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1 Introduction

Let D be any set and let Bag(D) be the set of finite bags over D. We give a complete
characterization of the partial majority function on Bag(D): if some value in the
bag occurs more than all other values together, then this value is called the majority,
otherwise no majority exists. To avoid undefinedness we consider the result of the
majority function as a subset of D containing at most one element: if the result
contains an element, then this element is the majority, and if the result is the empty
set, then no majority exists.

The precise definition of the majority function is as follows. For B € Bag(D)
and p a predicate on D let N(B,p) be the number of elements of B satisfying p.
Let P(D) be the set of subsets of D. Define

maj : Bag(D) — P(D)

by
maj(B) = {z € B| N(B,=z) > N(B, # z)}.

Clearly maj(B) contains at most one element.

An immediate drawback of this definition is the occurrence of N(B, p). Intu-
itively it has to be possible to define majority without counting: a bag has majority
z if for each possible sequence of pairs of distinct elements which can be removed
from the bag, always at least one element x remains. We try to catch this idea in
a small set of properties of the majority function which together characterize the
majority function completely. In section 2 we give such a characterization in four
properties and show that none of these four properties may be left out.

The goal of such a characterization is that it may be helpful to derive an algorithm
to compute the characterized function and to prove its correctness. The idea to do
so is from A. J. M. van Gasteren. Much of this work has been done in collaboration
with her. She has given a slightly different characterization of the majority function
in terms of predicates in [1].

In section 3 the main part of a very simple linear algorithm to compute the
majority function is derived from the characterization of section 2, together with
its correctness proof. The derivation does not depend on the completeness of the
characterization. In the literature this algorithm is referred to as the Boyer-Moore
algorithm. The operational idea of our particular algorithm in which no real counting
occurs (only increment, decrement and compare with zero) was suggested by S. D.
Swierstra; this work was inspired by the approach of [3].

In section 4 the simple algorithm is optimized until the majority of a bag with N
elements can be computed with never more than [3{] — 2 element comparisons. M.
Fischer has proven in [2] by an adversary argument that no better result is possible.
In the same note S. Salzberg has described a rather different algorithm with the
same worst case number of comparisons.



Finally, in section 5 a simple generalization of the algorithm from section 3 is
given. For a constant positive integer k the result of this algorithm is the set of
k-majority elements, where a k-majority element of a bag B is an element occurring
more than #B/k times in D. For k = 2 this corresponds to the ordinary majority.
The complexity of this algorithm is klog #B. Essentially the same algorithm was
given as (3) in [4]; we present it to show the similarity.

2 A characterization

Let U denote bag union and let [z,y] denote the bag consisting of £ and y for
z,y € D. Both set membership and bag membership are denoted by €; the empty
set and the empty bag are both written as 0.

Proposition 1 Let D be any set and let
f : Bag(D) — P(D)
be any function satisfying for all z,y € D and for all B € Bag(D):
1. (r € BA(V2€ B:z =2)) - f(B) = {z};
2. f(®)=9;
3. (z #y)— f(BUlz,y]) C f(B);

4- (2 #yAf(B) = {z}) = f(BU[z,y]) = {z}.
Then f = maj.

In words (1) says that the majority of a constant non-empty bag is the element
of that bag; while (2) says that the empty bag has no majority.

The remaining requirements are less trivial: (3) states that the majority of a bag
- if existing ~ remains majority after removing two distinct elements. On the other
hand (4) states that a bag having a majority keeps the same majority after adding
two distinct elements one of which is the majority.

Applying the definition of the majority function maj it can be verified directly
that maj satisfies these four properties. Although we shall not use it, we mention
that (3) is a particular case of the more general property

maj(B U C) C maj(B) Umaj(C)

for all B,C € Bag(D), which can also be verified directly from the definition.
Conversely, if we have a function f satisfying (1), (2), (3) and (4) we have to
prove that f = maj. To be able to give such a proof we need two lemmas.



Lemma 1 Let f : Bag(D) — P(D) be any function satisfying (1), (2) and (8).
Then each element of f(C) is contained in C for each C € Bag(D).

Proof: We prove the assertion by induction on the number of elements of C. If
all elements of C' are equal then the assertion is immediate from (1) and (2). So we
may assume that C can be written as

BU[z,y] with z#y.
According to (3) we then have v
f(C) € f(B).

From the induction hypothesis we conclude that each element of f(B) is contained
in B, so also in C. Hence each element of f(C) is contained in C. O

Lemma 2 Let f : Bag(D) — P(D) be any function satisfying (1), (2) and (3).
Then f(C) contains at most one element and

f(C) € maj(C)
for each C € Bag(D).

Proof: We shall prove by induction on the number of elements of C that z €
maj(C) for each z € f(C). Assume z € f(C). According to lemma 1 z is an
element of C. If all elements of C re equal to = then the assertion is immediate from
(1). So we may assume that C can be written as

BU[z,y] with z #y.

According to (3) we have
f(C) € f(B)

and from the induction hypothesis we conclude
f(B) C maj(B).
So z is contained in maj(B). Now we can write
N(C,=2)=N(B,=z)+1> N(B,#z)+ 1= N(C, #z),
so z € maj(C), which we had to prove. O
Let f be any function (1), (2), (3) and (4). We shall prove that
£(C) = maj(c)
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for each C' € Bag(D), again by induction on the number of elements of C. If maj(C)
is empty then the equality holds by lemma 2, so we may assume that

maj(C) = {z}
for some element z € C. If C contains only elements z then by (1) we also have

f(C) = {z} and the equality holds, so we may assume that C contains also an
element y with z # y. Define B by

C = BU|=,y].

Since (3) holds for maj we conclude that maj(C) C maj(B). Since maj(B) contains
at most one element we have

maj(B) = {z}.
Since B is smaller than C' we may conclude from the induction hypothesis that

f(B) = {=}.
Finally, applying (4) to this result we conclude that

f(C) = {z} = maj(C),
which we had to prove. So the majority function maj is the only function satisfying
(1), (2), (3) and (4), and proposition 1 has been proved. 0

None of these four requirements can be left away. This is simply shown by four
examples of functions f which are not equal to maj:

o Let f(B) = 0 for all bags B, then f satisfies (2), (3) and (4).
e Choose an element d € D; let
f(B) = maj(B) if N(B,=d)# N(B,#d)
and
f(B) ={d} if N(B,=d)= N(B,#d).
Then f satisfies (1), (3) and (4).
e Let
f(B)={z € B|Vz€ B: N(B,=z) > N(B,=2z)}.
Then f satisfies (1), (2) and (4). By the way, this f can not be computed
faster than quadratic in the number of elements of B, because this f can be
used to check whether an arbitrary sequence contains some element more than
once. By an adversary argument it can be shown that this needs at least a
quadratic number of comparisons if no order on the elements is available.

o Let
f(B)={z€B|Vz€ B:z = z}.
Then f satisfies (1), (2) and (3).



3 An algorithm

Let us examine how the four properties

1. € BA(Vz€ B:z =2z)) = f(B) = {z};

2. f(0) =0;

3. (#y)— f(BU[z,y]) C f(B);

4. (¢ #yAf(B) = {z}) = f(BU[z,y]) = {z}
of proposition 1 can be used for deriving an algorithm computing the majority of a
given non-empty bag C.

Property 3 states that the majority of a bag - if existing — remains majority
after removing two distinct elements. This is the only of the four properties that
can be used to say something about the majority of a non-constant bag in terms of
a smaller bag; we shall use the following property which immediately follows from
property 3:

if z #y and
f(C) € f(BU[z,y]),
then also
f(C) C f(B).

This suggests to choose as a loop invariant:

£(C) € f(some bag).

What can we choose for some bag? Let B’ be the bag of elements that have not been
read yet. We may expect that B’ will occur in some bag, on the other hand we may
expect that elements will be read until some bag is small enough to be considered
by property 1 or 2: it has to be constant. Further when using the property the bag
will get smaller two elements at a time. We choose as a loop invariant:

f(C) C f(B'uzF),

where z* denotes a constant bag consisting of k elements all equal to z; here k is a
non-negative integer.

If an element y is read, then this element y is removed from B’, how can the
invariant remain to hold? There are three possibilities:

e if y = z then k can be incremented by one;

e if k = 0 then z can be given the value y and k the value one;



e if y # z and k # 0 then property 3 can be applied: k can be decremented by
one.

Note that for each of these possibilities the value of k¥ remains non-negative. Choos-
ing the notation B’ := B’ [z] for reading an element = and B’ # @ for checking if
there are still elements to be read, this yields the program:

k,B':=1,C\ [z]
; doB'#0 — B':=B'\[y]

; fy=1z —k:=k+1
l]k:O -—)$,k:=y,1
l y#zAk#0 s k:=k-1
fi

od

Written functionally, if bags are implemented as lists and an arbitrary start value z
is chosen, the same program reads:

mj0zC

where mjkz(] = (z,k)
mjky(y:B) = mj(k+1)yB
mjO0z(y:B') = mjlyB
if y#2zAk#0 then
mjkz(y:B) = mj(k—1)z B'.

Finally, using the notation of [5] the same program can even be written as
® # (z,0)
for arbitrary = € D, where ® is defined by

(z,k+1) fz=y

(z,k)®y = (v,1) ifk=0
(z,k—1) otherwise.

After running this program the bag B’ is empty, so the invariant then yields:
f(C) € f(z*).

In the case of k = 0 this is equivalent by f(C) = § according to property 2, so then
we have established that the given bag C has no majority and we are done. In the
other case, if k¥ > 0, we obtain by property 1:

f(C) & {=},

so then we know that either the majority of C equals z or it does not exist.
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In this latter case a scan over the whole bag has still to be executed to establish
whether the element z is indeed the majority of C or not. Note that we didn’t use
property 4 until now. One should want to derive a second loop checking whether z
is indeed the majority only using the properties including property 4. However, we
don’t do so since the shape and the correctness of this second loop is evident from
the definition of majority. The whole program is

k,B':=1,C\ [z]
; doB'#0 — B':=B'\[y]
; fy==z — k:=k+1
l k=0 —z,k:=y,1
ly#2Ak#0 o k:=k-1
fi
od

; ifk =0 — no majority
l k20— B ,n:=C,0
;i doB'#9 — B':=B'\ly]

; fy=z - n:=n+1
ly#z—=ni=n-1
fi

od
; ifn >0 — z is the majority
| » <0 — no majority
fi
fi

4 An optimal algorithm

The goal of this section is to minimize the number of element comparisons. Let N be
the number of elements of the bag. Until now the algorithm consists of two loops,
each executing at most N element comparisons, so the total number of element
comparisons will not exceed 2N. In [2] an algorithm is described consisting of two
subsequent loops. The first one scans the bag to find a possible majority z and
arranges the elements in a list in such a way that two subsequent elements of that
list are always distinct. The second loop again establishes whether this element z is
indeed the majority or not. This is done by scanning the list just built; using that
subsequent elements are different this never needs more than %’- element comparisons.

In this section, we shall arrive at a different optimal algorithm only by optimizing
the algorithm of the former section. First note that the selection in the first loop
is non-deterministic: if both ¥ = 0 and y = r a choice can be made. Since we
are trying to optimize the number of element comparisons and we do not count the
number of equal-zero comparisons, the next choice is preferred:
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k,B':=1,C \ [z]
; doB'#£0 — B':=B'\[y]
; fk=0—-z,k:=y,1
lk#0 - ify=ac > k:=k+1
ly#z =2 k:=k-1
fi

od

In this first loop the worst case number of element comparisons remains N — 1,
but it can be far better. The next optimization concerns a more efficient way to
represent a bag. After the first scan an element z is found with the property that
the majority of the whole bag is either x or does not exist. Using the ordinary bag
data type where bag elements are read one at a time, we may not expect to be able
to check whether z is indeed the majority or not in less than N comparisons.

Consider a bag X of pairs (y,n), where y is an ordinary bag element and n is a
positive integer. Let B(X) be the bag union of all corresponding bags y™. If not all
n are equal to 1, then X contains fewer elements than B(X). The idea now is to
check whether an element z is a majority by scanning X instead of an ordinary bag.
So let us try to build a bag X of pairs in the first scan. As a notation we choose
X := 0 for starting with an empty bag and X := X U (z,n) for adding a pair (z,n)
to X. As an extra invariant of the first loop we choose

B(X)uz"uB =C,

where C represents the whole bag and B’ the bag of elements not yet read. Now
the first loop becomes:

k,n,B,X :=1,1,C\ [z],0
; doB'#£0 — B':=B'\[y]
; ifk=0—> X k,n,z:=XU(z,n),l,1,y
l k#0—-ify=z—> kn:=k+1,n+1
l y#z— X, k,n:=XU(y,1),k—1,n+1
fi
fi
od

After running this loop we have by the invariant
B(X)uz"=C

and either ¥ = 0 and C has no majority, or k # 0 and the majority of C is z or does
not exist. For the latter case we can scan X after running the first loop. The whole
program is:



k,n,B', X :=1,1,C\ [z],0
; doB'#0 — B':=B'\[y]
; fk=0—- X,k,n,z:=XU(z,n),1,1,y
| k#0 - ify=z -2 kn:=k+1,n+1
ly#z—- X, kyn:=XU(y,1),k—1,n+1
fi
fi
od
; ifk =0 — no majority
| k20 2 do X #0 — X := X\ [(y,)]
s fy=zon=n+1
ly#z—>n:=n—1i
fi
od
; ifn >0 — z is the majority
|l » £0 — no majority
fi
fi

Let us compute the number of element comparisons executed by this program.
Let noc be the number of ‘z = y’-comparisons done in the first loop, and let N = #C.
As an invariant of the first loop we have

3(N — #£B)
2

which can easily be checked for each of the three cases. Let tnoc be the total number
of element comparisons. The number of element comparisons in the second loop is
equal to #X. Remember that k is non-negative, so clearly

k

3
tnoc < —.

By some case distinction we now prove that even
3N
tnoc S r'—z—] - 2,

the result which, in [2], has been proved to be the best possible. If k = 0 after the

first loop, then X is not empty since k + #X > 0 is invariant in the first loop. So
by 1 we obtain:

tnoc=noc§noc+#X—-—1_<_§-]2-v——2$f%v-]—z
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If N is odd we conclude from 1 that k is odd too and:

3N 3 3N
< <Y _ 22y
tnoc < noc+ #X < 5 5 [2] 2
Finally, if N is even and k > 0 after the first loop, then k > 2 since k is even and
tnoc < noc+ #X < _3_;_\/'__2= [%V—] -2,

which completes the proof.

5 Generalization to k-majority

In this section we generalize the algorithm from section 3 to an algorithm computing
the k-majority of a given bag, which is defined to be the set of elements occurring
in the bag with a frequency of more than 1/k. More precisely, for an integer k > 1
the function

majy : Bag(D) — P(D)
is defined by
maji(B) = {z € B| k* N(B,=z) > #B}

for each B € Bag(D). Clearly the original majority function equals maj,, and
maji(B) contains at most k — 1 elements. Similar to property 3 in the characteri-
zation of maj we have

Key property of maj;:
If ,,x2,..., 2 are k distinct elements of D, then
maji(B U [z1,22,. .., 2k]) C maji(B)
for each B € Bag(D).
The correctness of this key property can be shown as follows. Taking
C = [z1,%2,...,Tk)
we see that it is a direct consequence of the more general property:
maji(B U C) C maji(B) Umaje(C)
for each B,C € Bag(D). To show this general property we have to verify that
if k() +)>b+c then kb >bVEkd>c

for b= #B, ¥ = N(B,= z), ¢ = #C, ¢ = N(C,= z), for each z € D, which is
evidently true.
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The role of the bag z* in the algorithm of section 3 will now be taken by a
bag X which will be kept small in the sense that it contains at most k — 1 distinct
elements. As before, let C denote the whole bag to be examined and let B’ be the
bag of elements not yet read. As an invariant we choose

maji(C) C maj(B'LX) A
n = number of distinct elements of X /\ n<k.
We obtain the program:

n, B, X :=0,C,0
;s doB'£0 — B':=B'\[y]

; ifyeX - X :=XUuly]
JygXAn<k—-1- X:=XU[y]
; ni=n+1
lygXAn=k—1— strip
fi

od

Here strip means that of each of the k—1 distinct elements of X one copy is removed
from X and n is calculated anew. For the first two alternatives the invariance of
the chosen invariant is trivial, for the third alternative it is a direct consequence of
the key property of maj.
When all elements of C have been read then B’ = @, then by the invariant the
bag X satisfies:
maji(C) C maje(X).

To determine the set maji(C) we need a second scan over the whole bag C to
establish which of the at most k—1 values of majx(X) are really k-majority elements
and which are not, similar to the algorithm of section 3.

What can be said about the complexity of this algorithm? Assume a total order
is defined on D. Let X be implemented as an ordered list of distinct values, each
value decorated with the number of occurrences of that value. Let such an ordered
list be implemented by a data structure in which both searching and inserting can
be done in O(log n) steps, for example by an AVL-tree. Since X contains never more
than k — 1 distinct values, we may assume that the executions of both

yeX and X:=XU['_I/]

take O(log k) steps. For the complexity of the first scan we still need an estimate
of the cost of strip. It is possible to implement strip linear in k or even faster,
but for the overall complexity we only need the bound klog k, which can easily be
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reached for any possible tree-like implementation. For the first scan we add an extra
invariant:
number of steps done < c¢(2n — 2#B' — #X)logk,

for a sufficiently large constant c. Here # means the total number of elements, not
the number of distinct values. If an element y is read then #B’ is decremented by
1. By executing X := X U [y] the value of #X is incremented by 1, by executing
strip the value of #X is decremented by k — 1. In any case the assertion remains
invariant, so at the end of the first scan we have

total number of steps done < ¢(2n — #X)logk < 2cnlogk.

For the second scan the frequency of each of the at most k — 1 values of X in
the bag C with n elements has to be computed. Clearly this can also be done in
O(nlog k) steps. We conclude that the complexity of the total program computing
the k-majority of an n element bag is O(nlog k).

The argument in the first scan is a nice example of the following. To prove
that the complexity of a loop consisting of n iterations is O(nf(n)) it is not always
necessary to prove that the complexity of each iteration is O(f(n)).
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