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A graph G is said to be a minor of a graph H, if G can be obtained from a subgraph
of H by a number of edge-contractions. (An edge-contraction is the operation that
replaces two adjacent vertices v,w by a new vertex that is adjacent to all vertices,
adjacent to v or w.) Robertson and Seymour [28] have shown that for every class of
graphs F, that is closed under taking of minors, there is a finite set of graphs ob(F),
the obstruction set of F, such that for all graphs G: G € F, if and only if there
is no graph H € ob(F) that is a minor of G. Further, there is an O(n?) algorithm
for every fixed graph H, that tests whether H is a minor of a given graph G [27].
Thus, one can test membership in F in O(n?) time. If the treewidth of graphs in F
is bounded by some constant (or, equivalently, if there is at least one planar graph
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Abstract

Recent results of Robertson and Seymour show, that every class that is
closed under taking of minors can be recognized in O(n3) time. If there
is a fixed upper bound on the treewidth of the graphs in the class, i.e. if
there is a planar graph not in the class, then the class can be recognized
in O(n?) time. However, this result is non-constructive in two ways: the
algorithm only decides on membership, but does not construct ‘a solution’,
e.g. a linear ordering, decomposition or embedding; and no method is given
to find the algorithms. In many cases, both non-constructive elements can be
avoided, using techniques of Fellows and Langston, based on self-reduction.
In this paper we introduce two techniques that help to reduce the running
time of self-reduction algorithms. With help of these techniques we show
that there exist O(n?) algorithms, that decide on membership and construct
solutions for treewidth, pathwidth, search number, vertex search number,
cutwidth, modified cutwidth, vertex separation number, gate matrix layout,
and progressive black-white pebbling, where in each case the parameter k is
a fixed constant.

Introduction.
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that is not in F [24]), then the minor-tests, and hence the membership in F-test
can be done in O(n?) time [27]). A similar characterization with an obstruction set
exists for classes of graphs that are closed under immersions [25].

G is an immersion of H, if G can be obtained from a subgraph of H by a number
of edge-lifts. An edge-lift is the operation that replaces edges (v,w) and (w,z)
by an edge (v,z). For fixed H, one can test whether a given graph G contains
H as an immersion in polynomial time, and in O(n?) time if the treewidth of G is
bounded. Many applications of these results were obtained by Fellows and Langston
13, 14, 15].

Note that these results are non-constructive in two ways: the algorithms only de-
cide on membership in the class, but do not construct a solution like a linear ordering,
decomposition or embedding, and no method is given to construct the algorithm:
to write down this type of algorithm we must know the obstruction set of the class
of graphs we want to recognize. However, in many cases, both non-constructive
elements can be avoided with techniques of Brown, Fellows and Langston [10] and
Fellows and Langston [16], based on self-reduction . We concentrate in this paper on
the problem on finding solutions, for the case that there is a bound on the treewidth
of the graphs.

Self-reduction is the technique to consult the decision algorithm a number of
times with inputs derived from the original input, in order to construct the ‘solution’
to the problem. Algorithms of this type are also called ‘oracle algorithms’, and the
decision algorithm is called the ‘oracle’. The overhead of an oracle algorithm is the
time, required for all operations, except those of the oracle, where each call to the
oracle is counted as one unit of time.

This paper is organized as follows. In section 2 we review a number of definitions
and results. In sections 3 and 4 we introduce two new techniques, that help to design
faster constructive algorithms for immersion and minor closed classes of graphs with
a fixed bound on the maximum treewidth. In section 5 we apply these techniques,
and obtain O(n?) algorithms that decide on membership and construct solutions
for treewidth, pathwidth, search number, vertex search number, cutwidth, modified
cutwidth, vertex separation number and gate matrix layout, where in each case
the parameter k is a fixed constant. For each of these problems, except treewidth,
algorithms with running time between O(n?®) and O(n*) were designed by Fellows
and Langston [12, 16]. Some final remarks are made in section 6. '

2 Definitions and preliminary results.

In this section we give a number of well-known definitions and results. First we
consider the important notion of treewidth, which was introduced by Robertson
and Seymour [23].

Definition.
Let G = (V,E) be a graph. A tree-decomposition of G is a pair ({Xli € I},T =
(I, F)), with {X;|: € I} a family of subsets of V, and T a tree, with the following



properties
® U X.' =V

i€l
e For every edge e = (v,w) € E, there is an ¢ € I, with v € X; and w € X;.
e For all 7,5,k € I: if j lies on the path from ¢ to k in T, then X; N X; C Xj.

The treewidth of a tree-decomposition ({X;|¢ € I),T) is maxer|Xi| — 1. The
treewidth of G, denoted by treewidth(G), is the minimum treewidth of a tree-
decomposition of G, taken over all possible tree-decompositions of G.

There are several alternative ways to characterize the class of graphs with treewidth
< k. See e.g. [1].

Very few NP-hard problems stay NP-hard, when we restrict them to a class of
graphs with some fixed upper bound on the treewidth of the graphs in the class (see
e.g. [3, 5, 7, 11, 18, 29]). In this paper we consider the approach of Courcelle [11]
and Arnborg, Lagergren and Seese [3], as this approach appears to be most suitable
for our purposes.

Courcelle [11] showed that every property that can be expressed in monadic
second order form, can be tested in linear time for graphs that are given together
with a tree-decomposition with constant bounded treewidth. Arnborg, Lagergren
and Seese [3] extended the class of problems that can be dealt with. Consider
logical formula’s, that can use the following ingredients: the usual logical operations
(A, V, 7,=, etc.), quantifications over vertices (Jv € V,Vv € V), edges (Je € E,Ve €
E), sets of vertices (3W C V,VW C V), and sets of edges (3F C E,VF C E),
equality tests (v = w,e = f,(v,w) = e), membership tests (v € W,e € F), and
incidence tests ((v,w) € E,(v,w) € F). The formula may be open, where the free
variables are given interpretations as pre-specified vertices, edges, sets of vertices,
or sets of edges, respectively. Properties, that are expressed in this way are called
monadic second order graph properties. We use the following variant of the results
of Courcelle [11] and Arnborg, Lagergren and Seese [3].

Theorem 2.1 [11, 3]

Let k be a constant. Let v € V®(G,v) (3e € E®(G,e)) be a monadic second
order graph property. Then there exists a linear time algorithm, that given a graph
G = (V, E) together with a tree-decomposition of G with treewidth < k, either finds

a vertex v € V such that &(G,v) (an edge e € E, such that &(G,e)), or decides
that such a vertex v (edge e) does not exist.

For our purposes, it is important to note that for fixed graphs H, the properties “H
is a minor of G”, or “H is an immersion of G” can be expressed as monadic second
order graph properties. In order to find tree-decomposition with small treewidth,
we can use the following result, which is a direct corollary of results of Robertson
and Seymour [26, 27].



Theorem 2.2 (Robertson, Seymour)

For every fixed k > 1, there is an O(n?) algorithm that given a graph G = (V, E),
either decides that the treewidth of G is larger that k, or finds a tree-decomposition
of G with treewidth < 43k.

(Robertson and Seymour considered “branchwidth”, and obtained a bound of 3k.)
Thus, for graphs with constant bounded treewidth, we can find in O(n?) time a
tree-decomposition with treewidth still bounded by a constant, although it does not
have optimal treewidth.

Some other definitions we use:

G[W] : the subgraph of G, induced by W, i.e. (W, {(v,w) €
Elv,w e W})
G — {v} : the subgraph of G, induced by V — {v}, G[V — {v}].
G —{e} : thegraph (V,E — {e})
clique {vy,...,vx} : the complete graph on {vy,..., v} : ({v1,..., v},
{(viavj)ll <4,j<ki# ]})
GUH : the (not necessarily disjoint) union of G and H.

3 Quiet self-reductions.

In this section we propose the notion of “quiet” self-reduction . This rather simple
idea is based on a closer observation of the O(n?) minor test algorithm for graphs
with bounded treewidth. Basically, this algorithm consists of two phases. In the
first phase, the algorithm, indicated in theorem 2.2 is run. Either we decide that
the treewidth of G is too large, and we know that G is a “no”-instance, or we
find a tree-decomposition with treewidth O(1). This phase costs O(n?) time. In
the second phase, the tree-decomposition is used to perform the actual minor test,
using dynamic programming, as in [3, 5, 7, 11, 29]. This second phase uses O(n)
time.

An oracle algorithm may call this procedure a number of times, each time for a
new graph G’ that is obtained from modifications of the original input graph G. The
number of such calls is usually at least O(n). Thus, it may be possible to save time,
if we could be able to avoid the first phase for most of the calls to the minor-test
algorithm. The following definition expresses a class of such oracle algorithms.

Definition.

An oracle algorithm is guiet, if, there are constants ¢, ¢z, such that for any graph
G = (V, E), when the algorithm runs with G as input, then every graph H = (W, F),
that is input to the oracle, fulfills:

i) W—-(VnW)|<a
(i) W' CV: W] <A ((v,w)e F—(ENF)=veW'Vwe W)



In other words, every graph that is input to the oracle, can be obtained by taking a
subgraph of G, adding a constant number of new vertices, and for a constant number
of vertices, adding a number of edges, starting at that vertex.

Theorem 3.1
Let k,! be constants. Let A be a quiet oracle algorithm, such that

(i) A yields the answer “no”, if the treewidth of input graph G is larger than k.
(ii) A has overhead f(n), and makes g(n) oracle calls to an oracle O.

(iii) A call to oracle O costs O(n) time, if the input-graph H to the oracle, is given
together with a tree-decomposition of H with treewidth < 1.

Then A can be implemented with an algorithm, that uses O(f(n) + n? + g(n) - n)
time.

Proof.

First run the algorithm of Robertson and Seymour, that either decides that
treewidth (G) > k, or finds a tree-decomposition of G with constant treewidth.
In the former case, output “no”, and we are done. In the latter case, note that
for input graph H to the oracle, one can find in O(n) time a tree-decomposition
of H with constant treewidth: use the tree-decomposition of G, remove all vertices
in G — H, and then add to each set X; all vertices in H — G, and all vertices in
the set W', defined by (v,w) edge in H — G = v € W'v € W', |W’| bounded by
a constant. A tree-decomposition of H with constant bounded treewidth results.
Hence, the total time for all oracle calls is bounded by O(g(n) - n), and the total
time for the algorithm is bounded by O(f(n) + n? + g(n) - n). O

Theorem 3.1. can be applied to several problems, considered in [12]. In many cases,
improvements with a factor up to O(n) can be made. However, we need a second
technique in order to obtain O(n?) algorithms.

4 Using monadic second order graph properties,
instead of minor tests.

In this section we describe our second technique. It is based on the observation,

that not only minor-tests, but also more complicated questions, if we write them

as monadic second order graph properties, can be tested in linear time, given a
tree-decomposition of G with constant bounded treewidth.

Lemma 4.1

Let ¢(G) be a monadic second order graph property. Each of the following properties
can be expressed in monadic second order form:

(i) (G —{v})) (G={v}=(V-{v},{(w,z)lw+# v,z #v})
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(ii) o(G—{e}) (G—{e}=(V,E-{e}))
(iii) ¢(G' = (V,EL {(v,w)}))

(iv) (G’ = (V, EU{(v, w)lw € W}))

(v) (@' = (V,E - {(v,w)lw € W}))

(v,w,e, W are free variables in the resulting formulas, but not in ¢.)

Proof.

We can rewrite ¢, inductively. For example, consider (i). We only consider a few
cases, the other are similar. If ¢ = V3, then (G —{v}) = 1(G—{v}) Va2 (G-
{v}). o =3IW € V1 (W, G), then o(G—{v}) = Fw € V : v # wAp1(w, G—{v}).
Ko =3W CV:p(W,G),then o(G—{v}) = IW C V : v € w)Apr(W,G—{v}).
If o = (w = z), or ((w,z) € F), then o(G — {v}) = ¢. The other cases are similar.
a

This result can often be applied in the following way. Suppose we look for a vertex v
(or edge e), such that G, with some local operations applied on v (or €) remains in a
minor-closed class F. Lemma 4.1 shows that, if we can write these local operations
in a suitable form, then we can find such a vertex v (or edge e), in linear time
(supposing G is given with a constant width tree-decomposition ). This can save
up to a factor of O(n) time in comparison to algorithms that test for each vertex v
the resulting modified graph G separately.

As a first example, consider the “k vertices within F” problem for a minor closed
class of graphs F', with a fixed upper bound on the treewidth of graphs in F. (This
problem, without assumptions on the treewidth was considered in [10].) ILe., we
must find k vertices vy,...,vk, such that G — {v,...,vx} € F. One easily sees that
if G is a “yes”-instance to this problem, then the treewidth of G is bounded by the
maximum treewidth of a graph in F plus k.

Using the characterization with obstructions, the property G € F' can be written
as a monadic second order graph property, hence we can write 3vy3v,... vy G —
{v1,...,u} € F as a monadic second order property. (Apply lemma 4.1(i) k times.)
So suppose G is given together with a constant width tree-decomposition . Then we
can find v; in linear time, using lemma 2.1. Using again lemma 2.1 on the property
Jvy...30xG — {v1,...,v} € F we see that we can find v; in linear time. (v, is now
a free variable with a predetermined value.) So, in k steps, each using O(n) time,
we find vq,..., vk, such that G — {vq,...,v} € F, if they exist.

Theorem 4.2

Let k be a constant, and let F be a minor-closed class of graphs with a fixed
upper bound on the treewidth of graphs in F. Then there exists an O(n) time
algorithm, that given a graph G = (V, E), together with a tree-decomposition of G
with constant bounded treewidth , finds k vertices vy,...,vx (k edges ey,...,e€x),
such that G—{vy,...,vx} € F (G—{ey,...,ex} € F), or decides that such collection
of vertices (edges) does not exists.



5 Faster constructive algorithms for wvarious
problems.

5.1 Treewidth.

We now show that, for fixed k, there exists an O(n?) algorithm that constructs a tree-
decomposition with treewidth < k, or decides that such a tree-decomposition does
not exist for a given graph G. This improves on an O(n*+?) algorithm by Arnborg,
Corneil and Proskurowski [2]. For k = 1,2,3 there exist linear time algorithms
[4, 20]. For variable k, the problem is N P-complete [2].

Lemma 5.1 [6]
Let G = (V,E) be a graph, with W C V is a clique in G. Then, for any tree-
decomposition ({X;|¢ € I}, T = (I, F)) of G, there exists an ¢ € I with W C X;.

Our algorithm is based on the following lemma’s, which are slight modifications of
lemma’s of Arnborg, Corneil and Proskurowski [2].

Lemma 5.2

(1) ¥ G = (V,E) has treewidth < k, and |V| > k, then there exist vertices
v1,...,0 € V, with G’ = (V,E U {(v;,v;)|]1 £ 4,5 < k,t# j}) =G U clique
(v1,--.,vk) has treewidth < k.

(ii) Suppose treewidth (G) < k, vy,...,v; form a clique in G. Let V3,...,V, be
the sets of vertices of the connected components of G[V — {vy,...,vr}]. Then,
for alli,1 <i < r:G[V;U{vy,...,v}] has treewidth < k.

(iii) Suppose treewidth (G) < k,vy,...,v form a clique in G. Suppose G[V —
{v1,...,ve}] is connected, |V| > k + 2. Then there exists a vertex w €
V — {v1,...,v}, such that G’ = (V,E U {(v;,w)|1 < ¢ < k}) has treewidth
< k. Moreover, for each connected component V; of G[V — {vy,..., v, w}],
there is at least one vertex w; € {vy,..., v, w} with Vv € V; (v,w;) # E, and
G'V;U ({v1,...,vk, w} — {w;}] has treewidth < k.

We now sketch our algorithm.

1. Run the “approximate tree-decomposition ” algorithm of Robertson and Sey-
mour (see lemma 2.2). If it tells us that the treewidth of G is larger than k,
then output “no”, and stop. Otherwise we have a tree-decomposition of G
with treewidth O(1).

2. Test whether G contains a minor in the obstruction set of the graphs with
treewidth < k. I so, then output “no”, and stop. Otherwise, we know that
treewidth (G) < k, and we continue with step 3. (Step 1 and 2 basically form
the recognition algorithm of Robertson and Seymour [27]).



3. Find vertices vy,...,v; as indicated in lemma 5.2(1). This can be done in
linear time, using lemma 2.1, observing that

eV eV..-3n € V:G = (V,EU{(vi,v;)|1 <4,j < k,i # j))hastreewidth < k.

can be written as a monadic second order graph property, by using lemma
4.1, and the characterization with forbidden minors. With k applications of
lemma 2.1 we find vertices vy, v,..., V.

4. Determine the connected components V,...,V, of G[V — {v1,...,v¢}]. Let
G’ = GU clique{vy, ..., v}

5. Now, for each ¢,1 < i < r, find a tree-decomposition with treewidth < k of
G'[V; U {vy,...,v}], with a procedure, described below. Then build a tree-
decomposition of G with treewidth < k as follows:

(a) Observe that, for each ¢,1 < i < r, there must be a set X,;) in the tree-
decomposition of G'[V; U {v;,...,vx}] that contains vy,...,vi, as these
vertices form a clique in this graph.

(b) Now take the disjoint union of all r tree-decompositions, add an extra
set X, = {v1,...,v}, and add a tree-edge from X, to Xa@) forall 4,1 <
¢ < r. One can now check that a correct tree-decomposition of G with
treewidth < k results.

6. Next we describe a recursive procedure, that given a set W C V, with
G[W] connected, and vertices v;,...,v: € V, finds a tree-decomposition of
G' = G[W U {vy,...,u}] Uclique({v1,...,vk}), with treewidth < k. The set,
associated to the root of the resulting tree contains v,...,v;.

(a) If |W| < 1, then take the tree-decomposition ({X; = WU {vy,...,u} },
({1},9)).

(b) Otherwise, find a vertex w € W, with G[W U {vy,...,u%}] U clique
({v1,...,vk, w}) has treewidth < k. This can be done in linear time,

with the methods, exposed in sections 3 and 4. Lemma 5.2 guarantees
us, that such a vertex w exists.

(c) Determine the connected components Wy,...,W,, of G[W — {w}].

(d) For each of these connected components W;, find W; € {vy,..., v, w}
with Vv € Wi(v,w;) € E. (See lemma 5.2). Now call the procedure
recursively with set W; and vertices {vy,..., v, w} — {w;}.

(e) So now we have tree-decompositions of all graphs G; = G[W; U
({v1, ..., vk, w}—{wi})]Uclique({vy,. .., ve, w} — {w;}), with treewidth <
k. The root of such a tree-decomposition contains {vy, ..., v, w} — {w;}.
The desired tree-decomposition of G’ can be built as follows: take the
disjoint union of the tree-decomposition of G; (1 < ¢ < /). Take a
new set X, = {v1,...,vk, w}, which is taken as the root of the new
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tree-decompositions. Connect X, to each of the roots of the tree-
decomposition of graphs G;. One can check that indeed the resulting
structure is a tree-decomposition of G’ with treewidth < k.

This completes the description of the algorithm. The time needed for steps 1,2,3,4
and 5 is bounded by O(n?). Each call of the procedure in step 6 costs O(n) time,
and this procedure is called O(n) times. Thus, the total time of our algorithm is
O(n?).

Theorem 5.3

For each constant k, there exists an O(n?) algorithm, that for a given graph
G = (V,E) either decides that the treewidth of G is larger than k, or finds a
tree-decomposition of G with treewidth < k.

(In [8] an (easier) O(n®) algorithm is given.)

5.2 Search number and vertex search number.

In this section we consider the search number and vertex search number of a graph.
A search strategy of a graph is a sequence of the following types of moves:

1. Place a searcher on a vertex.
2. Delete a searcher from a vertex.

3. Move a searcher over an edge.

All edges are initially contaminated. An edge (v, w) can become cleared by moving
a searcher from v to w, while there is a second searcher on v, or all other edges,
adjacent to v are already cleared. An edge can become recontaminated, when a
move results in a path without searchers from a contaminated edge to the edge.
The search number of G is the minimum number of searchers needed to clear all
edges. It has been shown by LaPaugh [17] that for every graph G, there exists
a search sequence, that uses the optimal number of searchers, and does not allow
recontamination. Such a search sequence is called progressive. If we let vertices
instead of edges be cleared or contaminated, then the vertex search number is the
minimum number of searchers, needed to clear all vertices with a progressive search
sequence. Determining the minimum number of searchers needed is NP-complete
[21]. Note that for a progressive search strategy that clears all vertices, we may
assume that never two searchers occupy the same vertex, and that once a searcher
has left a vertex, then no searcher will visit that vertex again. Note that, for fixed
k, the classes of graphs with search number of vertex search number < k are closed
under taking of minors. Also, if the (vertex) search number of G is k, then treewidth
(G) <k (see e.g. [9] ).

Definition.

BW(n, k) = ({01, - -, v}, {(06, )1 S sj <, li = §] < K}).

(BW(n, k) is the maximal graph on n vertices with bandwidth k.)
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Lemma 5.4

(i) If there exists a progressive search strategy that clears all verticesof G = (V, E)
with k searchers, then there exists one with the first ¥ moves the placing of a
searcher (|V| > k).

(ii) There exists a progressive search strategy that clears all vertices of G, and
that starts with placing a searcher on vertices wy,...,ws, if and only if the
graph G', obtained by taking the disjoint union of G and BW(2k + 1,k) and
then identifying vertices v; and w; for 1 < ¢ < k, has vertex search number
<k.

Proof.

(i) One can obtain the desired search strategy by first executing the first k¥ moves
of the type “place a searcher on a vertex”, and then executing all other moves in
sequence.

(i) = Use the following search strategy: place searchers on vertices
Uk+42, Vk4+3, - - - s V2k+1. Then move a searcher from v; to v;_g, for ¢ = 2k + 1,2k, 2k —
1,...,k + 1. Now we have searchers on wy; = vy,...,w = v;. Continue with
the given search strategy that clears all vertices of G and starts with searchers on
Wry...y Wk

& Consider a progressive search strategy that clears all vertices of G' with &
searchers. Consider the first move that removes a searcher from a vertex v; €
{vk+1,- .., V2r41} Or moves a searcher away from a vertex v; € {Vk41,...,V2k41}. It
follows that after this move, all vertices in {vk41,...,v2k4+1} — {vi} must contain
a searcher. Also, vertices v;_1,...,v;_x must be cleared or contain a searcher. It
follows that either all vertices in G are cleared or uncleared. Suppose the latter. It
follows that ¢ = 2k+1, and that the next k+1 moves are: move a searcher from v; to
vj-k, for j = 2k+1,...,k+1. We then have searchers on vy = wy,..., v = wi. The
remaining search sequence is a progressive search sequence that clears all vertices
of G, starting with searchers on vy,...,v;. In the case that all vertices in G are
cleared after moving the searcher from v;, we use the same argument for the search
strategy, that is obtained by “reversing” the original strategy. O

Lemma 5.4 gives us a method to find the first k vertices where a searcher is placed:
we must find vertices vy,..., vk, such that the graph (V U {w41,..., wogs1}, E U
{(viavj)ll <4,j < ki# .7} U {(v;,w,-)|1 Si<k<j<i+ k} U {(wi’wj)|k <4, <
2k+1,0 < |i—j| < k}) has vertex search number k. This can be done in linear time,
by combining the techniques of section 3 and 4. (Add wgy41,..., W4 to G, and all
edges between them. Construct a constant width tree-decomposition of the resulting
graph G’. Write: “Juv,...3v; : if we add edges between v;,v;,1 < i < j < k, and
vi, w; with j — ¢ < k, then the resulting graph has vertex search number < k” as
a monadic second order graph property, using the characterization with forbidden
minors, and lemma 4.1.).

In order to find the next move, we distinguish between two cases.
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Case 1: There exists a vertex v;, containing a searcher, that is not adjacent to
a vertex that does not contain a searcher. Then one may assume that the next
move in our search strategy is the removal of the searcher from v;. Now remove v;
from G, and find, recursively a progressive search strategy that clears all vertices
of G — {v} with k searchers, that starts with placing a vertex on each of the ver-
tices vy,...,Vi-1,Vis1,-..,Vk. (This can be done, similar as how we found the first
k moves. Only let vy,...,v;_1,Vi41,...,vs be free variables in the monadic second
order graph property that is tested.) The resulting search sequence can easily be
extended to the desired search sequence.

Case 2: Such a vertex v; does not exists. Then necessarily the next move must be
the moving of a searcher from a vertex v; to an adjacent uncleared vertex. Note
that for each searcher, there is at most one vertex where it can move to, otherwise
the vertex it leaves will become recontaminated. So we have to consider at most
k possible moves. For each possible move from v; to w, test whether there exists
a progressive search strategy that clears the vertices of G — {v;} with k searchers,
and that starts with placing a searcher on vy,...,v;_1,i41,Vk, and w. This can be
tested, similar as above, in linear time. Do this for each of the k possible moves,
until a good move is found. Then find recursively a progressive search strategy,
that clears the vertices of G with k searchers, that starts with placing a searcher on
Vlyeooy Vi1, Vitl,s - - -, Uk and w.

As in total O(n) moves are made, the total time of the algorithm is O(n?).

Theorem 5.5

For each constant k, there exists an O(n?) algorithm, that for a given graph
G = (V, E), either decides that the vertex search number of G is larger than &,
or finds a progressive search sequence that clears the vertices of G with k searchers.

We can use this result to obtain the following theorem as an easy corollary.

Theorem 5.6

For each constant k, there exists an O(n2?) algorithm, that for a given graph
G = (v, E) either decides that the search number of G is larger than k, or finds
a progressive search strategy that clears all edges of G with k searchers.

Proof.

Let G’ be the graph, obtained by subdividing each edge in G once, i.e. G' =
(VUE,{(v,e)lv € V,e € E,3w € V : (v,w) = e}). The vertex search number of
G’ equals the search number of G, and the corresponding search strategies can be
easily transformed into each other. 0

11



5.3 Other problems.

Several other problems can be dealt with in the same manner. The techniques are
similar to those used for the vertex search number problem, but the details are
different.

We give the definitions of the problems, that are considered. A linear ordering of
a graph G = (V, E) is a bijection V — {1,2,...,|V|}. The cutwidth of a linear or-
dering f is 1111<'a<.:$'|{(v,w) € E|f(v) < < f(w)}|. The cutwidth of G is the minimum

cutwidth over all linear orderings of G. The vertex separation of a linear ordering f
is 11£1a<.x|{v €V|f(v) <iA3we V:(v,w) € EN f(w) > i}|. The vertex separation
number of G is the minimum vertex separation over all linear orderings of G. The
modified cutwidth of a linear ordering f is lxgag':‘l{(v,w) € E|f(v) <i < f(w)}|. The

modified cutwidth of G is the minimum modified cutwidth over all linear orderings
of G. A path-decomposition of G is a tree-decomposition ({X;|i € I}, T = (I, F)) of
G, where T is a path, i.e. T is a tree with every node degree 1 or 2. The pathwidth
of path-decomposition ({X;|i € I},T = (I, F)) is rfleaix|X,| — 1. The pathwidth of G
is the minimum pathwidth over all path-decompositions of G.

Determining the cutwidth, modified cutwidth, vertex separation number or path-

width of a graph is NP-complete (see e.g. [2, 22]). For fixed k, Fellows and Langston
obtained O(n®) and O(n®logn) algorithms [12, 16].

Theorem 5.7

(i) For every fixed k, there exists an O(n?) algorithm that for a given graph
G = (V, E) either decides that the cutwidth of G is larger than k, or finds a
linear ordering of G with cutwidth < k.

(ii) For every fixed k, there exists an O(n?) algorithm that for a given graph
G = (V, E) either decides that the pathwidth of G is larger than k, or finds a
path-decomposition of G with pathwidth < k.

(iii) For every fixed k, there exists an O(n?) algorithm that for a given graph
G = (V, E) either decides that the vertex separation number of G is larger
than k, or finds a linear ordering of G with vertex separation < k.

(iv) For every fixed k, there exists an O(n?) algorithm either decides that for a
given graph G = (V, E), the modified cutwidth of G is larger than , or finds
a linear ordering of G with modified cutwidth < k.

Proof.

(1) Use the self-reduction of Brown, Fellows and Langston [10], and apply the
techniques of section 3 and 4. Parallel edges can be avoided by putting a
vertex on the middle of these edges.

12



(ii), (iii), (iv) Omitted. O

Corollary 5.8

For every fixed k, there exists an O(n?) algorithm, that for a given Boolean matrix
M, either finds a column permutation of M such that if in each row every 0 lying
between the row’s leftmost and rightmost 1 is changed to a *, then no column
contains more than k 1’s and *s, or decides that such a column permutation does
not exist.

Proof.
There is a linear transformation from this problem to the problem of finding path-
decompositions with pathwidth < k — 1 [14, 16]. O

Corollary 5.9

For every fixed k, there exists an O(n?) algorithm that, for a given directed acyclic
graph G = (V, E), either gives a pebbling strategy for the progressive black-white
pebbling game on G, that uses k pebbles (see [19] for a definition) or decides that
such pebbling strategy does not exist.

Proof.
There is a linear transformation from this problem to the vertex separation problem
and vice versa [19]. m]

6 Final remarks.

As discussed in section 1, the algorithms are non-constructive in the sense that
one knows that an algorithm exists, but we do not have a concrete algorithm of
which we know that it is correct. In order to overcome this problem, Fellows and
Langston [12] designed a technique that allows us to actually construct algorithms
without knowing the exact obstruction set. The technique does not work always, but
only if we have an (efficient) oracle algorithm, producing “solutions”, an (efficient)
algorithm that checks whether a “candidate-solution” is a correct solution, and an
arbitrary (other) algorithm, that decides on membership in the considered class
of graphs. The resulting algorithm has the following form. Let T be a minor or
immersion closed class of graphs.

1. Let S be a subset of the obstruction set of T'.

2. Check whether the input graph G has a graph in S as a minor. If so, output
“no” (G # T), and stop.

3. Use the oracle algorithm to produce a ‘solution’, using S as an obstruction
set.

13



4. Check the produced solution. If it is a correct solution, output it (G € T),
and stop.

5. (S is not the complete obstruction set of T'). Enumerate all graphs, until a
graph G,G ¢ S,G ¢ T, all minors of G are in T, are found. (G is a new
element of the obstruction set). Put G in S. Go to step 2.

We can apply this technique to each of the problems considered in section 5.
Observe that the method of Arnborg, Lagergren and Seese [3] that obtains a linear
time algorithm on bounded treewidth graphs, given an extended monadic second
order graph property, is in fact an automatic procedure. As our obstruction sets may
grow, our monadic second order graph properties can vary during this algorithm, so
we need to implement this procedure in order to combine the techniques, and obtain
fully constructive O(n?) algorithms for the problems considered in section 5.
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1

A graph G is said to be a minor of a graph H, if G can be obtained from a subgraph
of H by a number of edge-contractions. (An edge-contraction is the operation that
replaces two adjacent vertices v, w by a new vertex that is adjacent to all vertices,
adjacent to v or w.) Robertson and Seymour [28] have shown that for every class of
graphs F, that is closed under taking of minors, there is a finite set of graphs ob(F),
the obstruction set of F, such that for all graphs G: G € F, if and only if there
is no graph H € ob(F') that is a minor of G. Further, there is an O(n3) algorithm
for every fixed graph H, that tests whether H is a minor of a given graph G [27].
Thus, one can test membership in F in O(n3) time. If the treewidth of graphs in F
is bounded by some constant (or, equivalently, if there is at least one planar graph

IMPROVED SELF-REDUCTION
ALGORITHMS FOR GRAPHS WITH
BOUNDED TREEWIDTH

Hans L. Bodlaender
Department of Computer Science, University of Utrecht
P.0.Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

Recent results of Robertson and Seymour show, that every class that is
closed under taking of minors can be recognized in O(n3) time. If there
is a fixed upper bound on the treewidth of the graphs in the class, i.e. if
there is a planar graph not in the class, then the class can be recognized
in O(n?) time. However, this result is non-constructive in two ways: the
algorithm only decides on membership, but does not construct ‘a solution’,
e.g. a linear ordering, decomposition or embedding; and no method is given
to find the algorithms. In many cases, both non-constructive elements can be
avoided, using techniques of Fellows and Langston, based on self-reduction.
In this paper we introduce two techniques that help to reduce the running
time of self-reduction algorithms. With help of these techniques we show
that there exist O(n?) algorithms, that decide on membership and construct
solutions for treewidth, pathwidth, search number, vertex search number,
cutwidth, modified cutwidth, vertex separation number, gate matrix layout,
and progressive black-white pebbling, where in each case the parameter k is
a fixed constant.

Introduction.
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that is not in F [24]), then the minor-tests, and hence the membership in F-test
can be done in O(n?) time [27]). A similar characterization with an obstruction set
exists for classes of graphs that are closed under immersions [25].

G is an immersion of H, if G can be obtained from a subgraph of H by a number
of edge-lifts. An edge-lift is the operation that replaces edges (v,w) and (w,z)
by an edge (v,z). For fixed H, one can test whether a given graph G contains
H as an immersion in polynomial time, and in O(n?) time if the treewidth of G is
bounded. Many applications of these results were obtained by Fellows and Langston
[13, 14, 15].

Note that these results are non-constructive in two ways: the algorithms only de-
cide on membership in the class, but do not construct a solution like a linear ordering,
decomposition or embedding, and no method is given to construct the algorithm:
to write down this type of algorithm we must know the obstruction set of the class
of graphs we want to recognize. However, in many cases, both non-constructive
elements can be avoided with techniques of Brown, Fellows and Langston [10] and
Fellows and Langston [16], based on self-reduction . We concentrate in this paper on
the problem on finding solutions, for the case that there is a bound on the treewidth
of the graphs.

Self-reduction is the technique to consult the decision algorithm a number of
times with inputs derived from the original input, in order to construct the ‘solution’
to the problem. Algorithms of this type are also called ‘oracle algorithms’, and the
decision algorithm is called the ‘oracle’. The overhead of an oracle algorithm is the
time, required for all operations, except those of the oracle, where each call to the
oracle is counted as one unit of time.

This paper is organized as follows. In section 2 we review a number of definitions
and results. In sections 3 and 4 we introduce two new techniques, that help to design
faster constructive algorithms for immersion and minor closed classes of graphs with
a fixed bound on the maximum treewidth. In section 5 we apply these techniques,
and obtain O(n?) algorithms that decide on membership and construct solutions
for treewidth, pathwidth, search number, vertex search number, cutwidth, modified
cutwidth, vertex separation number and gate matrix layout, where in each case
the parameter k is a fixed constant. For each of these problems, except treewidth,
algorithms with running time between O(n3) and O(n*) were designed by Fellows
and Langston [12, 16]. Some final remarks are made in section 6.

2 Definitions and preliminary results.

In this section we give a number of well-known definitions and results. First we
consider the important notion of treewidth, which was introduced by Robertson
and Seymour [23].

Definition.
Let G = (V, E) be a graph. A tree-decomposition of G is a pair ({X;]i € I},T =
(1, F)), with {X;|i € I} a family of subsets of V, and T a tree, with the following



properties

® UX,':V

i€l
e For every edge e = (v,w) € E, thereis an i € I, with v € X; and w € X;.
e For all 4,5,k € I:if j lies on the path from ¢ to k in T, then X; N Xj C X;.

The treewidth of a tree-decomposition ({X;|¢ € I),T) is max;es |X;| — 1. The
treewidth of G, denoted by treewidth(G), is the minimum treewidth of a tree-
decomposition of G, taken over all possible tree-decompositions of G.

There are several alternative ways to characterize the class of graphs with treewidth
< k. See e.g. [1].

Very few NP-hard problems stay NP-hard, when we restrict them to a class of
graphs with some fixed upper bound on the treewidth of the graphs in the class (see
e.g. [3, 5, 7, 11, 18, 29]). In this paper we consider the approach of Courcelle [11]
and Arnborg, Lagergren and Seese [3], as this approach appears to be most suitable
for our purposes.

Courcelle [11] showed that every property that can be expressed in monadic
second order form, can be tested in linear time for graphs that are given together
with a tree-decomposition with constant bounded treewidth. Arnborg, Lagergren
and Seese [3] extended the class of problems that can be dealt with. Consider
logical formula’s, that can use the following ingredients: the usual logical operations
(A, V,T,=>, etc.), quantifications over vertices (Jv € V,¥v € V), edges (3e € E,Ve €
E), sets of vertices (AW C V,VW C V), and sets of edges (3F C E,VF C E),
equality tests (v = w,e = f,(v,w) = e), membership tests (v € W,e € F), and
incidence tests ((v,w) € E,(v,w) € F). The formula may be open, where the free
variables are given interpretations as pre-specified vertices, edges, sets of vertices,
or sets of edges, respectively. Properties, that are expressed in this way are called
monadic second order graph properties. We use the following variant of the results
of Courcelle [11] and Arnborg, Lagergren and Seese [3].

Theorem 2.1 [11, 3]

Let k be a constant. Let Jv € V@(G,v) (3e € EP(G,e)) be a monadic second
order graph property. Then there exists a linear time algorithm, that given a graph
G = (V, E) together with a tree-decomposition of G with treewidth < £, either finds
a vertex v € V such that ®(G,v) (an edge e € E, such that (G, e)), or decides
that such a vertex v (edge ¢) does not exist.

For our purposes, it is important to note that for fixed graphs H, the properties “H
is a minor of G”, or “H is an immersion of G” can be expressed as monadic second
order graph properties. In order to find tree-decomposition with small treewidth,
we can use the following result, which is a direct corollary of results of Robertson
and Seymour [26, 27].



Theorem 2.2 (Robertson, Seymour)

For every fixed k > 1, there is an O(n?) algorithm that given a graph G = (V, E),
either decides that the treewidth of G is larger that k, or finds a tree-decomposition
of G with treewidth < 4%]{:.

(Robertson and Seymour considered “branchwidth”, and obtained a bound of 3k.)
Thus, for graphs with constant bounded treewidth, we can find in O(n?) time a
tree-decomposition with treewidth still bounded by a constant, although it does not
have optimal treewidth.

Some other definitions we use:

G[W] : the subgraph of G, induced by W, i.e. (W, {(v,w) €
Elv,w € W})
G —{v} : the subgraph of G, induced by V — {v}, G[V — {v}].
G —{e} : thegraph (V,E — {e})
clique {v1,...,%} : the complete graph on {v1,...,v} : ({v1,-..., v},
{(’U,’,'Uj)ll S Z,J S k,Z :)‘é J})
GUH : the (not necessarily disjoint) union of G and H.

3 Quiet self-reductions.

In this section we propose the notion of “quiet” self-reduction . This rather simple
idea is based on a closer observation of the O(n?) minor test algorithm for graphs
with bounded treewidth. Basically, this algorithm consists of two phases. In the
first phase, the algorithm, indicated in theorem 2.2 is run. Either we decide that
the treewidth of G is too large, and we know that G is a “no”-instance, or we
find a tree-decomposition with treewidth O(1). This phase costs O(n?) time. In
the second phase, the tree-decomposition is used to perform the actual minor test,
using dynamic programming, as in [3, 5, 7, 11, 29]. This second phase uses O(n)
time.

An oracle algorithm may call this procedure a number of times, each time for a
new graph G’ that is obtained from modifications of the original input graph G. The
number of such calls is usually at least O(n). Thus, it may be possible to save time,
if we could be able to avoid the first phase for most of the calls to the minor-test
algorithm. The following definition expresses a class of such oracle algorithms.

Definition.

An oracle algorithm is quiet, if, there are constants ¢, cz, such that for any graph
G = (V, E), when the algorithm runs with G as input, then every graph H = (W, F),
that is input to the oracle, fulfills:

@) W-(Vaw)|<a
(i) W CV: W|<aA(v,w)e F—(ENF)=>veW'Vwe W)



In other words, every graph that is input to the oracle, can be obtained by taking a
subgraph of G, adding a constant number of new vertices, and for a constant number
of vertices, adding a number of edges, starting at that vertex.

Theorem 3.1
Let k,1 be constants. Let A be a quiet oracle algorithm, such that

(i) A yields the answer “no”, if the treewidth of input graph G is larger than k.

(ii) A has overhead f(n), and makes g(n) oracle calls to an oracle O.

(iii) A call to oracle O costs O(n) time, if the input-graph H to the oracle, is given
together with a tree-decomposition of H with treewidth < I.

Then A can be implemented with an algorithm, that uses O(f(n) + n2 + g(n) - n)
time.

Proof.

First run the algorithm of Robertson and Seymour, that either decides that
treewidth (G) > k, or finds a tree-decomposition of G with constant treewidth.
In the former case, output “no”, and we are done. In the latter case, note that
for input graph H to the oracle, one can find in O(n) time a tree-decomposition
of H with constant treewidth: use the tree-decomposition of G, remove all vertices
in G — H, and then add to each set X; all vertices in H — G, and all vertices in
the set W', defined by (v,w) edge in H — G = v € W'V € W', |W| bounded by
a constant. A tree-decomposition of H with constant bounded treewidth results.
Hence, the total time for all oracle calls is bounded by O(g(n) - n), and the total
time for the algorithm is bounded by O(f(n) + n? + g(n) - n). m|

Theorem 3.1. can be applied to several problems, considered in [12]. In many cases,
improvements with a factor up to O(n) can be made. However, we need a second
technique in order to obtain O(n?) algorithms.

4 Using monadic second order graph properties,
instead of minor tests.

In this section we describe our second technique. It is based on the observation,

that not only minor-tests, but also more complicated questions, if we write them

as monadic second order graph properties, can be tested in linear time, given a
tree-decomposition of G with constant bounded treewidth.

Lemma 4.1

Let ¢(G) be a monadic second order graph property. Each of the following properties
can be expressed in monadic second order form:

(1) ¢(G—{v}) (G—{v}=(V—{v},{(w,2)lw# v,z #v})
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(i) o(G—{e}) (G—{e}=(V,E~{e}))
(iil) @(G' = (V,EU{(v,w)}))
(iv) @(G' = (V, EU{(v,w)lw € W}))
(v) ¢(G' = (V, E — {(v, w)lw € W}))
(v,w,e, W are free variables in the resulting formulas, but not in ¢.)

Proof.

We can rewrite ¢, inductively. For example, consider (i). We only consider a few
cases, the other are similar. If o = (3 V3, then o(G—{v}) = 1(G—{v}) V2 (G-
{v}). o =3W € V1 (W, G), then p(G—{v}) = Jw € V : v £ wAg;(w, G—{v}).
Ko=3WCV:p(W,G),then p(G—{v}) =IW CV: (v € w)Apr(W,G—{v}).
If o = (w=2z), or (w,z) € F), then (G — {v}) = . The other cases are similar.
O

This result can often be applied in the following way. Suppose we look for a vertex v
(or edge e), such that G, with some local operations applied on v (or €) remains in a
minor-closed class F. Lemma 4.1 shows that, if we can write these local operations
in a suitable form, then we can find such a vertex v (or edge e), in linear time
(supposing G is given with a constant width tree-decomposition ). This can save
up to a factor of O(n) time in comparison to algorithms that test for each vertex v
the resulting modified graph G separately.

As a first example, consider the “k vertices within F” problem for a minor closed
class of graphs F, with a fixed upper bound on the treewidth of graphs in F. (This
problem, without assumptions on the treewidth was considered in [10].) Le., we
must find k vertices vy, ..., v, such that G — {vy,...,v:} € F. One easily sees that
if G is a “yes”-instance to this problem, then the treewidth of G is bounded by the
maximum treewidth of a graph in F plus k.

Using the characterization with obstructions, the property G € F can be written
as a monadic second order graph property, hence we can write Jv;3v,... v G —
{v1,...,v} € F as a monadic second order property. (Apply lemma 4.1(i) k times.)
So suppose G is given together with a constant width tree-decomposition . Then we
can find v; in linear time, using lemma 2.1. Using again lemma 2.1 on the property
Jvz...30kG — {v1,...,v:} € F we see that we can find v, in linear time. (v, is now
a free variable with a predetermined value.) So, in k steps, each using O(n) time,
we find vy,..., vk, such that G — {vy,...,v:} € F, if they exist.

Theorem 4.2

Let k be a constant, and let F be a minor-closed class of graphs with a fixed
upper bound on the treewidth of graphs in F. Then there exists an O(n) time
algorithm, that given a graph G = (V, E), together with a tree-decomposition of G
with constant bounded treewidth , finds k vertices vy,...,vx (k edges ei,...,ex),
such that G—{vy,...,u} € F (G—{ey,...,ex} € F), or decides that such collection
of vertices (edges) does not exists.



5 Faster constructive algorithms for various
problems.

5.1 Treewidth.

We now show that, for fixed k, there exists an O(n?) algorithm that constructs a tree-
decomposition with treewidth < k, or decides that such a tree-decomposition does
not exist for a given graph G. This improves on an O(n*+2?) algorithm by Arnborg,
Corneil and Proskurowski [2]. For k = 1,2,3 there exist linear time algorithms
[4, 20]. For variable k, the problem is N P-complete [2].

Lemma 5.1 [6]
Let G = (V,E) be a graph, with W C V is a clique in G. Then, for any tree-
decomposition ({X;|t € I},T = (I, F)) of G, there exists an i € I with W C X;.

Our algorithm is based on the following lemma’s, which are slight modifications of
lemma’s of Arnborg, Corneil and Proskurowski [2].

Lemma 5.2

(i) f G = (V,E) has treewidth < k, and |V| > k, then there exist vertices
Vi,...,0 € V, with G’ = (V,EU {(vi,v;)]1 < 1,5 < k,i%# j}) =G U clique
(v1,...,vx) has treewidth < k.

(ii) Suppose treewidth (G) < k, v1,...,v; form a clique in G. Let V;,...,V; be
the sets of vertices of the connected components of G[V — {v,,...,vx}]. Then,
for all 5,1 < ¢ <r:G[V; U {vy,...,vr}] has treewidth < k.

(iii) Suppose treewidth (G) < k,vy,...,v; form a clique in G. Suppose G[V —
{v1,...,v}] is connected, |V| > k + 2. Then there exists a vertex w €
V — {v1,...,u}, such that G’ = (V,E U {(v;,w)|1 < i < k}) has treewidth
< k. Moreover, for each connected component V; of G[V — {vy,..., v, w}],
there is at least one vertex w; € {vy,..., vk, w} with Vv € V; (v,w;) # E, and
G'[V;U ({v1y. .., vk, w} — {w;}] has treewidth < k.

We now sketch our algorithm.

1. Run the “approximate tree-decomposition ” algorithm of Robertson and Sey-
mour (see lemma 2.2). I it tells us that the treewidth of G is larger than k,

then output “no”, and stop. Otherwise we have a tree-decomposition of G
with treewidth O(1).

2. Test whether G contains a minor in the obstruction set of the graphs with
treewidth < k. If so, then output “no”, and stop. Otherwise, we know that
treewidth (G) < k, and we continue with step 3. (Step 1 and 2 basically form
the recognition algorithm of Robertson and Seymour [27)).



3. Find vertices vy,...,v: as indicated in lemma 5.2(1). This can be done in
linear time, using lemma 2.1, observing that

eV eV...3n, € V: G = (V, BU{(vi,v;)|1 < 4,7 < k,i # j))hastreewidth < k.

can be written as a monadic second order graph property, by using lemma
4.1, and the characterization with forbidden minors. With k applications of
lemma 2.1 we find vertices vy, vs,..., vk

4. Determine the connected components V3,...,V, of G[V — {vi,...,vc}]. Let
G’ = GU clique{vy,...,v}.

5. Now, for each ¢,1 < ¢ £ r, find a tree-decomposition with treewidth < &k of
G'lV; U {v1,...,v}], with a procedure, described below. Then build a tree-
decomposition of G with treewidth < k as follows:

(a) Observe that, for each ¢,1 < ¢ < r, there must be a set Xa(i) in the tree-
decomposition of G'[V; U {v;,...,vx}] that contains vy,..., v, as these
vertices form a clique in this graph.

(b) Now take the disjoint union of all r tree-decompositions, add an extra
set Xo = {v1,...,u}, and add a tree-edge from X, to X,; for all 4,1 <
¢ < r. One can now check that a correct tree-decomposition of G with
treewidth < k results.

6. Next we describe a recursive procedure, that given a set W C V, with
G[W] connected, and vertices vy,...,vx € V, finds a tree-decomposition of
G' = G[W U {vy,...,v}] Uclique({vy,...,vx}), with treewidth < k. The set,
associated to the root of the resulting tree contains vy, ..., vg.

(a) I |[W]| <1, then take the tree-decomposition ({X; = WU {vy,...,u} },
({1},9)).

(b) Otherwise, find a vertex w € W, with G[W U {vy,...,v}] U clique
({v1,..., vk, w}) has treewidth < k. This can be done in linear time,

with the methods, exposed in sections 3 and 4. Lemma 5.2 guarantees
us, that such a vertex w exists.

(c) Determine the connected components Wy,...,W,, of G[W — {w}].

(d) For each of these connected components W;, find W; € {vy,..., v, w}
with Vv € Wi(v,w;) € E. (See lemma 5.2). Now call the procedure
recursively with set W; and vertices {vy,...,ve, w} — {w;}.

(e) So now we have tree-decompositions of all graphs G; = G[W; U
({v1, ..., vk, w}—{w;})]Uclique({vy, ..., vg, w} — {w;}), with treewidth < -
k. The root of such a tree-decomposition contains {vy,...,vg, w} — {w;}.
The desired tree-decomposition of G’ can be built as follows: take the
disjoint union of the tree-decomposition of G; (1 < i < r’). Take a
new set X, = {vy,...,v,w}, which is taken as the root of the new
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tree-decompositions. Connect X, to each of the roots of the tree-
decomposition of graphs G;. One can check that indeed the resulting
structure is a tree-decomposition of G’ with treewidth < k.

This completes the description of the algorithm. The time needed for steps 1,2,3,4
and 5 is bounded by O(n?). Each call of the procedure in step 6 costs O(n) time,

and this procedure is called O(n) times. Thus, the total time of our algorithm is
O(n?).

Theorem 5.3
For each constant k, there exists an O(n?) algorithm, that for a given graph

G = (V,E) either decides that the treewidth of G is larger than k, or finds a
tree-decomposition of G with treewidth < k.

(In [8] an (easier) O(n3) algorithm is given.)

5.2 Search number and vertex search number.

In this section we consider the search number and vertex search number of a graph.
A search strategy of a graph is a sequence of the following types of moves:

1. Place a searcher on a vertex.
2. Delete a searcher from a vertex.

3. Move a searcher over an edge.

All edges are initially contaminated. An edge (v,w) can become cleared by moving
a searcher from v to w, while there is a second searcher on v, or all other edges,
adjacent to v are already cleared. An edge can become recontaminated, when a
move results in a path without searchers from a contaminated edge to the edge.
The search number of G is the minimum number of searchers needed to clear all
edges. It has been shown by LaPaugh [17] that for every graph G, there exists
a search sequence, that uses the optimal number of searchers, and does not allow
recontamination. Such a search sequence is called progressive. If we let vertices
instead of edges be cleared or contaminated, then the vertex search number is the
minimum number of searchers, needed to clear all vertices with a progressive search
sequence. Determining the minimum number of searchers needed is NP-complete
[21]. Note that for a progressive search strategy that clears all vertices, we may
assume that never two searchers occupy the same vertex, and that once a searcher
has left a vertex, then no searcher will visit that vertex again. Note that, for fixed
k, the classes of graphs with search number of vertex search number < k are closed
under taking of minors. Also, if the (vertex) search number of G is k, then treewidth
(G) <k (see e.g. [9] ).

Definition.

BW (n, k) = ({vr, ., v}, {(0,0)[1 < r§ <, li — ] < K}).

(BW (n, k) is the maximal graph on n vertices with bandwidth k.)

9



Lemma 5.4

(1) If there exists a progressive search strategy that clears all vertices of G = (V, E)

with k searchers, then there exists one with the first £ moves the placing of a
searcher (|V| > k).

(ii) There exists a progressive search strategy that clears all vertices of G, and
that starts with placing a searcher on vertices wy,...,wy, if and only if the
graph G', obtained by taking the disjoint union of G and BW(2k + 1, k) and
then identifying vertices v; and w; for 1 < ¢ < k, has vertex search number
<k.

Proof.

(i) One can obtain the desired search strategy by first executing the first k¥ moves
of the type “place a searcher on a vertex”, and then executing all other moves in
sequence.

(ii) = Use the following search strategy: place searchers on vertices
Uk+2; Vk+3; - - - , U2k+1. Lhen move a searcher from v; to v;_y, for ¢ = 2k + 1,2k, 2k —
1,...,k + 1. Now we have searchers on w; = vy,...,wx = v;. Continue with
the given search strategy that clears all vertices of G' and starts with searchers on
Wiyeooy W

< Consider a progressive search strategy that clears all vertices of G’ with k
searchers. Consider the first move that removes a searcher from a vertex v; €
{vk41,...,V2k41} or moves a searcher away from a vertex v; € {vk+1s- .- V2k41}- It
follows that after this move, all vertices in {vk41,...,v2k41} — {v;} must contain
a searcher. Also, vertices v;_y,...,v;_x must be cleared or contain a searcher. It
follows that either all vertices in G are cleared or uncleared. Suppose the latter. It
follows that ¢ = 2k+1, and that the next k+1 moves are: move a searcher from v; to
Vj—k, for j = 2k+1,...,k+1. We then have searchers on v; = wy,...,vx = wi. The
remaining search sequence is a progressive search sequence that clears all vertices
of G, starting with searchers on vy,...,v:. In the case that all vertices in G are
cleared after moving the searcher from v;, we use the same argument for the search
strategy, that is obtained by “reversing” the original strategy. O

Lemma 5.4 gives us a method to find the first k vertices where a searcher is placed:
we must find vertices v;,...,vx, such that the graph (V U {wg41,..., wars1}, EU
{00 09)[1 S 4,5 < kyi # 7} U{(05,w5) 1L 6 <k < 5 <6+ B} U {(wiy w5) ] < 5 <
2k+1,0 < |i—j| < k}) has vertex search number k. This can be done in linear time,
by combining the techniques of section 3 and 4. (Add wiyq,. .., wokys to G, and all
edges between them. Construct a constant width tree-decomposition of the resulting
graph G'. Write: “Juv;...3vy : if we add edges between v3,05,1 <1< j <k, and
v;,w; with § — ¢ < k, then the resulting graph has vertex search number < k" as
a monadic second order graph property, using the characterization with forbidden
minors, and lemma 4.1.).

In order to find the next move, we distinguish between two cases.
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Case 1: There exists a vertex v;, containing a searcher, that is not adjacent to
a vertex that does not contain a searcher. Then one may assume that the next
move in our search strategy is the removal of the searcher from v;. Now remove v;
from G, and find, recursively a progressive search strategy that clears all vertices
of G — {v} with k searchers, that starts with placing a vertex on each of the ver-
tices v1,...,Vi—1,Vit1,...,Vk (This can be done, similar as how we found the first
k moves. Only let vy,...,v;_1,Vi41,...,Vr be free variables in the monadic second
order graph property that is tested.) The resulting search sequence can easily be
extended to the desired search sequence.

Case 2: Such a vertex v; does not exists. Then necessarily the next move must be
the moving of a searcher from a vertex v; to an adjacent uncleared vertex. Note
that for each searcher, there is at most one vertex where it can move to, otherwise
the vertex it leaves will become recontaminated. So we have to consider at most
k possible moves. For each possible move from v; to w, test whether there exists
a progressive search strategy that clears the vertices of G — {v;} with k searchers,
and that starts with placing a searcher on vy,...,v;_1, i1, Vs, and w. This can be
tested, similar as above, in linear time. Do this for each of the k possible moves,
until a good move is found. Then find recursively a progressive search strategy,
that clears the vertices of G with k searchers, that starts with placing a searcher on
ViyeoeyVicly Vigl, - - -, Uk and w.

As in total O(n) moves are made, the total time of the algorithm is O(n?).

Theorem 5.5

For each constant k, there exists an O(n?) algorithm, that for a given graph
G = (V, E), either decides that the vertex search number of G is larger than k,
or finds a progressive search sequence that clears the vertices of G with k searchers.

We can use this result to obtain the following theorem as an easy corollary.

Theorem 5.6

For each constant k, there exists an O(n?) algorithm, that for a given graph
G = (v, E) either decides that the search number of G is larger than k, or finds
a progressive search strategy that clears all edges of G with k searchers.

Proof.

Let G’ be the graph, obtained by subdividing each edge in G once, ie. G' =
(VUE,{(v,e)lve V,e€ E,Fw € V : (v,w) = e}). The vertex search number of
G' equals the search number of G, and the corresponding search strategies can be
easily transformed into each other. O

11



5.3 Other problems.

Several other problems can be dealt with in the same manner. The techniques are

similar to those used for the vertex search number problem, but the details are
different.

We give the definitions of the problems, that are considered. A linear ordering of
a graph G = (V, E) is a bijection V — {1,2,...,|V|}. The cutwidth of a linear or-
dering f is 1Iiméxl{(v,w) € E|f(v) £t < f(w)}|- The cutwidth of G is the minimum

cutwidth over all linear orderings of G. The vertex separation of a linear ordering f
is 1r£1a<,x|{'v eV|f(v) LiANTw eV :(v,w) € EN f(w) > 1}|. The vertex separation

number of G is the minimum vertex separation over all linear orderings of G. The
modified cutwidth of a linear ordering f is 1r£1aéx|{(v,w) € E|f(v) <i < f(w)}|. The

modified cutwidth of G is the minimum modified cutwidth over all linear orderings
of G. A path-decomposition of G is a tree-decomposition ({X;|i € I}, T = (I, F)) of
G, where T is a path, i.e. T is a tree with every node degree 1 or 2. The pathwidth
of path-decomposition ({X;|t € I},T = (I, F)) is I?eaIx|X.-| — 1. The pathwidth of G
is the minimum pathwidth over all path-decompositions of G.

Determining the cutwidth, modified cutwidth, vertex separation number or path-

width of a graph is NP-complete (see e.g. [2, 22]). For fixed k, Fellows and Langston
obtained O(n?) and O(n3logn) algorithms [12, 16].

Theorem 5.7

(1) For every fixed k, there exists an O(n?) algorithm that for a given graph
G = (V, E) either decides that the cutwidth of G is larger than k, or finds a
linear ordering of G with cutwidth < %.

(ii)) For every fixed k, there exists an O(n?) algorithm that for a given graph
G = (V, E) either decides that the pathwidth of G is larger than k, or finds a
path-decomposition of G with pathwidth < k.

(iii) For every fixed k, there exists an O(n?) algorithm that for a given graph
G = (V, E) either decides that the vertex separation number of G is larger
than k, or finds a linear ordering of G with vertex separation < k.

(iv) For every fixed k, there exists an O(n?) algorithm either decides that for a
given graph G = (V| E), the modified cutwidth of G is larger than k, or finds
a linear ordering of G with modified cutwidth < k.

Proof.

(i) Use the self-reduction of Brown, Fellows and Langston [10], and apply the
techniques of section 3 and 4. Parallel edges can be avoided by putting a
vertex on the middle of these edges.

12



(if), (iii), (iv) Omitted. O

Corollary 5.8

For every fixed k, there exists an O(n?) algorithm, that for a given Boolean matrix
M, either finds a column permutation of M such that if in each row every 0 lying
between the row’s leftmost and rightmost 1 is changed to a *, then no column
contains more than k 1’s and *s, or decides that such a column permutation does
not exist.

Proof.
There is a linear transformation from this problem to the problem of finding path-
decompositions with pathwidth < k — 1 [14, 16]. 0O

Corollary 5.9

For every fixed k, there exists an O(n?) algorithm that, for a given directed acyclic
graph G = (V, E), either gives a pebbling strategy for the progressive black-white
pebbling game on G, that uses k pebbles (see [19] for a definition) or decides that
such pebbling strategy does not exist.

Proof.
There is a linear transformation from this problem to the vertex separation problem
and vice versa [19]. m]

6 Final remarks.

As discussed in section 1, the algorithms are non-constructive in the sense that
one knows that an algorithm exists, but we do not have a concrete algorithm of
which we know that it is correct. In order to overcome this problem, Fellows and
Langston [12] designed a technique that allows us to actually construct algorithms
without knowing the exact obstruction set. The technique does not work always, but
only if we have an (efficient) oracle algorithm, producing “solutions”, an (efficient)
algorithm that checks whether a “candidate-solution” is a correct solution, and an
arbitrary (other) algorithm, that decides on membership in the considered class
of graphs. The resulting algorithm has the following form. Let T be a minor or
immersion closed class of graphs.

1. Let S be a subset of the obstruction set of 7.

2. Check whether the input graph G has a graph in S as a minor. If so, output
“no” (G # T'), and stop.

3. Use the oracle algorithm to produce a ‘solution’, using S as an obstruction
set.
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4. Check the produced solution. If it is a correct solution, output it (G € T),
and stop.

5. (S is not the complete obstruction set of T'). Enumerate all graphs, until a
graph G,G ¢ S,G ¢ T, all minors of G are in T, are found. (G is a new
element of the obstruction set). Put G in S. Go to step 2.

We can apply this technique to each of the problems considered in section 5.
Observe that the method of Arnborg, Lagergren and Seese [3] that obtains a linear
time algorithm on bounded treewidth graphs, given an extended monadic second
order graph property, is in fact an automatic procedure. As our obstruction sets may
grow, our monadic second order graph properties can vary during this algorithm, so
we need to implement this procedure in order to combine the techniques, and obtain
fully constructive O(n?) algorithms for the problems considered in section 5.
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