondly, bit ¢
of the first operand stream meets bit ¢ of the second stream exactly once. Therefore
we may obtain the second stream by copying each a; from the first stream at the
place where the a;’s would meet otherwise. Now a; is not present in the second
stream until it is copied, so a part of the products will not be computed. But, by
the necessary regularity of the computation, those absent products will be products
of a; with bits a; which either are all higher ordered or are all lower ordered. In

either case these product bits will be computed from the copied a; and the a; from
the complete stream.

Thus we obtain the following situation:

~ One operand stream is moving such that the lower order bits precede the
higher order bits.

— A second operand stream is constructed by copying from the first stream at
appropriate positions.

- In any element where valid bits from both streams are available a product bit

with double weight is computed, except for the element(s) where copying takes
place.

— In the copying element(s) a product bit with single weight is computed.

— Finally, all product bits are collected in a result stream which should also move

in a direction such that lower order bits precede higher order bits.

Now, by shifting the result stream, we may compute all product bits with single
weight, giving the special product bits half weight. In fact these special product bits
have to be added at the preceding position in the result stream.

Now there are still many possibilities, so we may make additional assumptions.

P m——ny P

_..-.._i.___..L-_..._-J_-__.!__-.___._

< eduecmgreabaaao

b. Streams moving in opposite directions

Figure 1: The main approaches

3 Data stream considerations

We will now first concentrate on those aspects of the squaring algorithms that do
not depend on the details of the computation steps. In fact in this section we will
consequently argue about digits instead of bits. In particular this has the effect that
if technological considerations lead to the conclusion that e.g. byte-wise operations
are more efficient, only details of the resulting algorithms need to be changed.

The discussion in the previous section led to the situation of one operand stream
that is copied to a second (identical) operand stream at appropriate positions in
a linear array of cells. Because this leaves many possibilities we make the (more
or less arbitrary) choice that there is just one single cell in which copying occurs.
Thus we need only one special element in the resulting algorithm. It is possible,
however, that other choices result in less complex cells. We will briefly discuss other
possibilities in section 7.

Consequently, in the following algorithms there is only one cell in which each
digit meets its copy. So this will be the only place to take care of weights of partial
results. We have to distinguish between the case that both streams move in the
same direction and the case that they move in different directions. Figure 1 gives
the two resulting situations. The special cell is indicated by small mirrors that split
the original stream into two copies. We see that the special cell is always at an end
(either the “start” or the “end”) of the resulting array. :

We will investigate the two situations separately. Before analysing these two
cases, we make some observations that apply equally to both situations.

In what follows we will consider the speeds of data streams. The data rate of a
stream at some point is the amount of data passing that point per time unit (usually
a clock period). The speed of a stream is the mean distance (in number of cells) the

data elements move per time unit.

Now, for any stream that passes unaltered through a cell, the rate of data entering
the cell should be equal to the rate of data leaving the cell, since there is only a
fixed amount of memory in a cell. For the same reason the data rates of the two
operand streams should be equal by our assumption that copying takes place at one
fixed cell.

However, in the following we will conclude that the operand streams should have
different speeds. Then the only way to maintain the equal data rates is to pass one
stream through more pipeline latches than the other.

From the speeds of the operand streams the speed of the result stream may be
obtained as will be shown at the appropriate points in the discussions. Here we
show that the data rate of the result stream should however always be twice the
data rate of the operand streams. This is a consequence of the fact that the length
of the result is twice the length of the operand.

Let X and Y be the number of latches per cell in the first (original) and second
(copied) stream respectively. At a certain moment a cell will contain the elements

ak,-...,0kyx—-1 and ay, ..., a4y_1 giving partial product digits pr4i, .- ., Preis x4y —2
(or a subset thereof). After the operand streams have moved by one position that
cell will contain ary1,...,ak+x and aj4a,...,q4y GIVIDE Pryitzs-- -, Pkyl+X4Y- SO

when the operands have moved by one position, the results must have moved by
two positions. This is another way of saying that the data rate of the result stream
is always twice the data rate of the operand stream.

Now we turn our attention to the two distinct relative directions of movement
for the operand streams. Because at first sight it seems easier to find an algorithm
in which the streams move in different directions, we will discuss that approach first.

3.1 Different directions

If both streams move with the same speed the first problem will be to make sure
that every element of the first stream meets every element of the second stream.
This is not really a serious problem. But even if this problem is solved, another
problem remains: When ao meets a;, then at that same moment a; meets a;_;, a;
meets a;_; and so on, all giving a contribution to the same result digit. But then it
is far from straightforward (or even impossible) to assemble these product digits in
a regular way by means of local communications.

Therefore the streams should have different speeds, so one stream should pass
through more delays (i.e. latches) per cell. Now we still have to find a suitable
number of delays such that results may be assembled in a regular way.

Now we return to the problem that every digit has to meet every other digit.
Suppose that consecutive digits from a stream are stored in consecutive latches in
the array of cells. Furthermore suppose that all these latches are clocked at the
same moment. Then the situation occurs that in some two neighbouring cells A and
B there is an element a; in A to be transferred to B in the next clock-cycle, and an

element a; in B to be transferred to A at the same time. But then a; and a; will
never meet. .

So we conclude that either there have to be empty slots in the streams or not
all latches should be clocked at the same moment. Unless a multi-phase clocking
scheme is used, the second option is impractical. On the other hand, if a multi-
phase clocking scheme is used we could as well view every phase as a separate clock
period (from an algorithmic point of view). As a result empty slots in the streams
are created between latches that are clocked in different phases. In the following
discussion we therefore assume that all latches are clocked at the same time, and
that in the streams dummy elements are included to ensure that all proper elements
meet each other.

By the necessary regularity of the systolic algorithm to result, we get a stream in
which proper elements and dummy elements are interleaved in a regular way. The
simplest form conceivable consists of a stream in which proper elements and dummy
elements (denoted by A henceforth) alternate. This approach was also used in some
of the algorithms presented in [Ku79]. It turns out that this simplest form leads to
an acceptable result. Because more complex forms will lead to more complex cells
as well, we will not consider other possibilities.

It is easy to see that the number of delays per cell should be odd for at least one
of the operand streams. Now, if the other stream has an even number of delays per
cell, the same argument as before shows that at one of the boundaries elements pass
without giving a contribution to the final product. Therefore the number of delays
per cell should be odd for both operand streams. Furthermore, the two streams
should have different speeds, so the simplest approach has one delay per cell for one
stream and three for the other.

Now there are again two possibilities: either the three delays are in the original
stream, or they are in the reflected stream. This is not a serious difference however.
Suppose we forgot which stream was the original one, then there is no means to find
out except by looking at either end of the array of cells. In all intermediate cells
there is no noticeable difference between the two cases. We will now first study the
common part in these two solutions.

Without loss of generality we assume that the stream that passes through three
delays per cell moves to the left. Consider two cells A and B, with B right of
A (see figure 2). Suppose at time ¢ cell A contains the elements ax_q, A, ax and
B contains A,akg+1,A. Then B should contain a dummy element from the other
stream, because a proper element a; in B would still pass a; without a contribution
to the product. So cell A contains a; from the second stream whereas B contains A.

Therefore at time ¢ the partial results pxy;_1 and px4; may be computed in A,
while B gives no results. At time ¢ + 1 cell A contains A,ax, A and A, while B
contains ai41,4, a4z and a;, giving partial results pgii41 and pryryz in B, while 4
gives no results. At time ¢t + 2 cell A contains ax, A, a4 and a;4,, while B contains
A, axy2,A and A, giving partial results pryi41 and pryiy2 in A, while again B gives
no results.

t+1

t+2

Figure 2: Snapshots for arrays with operands moving in different directions.
Note: px4i stands for a contribution of aj - a; to pr4s etc.

A B
-1 A ar p— A Gx41 A
Pe+l-1 Pkl

a; - A

A B
A G A G411 A Gk42

Pr4l+1 Pk+i42

A - aj

A B
Ak A Gy~ A Gk42 A
Pk+i41 Dk4i42

ar41 — A

A
s
b
w3

4
s
B>
=3

Figure 3: Symbolic representation of the algorithms with data moving in different
directions

We see that the result digits move in the same direction as the slower stream,
where two digits at a time move one cell per time unit. So the speed of the result
stream is 1, while the data rate is also 1 (being twice the effective data rate of the
operand streams). Hence the number of delays per cell for the result stream should
be 1 too.

Now it is convenient to incorporate dummy elements in the result stream as well,
i.e. the cells not giving valid results compute dummy results. But then the number
of delays has to be doubled, while the speed of the result stream should not be
altered. This can be achieved by splitting the result stream into two independent
streams, one for result digits with odd index and one for result digits with even
index. The data flow of this algorithm is depicted in figure 3.

The discussion up to this point was independent of the choice of which operand
stream was the slower one. As indicated before the difference occurs at the ends of
the array. We have shown that the result stream moves in the same direction as the
slower of the two operand streams. If the original stream is the slower one, then we
conclude that the results travel towards the cell where the stream is reflected. So
results have to leave the array at the other end than where operands are input in
this case. In the other case results leave the array at the same end where operands
are input. Because the latter solution needs only one special I/O-cell, it has some
preference over the other solution. In section 4.2 we will find a second reason why
the latter solution is better.

So we prefer the case where the result stream and the original operand stream
move in different directions. This solution is obtained if the original stream passes
through one delay per cell, while the reflected stream passes through three delays.

In section 4 we will study these solutions in more detail.

— Q41 ag Qr—1 k-2 (>
t Pe+i+1 P | (Pryi-1) | PhHi-2 Pr41-3
— a aj_1 —
A B
—s Gfy2 Qr41 ag ak-1 —
t+1 Prti+3 Pkti+2 | (Prpis1) | PeHl Pr4i-1
s a1 ay -—

Figure 4: Snapshots for arrays with operands moving in the same direction

3.2 Same direction

Now we turn our attention to the other main approach, where the two operand
streams move in the same direction.

It is easy to see that two streams moving at the same speed in the same direction
will not give all product digits. Again the data rate should be the same for both
streams. So one of the operand streams has to pass through more delays, as in the
case for streams moving in different directions, and again we have to find a suitable
number of delays per cell.

In contrast to the previous situation, now there is no a priori reason to incorpo-
rate dummy elements in the operand streams. If there are no dummy elements at
all, it is not necessary that there is an odd number of delays per cell in each stream.
Consequently, the simplest case when the operand streams move in the same direc-
tion is the situation where each cell has one delay for one stream and two for the
other.

Now, since both streams move in the same direction, there is no difference what-
soever between original stream and copied stream. In fact the copying cell is the cell
where data enter the array, and the two streams are just two copies of the incoming
data. Again we have to find out the speed of the result stream. So consider two
cells A and B, with B to the right of A (see figure 4). We assume operands move
to the right.

Suppose at time t cell A contains the elements ag41,ax from one stream and g
from the other stream. Then B contains ax_1, ax_z and a;_;. So at time ¢ the partial
results pr4i41 and pry may be computed in A, while B gives pryi_z, Pryi—3. At time
t+ 1 cell A contains aity,ax+; and aj4q, while B contains ax,ar_; and a;, giving
partial results pxii43, Prti+2 in A and pryy, prys—y in B.

From this information we may calculate the speed of the result stream and so
obtain the number of delays to be included per cell in the result stream. The only
contributions to the same product digit here are those to px,;, so we are tempted to
conclude that the speed of the result stream is 1. In reality pg,; has only travelled
2 cell in one time unit, however.

To find the speed of the result stream we might either extend the foregoing
analysis to three cells and three time steps, or trace all product digits, including
‘invisible’ ones. In the latter approach there is an invisible product digit between A
and B: at time ¢ this is prys_1, at time ¢ + 1 it is pry4q (see figure 4). Now, in the
resulting row of product digits all digits move two positions to the right in a time
step, while there are three product digits per cell (two visibles and an invisible). So
the distance a digit moves per unit time is two-thirds of a cell.

As we have seen before, the data rate of the result stream should be 2, so the
number of delays per cell should be 3 for the result stream. Note that in fact in the
analysis we just calculated the speed from the data rate and the number of delays,
which we derived to be 2 and 3, respectively.

4 Further exploration of the algorithms

Now we have found three algorithm skeletons based on the assumption that stream
copying is done in only one cell. We still have to fill in all details concerning the
exact computational operations.

In this section we will refer to the different algorithms as algorithm Ia, Ib and II.
Algorithms Ia and Ib have operand streams moving in different directions, with the
reflected stream passing through three delays per cell in Ia and one delay per cell
in Ib. Where the difference between Ia and Ib is not relevant we will simply write
algorithm I.

In algorithm II the operand streams move in the same direction.

4.1 Finding all contributions to the product

So far we have not even confirmed that every bit meets every other bit. We have
only considered necessary conditions but it is not yet clear that these conditions
are also sufficient. Therefore we have to prove that in all proposed skeletons every
bit a; meets every bit a; at least once. If : = j then clearly a; meets aj, namely
in the copying cell. Now suppose without loss of generality that : > j. For i — j
sufficiently small it is always possible to force a; and a; to meet by taking the special

10

cell complex enough. So suppose that we already know that a; meets-a; for some
t 2 j. Now we have to prove that a;;; meets a; and a; meets a;_;. In fact it is
sufficient to prove either one of these.

Looking back at figures 2 and 4 we consider each of the proposed skeletons
separately:

e Let in algorithm Ia a; and a; meet in cell A at time ¢.
Then a; = a; and either a; = ax_; or a; = a;.
In the first case a;4; = ax meets a; = q; at time ¢ in cell A.
In the second case @iy = ar41 meets a; = a; at time ¢t + 1 in cell B

o Let in algorithm Ib a; and a; meet in cell B at time ¢ + 1.
Then a; = a; and either a; = ary1 or a; = agq2.
In the first case a; = a; meets a;_; = a; at time ¢ in cell A.
In the second case a; = a; meets a;_; = ax41 at time ¢t + 1 in cell B.

o Let in algorithm II a; and a; meet in cell A at time ¢.
Because the lower stream moves faster, aq; is newer than az;; and ay, i.e.
> k+1. So a; = a; and either a; = ax41 or a; = ax.
In either case a; = a; meets aj_; = ax or a;_; = aj_; at time ¢t + 1 in cell B.

So by induction over ¢ — j we prove that indeed every a; meets every a;.

Furthermore from this analysis we find the number of cells needed to square an
n-bit number. Assume that the copying cell is as simple as possible. So the only
a; and a; that meet there have ¢ = j. Then n — 1 steps of the foregoing analysis
are needed. In algorithm Ia as well as algorithm Ib the elements meet in the next
cell at every other step of the analysis. Therefore n/2 cells are needed in total.
In algorithm IT a new cell is encountered at every step, so in that case n cells are
needed. If the special cell is more complex such that more a’s meet there then the
number of cells needed decreases by a (small) constant.

Now we know that every operand bit meets every other operand bit at least once.
But of course we need only one contribution of a; - a; to the final result for any ¢
and j. From figure 2 it is easy to see that every a; meets every a; at most once and
hence exactly once. We conclude that in algorithm I at every occasion a product
bit should be computed.

But for algorithm II we see from figure 4 that a; meets aj, twice (in fact: at least
twice, but it is easy to show that they meet no more). So in this case not at every
occasion a product bit should be computed. Note that in any cell two product bits
may be computed. Call them the left and right product bit. Then the left product
bit of cell B at time ¢ 4+ 1 is the same as the right product bit of cell A at time ¢.
This holds for all cells except at the ends of the array. So it is sufficient to compute
in all cells either the left product bit or the right product bit. If all left product
bits are computed an exception occurs at the right end of the array, where the last
right product is not taken over by a next cell. If all right products are computed

11

A~
]
i~

Figure 5: Symbolic representation of algorithm II

the exception occurs at the left end. Since the cell at the left end is already special,
we prefer the latter case.

This leads to the situation of figure 5. Note that figure 3 may be viewed as the
corresponding figure for algorithm I. The choice which cell contains a certain latch is
arbitrary if the contents of that latch is not involved in the computation. So in fact
it does not really make a difference whether the left products or the right products
are computed, the only difference being the placement of cell boundaries.

4.2 Assembling the product bits

Now we are ready to concern the problem of how to assemble product bits. In each
internal cell a product bit is received that depends on a part of the operand bits.
The cell adds the product of just one other pair of operand bits to this partial result
and sends that result bit to the next cell. Let a; and a; be the operand bits used
in this cell; call the incoming product bit pl,;, and the outgoing product bit pf, ;.
Then naively we find
Piyj = Piyj t+ai-a;

But as indicated in section 2.2 this might result in a carry, which has to be added
to the next product bit. Consequently, we have to include a carry (¢;4+;) from the
previous product bit as well, giving:

Citj+l : Piys = Pigj T 6 - @i + Ciyj
where ¢ : p denotes 2¢ + p for bits ¢ and p.
The carry c;yj41 has to be added to p, ;,,, possibly giving a carry ci4;42. This
carry in turn has to be added to p] ;,,. That can always be done in the same cell at

a later time (one or two clock periods later, depending on which skeleton is used),
when

. -) . "
Citj43 * Piyjea = Pipjez T Git1 " Gjt1 + Citjy2

12

is computed. Therefore we may assume that all carries are kept locally. Note,
however, that many cells contain their own instances of c;y; in the course of a
computation. Now, at any time three bits have to be added together in a cell, so
the result can always be represented by one carry-bit and one result bit. In this way
no further complications arise, so no additional carry bits are needed in a cell.

The derived computation is shown in figure 6a. In algorithm II this computation
is performed in every cell. In algorithm I two pairs of operand bits per cell are mul-
tiplied in the same clock period, so there a more complex computation is performed.
This computation is shown in figure 6b, but it has been reflected to be able to use
it directly in later figures.

As argumented in section 2.2, the special cell that takes care of ‘copying the
operand stream should compute product bits with half the usual weight. This means
that the partial product bit computed by this cell should be assembled in the result
stream at a position preceding the position where another cell would have placed it.
But then suddenly four bits have to be added instead of three: an incoming partial
product, a normal product bit, the carry from the lower-ordered bits and the half-
weighted product bit. So this special cell should keep two carry bits and perform a
more complex addition, unless we can get rid of one of the bits to be added.

Now notice that the partial product bits that depend on no operand bits so far,
have to enter the array as zero’s. Moreover, they have to enter the array at that
end from which the results travel through the array. If the special cell is at that
end of the array, we may reduce the complexity of the special cell by discarding the
incoming partial product.

Indeed this situation occurs in algorithm Ia as well as algorithm II, but not in
algorithm Ib. So here we have the additional argument, referred to in section 3.1,
in favour of a slower copied stream. Henceforth we will not go into further details
of algorithm Ib.

To be able to add the half-weighted result at the right place we have to compute
the preceding result bit in the special cell as well. The resulting computations for
the special cell are given in figure 7. Since the upper adder now has only one input
its sum output is identical to its (single) input, while the carry output is always
zero. So this adder may as well be removed, while fixing cg;_1 (i.e. the delayed
carry output) at 0. Then in figure 7a the other adder becomes superfluous too.
Furthermore g; - a; = a; for single-bit a;, so the corresponding multipliers may be
removed.

5 The algorithms

In the preceding sections we derived all parts for two bit-serial systolic squaring
algorithms. In the following subsections we put together all parts to form the final
algorithms.

To complete the algorithms we also have to specify the external behaviour of

13

Pitjt1 +

Pit;

N Citj “—na

a. algorithm II

p-——e- Citj+2 a; Git1

[}
t
E !
1
/4
pc+,1+l‘—!_ + ™~ p:'+j+1
: "\
' X
]
1 Citjh
' / X
1
'
' 1 /
. . ‘—.—. - -
Piyj E + e Diyj
: i
:
“---e Citj — a; —

b. algorithm I

Figure 6: Computations performed by internal cells
See figure 10 for an explanation of the symbols used

14

a; €i-1=0

Q-1 a;
N
P”' ¢ 1 '
23 1)
1 1

L el ¢ whe -

1 I

R

1 [}

Co; --

c2i-1 =0 a; —
b. algorithm I

Figure 7: Computations performed by the special cell
See figure 10 for an explanation of the symbols used

15

the systolic arrays. This consists of two parts: I/O-cells and timing of inputs and
outputs. The function of I/O-cells is to supply inputs to and accept outputs from the
rest of the array in the same format as used for internal communications. Thus there
need not be any difference between a boundary cell and an internal cell. Furthermore
the I/O-cells might perform parallel-to-serial and serial-to-parallel conversions and
truncations on the result, if necessary. We will not consider I/O-cells in more detail,
because their design is implementation dependent.

Then the only problem left is the timing of inputs and outputs. As we have
seen in section 3.1 inputs and outputs of algorithm I are interleaved with dummy
elements. If we do not make a distinction between proper and dummy elements,
then the I/O-cells have to supply one input and to accept two outputs every clock
cycle, for both algorithm I and algorithm II. Furthermore the input has to be padded
with zero’s, corresponding to a; for 7 < 0 or ¢+ > n. This is necessary because every
a will meet n — 1 other a’s (at least). In section 6 we will find that the minimal
number of zero’s to be padded is n —1 for both algorithms. We will find other timing
details too, such as the delay between input and output.

What was called algorithm Ib will not be considered any further, so we will write
algorithm I instead of algorithm Ia from now on.

5.1 Algorithm I

In algorithm I operands enter the array at one end, travel through the array to the
other end, where they are reflected. Then they travel back to the end from which
they originated, where they leave the array. The original stream of operands passes
through one latch per cell, while the reflected stream passes through three latches
per cell. To ensure that every operand bit meets every other operand bit dummy
elements are interspersed in the operand streams. For reasons of regularity dummy
elements are included in the result stream as well. The result stream moves one cell
per time unit, but since the data rate is twice the data rate of the operand stream,
there are in fact two separate result streams. One result stream consists of result
bits with even index and the other consists of result bits with odd index. The results
leave the array at the same end where operands enter the array. v

In figures 2, 3, 6b and 7b all constituent parts of algorithm I are given. Figure 8
shows the result of putting all parts together.

5.2 Algorithm II

In algorithm II operands enter the array at one end, where they are copied to form
two identical streams that travel to the other end at different speeds. One stream
passes through one latch per cell, the other through two latches per cell. Now there
is no need for dummy elements in the streams. Again the result stream is in fact split
in two, each passing through three latches per two cells. In every cell one product
bit is computed, because the other pair of operand bits available have already met

16

in the previous cell. Results move in the same direction as the operands, so they
leave the array at the end opposite to where the operands enter the array.

In figures 4, 5, 6a and 7a all constituent parts of algorithm II are given. Notice,
however, that the partial product bits computed in the special cell are delayed by
one position in the total result stream. Therefore, the additional latch between the
cells should be left out between the special cell and its neighbour. One way to do
this is by including the additional latch in the cell to its left. But then the last
cell will contain a superfluous latch. Another way is to include the additional latch
in the cell to its right, and adjust the special cell. We prefer the latter approach.
Therefore, in the resulting array (see figure 9) the product outputs of the special
cell are interchanged. Since the first latch of the second cell should be omitted, the
usual output latch of the special cell is omitted instead.

6 Complexity of the algorithms

In section 4.1 we derived that the number of cells needed to square an n-bit number
is [n/2] for algorithm I and n for algorithm II. But these cells are not identical, so
we should also compare the complexity of the cells.

In algorithm II one multiplication and two additions are performed per cell,
whereas in algorithm I two multiplications and two additions are performed per cell.
The total number of latches per cell is 8 in both cases (including two latches for the
carries). Taking the cost of one multiplication, one addition and 4 latches as unit of
space, the space complexity of algorithm I therefore is n, while the space complexity
of algorithm II is almost 2n, assuming bit-wise operations. The difference is one
multiplication.

Since multiplication is equivalent to a logical AND in the case of bit-wise opera-
tions, a multiplication may be neglected compared to addition or a latch. But when
operations are performed on larger numbers of bits at a time the cost of multipli-
cation dominates the other costs for already fairly small word-sizes. Then the space
complexity approaches n for both algorithms.

Now we turn to the time complexity of the algorithms. We have to distinguish
between delay, computation time and latency. Delay is the time from the first
operand bit input to the first result bit output. Computation time is the time
from the first operand bit input to the last result bit output. Latency (or inverse
throughput) is the time from the first operand bit of one computation to the first
operand bit of the next computation. We take a clock period as unit of time here.

The delay for algorithm I is the time @ needs to travel to the copying cell plus
the time po needs to travel back. Now, ao passes through one latch per cell on its
way to the copying cell, so n/2 clock periods are needed to reach it; po also meets
one latch per cell, so the total delay for algorithm I is n. In algorithm II a¢ reaches
the copying cell immediately, so the delay is the time py needs to travel through the
array in this case. Since py passes through three latches in every pair of cells, the

17

total delay is |3n] in this case.

The computation time is equal to the time between a,_; is input and P2n—1 18
output plus the time it takes to input all operand bits. Now p;,_; is output in the
same clock cycle as ps,_2, which depends on a,_; exactly like py depends on ag, so
this part of the computation time is equal to the delay. In algorithm II p,,_; is
output one clock cycle after p,,_; for odd values of n, however. The time it takes
to input all operand bits is n for algorithm II, but 2n — 1 for algorithm I, because
dummy elements must be included. Thus we find a computation time of 3n — 1 for
algorithm I and [3n] for algorithm II.

To find the latency we must ensure that the next computation starts at a time
such that it is impossible that the previous computation is influenced by the new
one. This means that no @; from the next computation may meet an a; from the
previous one.

For algorithm I this means that ag of the second computation must not be entered
before a,,_; of the first computation has left the array. So the latency in this case is
the time a,_; needs to travel all the way through the array plus the time it takes to
input all operand bits. Now a,.; passes through one latch per internal cell in one
direction and through three in the other direction. In the special cell a,,_; passes
through only three latches, so it takes 4-n/2 — 1 = 2n — 1 clock cycles for a,,_; to
travel through the array. The total latency is therefore 4n — 2 for algorithm I.

For algorithm II ag of the second computation must not enter the last cell before
@p— of the first one has left it. So in this case the latency is the time a,,_; needs to
reach the right end of the array by the slow path, minus the time a¢ needs to reach
it by the fast path, plus the time it takes to input all operand bits. These times are
2n — 1, n and n, respectively, giving a total latency of 2n — 1 for algorithm II.

The following table summarises these results for even values of n. The analysis
of algorithm I depends on the number of cells, so the figures differ slightly for odd
n. For algorithm II the figures for odd n may be found in the foregoing analysis.

algorithm I algorithm II
space in n
delay n %n
computation time | 3n —1 n
latency 4n —2 2n —1

From the latency we may find the number of zero’s to be padded between two
successive computations. The first input of the latter computation may be supplied
‘latency’ clock cycles after the first input of the former one. In algorithm II an input
is supplied every clock cycle, so in n out of 2n — 1 clock cycles a valid input may
be supplied. Therefore there must be at least n — 1 zero’s between two successive
computations. In algorithm I an input is supplied every other clock cycle, so the
number of zero’s is (4n — 2)/2 —n = n — 1 in this case too.

Since the latency determines the number of computations that may be performed
in some given amount of time, this is the most important measure of time. Now,

18

the latency of algorithm I is twice as large as the latency of algorithm II, while the
situation for the space complexities is almost reversed. So the space-time product
is the same in both cases.

However, in algorithm I only half of the resources is used at any time, so a saving
of a factor two in space-time might be possible. There are two ways to achieve this.
The first possibility is that the implementation compacts the cells by multiplexing
resources or by using a two-phase clocking scheme. Recall that we converted a
multi-phase clocking scheme to a situation with dummy elements in the streams in
section 3.1.

The second possibility is to use the same hardware to perform two computations
concurrently, one being the computation shown so far. Now all streams have proper
elements and dummies alternating. Moreover, operations are always performed on
either all proper elements or all dummies, so we might as well replace the dummies
with elements from another operand, giving an second independent computation.
Hence the latter computation lags just one clock cycle behind relative to the former,
and the latter uses all resources not used by the former. By the foregoing we see
that it is impossible that these two computations interfere.

7 Other solutions

On our way to find the algorithms presented in this report, we passed many side-
ways. Some of these apparently lead to less efficient solutions, but others are worth
some investigation.

7.1 Stream copying

In section 2.1 we decided that the two operands as well as the result should be
moving. Moreover in section 3 we made the choice that copying occurs in just
one cell. If we make another choice we obtain different data rates for the operand
streams. In fact a zero data rate for one stream may be obtained. Clearly, this is
equivalent to the situation where one of the operands is stationary. Because the two
operands are identical it is not necessary to load one of them in advance, however.

The space complexity of the cells in the resulting array is comparable to those of
algorithm II, as far as data processing is concerned. But now some local control is
needed too, because cells will have different operating states, depending on whether
or not an operand bit has been stored already. Furthermore such an array has to be
initialised before every computation. Consequently, the resulting array will be more
complex than the arrays presented in the preceding sections.

The same disadvantages also occur in other algorithms in which copying is not
restricted to a special cell. Because of the higher data rates encountered, the com-
plexity of the cells increases even further in these cases.

19

7.2 Stream speeds

In section 3 we found that the speeds of the operand streams should be different.
From that point on we concentrated on those speeds for which a minimum number
of delays per cell was needed. Of course any other combination of speeds will work,
as long as the additional requirements on the speeds are met. For each of those
possibilities the steps of section 4 should be made again. But with an increasing
number of delays per cell, the cells will become more complex, while the details will
become more tedious too.

8 Conclusions

A number of bit-serial systolic squaring algorithms were derived. They are all based
on a linear array of cells. Two algorithms were worked out in detail. The techniques
used here may be applied to the others as well.

The space and time efficiency of all algorithms found is linear in the length of
the numbers to be squared. This compares favourably to the bit-parallel approach
in [Hu86], where the space complexity is quadratic, while the time complexities are
linear. However, it is not hard to modify the bit-parallel systolic algorithm to obtain
a constant latency, without increasing the space complexity significantly. This gives
the same time-space product as our algorithms. Furthermore, it is extremely simple
to expand the systolic arrays presented in this report to square larger numbers.
Usually, it is less simple to expand two-dimensional systolic arrays.

Unlike many other systolic algorithms, the algorithms presented in this report
were derived, in an informal manner, by systematic reasoning. On the one hand,
many systolic algorithms in literature just appear from nowhere. In fact, algorithm I,
in a slightly different form, was found by the author in the same way. Only by
making clear all decisions the other algorithms were found too. On the other hand,
systolic algorithms may be obtained by formal manipulation of some initial problem
specification (see e.g. [RF87]). It would be an interesting exercise to follow that
approach on this problem.

20

References

[Hu86]

[KL79]

[KuT79]

[Ku82)

[RF87]

C. Huijs. A fast squaring algorithm for VLSI. In Proceedings NGI-SION
1986 symposium, pages 233-243, Stichting Informatica Congressen, Paulus
Potterstraat 40, NL-1071 DB Amsterdam, 1986.

H.T. Kung and C.E. Leiserson. Systolic arrays for VLSI. Technical Re-
port CMU-CS-79-103, Dept. of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, Pennsylvania, 1979.

H.T. Kung. Let’s design Algorithms for VLSI Systems. Technical Re-
port CMU-CS-79-151, Dept. of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, Pennsylvania, 1979.

H.T. Kung. Why systolic architectures? IEEE Computer, 37-46, January
1982.

S.V. Rajopadhye and R.M. Fujimoto. Systolic array synthesis by static
analysis of program dependencies. In A.J. Nijman J.W. de Bakker and P.C.
Treleaven, editors, PARLE, Parrallel Architectures and Languages Europe,
Volume I: Parallel Architectures (LNCS 258), pages 295-310, Springer Ver-
lag, Berlin etc., 1987.

21

n/2—-1 X

A Pi+2 <

b

A Pi+1 -

Dj1

A —>

a;

Figure 8: Algorithm I
See figure 10 for a key to the symbols

22

Pj-2

— Pj+1 Pj-1

a;

Qit1

III

lll

llllll

IIIIIIII

Figure 9: Algorithm II
23

See figure 10 for a key to the symbols

s X je— 0
'
-]

d
!
s+
i
C
T t)
Citj42 ------- > Citj

multiplier p=a-b

squarer p=a-a

identity for bit-wise operations

full adder d:s=a+b+c

clocked latch y = delay(z)

t denotes the kind of information stored

delayed feed-back (figures 6 and 7)

Figure 10: Key to figures 6, 7, 8 and 9

24

