BINARY STRUCTURES IN PROGRAM
TRANSFORMATIONS

H. Zantema

RUU-CS-88-24
July 1988

Rijksuniversiteit Utrecht

S

Vakgroep informatica-

77 Tt Padualaan 14 3584 Clgwrecht-!

B Corr. adres: Postbus 80:089, 3508 TB.Utrecht
Telefoon 030-531454 - s- -
The Netherlands

TRA
%W Yo
y
i::g %
oy)
“Esat *

BINARY STRUCTURES IN PROGRAM
TRANSFORMATIONS

H. Zantema

RUU-CS-88:24
July 1988

. Rijksuniversiteit Utrecht

{ %
E%:%:%g Vakgroep informatica
)
'
177: VY Padualaan 14 3584 CH Utrecht
Corr. adres: Postbus 80.089, 3508 TB Utrecht

Telefoon 030-531454
The Netherlands

BINARY STRUCTURES IN PROGRAM
TRANSFORMATIONS

H. Zantema

Technical Report RUU-CS-88-24
July 1988

Department of Computer Science
University of Utrecht
P.0.Box 80.089, 3508 TB Utrecht
The Netherlands

Binary structures
in program transformations

H. Zantema

Abstract

The initial algebra approach is used to give a formal definition of a binary structure
as it appears in the Bird—-Meertens formalism of algorithmic program transformation.
Both transformation rules and conditions for adding a unit element are derived from
this definition.

Contents

1

2

3

Introduction

The universal property

A relation on laws

The unit element

Lemmas and laws in Algorithmics
The filter operator

An example: totally ordered trees

The construction

14
17
19

23

1 Introduction

In various papers on formalizing program transformations ([1,2]) some data struc-
tures are described as a binary structure over a domain. A typical example is the
binary structure finite sequence over the domain integers. Essential for such a struc-
ture is the existence of an embedding (the singleton-constructor) of the domain into
the structure, and a binary operator on the structure. This binary operator has to
satisfy some prescribed laws. In the example of finite sequences over the integers
the operator is the concatenation of finite sequences, while associativity is the only
prescribed law.

Often such a structure is introduced informally, without an exact definition. This
paper is an attempt to present a binary structure over any given domain (being a
set) and any set of laws (being universally quantified equations) in a more formal
way. The definition is given by a universal property, from which various properties
are derived, like the homomorphism lemma and the promotion lemmas from [1,2].
It can also be used for defining a natural relation on sets of laws. Another topic is
under which conditions a unit element and the filter operator can be introduced in
a consistent way. For example, if the set of laws does not satisfy certain conditions,
then after adding an abstract unit element the laws will not hold any more.

The universal property appears to be very powerful. The strategy of this paper is
to prove laws and lemmas in [1,2] from this single universal property. Each of these
laws represents a transformation rule on functional programs; after [1] the calculus
of these transformation rules is called algorithmics. On a metalevel a remarkable
property holds: if two algorithmic expressions have the same type then they are
equal (and hence can be used as a tranformation rule). This fact can be understood
by the universal property.

Given some domain and some set of laws, the universal property does not say
anything about the eristence of such a binary structure. The existence is shown by
the outline of a construction in section 8. In this construction, a congruence relation
is constructed and the quotient of the term algebra is taken. For details we refer to
[4]. A reader convinced of the existence right away, can skip section 8, and does not
need to worry about the shape of the construction.

In terms of the initial algebra approach as discussed in [3,4], one can take a
signature ¥ with one sort, where the operations consist of a constant for each element
of the domain, and one binary operation. Then our binary structure is the initial
algebra in the variety of X-algebras of the given set of laws, that is the class consisting
of all ¥-algebras satisfying these laws.

However, we do not assume that everyone is familiar with this. For reading this
paper, knowledge of universal algebra or category theory is not required. On the
other hand, the simple signature we restrict to reflects a substantial part of the
behaviour of general signatures. A lot of our propositions can be made more general
simply by adding some notational decorations.

The basic notions are introduced in section 2. Up to minor details, sections 3, 4,
5 and 8 depend only on section 2, while section 6 depends on sections 2 and 4. In
section 7 a rather unfamiliar example is treated to which the results can be applied.

2 The universal property

First we want to formalize the notion of a law on a binary operator, like the com-
mutative law and the associative law. Sometimes laws are called equations in the
literature.

Definition 1 A law on n variables z,,z;,---,%, is a pair of terms, where a term
‘t is defined recursively by the syntaz rule

tu=z x| |za | (EDY).
For example, the laws
(21, (21 @ 21)),
((wl ® 32), (372 & 371)), and

(((z1 @ 22) @ 23), (21 © (22 © 3)))

are the idempotent, commutative and associative laws respectively. Note that this
definition is independent of the environment where the law is expected to hold. The
correspondence between laws and their environments is given in the next definition.

Definition 2 Let A be some set and © : A X A — A a binary operator on A. For
elements 1,2, ,zn of A, and a term t on z,,23,---,T,, we denote by t4 the
element of A obtained from t by replacing all symbols @ by ©.

We say that a set of laws L holds in (A,®) (or (A, ®) satisfies L) if

V(t,t) € L: Vz1,25,+++,zn € A: t4 =t).

Let an arbitrary set D be given and also any set L of laws. One purpose of this
paper is to present a binary structure Sp ;: the smallest set with a binary operation,
which

o allows embedding of D,

e satisfies L, and

e has no confusion, i. e. no essentially larger set of laws than L holds.
On the other hand, it is also the greatest set with a binary operation which

e allows embedding of D,

e satisfies L, and

o has no junk, i. e. each element can be expressed as a term with variables from

D.

These ideas are made more precise in the following definition, which is central to
the whole paper. As nothing has been said about existence and uniqueness of such
a smallest or greatest set with some desired properties, we can not yet speak about
the binary structure Sp 1, but only about the Sp r-property.

Definition 3 (universal property) Let D be any set and let L be a set of laws.
Let Abeaset,ig:D—oAand ®: Ax A— A.

We say that (A,14,0) has the Sp p-property if

o L holds in (A,®), and

o if Bisaset, ip: D — B and ® : Bx B — B, such that L holds in (B,®),
then there is exactly one ¢ : A — B with

- ¢0iA = iB, and
~ $a®a’) = ¢(a) ® ¢(a’) for all a,a’ € A.

isp. Sp.L
T
D |3té

Intuitively one can say that having ‘no junk’ corresponds to the existence of at
most one such ¢, while having ‘no confusion’ corresponds to the existence of at least
one such ¢.

A triple (A,i4,0) withis: D - Aand ®: AX A — A is called an algebra over
D. Ifit is clear which ¢4 and © are meant, we sometimes speak about the algebra A.
A consequence of the definition will be the uniqueness of an algebra (Sp 1,15, ,, D)

with the Sp ;-property up to isomorphism. Before we can state this, we have to
define what is meant by isomorphism of algebras.

Definition 4 Let D be any set and let A = (A,i4,0) and B = (B, ip,®) be algebras
over D. A map ¢ : A — B is called a homomorphism from A to B if

® goiy =1ip, and
¢ ¢(a@a’) = ¢(a) @ ¢(a’) for all a,a’ € A.

Two algebras A and B over D are called isomorphic if there exist homomorphisms
¢: A— Band¢: B— A such that

9o =idg and Yo ¢ =id,.

4

Note that the composition of a homomorphism from A to B and a homomorphism
from B to C is a homomorphism from A to C.

In terms of algebras and homomorphisms, the universal property can be formu-
lated far shorter:

An algebra A has the Sp 1-property if and only if
o A satisfies L, and

o for each algebra B satisfying L there is exactly one homomorphism

from A to B.

We are more interested in algebras up to isomorphism than in algebras them-
selves. Sometimes we shall even call algebras ‘equal’ if they are isomorphic.

Proposition 1 Let D be a set and L a set of laws. If two algebras over D both have
the Sp,L-property, then they are isomorphic.

Proof: Let A= (A,i4,0) and B = (B, i5,®) be algebras over D both having the
Sp,L-property. Then there is exactly one homomorphism

$p:A—-B
and exactly one homomorphism
Y:B— A
D ¢
iB B

Both % o ¢ and id4 are homomorphisms from A to A. But again using the
definition of Sp r-property we see that there is exactly one homomorphism from A
to A, so

Yo¢é=1ida.
In the same way we have

¢ ° "p = idp ’
proving that A and B are isomorphic. O

This proof does not use anything particular about algebras. In fact, it is the
proof that an initial object in any category is unique up to isomorphism.

In section 8 it is shown by a construction that for each domain D and for each
set of laws L an algebra having the Sp -property exists. Since we know that it

is unique (up to isomorphism), we may call it the algebra (Spr,is, ,,®), or for
shorthand Sp ;. This algebra is called the binary structure over D with laws L. The
map tgp, , is called the singleton-constructor and is denoted by * in [1].

Proposition 2 (no junk) For each domain D and each set of laws L there is no
junk in Spr, i.e., each element of Sp 1 can be written as a term in which each
variable is replaced by an element of the shape tsp . (d) withd € D.

Proof: Let S‘D,L be the set of elements of Sp that can be written in that way.
With the same ¢5, , and @ this Sp . is an algebra over D. Let

¢:SpL— Spr
be the unique homomorphism, and let
1 §D,L - SD,L

be the inclusion map that maps each element on itself. This inclusion map is a
homomorphism. Then both i o ¢ and the identity map are homomorphisms from
Sp,. to itself, so they are equal. Hence i o ¢ is surjective, so i is also surjective,
which we had to prove. O

A direct consequence of the fact that Sp 1, has no junk is the following.

Proposition 3 (induction lemma) Let D and X be sets and L a set of laws. Let
f and g be maps from Sp, to X satisfying the following properties:

® fois,, =gois,,, and

o if f(s) = g(s) and f(s') = g(s') for 3,8’ € Sp,1, then also f(sDs') = g(sDs).
Then f =g.

It would have been more in the style of this paper to give a proof of this induction

lemma directly from the universal property. However, we did not succeed since X
is an arbitrary set instead of an algebra satisfying L.

3 A relation on laws

The natural opposite of the proposition stating that Sp ; does not contain junk is

the property that Sp,r does not have confusion. This property will be something
like

No essentially larger set of laws than L holds in Sp r..

However, we have not yet defined what is meant by ‘not essentially larger’. A natural
definition of this relation is forced by the no-confusion-property as follows:

Definition 5 Let D be any set and let L and L' be two sets of laws. We write
L' < plL
if L' holds in Sp ..

Proposition 4 Let D be any set and let L and L' be two sets of laws with L' C L.
Then
L’ <p L.

Proof: Immediate. O

Proposition 5 (projection) Let D be any set and let L and L’ be two sets of laws.
Then

L'<pL
if and only if there exists a homomorphism
7 :Sp, — Sp,L.
If such a homomorphism = ezists, then it is unique and surjective.

The homomorphism = is called the projection.

Proof: Assume
L' <p L,

then L’ holds in Sp 1. According to the universal property of Sp 1+ the projection
homomorphism exists and is unique.

Conversely, assume that the projection homomorphism 7 exists. Since Sp r does
not contain junk, this homomorphism is surjective. Let

(t,t)
be an arbitrary law in L’, on the variables z;, 2, - -, z,. Choose these z1,z3, -+, zn
in Sp 1, arbitrarily. Next choose #;,#;,---,%, in Sp 1/ in such a way that

(&) =x; fori=1,2,---,n.

Then

tsps = (ts,) = 7(ts,) =ty

where the terms ts, ., and tfgp L, are over %, instead of z;. We conclude that L’ holds
in SD,L, SO ’
L'<pL,

which we had to prove. O
For example, if L' contains only associativity, and L contains associativity, com-

mutativity and idempotency, then the projection = maps a finite sequence over D to
the set of elements of that finite sequence.

Proposition 8 Let D be any set. Then <p is a reflexive and transitive relation on
the set of laws.

Proof: Refexivity is immediate from the definition. Assume that
L"<p L' and L' <plL,
according to the last proposition there exist homomorphisms
n':Spygn— Spry and 7:Spr — Spr.

Then 7 on’ : Sprn — Sp, is again a homomorphism, so L” <p L, and <p is
transitive. O

Define
L'~pL if L<pL'AL <pL.

According to the previous proposition the relation ~p is an equivalence relation on
the set of sets of laws. Whithout a proof we mention that the equivalence classes of
~p form a lattice with the partial order induced by <p.

It is an interesting question whether <p depends on D. Since

Ser =10

we have

L' <9 L foreach L,L'.

Further one can easily show that
if 4D < D' and L' <p: L, then L' <p L.
The relation <p really depends on the number of elements of D, for example let

L = {associativity}

and
L' = {associativity, commutativity}.
Then
r =<{1} L
and
L, 7«{1’2} L

For each finite D a similar (but more complicated) example can be constructed; this
observation is due to E. Lippe.

4 The unit element

In some of the basic tools of algorithmics, in particular the filter operator, it is
essential to have a unit element, sometimes also called identity element. First let us
give the definition.

Definition 6 Let (A,:4,0) be an algebra over a domain. An element u € A is
called a unit element in the algebra if

u@Qa=a@Qu=a forall ac A.
Proposition 7 An algebra over a domain contains at most one unit element.
Proof: Assume that both u and u’ are unit elements in an algebra (4,i4,®). Then
u=u@u =u'.

0

The particular algebra Sp,;, as defined in section 2 will not always contain a unit
element. If a unit element is required, a natural way to define the corresponding
binary structure — similar to the universal property — is the following.

Definition 7 (extended universal property) Let D be any set and let A =
(A,i4,0) and B = (B,ip,®) be algebras over D, with unit elements us and ug
respectively. A map ¢ : A — B is called an extended homomorphism from A to B

if

o ¢(us) = up, and

® poig =ip, and

® ¢(a®a’) = ¢(a) @ ¢(a’) for all a,a’ € A.
An algebra A over D has the S} ;-property if

e it has a unit element, and
o L holds in A, and

o for each algebra B with a unit element in which L holds, there is ezactly one
extended homomorphism from A to B.

Similar to the non-unit case, this algebra S} ; is unique up to (extended) isomor-
phism. Again we denote its binary operator by .

In this section we introduce two conditions on laws. The first is being conser-
vative, for which Sp; does not contain a unit element. The second condition is

unit-closedness, for which one can construct Sp ; from Sp by adding an abstract
element « and defining

uPs=sPu=s
for all s € Sp 1, and u D u = u.

Definition 8 A law (¢,t') is called conservative if the variables occurring in t are
eractly the same as the variables occurring in t'.

For example, the idempotent, commutative and associative laws are all three con-
servative.

Proposition 8 Let D be a set with at least two elements and let L be a set of
conservative laws. Then isp, 18 an injective map and Sp 1 does not possess a unit
element.

Proof: Let Pp be the set of finite non-empty subsets of D. Define
1:D—Pp
by
i(d)={d} forall d€ D.

Then (Pp,i,U) is an algebra over D. Let (t,t') be any conservative law. If the
variables in t are replaced by arbitrary elements of Pp, and each occurrence of the
binary operator in ¢ is replaced by U, then the result is the union of the corresponding
elements of Pp. If the same is done for #/, then the same elements of Pp are
obtained. For each possible choice these elements have the same union, so (t,)

holds in (Pp,,U). Hence each set of conservative laws, in particular L holds in
(Pp,%,U). According to the universal property there exists a homomorphism

¢ : (SD,L,iSD,L, @) — (PD,i,U).

Clearly : is injective. Since i = ¢ 0 s, ,, the same holds for is,, ;.

Assume that Sp 1, contains a unit element u. If #(u) contains one element, choose
d € D unequal to that element, else choose d to be an element of ¢(u). In either .
case we have

{d} U é(u) # {d}.
We conclude that

{d} = é(isp.(d)
= ¢(isD,L (d) @ u)
= ¢(isD,L (d)) U ¢(u)
{d} U é(u)
{d},

which contradicts the assumption. OJ
Both assumptions in this proposition are essential. If, for example, D contains only

one element, and L consists of the associative law together with

(z,?@x®...®zl)’

nx

10

then
TPzD---BDz
(n—vl)x

is a unit element in Sp ;. In fact Sp 1, is the cyclic group of n — 1 elements.
If, on the other hand, D is arbitrary, but L contains the non-conservative law

(z,9),

then Sp 1 contains only one element, which is a unit element.

Let L consist of either the associative and the commutative and the idempotent
laws, or of all conservative laws, or of anything between. Then it can be shown that
there is also a homomorphism

"/) : (PD’i7 U) - (SD,L,iSD,La @)a
mapping {dy,dz,---,d,} to
iSD,L (dl) @ iSD,L (d2) DD isD,L(dﬂ)'

Then both ¢ o ¢ and 9 o ¢ are identity maps, so (Pp,i,U) and (Sp,L,isp ., D) are
isomorphic. In the notation of the previous section we conclude that

L <p {associativity, commutativity, idempotency}

for each set L of conservative laws.

The rest of this section is on formally adding a unit element to Sp,.. Let D be
any set and let L be a set of laws. Define

Sp.r = Sp,.r U {u}
for an abstract element u, and
sbu=uds=s forall s€ Spy,

and u @ u = u. The set S}, ; defined in this way is an algebra over D containing a
unit element u. Note that this trick of adding a unit element can even be executed if
there exists a unit element already. However, if this is done the original unit element
is not a unit element any more.

Although S7,; possesses a unit element and seems to be a good candidate for
having the S} ; -property, the problem is whether this algebra satisfies L. In general,
it will not, even if all laws in L are conservative. For example, let L consist of

(z@y),((z@7)DY)).

11

If this law would hold in S}, ; then by taking y = u the idempotent law would hold
in Sp,r, which is not true.

However, we can define some further reasonable restrictions apart from being
conservative for which S, ; will be a proper algebra over D in which L holds, and
even will be equal to S% ;. In the next definition the function p, defined on terms
can be considered as a simulation of replacing z by an abstract unit element.

Definition 9 For a variable = let p, be defined inductively on terms:

p=(y) =y for all variables y (including z),
pz(t D) =p.(zDt) = ps(t) for all terms t, and
p=(t®t) = ps(t) ® pu(t) for all terms t,t', t £z #1.

A set L of laws is called unit-closed if for all variables z and for all (¢,t') € L either

p=(t) = pa(t'), or (ps(t),p:(t)) € L.

For example, if L consists of either the idempotent, the commutative, or the asso-
ciative law, or of any combination of them, then L is unit-closed.

If L is unit-closed and L contains any non-conservative law, then it can easily be
shown that Sp 1 contains only one element. So unit-closedness is more restrictive
than conservativity in non-trivial cases.

Proposition 9 Let D be any set and let L be a unit-closed set of conservative laws.
Then L holds in Sy, 1, and

Sb,L = SB,L,
up to extended isomorphism.

Proof: First we prove by induction on the size of laws that L holds in S}, ;. Here
the size of a law is defined to be the total number of occurring @-signs. Since L
contains only conservative laws, the only possible law in L of size zero is (z, z) for
some variable symbol z, and this law holds in every algebra.

Let (¢,%') be any law in L of positive size. If for all variables elements of Sp
are substituted, then ¢ and ¢’ yield the same value since (¢,#') holds in Sp . Now
assume that for at least one occurring variable z the value u in S}, ; is substituted.
Then z occurs in both ¢ and ¢’ since (£,%) is conservative, and ¢t and #' yield the
same values as p,(t) and p.(t') respectively. These values are equal since either
p=(t) = ps(t'), or (ps(t), p=(t')) is a law in L of a smaller size which holds in S}, ; by
the induction hypothesis. So for each substitution of variables by elements of S, ;
the terms ¢ and ¢ yield the same value in S7, ;. So L holds in Sp, ;.

Let (B,ip,®) be any algebra containing a unit element up, and for which L
holds. Let ¢ : Sp,;, — B be the unique homomorphism. Define + : S, ; — B by

1/)(3) — { ¢(S) if s€ Spr

ug ifs=u.

12

Then 1 is an extended homomorphism, and it is easy to see that no other extended
homomorphism from S7, 1, to (B, ip,®) can exist. Hence S, ; satisfies the extended
universal property of S§ ;. O

It is possible to give a slightly less restrictive definition of unit-closedness for
which the same proposition can be derived. For example, we may require

{(p=(t), p=(t"))} <D L
instead of
p=(t) = p=(t') or (ps(t),p:(t)) € L.
Further in a simulation of replacing z by an abstract unit element one expects

(z ® =) ® (z @ «) rewrites to z, while

(& ®2)® (2 @<)) = (¢ @ 2).

However, a definition covering these extensions will be more complicated, while our

definition suffices for all purposes and for any given set of laws unit-closedness can
be checked straightforward.

Let us look again to the example in which D contains only one element, and L
consists of the associative law and

(2,028 D).

nx

This set of laws is unit-closed, so S} ; = Sp ;. As was already noted, Sp,z is the
cyclic group of n — 1 elements, which contains a unit element. Let

Y:SprL — Sp.r

be the unique extended homomorphism, and let

¢ . SD,L — SY),L

be the unique homomorphism. Then both ¢ o ¥ and ¥ o ¢ are homomorphisms,
and in the style of earlier proofs one should tend to conclude that S3 ; and Spr
are isomorphic. However, this is not true, since the one contains n — 1 and the
other n elements. The bug in this reasoning is that ¢ and ¢ o % are no eztended
homomorphisms: they do not map the unit element to the unit element.

We conclude this section by some more familiar examples. If L is empty, then
Sp,1 corresponds to the non-empty binary trees over D. The unit element which
can be added to this structure can be considered as the empty binary tree.

If L consists only of the associative law, then Sp r represents the non-empty
finite sequences over D. The unit element which can be added to this structure can
be considered as the empty finite sequence.

13

If L consists of both the associative and the commutative law, then Sp 1 corre-
sponds to the non-empty finite bags over D. The unit element to be added can be
considered as the empty bag.

At last, as we already mentioned, if L consists of the associative law, the com-
mutative law and the idempotent law, then Sp 1, corresponds to the non-empty finite
subsets of D. The unit element added to this structure can be considered as the
empty set.

5 Lemmas and laws in Algorithmics

The universal property of Sp 1 will be used now to define some basic constructions
in algorithmics like the map, reduction and filter operators, and to derive properties
like the promotion lemmas and the homomorphism lemma. In practice all induction
arguments can be replaced by using the definition of Sp . The proofs of all of these
properties have the same shape: two different expressions are both homomorphisms
from Sp 1, to some other algebra, hence they are equal. Loosely speaking we can say
that if two expressions have the same type then they are equal.

By adding conditions on preserving the unit, all propositions and constructions
in this section also hold for S ; instead of Sp ;. Since they are completely similar,
we do not mention them apart. In the next section, on the filter operator, the unit
turns out to be essential.

Proposition 10 (map) Let f : D — D’ be any map and L a set of laws. Then
there is ezactly one map f*: Sp 1 — Sp1 such that
o froig,, = iSpsy © f, and

o f*(s@®s)=f*(s)® f*(s') for all 3,8’ € Sp L.
Proof: Apply the universal property to the algebra (Sp 1, isp, © f,®). O

The operator * which maps a function f to f* is called the map operator. For
example, for a function from reals to integers the map operator produces a map
from the finite sequences of reals to the finite sequences of integers, which maps the
finite sequences elementwise by the original function.

Proposition 11 (reduction) Let D be a set and © : D x D — D. Let L be a set
of laws that holds in (D,®). Then is, , is injective and there is ezactly one map
®/ : Sp,r — D such that

® ©/ois,, =idp, and
e O/(s®) =(0/(s)) ®(0/(s)) for all 5,5' € Sp,r.

14

Proof: Apply the universal property to (D,idp,®). The injectivity of isp, follows
from G)/ o iSD,L =1idp. O

The operator / which maps an operator © to @/ is called the reduction operator.
As an example we mention that the familiar notations ¥ and II for sums and products
over finite sequences, are nothing else than +/ and x/ respectively.

The next proposition is the homomorphism lemma from [1,2]. Although we shall
never use it, we present and prove it for the sake of completeness.

It is rather confusing that homomorphism has a different meaning in [1,2]. There
a homomorphism is defined as an operator preserving map from (Sp 1, D) to (D', ®),
where (D', ®) is arbitrary. In several branches of mathematics the word ‘homomor-
phism’ has several meanings, but always the domain and the target have the same
type, and compositions of homomorphisms are homomorphisms. However, not in
[1,2]. Further in [1,2] no preserving of singletons is required in the homomorphism
definition, though the singletons are an essential part of the signature. Enough
reasons to avoid their terminology.

Proposition 12 (homomorphism lemma) Let D and D' be sets, f : D — D’
an arbitrary map and @ : D' x D' — D'. Let L be a set of laws that holds in (D', ®).
Let g: Spr — D' be a map for which

® goig,, =f, and
* g(sPs')=g(s) ®g(s") for all 5,s' € Sp 1.
Then g = ®/ o f*.
Proof: Note that
Ofo f ois,, = Ofocis,, of = f

and

O/ o f(s® s

O/(f*(s) @ £*(s"))
(© 0 f*)(s) © (0] o £7)(s)
for all 5,5’ € Sp,r. So ®/o f* is a homomorphism from (Sp,r, s, ., D) to (D', f,®).

However, the same holds for g. According to the universal property only one such
a homomorphism exists, so we may conclude that

g=0/of".

The next three propositions are laws 1, 2, and 3 in [1]. The last two of them can
be seen as corollaries of the homomorphism lemma. We prove them by only using
the universal property.

15

Proposition 13 (composition) Let f: D — D' and g : D' — D". Then
(gof) = g*of

Proof: Both expressions are homomorphisms from Sp 1, to Spr 1, so they are equal.
a

Proposition 14 (map promotion) Let f: D — D’. Then

fro® = @fof™.

Proof:
o/

D Spr = SspL.L

ZSD_L ZSSD,L,L
f A =

e

®/ .
D' Sprr =2 SSpir 1L

ZSD’,L zssD”L’L

We have

(fro®/)oiss,,, = f
= @/ (o] iSle’L,L [o] f*

= (@0 ") oise s

so both f*o @/ and @/ o f** are homomorphisms of algebras over Sp 1, from Ss,, ; 1
to (Sp.,L, f*,®). Hence they are equal. O

As an example let f be doubling of numbers. According to the map promotion first
concatenating a sequence of sequences of numbers and then doubling their elements
yields the same result as first doubling all elements and then concatenating.

Proposition 15 (reduction promotion) Let L be a set of laws and let
O:DxD—-D

satisfy L. Then
©lo® = ©/00/"

Proof:

16

Sp,L Sspp.L
z‘SSD'L,L
o/ / /*
s
o/
D : Sp,L
iSp.L

We have

(®/ ° 69/) ° z‘SsD,L,z, = 0/
= @fo iSp g © o/
= (G/ o G/*) ° iSSD,L,L;

hence both ®/ o ®/ and ®/ o ®/* are homomorphisms of algebras over Sp ; from
Ssp 1.L to (D,®/,®). According to the universal property they are equal. O

For example, if ® is multiplication, then the reduction promotion says that first
concatenate a sequence of sequences of numbers and then multiply them yields the
same result as first multiply each sequence and then multiply all of these products.

6 The filter operator

The next tool for doing algorithmics is filter on a predicate on D. Intuitively this
is a function on Spy that does not change parts for which the predicate holds and
throws away the parts for which the predicate does not hold. In principle everything
can be thrown away; in that case nothing will remain. In algebra terms this notion
of ‘nothing’ corresponds to the unit element, so it is essential that the image of a
filter operator contains a unit element. A natural choice for this image is Sp , as
defined in section 4. We prefer to define the filter operator as a function on S ,
instead of on Sp ;. Two reasons for this are:

e Composition of filters will be possible.

e Since S} ;, is an algebra over D satisfying the laws in L, there is a unique ho-
momorphism from Sp,z, to S} ;. Filter on Sp 1 can be defined by composition
of this homomorphism and filter on S ;, but not conversely.

17

Definition 10 (filter) Let D be a set, and let p be a predicate on D. Let L be a
set of laws. Let iy, : D — Sp | be defined as follows:

o [isy (d) if p(d),

tp(d) = { u if not p(d).
Then the filter pa is the unique extended homomorphism from

(SB,L’Z'SB,L’ 69) to (SB,Lﬂ.Pa @)-

Before deriving some basic properties of the filter, we give an example showing
that taking

Sp,r = Sp,L U {u}
instead of S} ; would become disastrous if L is not unit-closed. Let D contain at
least two elements and let L consist of

(z,(z ®y))-

The algebra Spr does not contain a unit element; in fact it is equal to D itself.
Assume there exists a filter homomorphism pa from Sp,; to Sp, or from Sp 1,
to Spr- Let d,d’ be two elements of D and let p be a predicate on D satisfying

—p(d) A p(d'). Then
u = pdig,(d) .
= pa(is,, (d) ®isy, (d))
= paigy, (d)@paisy (d)
= u@isy,(d)
= 1is,,(d)

u.

Hence in this case simply adding an abstract unit element to Sp 1 does not give rise
to a useful filter homomorphism.

Proposition 16 (filter commutativity) Let p and q be predicates on D. Then
paoga = g<opa = (pAg)<.
Proof: Let d € D. Then
gaopa(isy (d)) = ga(ip(d))
_ { g4(isy, (@) ifp(d)

q<(u) if not p(d)
{ isy,(d) if p(d) and g(d)
= u if p(d) and not ¢(d)
u if not p(d)
= ipng(d)-

18

From the extended universal property we see that
paoga = (pAg)d.
Completely analogous we obtain
gaops = (pAg)q.
O

A direct consequence is filter idempotency: if we take ¢ = p then we get
pdopd = pd.
Proposition 17 (filter promotion) Let p be be a predicate on D. Then
pao®d/ = @/opq*.

Proof: /
®
. Su Scu
isyL D,L P Sp,1-L
D,L’
/
D rnJ pa*
\ < /
oSy Ssy L
ZSSE,L L
We have

(pqo@/)oissz’L,L = pda
= @/°i5s;,,L,L°P“

= (G)/ opq*) o iSSB,L,L

so both p<ao @ / and @/ o pa* are equal to the unique homomorphism from Ss« 1

to (SE’,L’pq’ @) a

Indeed, first concatenating a sequence of sequences of integers and then taking the
even numbers among them yields the same result as first taking the even numbers

and then concatenating the resulting sequence of sequences.

7 An example: totally ordered trees

The results until now seem rather trivial when only applied to well-known examples
as trees, sequences, bags and sets. In this section we introduce a less familiar data

structure to which the results can be applied: totally ordered binary trees.

19

Given a set of laws one can wonder how to represent the elements of the corre-
sponding structure. One possible way is to choose for each element of the structure
one particular binary tree to represent it. For a domain D, the binary trees over D
are defined inductively by

tree ::=d | (tree,tree)

for d € D.
For example, each sequence over D can be represented as a binary tree over D in
which the left hand side of each subtree is an element of D. Tree composition has to

be modified in order to be closed in this representation, for example the composition
of (dl) dz) and (d3) d4) is

(dy @ (d2 @ (ds ® dy)))
instead of

((di ® ds) ® (d3 @ dy)).
A representation for bags over D can be chosen depending on some total order on
D. Then a bag over D can be seen as a non-decreasing sequence of elements of
D, while composition corresponds to merging of such sequences. At last, a finite
subset of D can be represented by a strictly increasing sequence, while composition
corresponds to merging and removing double elements.

In a similar way we shall introduce totally ordered trees; then we shall show that
the algebra of totally ordered trees over D is exactly S ; for

L = {((z1 ® 22), (22 ® 71)), (21 ® 1), (22 ® 22))}-
Note that the second law in L is not conservative and that L is not unit-closed. In
fact this is an example for Sp, ; and S§ ; being not isomorphic, as we show now.
Let z be a non unit element in S}, ;, then z € Sp 1, so also z @ = € Sp,z, so
z®z Fu.
However, for each element z in S} ; we have
rThdr=udu=u,

so Sp 1, and S} ; are not isomorphic.

As for the bag representation, assume a total order < on D is given. This total
order can be extended inductively to a total order on binary trees over D:

d1 < (tl,tg)
(t1,t3) < dy false
(tl,tz) < (ta, t4) t1 <t3V (tl =t3A1l; < t4)

for all dy,d; € D and for all binary trees t,, 3, t3,%4 over D.
The totally ordered trees over D are defined as a subset of the binary trees over
D inductively as follows:

true

20

o elements of D are totally ordered trees, and

o if t;,1; are totally ordered trees with ¢, < t,, then (t;,1;) is a totally ordered
tree.

If not ¢, < t3, then (%,%2) is not a totally ordered tree. So these totally ordered trees
are not closed under common tree composition. However, by adding an abstract unit
element and adjusting tree composition the algebra of totally ordered trees can be
constructed in a natural way, as is done in the next definition.

Definition 11 For a totally ordered set D the algebra T = (TOT,iror,®D) over D
is defined by:

o TOT consists of the totally ordered trees over D and an abstract element u;
¢ itor(d) =d for all d € D;

udbu = u,
udt; = tl,
10u = tl)

u 1.f t; = tz
tidt; = (t1,t2) if ti <ty
(tz,tl) if ta<ty

for all totally ordered trees ty,t,.

Proposition 18 Let D be a totally ordered set and let T be as above. Let

L = {((z1 @ 22), (z2 ® 21)), (21 & 21), (22 2)) }.
Then T is equal to S} 1, up to extended isomorphism.
Proof: Clearly TOT satisfies L. For an arbitrary algebra
A= (Ai4,0)

over D containing a unit element u4, we have to prove that there is exactly one
extended homomorphism

¢:T — A

Each element of TOT can be written either as u or as a binary tree in a unique way,
30 we can define ¢ as a map from TOT to A as follows:

p(uv) = ug
¢d) = ia(d)
¢((t1,t2)) = é(t) © é(t2)

21

for each d € D and for all totally ordered trees ¢,,¢; with t; < ¢;. Then
Sudu)=d(u) =ug =us Ous = ¢(u) O ¢(u),

d(udt)) = d(t1) = us © ¢(t1) = ¢(u) © ¢(t1),
$(t1 @ u) = ¢(t1) = d(t1) O ua = ¢(t1) © P(u),

d(u) =ug =ug Qug = ¢(t1) © ¢(t1) = ¢(t1) © P(t2) if t; =1,
¢t D ta) = { ¢((t1,t2)) = ¢(t1) © é(t3) if t; <ty
¢((ta2,t1)) = B(t2) © (1) = (t1) © ¢(t2) if t2<t

for all totally ordered trees t;,t,, using that A satisfies L. We conclude that

$(t @ t2) = ¢(t1) © é(t2)

for all t1,t, € TOT, so ¢ is an extended homomorphism. Conversely, let 1 : T — A
be an arbitrary extended homomorphism. Then

¢(u) = Uy,

¥(d) = ia(d),
P((t1,82)) = $(t D t2) = P(t1) © ¥(t2)

for each d € D and for all totally ordered trees ¢;,%; with ¢; < t5. So 1 satisfies the

definition of ¢, so 1 = ¢, and ¢ is the only extended homomorphism from 7 to A,
which we had to prove. O

As a result of this proposition, the constructions map, reduction and filter are
meaningful on totally ordered trees. For example, if D consists of the non-negative

integers and ® is defined by
di®dy; = |dy —d;],
then (D, ®) satisfies L and contains a unit element, so
®/:TOT - D

is meaningful and satisfies our properties like reduction promotion.

It is quite challenging to understand this reduction promotion, map promotion
and filter promotion on totally ordered trees of totally ordered trees; they seem to
be far less evident than on sequences of sequences!

22

8 The construction

Until now we have presented various properties of Sp 1, provided that it exists, and
we have given some examples for particular L. In this section the existence will
be shown for arbitrary L: we show how for general D and L an algebra can be
constructed satisfying the Sp r-property.

The most simple case we get when there are no laws at all, i. e. L is the empty
set. Then we can take the set of all binary trees with leaves in D. In other words if
D is given, then we define Sp g by

d : D,
s : Spo,
s u= d|(sds).

The map t5,, : D — Spg is the natural embedding of D.

We now have to check that the universal property holds for this particular Spg.
Let (T,i1,®) be an arbitrary algebra,i.e.i7: D =T and @ : T x T — T. Then
by definition a homomorphism ¢ : Spg — T has to satisfy

o ¢(d) =ir(d) for all d € D, and
o H(s@ ') = ¢(3) ® ¢(s') for all 3,8’ € Spy.

The existence and uniqueness of such a ¢ follows from the definition of Spg, so the
universal property holds.

The next thing to do is to construct Sp 1 from Sp ¢ for non-empty set of laws L.
For shorthand, let us write S instead of Sp¢. By definition, an element of L is a pair
of terms on variables zy,z,,---,z,. If the variables z,,z,, - -,z, are replaced by
elements of S and the abstract operator of terms is replaced by the operator @ of S,
then a pair of elements of S is obtained. Let Ls denote the subset of S x S consisting
of all pairs of elements of S that can be obtained in this way from elements of L.

Let Ls be the reflexive symmetric transitive substitutive closure of the relation Lg,
i. e. Lg is the smallest subset of S X S such that

1. Ls C Lg,

2. (s,8) € Lgforall s€ S,

3. if (s,8') € Lg, then (s',s) € Ls,

4. if (s,8'),(s',8") € Ls, then (s,s") € Ls,

5. if (s,8),(3,3) € Lg, then (s ® 3,8’ ® §') € L.

23

In other words, Ls consists of all elements of S x S that can be obtained from
elements of

Lsu{(s,s)|s €S}

by applying properties (3) to (5) a finite number of times.

Properties (2) to (4) imply that Lg is an equivalence relation on S. Let S denote
S modulo this equivalence relation, i. e. S is the set of the corresponding equivalence
classes. This set S will become an algebra satisfying the Sp -property. Before we
can consider it as an algebra, first a map i3 from D to S and a binary operation on

S have to be defined. For each d € D we define
i5(d) = the equivalence class of ig(d).

Property (5) implies that the equivalence relation L is also a congruence relation,
i. e. @ induces a binary operation on S. Choosing this binary operation we can
speak about the algebra S now. Property (1) implies that the algebra obtained in
this way satisfies L.

In a straightforward way it can be checked that for an arbitrary algebra A
satisfying L there is exactly one homomorphism from S to A; for details we refer
to [4], theorem 6, where this construction is given in a more general context with a
complete proof. Hence the algebra S satisfies the Sp r-property, and the existence
of Sp,; has been proved.

Starting with

s u=u|d|(s®s)
instead of
s u=d|(s®Ds)
and adding the laws
(s ®u),2) and ((u@2),2)

to L yields the construction of S ; in a similar way.

24

References

[1] L.G.L.T. Meertens. Algorithmics, towards programming as a mathematical ac-
tivity. Mathematics an Computer Science, Proceeding CWI symp. Nov 1983.
CWI Monographs Vol 1. North Holland, 1986.

[2] R.S. Bird. An introduction to the theory of lists. Technical Monograph PRG-56,
Oxford, 1986.

[3] J. Meseguer, J. A. Goguen. Initiality, induction and computability. Algebraic
methods in semantics, Cambridge University Press, 1985.

[4] J. A. Goguen, J. W. Thatcher, E. G. Wagner. An initial algebra approach to the
specification, correctness and implementation of abstract data types. Current

trends in programming methodology, vol 4: Data structuring. Prentice Hall,
1978.

25

