Data Conversions in Abstract
Data Types

Nico Verwer

RUU-CS-88-30
September 1988

o2 Rijksuniversiteit Utrecht

F %
%%%& Vakgroep informatica
NS

271 VY Padualaan 14 3584 CH Utrecht

Corr. adres: Postbus 80.089, 3508 TB Utrecht
Telefoon 030-531454 -
The Netherlands

Data Conversions in Abstract Data Types

Nico Verwer

Technical Report RUU-CS-88-30
September 1988

Department of Computer Science
University of Utrecht
P.0O.Box 80.089, 3508 TB Utrecht
The Netherlands

Data Conversions in Abstract Data Types

Nico Verwer

Abstract

Loose algebraic specifications can have many non-isomorphic models, or
implementations. If data is transported between different implementations
of the same specification, its representation has to be changed. This task is
performed by a data conversion program.

We review the theory of algebraic specifications, and present a notion
of programs. A correctness condition for data conversions is proposed, and
some of its properties are investigated. The notion of data conversion is
generalized to that of abstract data conversion, in order to be able to translate
between arbitrary models of a specification. Finally we point at some aspects
of constructing data conversions for a particular specification.

Contents

1

2

Introduction

Specifications, models and programs

Data conversions between different models
Abstract data conversions

Implementations and data conversions

Further research

19
22

26

1 Introduction

An important feature of algebraic specification techniques is the possibility of loose
specifications. Loose specifications leave out all details concerning the implementa-
tion, and they allow a large class of models (algebras)to be correct with respect to
the semantics of the specification language. The model class is called the abstract
data type corresponding to the specification.

All algebras in the model class of a specification are equivalent in an abstract
sense, but they certainly do not have to be equal (by equal we mean ‘equal up to
isomorphism’). Differences between models arise because of different implementation
decisions, such as different representations of a data type, or different algorithms
to perform some computation. These differences manifest themselves as different
equalities that hold in models, e.g. two terms ¢t and ¢’ may be represented as one
object in one model, and as two different objects in another. Also there may be
terms that do have a representation in one model but not in another (i.e. they are
undefined in that model).

The task of the implementor of a specification SPy is to refine this via a number of
steps SPy, ..., SP,, finally leading to an implementation SP,,, which is a specification
with sorts and functions that are of a sufficiently low level to be executable on some
existing machine. Another programmer however, may implement SP, differently,
arriving at an implementation SP;,, along a sequence SP},...,SP’ of intermediate
implementations. In this case the meaning of data in SP,, and SP’_ is the same, but
its representation may be very different.

As an example, consider a specification DBy of a database system, and two dif-
ferent implementations DB,, and DB!,. For some reason, it may be desirable to
transport data represented according to one model to the other. An obvious way of
changing the representation is to translate data in DB, into a DBy term represen-
tation, which might be a list of database-transactions. Then the representation in
DB;, can be built from this list, by feeding it as an input to the DB], implementa-
tion. This process could be made less time-consuming if a program were written to
convert the data ‘directly’, without an intermediate SPo-representation.

DB, ~> DB, ~> ...~ DB,
~>
DBo 1 data conversion
~>
implementation DB'l ~> DB; ~ e @DB;‘

Figure 1: Two implementations of DBy

Writing a representation-changing program by hand may be quite cumbersome,
and does not seem to be worthwhile, unless it is used often. However, if the im-
plementation is done in a framework of formal specifications, such a data conversion
program can be constructed from the information recorded in the implementation
steps SPy,...,SP, and SPy,...,SP,.. Because these steps are documented in a for-
malized way, the construction of the data conversion becomes a rather mechanical
process, amenable to automation.

It is our aim to provide conditions for the automatic construction of data con-
version programs. Under these conditions it is possible to derive a data conversion,
using the information recorded during the implementation process.

In section 2 we briefly review the theory of algebraic specifications, and introduce
a way of constructing programs in this framework. The core of the article is section
3, where we develop a notion of correctness for data conversions between models of a,
particular specification, and look at some of their properties. This is generalized in
a rather straightforward way to abstract data conversions in section 4. In section 5
we briefly look at a theory of implementations, and point at some aspects of finding
abstract data conversions between constructor-implementations.

A shorter version of this paper has appeared in [7]. All important additions are
marked by an asterisk (*) in the margin.

2 Specifications, models and programs

It is assumed that the reader is acquainted with the basic notions used in the theory
of algebraic specifications and implementations. Therefore we only briefly review
some concepts and notations, to fix the framework in which we shall develop the
theory of data conversions. Those who are new to algebraic specifications should
consult [2], [4] or any other introductory text.

All the expressions (terms) we use are presumed to be well formed, i.e. all subex-
pressions are of the right type. For any set $, by $* we denote the cartesian product
S x -+ x §, where the exact number of components is determined by the context in
which S* appears. :

A signature ¥ is a pair (Xsorts) Zopns), Where the first element is a set of sort
names, and the second element is a (,, Zsorts)-sorted set of operation symbols.
The category Sign contains all signatures as objects, and the signature morphisms
0 = (Osorts; Topns) as morphisms.

We denote the carrier set for sort s of an algebra A by s, and the function
belonging to an operation symbol f by fA. The union of all carrier sets is denoted
by |A|.

The ground term algebra over a signature T, denoted by Ty, is constructed in
the usual way. For t € Ty, t* is the interpretation of ¢ in A. The set of terms with
variables (21,...,z,), is the term-algebra Tg(z,,..., z,). t € Tg(z,...,z,), we
can substitute the terms u; for the variables z;; the resulting term is written as

t[(ul, ey u,,)/(a:l, e ,:z:,,)].

As we consider partially defined algebras, we need the definedness predicate D
over terms. For every term t € Tg, we add the sentence D(t) to our logical system.
For a particular term ¢, the fact that D(¢) holds in the algebra A is expressed as A
by A [= D(t) or, equivalently, D(tA). If D(t) can be proved from the specification,
we write SP F D(%).

Like [1], we define equality between partially defined terms as ‘strong equality’:
If ¢t and ¢’ are terms of the same sort

AEt=t & (AED)ANAED®E))V(AEDE)AAEDE) At =)

We only consider functions f* that are strict; if fA(21,...,z,)is defined, all of

its parameters r1,...,z, must be defined. We shall exclude higher-order functions
and non-determinism.

A specification is a sentence in a particular language. We are not interested in
its specific syntactic form, but we assume that it has a semantics, given by the maps

Stg[SP] € Sign
the signature, and
Mod[SP] C PAlg(Sig[SP])

the model class (PAlg(X) is the category of all partial T-algebras).

Because a loose specification alows of a large model class, we cannot restrict our
attention to initial or final algebra semantics. Therefore we only require that the
specification language has a sound (but not necessarily complete) proof system, i.e.

SP | e = Mod[SP] |= ¢

Here € is some sentence in our logical system, SP I € means that it is provable, and
Mod[SP] k= € means that it holds in every model in Mod[SP].

Let A and B be X-algebras. A family ¢ = {¢s :8h — SB} of mappings from A

to Bis a homomorphism if for all f:s; X --- x 8, — s’ and all ti,...,tn € Ty where
t; is of sort S;

D(fA(tlA, v 7tnA)) = ¢s(fA(tlA7 s ’tnA)) = fB(¢51 (tlA), sy ¢Sn(tnA))

This is the homomorphism condition commonly used in the literature on partial

algebras. For our purposes it has to be strengthened: A homomorphism ¢ is
sufficiently defined if

SP b D(f(ts,...,ta)) = B = D(¢s(fA(t:%, ..., ta")))

The definedness predicate has been extended here, to make it applicable to ho-
momorphisms. The notion of sufficiently defined homomorphisms is comparable to

4

that of total homomorphisms in [1]. The difference is that we only require the ho-
momorphism to be defined if the term f(£) can be proved to be defined from the
specification, whereas a total homomorphism must be defined if f(@) is defined in
A. This implies that every total homomorphism is sufficiently defined, but not the
other way round. The two coincide in total algebras and minimally defined algebras
(defined later).

The category of all partial algebras over a signature ¥ with homomorphisms
as morphisms is PAIg(XZ). In a generated algebra A , every element in the carriers
of A is the interpretation of some ground term. The category PGAIg(X) of partial
generated ¥-algebras is a subcategory of PAlg(Z). Another subcategory of PAlg(X)
is the category of minimally defined partial ¥-algebras:

MDPAIg(Z) = {4 € PAIg(S)|Vt € Ty . D(tA) = VB € PAIg(S). D()}

A specification may be designated as primitive, if it is monomorphic, i.e. all its
models are equal up to isomorphism. For our purposes, sorts in primitive specifica-
tions are important for their observability: values of primitive sort can be observed
from outside the algebraic model, because they can be transformed into an effect on
the material world, like moving a pointer over a dial or putting on a dot on a fluores-
cent screen. Values of non-primitive sort can only be observed by applying functions
to them, thus mapping them onto values of primitive sorts. We consider only models
with non-trivial primitive carrier sets, i.e. primitive carrier sets must have at least
two elements. Trivial carrier sets are not interesting, because a computer which can
be in only one state is of no use.

A specification SP is built upon the primitive specification PR, if

Sig[PR] C Sig[SP] (SP extends PR) and
VA € Mod[SP] . A|siprj€ Mod[PR] (SP does not introduce junk or confusion)

Here A |si;qpgy is the Sig[PR]-reduct of A (cf. [6]). A term ¢ € T siygspy is called
primitive if it is of sort p, and p € Sig[PR],ors. The ‘no confusion’ condition requires
that SP does not introduce equalities between primitive terms, that were not implied
by PR. Extra elements, which are not part of models of PR are called junk, and
may not be introduced (this is sometimes called sufficient completeness).

Example 1. The following is a loose specification of finite sets of natural numbers:

SETS = primitive BOOL,NAT

sorts set

opns 0 :— set
{-} : nat — set
U : set,set — set
€: nat,set — bool
empty : set — bool

laws n € 0 = false
n € {m}=(n==m)
neE(s1Us)=(n€s1)V(n€sy)
empty (9) = true
empty({n}) = false
empty (s, U 8;) = empty(s1) A empty(s;)

Note that the specified laws are not sufficient to prove that e.g.
5 U 82 =389 U 81

although it is impossible to distinguish between these terms using the operators in
Sig[SETS]opns- The initial model of SETS only satisfies the laws that are given in
the specification. In the category of SETS-models Mod[SETS] there exists a final
model which satisfies associativity, commutativity and idempotence. Apart from
the initial and final models there are others, which satisfy some, but not all of these
properties.

Note that in this case, PGAIg(Sig[SETS]) = MDPAIg(Sig[SETS]), because there
are no undefined terms in any model. This is no longer the case if we add the
operation

extract : set — nat
—~empty(s) = extract(s) € s

which yields an arbitrary element from its argument set. Now the term extract ()
is not defined. Various models may yield an arbitrary integer, or an error when
asked to extract from the empty set.

The SETS specification is built on the primitive specifications BOOL and NAT
because it does not imply equations like true = false or succ (0) = 0, that do not
hold in models of the primitive specification (no confusion). It is also sufficiently
complete with respect to both primitive specification, because no ‘extra’ (junk)
elements of sorts bool or nat are introduced.

O

In order to be able to reason about a carrier set element as the result of some
computation, we need a notion of ‘program’. A program corresponds to an ‘accumu-
lated arrow’ as defined in [3], but we shall stay more closely to the familiar concept
of terms with variables.

First of all, for every sort s in the signature ¥ the identity operation on s, denoted
by Ids : s — s is introduced. For every term ¢ € Tg of sort s, Idg(t) is a term, and
Ids(t) = t always holds. Frequently we shall drop the subscript and write Id().

A program is a term with variables,

t€ Tg(z1,...,2n)

If ¢ is interpreted in an algebra A and applied to the ‘input data’ (uy,...,u,) € |A[",
the ‘computation’ tA[uy /21, . .., un/2,] will result. We can define an ordering on the
variables z,,...,z, and treat them as parameters of the function t; Instead of

AUty ooyt Hur[Z1,. . U 2]
we shall just write ¢. Similarly, ¢(u, ..., u,) is a shorthand for
tur/z1, ... un/zn]
We shall use the following notations for groups:

& stands for (zi,...,z,)

z* stands for (z,...,z)

n

In both cases n is determined by the fact that expressions must be correctly typed.
We shall denote programs by capital letters (e.g. F € T(Z), G € Tx(£)*) to distin-
guish them from operation symbols (e.g. f € Zopns)-

The form of programs as terms is not convenient for our purposes; we often want
to ‘cut out’ one or more subexpressions and seperate them from the rest of the
program. This is facilitated by the following constructions:

o Identity introduction: for all t,,...,%,,%; € Tx of sort s; :
(t1,...,ta) = (Ids, (t), . . ., Ids, (tn)) = Id*(F)

A special case is the ‘nullary’ identity Id° with no parameters and no result,
e.g. (1+2)(Id% = (1 +2).

e Composition of programs is expressed by the *;’ symbol:
(F;G)(D) & G(F (@)
This is associative, i.e.
(F;G);H = F;(GH)=F, G #
For example (+; sqrt)(2,2) = sqrt(2 + 2).

7

o Functions can be grouped with the *,” symbol:
(F,G)(,5) = (F(&),G(E))

This is also associative. Note that both sides must be correctly typed; There
is at most one way to split the group of terms { = (t1, t3) so that the above is
correct. For example ((+,—);*)(4,3,2,1) = (4 4+ 3) * (2 — 1).

The following lemma is useful for cutting out subexpressions:

Lemma 1 E cutting out subexpressions
For all 1y, 3, G, G, € Tx(Z)*,

((ﬁl; ﬁz), (él; éz)) = ((ﬁ11 él); (ﬁz, 62))

provided that both sides are correctly typed.

Proof:

((ﬁl;f‘z),(él;Qﬂ)_(ﬁ,ﬂ) = (def. of ,)
(B B)(&), (G Go)() = (def. of ;)
(F2(F_1l(t-;)_)’ 92(G}‘(t-‘22)) = (def of ,)
(B, Ga)(Fu(R), (G1(B)) = (def. of)
(Fyy Ga)((Fy, Gy)(81,72) = (def. of ;)
((F1, G1); (F2, G2)) (11, 12)

O

The following example shows how the new constructions and the cutting lemma may
be used to separate subexpressions from the rest of a program.

Example 2. Consider the expression

(1+2)-3)x(4+5)

We want to seperate the underlined subexpressions from the rest of the program.
This can be done by rewriting the expression:

(14+2)-3)*(4+5)

((((1 + 2),3); _')’ (4 + 5)); *

(((((1 +2);1d), (1d°% 3));), ((4 + 5); Id));
(((((1 +2),1d%; (1d,3)); -), (4 + 5); Id)); »
((((1 + 2); (Id, 3)), (4 + 5)); (—, Id)); *

(((1 +2); (1d, 3)), ((4 + 5); 1d)); (—, Id);
(((1 +2), (4 + 5)); ((1d,3),Id)); (—, Id);
(1 +2),(4+5));(1d,3,1d); (—, Id); *

(rewrite using , and ;)
(Id-introduction)
(cutting lemma)
(cutting lemma)
(Id-introduction)
(cutting lemma)

I V| | T I

8

((((1+2),3);—),(445));+ ((142),(445));(Id,3,1d);(—, Id);»

*

el

— I

/ AN

3

+

/7 \
1 2

|
|
I + + +
I
|

Figure 2: Dividing the expression tree

In the last line the underlined subexpressions are neatly separated from the rest of
the expression. The nullary identity operator Id® was used in the third and fourth
lines as a placeholder to expose the use of the cutting lemma more clearly. It is,
however, not necessary, and we could as well have the empty string substituted for
one of the ﬁ, or é,- in the cutting lemma.

The cutting out of subexpressions can be looked upon as dividing the expression-
tree: in this example we wanted the tree divided horizontally, instead of vertically
(see figure 2). In this way we can split programs, compute everything below the
horizontal line, do something with the intermediate results (converting them, for
instance), and then continue with the rest of the program above the horizontal
line.

O

3 Data conversions between different models

Let SP be a specification built upon a primitive specification PR with signature
Il = Sig[PR]. We have £ = Sig[SP], and M = Mod[SP]. In order to convert data
from the model A € M to another model B € M, we need a Z,n,-sorted mapping

PA,B :A— B= {(PA,B)S : SA — SB}

satisfying requirements such that we feel that it correctly converts data from |A] to
|B|. For brevity, we shall mention the fact that mappings are Syons-sorted no more,
and drop the subscript s.

Only a small fraction of all possible mappings 'ap : A — B can be correct
data conversions, and our task is to find a condition against which to test these
mappings. Intuitively, a mapping I's ;s is a correct data conversion if it preserves

9

the meaning of every object in |4|: At any point in a computation, we may interrupt
the computation, convert the intermediate results to another model, and continue
the computation there, without changing the meaning of the final result.

To formalize the notion of ‘meaning’, we have to realize that elements of carrier
sets are the ‘internal representations’ of data. They only become meaningful when
someone extracts information about them, by feeding them to programs with output
in primitive sorts. Therefore the meaning of some element of a carrier set determines
the result of the application of a primitive compound function to this element.
This result can be represented by a primitive ground term, which is the ‘external
representation’ of the corresponding element of a primitive carrier set.

The meaning of a € |A| is given by the function

meaning®(a) = {(F,v)| F € Tsg(z)|n,

v E Tﬂ’
HtETg.(tA=a/\SP|‘D(F(t))),
FA(a) = vA}

The term algebra Tx(z) |n contains exactly the primitive terms in Tx(z)). The
compound function F is a ‘test function’ with primitive result, and v is its result
when applied to a. The third line expresses that only ‘legal’ programs, that can be
proved to be correct, are considered.

A data conversion I'ap : A — B is not necessarily a total mapping. There may
be elements in | 4| that will never occur as the interpretation of a ground term (which
models a possible computation). These elements are not term-generated, and we do
not expect I'y ;g to convert them. Also, if 4 is not minimally defined, there may be
elements in |4| that do occur as the interpretation of some ¢ € Tx, but for which
there is no such ¢ that can be proved to be defined; SP I/ D(t) whereas A |= D(%).
We do not expect I'y g to convert these either.

Example 3. Consider the following extension of the natural numbers:

XNAT = primitive NAT
opns sqrt : nat — nat
laws sgrt(n*n)=n

The following are two implementations of XNAT:

XNAT1 = primitive BOOL,NAT
opns sgrt : nat — nat
try : nat,nat — nat
laws sgrt(n) = try(n,0)
m*xm=n = try(n,m) =m
m*m # n = try(n,m) = try(n,m + 1)

10

XNAT2 = primitive NAT
opns sgrt : nat — nat
try : nat,nat — nat
laws sqrt(n) = try(n,n)
m*m > n = try(n,m) = try(n,m — 1)
mxm<nA(m+1)x(m+1)>n=try(n,m)=m
Let A € Mod[XNAT1] be minimally defined, B € Mod[XNAT2]. Now XNAT bt/
D(sqrt(5)), and A [D(sqrt(5)) whereas B |= D(sgrt(5)). The term sqrt(5) cannot
be proved to be defined from XNAT, and we do not require that Fap:A— Bcan
convert it.
O

The above ‘definedness properties’ must also hold for the objects in | B| obtained

by applying I's p, if we want to be able to compose data conversions. We shall see
why this is so in proposition 4.
The following definition summarizes all the above requirements in a formal way:

Definition 1 : correctness of a data conversion
Let SP, X, M be defined as before, and 4, B € M.

A mapping 'y g : A — B is a correct data conversion if

for all f € T, F € Tg(£)"* and primitive G € Tx(7)
if SP - D((F;G)(#))
then (F4; T} p; GB)() = (T3 p; F2; GB)()

and there exist #," € T4

such that

8 =T3p(), SPFD((F;&)@)),

8 = (FAT3p)(), SPHD(G(#))

A graphical representation of this correctness condition is given in figure 3. Note
how the program is ‘cut’ between F and G, in order to convert the intermediate
results computed by applying FA to the input *. This can be done with any
program, using lemma 1.

A special case of the correctness condition is expressed in the following

Fact 1 :
Let IT = Sig[PR]. If we take F' = p, p € Ty a primitive ground term,
and G = Id, the identity function, then the correctness condition implies

Tap(p*) =p®
For instance, if PR = BOOL, the specification of the boolean data type, this implies

Tap(true?) = true®

11

a _ Tip -
FA F®B

Iy ’

o — —AB B)
GB GB

o <

Figure 3: Correctness of a data conversion

Tap(false®) = falseB

Example 4. Recall example 3. In the correctness condition take
f = 5,13" =sqrt,G= Az .z ==

(where == is the equality operation in NAT) in proposition 4, and consider what
would happen if we had not required XNAT F D(sqgrt(5) == 2) to hold if Tapis
to convert this. Then the correctness condition would require that

trueB =

(sqrtB(SB) == BZB) =
(sqrtB(Tap(5%)) ==B2B) =
(TaB(sgrtA(54)) == B2B)

but the last term is undefined, since sqrt2(54) is undefined and == B is strict.
a

Proposition 1 : data conversions preserve meaning
IfTap: A — Bis a correct data conversion then

Vt € Ty . meaning®(t*) C meaning®(T's p(t4))

12

Proof: Let (F,v) € meaning®(tA) Now correctness of I'y implies that there
exists a term #' € Ty such that

t'® = Ta5(t*) ASP | D(F(t))

Also,
FB(T(t4))
(TaB; FB;1dB)(t4)
(FA;Ty B; 1dB)(¢*)
Tap(v?)
i

so (F,v) € meaning®(T's g(t1)).

(|

(correctness of T's 5)
((F,v) € meaning®(t*))
(correctness of I'y g and fact 1)

It may seem surprising that meaning4(t4) is a subset of meaning®(I's p(¢*)), instead
of the two sets being equal. Indeed the image under data conversion may be ‘better
defined’ than the original. The important thing, however, is that for all programs F
such that F(t) can be proved to be defined, there is a tuple (F,v) € meaningA(tA).
For all tuples (G,v) € meaning®(T's p(t*)) that are not in meaning®(tA), we have

SP I7 D(G(t)). The set meaningA(t*) cannot ‘shrink’, because of the condition °

SP I D(F(t)) in the definition of meaning.
Example 5. In example 4 the tuple

((Az . sqrt(z) == 2), true)

is not in meaning(5%), but it is in meaning®(T's p(54)).
O

In practice, proving whether a mapping 'y : A — B satisfies the correctness
condition may turn out to be very difficult. The following proposition provides a
simpler version of the correctness condition which is, in some cases, easier to prove.
The essence of the proposition is that it is not necessary to consider every possible

program F € Tg(&) when proving T's g correct, but only simple fuctions f € Lopns-

Proposition 2 : simplifying the correctness condition
The correctness condition can be simplified without changing its mean-
ing, by replacing F' € Tg(Z)* by f € Zopns. It then turns into:

for all £ € T}, f € Topns, and primitive G € Tz(y)
there exist # € T§,t" € Ty
such that
if SP - D((f;G)(#))
then #® = T3 (%), SPF D((£;G) ()),
t"® = (fA; T3 8)(#), SPFD(G(t")),
(f4;Tap; GP)() = (Ti 5; /5 GB) ()

13

%

Proof: Assume that 'y 5 : A — B has been proved correct for all f € Lopns, 1-€.
the above variant of the correctness condition holds. We prove that this implies that
I‘AB is correct for all F € Tg(&)* and all G € Tx |n by induction on the structure
of F:

[} ﬁ = f € Eopns:
In this case the proposition obviously holds.

® ﬁ = (ﬁl,ﬁz), ﬁl, ﬁz € Tz(i‘)*:
In this case for all { € T§ such that SP - D((F; G)(%)) we can split

t=(f,%)
(using lemma 1 if necessary) and
F() = (R, Fy)(h,f)
The induction hypothesis is that 'y g is correct for F:

(F*;Thps (147, (FA;Tap)(t); GP))(B4) =
(Tips FA% ((1d", (FA T3)(14)); G®))(EA)

And similarly for F;. With a few applications of the cutting lemma, one can
derive

(%, FyA);Ty p; GP) () = (Th m; (Fi®, FB); GB)()
Together with the deﬁnedness conditions, which are easily proved, this shows
that I's p is correct for F.

o F=(F;F),F,F e Te(d)" L.
Now for all £ € T} such that SP + D((F,; F3; G)(£)) our induction hypothesis
is
3.8, 05 =T3a(), SPFD((F;Fy;G)H)),
BB = (A, Tis)(#), SPF D((Fy;G)(&)),
(Fl ’FA B’ F2Bv GB)({A) = (FA B) Fle F2Bv GB)({A)

and

3t-’27t-,2, . {’B PA B(FIA({A)% SP D((F2’ G)(t))’
t_”B (F2A: PA B)(FIA(P\)) SP + D(G(t-,’))’
(FA; 305 GP)(FA(Y)) = (T o FiB; GBY(AAD)

With some rewriting and putting ¢/ = #, one can immediately derive correct-
ness of I'y g for F.

14

The correctness condition expresses that we are only interested in the meaning
of intermediate results, not in particular ways of obtaining these results. This is
not immediately clear from definition 1; it is made explicit by the following fact,
which shows that some observable result may be ‘computed’ by different programs
in different algebra’s, with data conversions between them applied at intermediate
stages.

Fact 2 :
If TAp : A —» B is a correct data conversion, then for all ¥ € T3,

Fy, Fy € Tx(2)* and Gy, G, € Tx(y) In :
If (FiA; G A) () = (FoA; GoA) ()
then (Fi4; T3 5; G1B)(*) = (T4 5; F4B; GoB) ()

A B
1A PZB - ®
1:-1'2/ \F’lA \{;#23
° ° —PLL. ° °
Gz“\ ’/G'IA Gll\ /;23
) °

Figure 4: Fact 2

Proof:
(FiA, T4 5; GiB)(#) = (correctness of TaB)
(I_‘-: 1A GiA,; FR,B)({A) = (apply the premiss)
(F2*;Go*; T4 p)(*) = (correctness of 'y p)
(AT AB G2B)(f*) = (correctness of Tap)
(Tas; F2B; GoB) ()
O

Proposition 3 : the identity is a data conversion
For all A € M the identity IdA : A — A is a correct data conversion.

15

Proof: If SP I D((F;G)(#)), then obviously
(FA1a4 GR)(P*) = (144 FA; GA) ()
holds. The definedness conditions pass into
SP - D((F; G)(#))

which obviously holds.
O

Proposition 4 : data conversions can be composed

Let A,B,C€ M, and Typ: A = B, I'pc : B — C be correct data
conversions. Then the composition of I's g and I'p ¢, Fac =Tap;Tne
is a correct data conversion.

Proof: We shall first prove that

If (FA;T3 p; GB)(P*) = (T} p; F?; GB) ()
and (FB I\13 ¢ GO)(#°) = (Ts, c,FC GC)(®)
then (F FA B’PB Lo} GC)(t) - (I‘A BvPB C’FC GC)({A)

assuming that I'y g and I'g ¢ are correct data conversions:

(F ;Ta8; TB.o; GO)(#2) = (correctness of I'p ¢)
(FA;T% g; GB I's,c)(f*) = (correctness of 'y 5)
(Tap; FB;GB; T c)(*) = (correctness of I'p)
(Ta B FB;T% C, GC)() = (correctness of I'p)
(PA BvPB o} GC)(t-h)

To complete the proof, we have to show that application of I' B;I'B,c to a defined
object t4,SP I D(t) results in the interpretation in C of a defined term #'. Let

SP I D((F; G)(£)), then because T's g is a correct data conversion:

there exist f’ e Tx such that
5"3 = (1"'A I'ip)(), SP+ D(G(f”))

Now, because I's ¢ is also a correct data conversion:

there exxst i, @" € T such that
@0 = (f'B) = (Tap:Thc)(), SP+ D((F; G)(w)),
@'C = (IdB I3, o)(FB) = (A 48 Th.c)(#), SP+ D(G(a"))

which proves the definedness part of the correctness condition for T'y p;I'p c.
O

16

p\ I‘X.B t_’B E.C > C
FA F®B F¢
L 4 % 4
° APL_. 7B ° The ° °
GB GB C \
o <+ o
N Tc)

Figure 5: Composition of data conversions

The structure of this proof is depicted in figure 5.
The last part of the proof is especially important, because it shows why the
correctness condition requires that provable definedness (SP I D(...)) is preserved.

To see this, suppose that B is not generated by provably defined terms, i.e.
BWVbe |B| .3t € Ty .SPFD(t)AtB =b

Now some object in | A| might be converted to an b € | B| which is not term-generated.
But then this object b cannot be converted correctly by I's ¢, because it does not
satisfy the presumption made by This is illustrated in figure 6.

Since data conversions are special cases of ordinary mappings, composition of
data conversions is associative. Thus we conclude from propositions 3 and 4 that
Mod[SP] forms a category, with data conversions as morphisms.

The following proposition shows that the condition for sufficiently defined homo-
morphisms is stronger than the correctness condition for data conversions. Actually,
on primitive sorts sufficiently defined homomorphisms and data conversions coincide
(this follows directly from fact 1).

Proposition 5 : sufficiently defined homomorphisms are data
conversions

A sufficiently defined homomorphism ¢ : A — B is a correct data
conversion from A to B.

17

1: objects tA where SP I D(%)

2: objects tA where A |= D(2)

A B
a : objects tB where SP I D(t)
1 =@ 4: objects tB where B |= D(t)
2 2 4 a does not preserve provable de-
finedness

P does preserve provable defined-
ness

w

Figure 6: Data conversions must preserve provable definedness

Proof: We prove that the correctness condition (definition 1) holds, with ¢ sub-
stituted for I' p.

If SP - D((F; G)(£)), then because of the strictness of F and G, F(i) and 7 are
defined. Now the homomorphism condition for ¢ implies:

(FA; 7)) = (6% FB)(#)

By applying GP to both sides of this equation we precisely get the last part of the
correctness condition:

(FA; 4% GP)() = (¢ FB; GP) (™)

A consequence of the condition for suficient definedness is that there exist #,#” € T4,

such that
PP = go(D) = B

PR = g (FA) = FR(4(D)) = FP()
So if we choose # = £ and # = F({),
SP I D((F; G)(#')) passes into SP F D((F; G)(d))

and
SP - D(G(#")) also passes into SP + D((F; G)())

which is the premiss of the correctness condition.
O

18

4 Abstract data conversions

In the previous section a condition was given under which a particular mapping
from one model of a specification to another is a data conversion. But this does not
tell us anything about the possibility of converting data from an arbitrary model
to another. If our theory is going to be useful, it must apply to the model class
as a whole; given a specification SP, we would like to know if there exists a data
conversion I'op : A — B for every pair A, B € Mod[SP]. This requires a syntactic
condition, and the nature of this condition depends on the logical system (institution,
[5]) we are working in.

In view of the above, the results in this section are still far from satisfactory. This
is partly due to the nature of definition 1, which is really a mixture of a syntactic
condition (the terms that must be provably defined by SP) and a semantic condition
(the equality between objects in |B]).

As a generalization of data conversions, we introduce abstract data conversions.

Definition 2 : abstract data conversion
Let SP be a specification, & = Sig[SP] and M = Mod]SP].

An abstract data conversion I'(M) on M is a family of data conversions:

F(M):{I‘A'B:A—)BIA,BEM}

where all 'y p satisfy the correctness condition

The idea is that between every pair of models, I'(M) provides a data conversion,
so data can always be converted, irrespective of the particular implementation one
has. The model class M is sometimes called the abstract data type specified by SP,
hence the name abstract data conversion. Note that I'(M) is not uniquely defined,
since there may be algebras A, B € M with more than one mapping I'xp : A — B
that satisfies the correctness condition.

What we have to do now is devise some way of constructing I'(M) for arbitrary
model classes. This turns out to be far from simple, and there are many specifications
for which no abstract data conversion exists. As a first step towards a theory of
abstract data conversions, we here present a necessary condition (proposition 6) and
a sufficient condition (proposition 7) for the existence of abstract data conversions.
These conditions are rather different, so there is a large collection of model classess
‘in between’; we cannot tell whether there exists an abstract data conversion on
these model classes from propositions 6 and 7.

Before we go on, we define partial completeness (cf. [1]).

19

Definition 3 : partial completeness
Let SP be a specification built upon a primitive specification PR, and

¥ = Sig[SP], II = Sig[PR]
SP is partially complete if

VtGTgIn .
SPFD(t)= 3t € Ty.SP ¢ =¢

Together with the ‘no junk’ condition which SP must satisfy this implies

AeTsn -

Jt',t" € Tn.

34, B € Mod[SP].

PREt #£t"Ath =t/AAB = B

We shall use this as an alternative formulation of partial completeness. In a partic-
ular logic system, it is sometimes possible to give simple syntactic conditions for the
partial completeness of a specification. This is done in corollary 2 of [1] for partial
abstract types. Partial completeness is a necessary condition for the existence of
abstract data conversions:

Proposition 6 : existence of an abstract data conversion implies
partial completeness

If there exists an abstract data conversion I'(Mod[SP]), then SP is
partially complete.

Proof: We shall prove that if SP is not partially complete, the existence of an
abstract data conversion on SP leads to a contradiction.

Suppose SP is not partially complete, and it is built upon PR (it does not
introduce junk, neither confusion). Because we do not consider trivial primitive
models, the carrier set of a PR-model has at least two elements for every sort, so
there must be two models A, B € M, such that for some primitive term ¢ € T

AEt=tand B=t=1t"
where t/,t" € T (there exist such #' and #”; no junk is allowed), and
Mod[PR] =t £ t"

(this follows from our alternative formulation of partial completeness). But suppose
FaB: A — Bis a correct data conversion, then

B = (correctness of I'y g w.r.t. ground terms)
Fap(t)= (ARt=¢)

Ta(tA) = (correctness of T's p)

B — (Bt =1t")

$'B

20

This contradicts the assumption that Mod[PR] |= ¢/ # t", so SP must be partially
complete.
O

The following example illustrates what happens if SP is not partially complete:
Example 6. Let SP be specified by

SP = primitive BOOL

sorts s

opns a,b,c:—s
f:s — bool

laws a # ¢
(a=d)v(db=c)
f(a) = true
f(e) = false

true

Figure 7: Two models of a specification that is not partially complete

This specification is not partially complete, because Mod[SP] = D(f(b)) but
there is no single t’ € Ts;oor) such that Mod[SP] |= f(b) = t'. It is not possible
to have a correct data conversion 'y g : A — B between the models A and B as in
figure 7. If we (correctly) map a® onto aB and c* onto cB, then

(fA;PA,B)(bA) = trueB # (Tap; f2)(b2) = false®
a

A model class M is called homomorphic if there exists a sufficiently defined
homomorphism ¢ : A — B between every A, B € M. This property is a sufficient
condition for the existence of abstract data conversions:

21

Proposition 7 : abstract data conversions exist for homomor-
phic model classes

If a model class M is homomorphic, then there exists an abstract data
conversion I'(M) on M.

Proof: For every A, B € M there exists a sufficiently defined homomorphism. If
we let I'(M) consist of all these homomorphisms, then proposition 5 implies that
this is an abstract data conversion.

(M

This result may seem to be rather trivial, but it is also very useful, since in many
existing systems model classes actually are homomorphic. For example, in the initial
algebra semantics abstract data conversions always exist, because all models are
isomorphic to the initial model within the class of initial algebras.

5 Implementations and data conversions

We shall briefly review the theory of implementations of algebraic specifications, as
developed in [6].

Definition 4 : implementation
Let SP and SP’ be specifications with the same signature. We say that
SP’ is an implementation of SP, written as

SP ~» SP’
if
Mod[SP] 2 Mod[SP’]

Intuitively, this says that the model class becomes smaller, if some implementation
detail is specified. Only models in Mod[[SP] that implement this detail in accordance
with the additional information in SP; are retained.

Example 7. We can implement sets as specified in example 1 as lists:
SETS ~» LIST-SETS
Lists satisfy associativity, so we have
LIST-SETS F (81 U3sz)Usz = 83U (32U s3)
Now only models in which associativity holds are retained in the model class:

Mod[SETS] |~ (s1 U sz) Usz = 83 U(s3U s3) whereas
MOﬂILIST-SETS]I '= (31 U 82) Uss = 81 U (82 U 83)

so Mod[LIST-SETS] C Mod[SETS].
O

22

X > >

Sig[SigI SigI
SPp ~» SP;, ~» --- ~» SP,
Modl Modl Modl
Mo 2 My 2 -+ 2 M,

Figure 8: Implementations and model classes

Thus we get a chain of implementations, as in figure 8.
Consider two chains of implementation steps

SP; ~» ... ~» SP, and
SP] ~> ... ~» SP!,

and the sequences of models of these intermediate implementations,
Mod[SPo] 2 Mod[SP4] D --- 2 Mod[SP,]

Mod[SPo] 2 Mod[SP;] 2 --- 2 Mod[SP,]

Let M; = Mod[SP;], M; = Mod[SP;]. If there exists an abstract data conversion
I'(M) on M = Mod[SP,], then there also exist data conversions between every pair
of algebras A € M;, B € M). These data conversions constitute the abstract data
conversion I'(M; U M), which is a subset of I'(M).

Proposition 8 : abstract data conversions may be restricted
For all 7,5,k,lsuchthat 0 <:<k<n,0<j5j<I<m

(M U M) CT(M; U M))

is an abstract data conversion.

Proof: This follows immediately from the definition of implementation, which
implies that

ngM,-a.ndegM;-
By restricting I'(M;, M) the way described above, we again obtain an abstract

data conversion.
a

23

r'(M)

4 Yy

/ < M; \
@'T"(MnuM:..) > @
M; 4 }

I(M;um?)

N j

Figure 9: Restriction of an abstract data conversion

The final implementations SP, and SP}, specify model classes in which all alge-
bras are equal up to an isomorphism defined by the underlying ‘machine’ on which
the ‘code’ of these algebras is ‘executed’. Consequently, the abstract data conver-
sion I'(M,, UM!) contains only two elements, apart from the identity conversions,
namely the data conversions between M, to M!,. This is illustrated in figure 9.

Until now we assumed that a specification SP was implemented by another spec-
ification SP’ with the same signature. In practical implementations however, this
is mostly not the case; in the refinement step some operations may be added and
others may be hidden. Therefore we introduce specification-building operations, in
accordance with [6].

Sp oY gp
Mod l Mod l
Mod[SP] 2 &(Mod[SP']]) «—Mod[SP’]

K

Figure 10: Specification building operator

24

Definition 5 : specification-building operator
Let SP and SP’ be specifications. A specification-building operator «
between specifications,
k : SP’' +— SP
determines a functor
& : Mod[SP'] — Mod[[SP]
A specification-building operator must satisfy

Sig[x(SP')] = Sig[SP] and
Mod[x(SP')] = {#(A)|A € Mod[SP']}

We say that a specification SP is implemented by a specification SP’ via a
specification-building operator k, written SP "N';N> SP/,if SP ~» x(SP’).
This is illustrated in figure 10.

In [6] several specification-building operations are given, with their associated
functors. In this paper we only consider so called constructors [6], but we do not
want to go into the details of specific constructors. For our purposes the above
definition is sufficient.

We must now revise proposition 8, because we cannot merely restrict abstract
data conversions anymore. The sequence of models of partial implementations now
becomes

Mod[SPo] 2 &1 (Mod[SP1]) 2 (%3; #1)(Mod|SP3]) 2 - -+ 2 (&n; - .. ; 1)(Mod[SP.])

Let M; = (R;;...; R1)(Mod[SP;]) (see figure 11). Once an appropriate abstract
~ data conversion I'(M,, U M!,) between two implementations has been selected, this
must be transformed according to the functors corresponding to the specification-
building operators «,,...,%, and &f,...,x/, used to construct SPo from SP, and
SP’ , respectively. If Mod[SP,] = {A} and Mod[SP,,] = { B}, this results in a data
conversion

I‘A'B:A—bB

Proposition 9 : construction of data conversions
The data conversion I'y g as described above can be obtained from the
abstract data conversion I'(M) and the functors

(Rnj-..; 1) and (Rpp;.. .5 %)

if &,,...,&., have inverse functors (%{)~?,...,(,)~!. This is done by
the following construction:

TaB = (Rnj... ;K1) T(Ma UML; ((R) 7.0 05 (Ri) ™)

We omit the proof here; a more thorough treatment of constructor implementations,
as well as the technical details of the construction of abstract data conversions, and
the existence of inverse functors associated with specification building operators is
topic of current research.

25

[4] José Meseguer and Joseph A. Goguen, Initiality, induction and computability,
Algebraic methods in semantics (M. Nivat and J. Reynolds, eds.), pp.459-541,
Cambridge University Press, 1983

[5] Donald Sannella and Andrzej Tarlecki, Building specifications in an arbitrary
institution, Proc. Intl. Symp. on Semantics of Data Types, Springer LNCS 173
(1984), pp.337-356

[6] Donald Sannella and Andrzej Tarlecki, Toward Formal Development of Pro-
grams from Algebraic Specifications: Implementations Revisited, Report ECS-
LFCS-86-17, University of Edinburgh, 1986

[7] Nico Verwer, Data conversions in abstract data types, submitted to the SION
conference ‘Computing Science in the Netherlands 88’

27

