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Chapter 1

Introduction

Logics of Programs are formal systems for reasoning about the behavior of computer
programs. To this end, computer programs are viewed as a means to enable certain
logical formulae. The formulae may be propositional or first order, giving rise to
propositional and first order program logics, respectively. In this paper, we focus
attention on a propositional program logic, namely Propositional Dynamic Logic or
PDL in short.

1.1 A historical note

Elements of the logic of programs can be traced back to the nineteen forty’s where
they appear in work by A.M. Turing and ]J. McCarthy. The subject, as we view it
nowadays, originated with papers of Engeler [5] and of Floyd [7]. The ideas of Floyd
were developed further by many authors and the logic of partial correctness, also called
Floyd-Hoare logic, has been studied intensively.

In 1969 Salwicki [31] formulated the algorithmic logic AL, followmg the work of En-
geler. AL was developed further by a group in Warsaw. Later, Mirkowska [19] gave a
propositional version of AL. In 1976, Pratt [25] introduced Modal Logic to computer
science, which proved to be very fruitful. Fisher and Ladner [6] gave the definition
of Propositional Dynamic Logic, following Pratt, and proved decidability of the logic
by means of a filtration technique, borrowed from Modal Logic. Segerberg [33] gave a
complete axiomatization for PDL and several completeness proofs have now appeared
in the literature, notably a proof by Berman [3], using in fact a standard completeness
technique from Modal Logic (c.f. [8]).

1.2 Modal logic

The origins of Modal Logic seem to date back to Aristotle; it was the subject of intensive
research in the Middle Ages. In the first half of the twentieth century, Modal Logic
appeared in its commonly known form. Modal Logic can be viewed as an extension of
classical propositional logic, by introducing the operator 0. This operator has several
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readings (which in turn define different logics such as Temporal Logic or Deontic Logic)
but is always of a dynamic nature. Given a formula ¢, the readings of O¢ include:

o ¢ is always true;

e It is necessarily true that ¢;

o ¢ ought to be true;

o It is known that ¢;

o After the program terminates, ¢ holds.
We define the operator { to be ~O0-. Readings of { follow from the interpretations
of O. The precise nature of O is given by axioms like O¢ — D O¢. Different sets
of such axioms define different Modal Logics. In 1959, Kripke introduced the notion
of the (later called) Kripke model as any structure underlying Modal Logic. Basicly, a
Kripke model is a triple M = (S, R,V) where

e S is a set of states;

¢ RC S x S is a binary relation on S;

¢ V is a valuation for the predicate symbols.
We can now define the relation F, where M, s £ ¢ means that “¢ holds in M at state
s” by induction on the complexity of ¢:

o M,skpiff s € V(p) for p a primitive predicate symbol;

e M,skFoVvyiff M,skE ¢ or M,sF ;

o M,sF ¢ iff M, s K ¢.

A formula O¢ is interpreted in a Kripke model as
M,skE O¢ iff for each t € S, if (s,t) € R, then M, tF ¢.

Different sets of axioms for (1 were proved to coincide with different first-order defin-
able properties of R (e.g., 0¢ — O O¢ coincides with the property of R being transitive).
It can be shown, however, that there are first-order definable properties of R that are
not axiomatizable in Modal Logic, irreflexivity of R is a noteworthy example. On the
other hand, there exist schemata for O that do not define any first-order property of
R; the schema

00¢ — Q0¢

is one example.

An immediate extension is obtained by allowing a set of relations {R; | i € I} to be
incorporated in the logic, with each relation R; having its own necessity operator O,.
This is called multimodal logic.



1.3 Dynamic logic

Pratt [25] recognized the possibility of modeling program logics by means of Multi-
modal Logic. If we view a program to be defined by its inputfoutput, or before/after,
behavior then Modal Logic provides a natural framework in which we can develop
such a program logic. Each program o has associated its “own” modal operator O,
or [a). For a propositional program logic we can take a set of primitive programs and
rules that determine how more complex programs can be built. With each rule we can
define how the modal operator for the more complex program relates to the modal
operators of the building blocks. For instance, program composition is defined by the
rule: at a state s, [a; 8]¢ holds if and only if [@][3]¢ holds. The modal operators for the
primitive programs are parameters in this approach.

Propositional Dynamic Logic is defined to be the Multimodal Logic in which the pro-
grams are regular expressions over the set of primitive programs. Thus the program
connectives are “;”, “U” and “x” which are usually interpreted as composition, choice
and iteration, respectively. Note, however, that we can take any program construction
as long as we can express their modality. An important restriction, however, is the
requirement of the algorithmic solvability of the validity problem of the resulting logic.
PDL with regular programs is known to be decidable, but PDL with linear context-free
programs is not decidable. In fact, the latter problem is known to be II}-complete, that
is, highly undecidable. Furthermore, it can be proved that PDL with all r.e. programs
equals the infinitary logic of equality L, ..

Several variants have been proposed of the original definition of PDL. These variants
include

o only allowing deterministic primitive programs (DPDL);

e a primitive assertion repeat for programs, which holds of a program if that pro-
gram can be executed ad infinitum (RPDL);

e a primitive assertion loop for programs, which holds of a program if that program
may never terminate (LPDL);

e a converse operator for programs which yields a program that executes the orig-
inal program “backwards” (CPDL).

See [10] for precise definitions and results and for references to the original literature.

1.4 Outline

This paper is organized as follows. In chapter 2, the basic definitions, syntax and
semantics for PDL are given. We give the Segerberg axiomatization which we prove
complete in chapter 3. We also give an infinitary axiom system which we prove com-
plete using a technique proposed by Berman [3]. We then state a slightly more general
technique for proving completeness of axiomatizations for (variants) of PDL based on
this infinitary axiom system and give applications. In chapter 3, we prove the existence
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of a Universal Model using model theoretic arguments and prove completeness of the
axiomatization using this Universal Model. We also use the Universal Model to give a
different proof of the Small Model theorem of Fisher and Ladner [6]. In chapter 4 we
discuss the above mentioned assertion repeat and show that this assertion is definable
in the infinitary logic. In chapter 5, we describe a fragment of Propositional Dynamic
Logic of Context-Free Programs. We give an axiomatization and prove it complete
using the technique of chapter 2. In chapter 6, some related topics are discussed. We
review Propositional Algorithmic Logic as formulated by Mirkowska [19] and compare
the proof of completeness from that paper with ours. Finally, we discuss two different
approaches to the problem of introducing time in the logic, namely, the linear time and
the branching time approach.

Acknowledgements
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Chapter 2

Propositional Dynamic Logic

In this chapter we give the definitions of the syntax and semantics of a formal system
for reasoning about programs. To this end, we define a class of programs which can
enable propositions by means of a possibility operator ¢. Thus, when a is a program
and ¢ is a proposition, a{¢ (which we will abbreviate as (a)¢) states “program o can
terminate with ¢ holding upon termination”. The resulting logic is interpreted over
Kripke structures and we will give an axiomatization for the logic that is complete, i.e.
validity and derivability coincide.

21 Syntax and semantics

The syntax of Propositional Dynamic Logic PDL has as its basis two disjoint countable
sets of primitive symbols, namely the set

o = {p07p1’ .. } i
of primitive predicate symbols, and the set

Ho = {ao,al,...}

of primitive program symbols. From these base sets we recursively define the sets of
PDL propositions & and programs II:

1. &, C ¥;

2 if ¢, € @ thengpVve,-¢ € P;

3. if o € Il and ¢ € & then (a)¢ € &;
4. IIy CII;

5. if a,f € Il then a U B,a;8,0* € II;
6. if € ® then ¢? € II.



In addition we abbreviate ~(~¢ V %) to pA; "V P to ¢ — 9; (¢ = P)A (P — @) to
¢ — . We further abbreviate ~(a)-¢ to [a]¢.

First we give an informal semantics for the above constructions: the meaning of the
propositional connectives is exactly like in ordinary, classical propositional logic CPC.
Therefore, PDL can be seen as an extension of CPC, i.e. all tautologies of CPC are
valid PDL formulae. Primitive programs are exactly what their name suggests: un-
interpreted programs or inputfoutput relations, which is essentially the way we view
programs in general. That is, programs are black boxes and their input/output be-
havior completely characterizes their relevant aspects; we identify two programs if and
only if they constitute the same input/output relation. The meaning of the operator ; is
program concatenation; thus, o; 3 means “first execute program o and then execute 3”.
U means nondeterministic choice; o U 3 means “choose nondeterministically program
o or B and execute it”. The x-operator is a nondeterministic looping operator and o*
means “execute o a nondeterministically chosen number of times”. In the sequel we
often abbreviate a; a;- - -;a (n times) to o”. Thus o* can be viewed as “choose n non-
deterministically and execute ™. The operator ? is a testing operator and ¢? means
“test ¢ and proceed if true”.

The operator { is the usual modal operator and the meaning of (a)¢ is “program o
can be executed with ¢ holding upon termination”. Its dual, [a]$, therefore means
“whenever program o terminates, ¢ holds”. Note that these operators give rise to two
important aspects of programs, namely, when (a)true is valid, then o can terminate,
and when [o]false is valid, then a never terminates. We are also able to express partial
correctness of programs, ¢ — [a]y.

Formally, PDL formulae are interpreted over Kripke structures.

Definition 2.1 A Kripke structure is a triple A = (WA, x4, pA) where

o W4 is a set of states;
o TA: &g 2W* is an interpretation function for the primitive predicate symbols;
o pA: o> 2W*XW* s an interpretation function for the primitive program symbols.

Usually we write a Kripke structure as A = (W, 7, p) when no confusion can arise. We
further use the terms “Kripke structure”, “Kripke model”, “structure” and “model”
interchangeably. The interpretation functions extend to the whole sets @ and II:

o p(au B) = p(a)u p(B);

e p(a;B) = p(e) o p(B), where o is relation composition;

o p(a*) = Uicw p(@), the reflexive transitive closure of p(a);

o p(¢7)={(s,8) EW x W |sem($)};

o 1(dV ) =n(p)Un(2);

o w(—=¢) =W — 7(d);



o 7({a)¢) = {s € W |3t e W.((s,t) € p(a) At € 7(¢))};

We say that a proposition ¢ is satisfiable in a structure A if and only if there exists a
state s in A such that s € 7(¢) and we write A, s F ¢. We omit A when it is clear from
the context. We say that ¢ is A-walid and write A F ¢ if A, s F ¢ for each s € W. We
say that ¢ is valid and write F ¢ if ¢ is A-valid for every structure A. Clearly, ¢ is valid
if and only if ~¢ is not satisfiable.

In the sequel of this paper we use ¢, 9, . .. to denote propositions and , 3, ... to denote
programs.

2.2 Axiomatization

In this section we present an axiomatization for PDL as proposed by Segerberg [33].
He claimed this axiomatization to be complete and several completeness theorems are
established in the literature. In the next chapter we give another proof of completeness
of the axiom system by a technique which resembles the proof method proposed by
Berman [3], which we review below.

Definition 2.2 The set of axioms AX for PDL contains

1. axioms for propositional logic;
2. {e)p A o] — (a)(dV ¥);

3. {a)(oV ¢¥) « ()¢ V (a)y;

4. (aUB)¢ © (a)pV (B)¢;

5. (a; B)¢ < (a)(B)¢;

6. (PP YA

7. ¢V (a)(a*)¢ — (a*)¢;

8. (a*)p — ¢V (a*)(~¢ A ()9).

In addition we have the following inference rules:

1. modus ponens: from ¢, ¢ — 9, infer 1;
2. modal generalization: from ¢, infer [o]¢, for any o € I

As usual, we define a derivation to be a finite sequence of well-formed formulae, each of
which is an instance of an axiom or the conclusion of an inference rule whose premisses
occur earlier in the derivation. The last formula occurring in the derivation is called
the conclusion of the derivation. If, for any formula ¢, there exists a derivation of which
¢ is the conclusion, we say that ¢ is derivable and write + ¢.



Axioms 1-3 are not particular for PDL but hold in all modal systems. Axiom 2 is easier

in its dual form

[e](¢ — ¥) — (le]¢ — [a]¢)-
This is the axiom K of Modal Logic and any logic which satisfies K and has a modal
generalization rule, is called normal (c.f. [8]). Axiom 8 is called the induction axiom, and
is better known in its dual form

¢ A [a*)(¢ — [a]d) — [o’]¢.

Note the resemblance between this axiom and the induction axiom in arithmetic. The
intuition behind axiom 8 is that if a program o* enables a proposition ¢, then the
proposition is always true or there is a point in the looping of the program where the
proposition becomes true for the first time.

Note that we may not assume ¢ and then infer, with modal generalisation, - ¢ —
[a]¢ for all propositions ¢ and programs a. This schema is obviously unsound. This
derivation is only valid when ¢ is.

Inspection of the system AX immediately gives us the next proposition.

Theorem 2.3 (Soundness Theorem) If - ¢ then F ¢.

A familiar fact of PDL is its lack of compactness. For an easy example, consider the
infinite set I":

D = {~6,(@)é,~(eNd.. }U{(a*)¢}
= AU{{c*)¢}

Every finite subset I’ C T has a model: suppose (o*)¢ € I' and let i be the largest
integer such that ~(c?)¢ € I'. Then each model M that satisfies —~({a¥)¢ for j < i and
(aft+1)¢, satisfies I'. Yet the whole set T' cannot have a model, for A is precisely the
definition of —{a*)¢.

2.3 An infinitary axiom system

Intuitively, the nature of the x-operator requires an infinitary axiom system. We define
the system AX,, as such an infinitary system. The induction axiom is replaced by an
inference rule with an infinite set of premisses.

Definition 2.4 The infinitary axiom system AX o, contains the following axioms.

1. All PDL axioms, except the Induction Axiom;

2. [a*]¢ — [e’]¢, for each i < w;
In addition, we have the following inference rules:

1. modus ponens: from ¢, ¢ — %, infer ¢;
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2. modal generalization: from ¢, infer [a]®, for any a € 1IL;
3. oo-rule: from {4 — [of]¢}icw, infer  — [0*]¢.
We treat [a*]¢ as an abbreviation for A;c, [a']¢. By contraposition, we have, for each
i <w, _
(o) — ()9,

We define a derivation in AX,, to be a countable sequence of well-formed formulae,
each of which is either an instance of an axiom or the conclusion of an inference rule
whose premisses occur earlier in the sequence. The last formula in the sequence is
called the conclusion of the derivation and any formula ¢ for which such a derivation
exists is called derivable or provable and we write o .

From the Soundness Theorem for AX, we immediately get a Soundness Theorem for
AX w'

Theorem 2.5 (Soundness Theorem) If -, ¢, then F ¢.

Theorem 2.6 1. In the infinitary system AX o, the induction axiom is derivable.
2. In the Segerberg system AX, F [a*)(¢ — [a]¢) — (¢ — [a"]@) for each n < w.

Proof.

1. Let ¥ = ¢ A [@*](¢ — [@]¢). Then, by CPC, ko % — 9, OF
Foo ¥ — ¢ A [a*](¢ — [a]d).
An instance of Axiom 7 in its dual form is

([e*)(¢ — [a])) = ((¢ = [al¢) A[a][*](¢ — [2]9))-

Hence
Foo % = @ A ((¢ — [@]@) A []le”](6 — [@]9))-
and
Foo ¥ — (] Aa][0*](¢ — [al¢)
and by Axiom 3,

Foo % — [al(¢ A [0](¢ — [al¢))-

So ko ¥ — [a]®. With induction, we can show b % — [e"]¢ for each n < w. We
now may infer o % — [@*]3 from which, with propositional reasoning, follows

Foo ([0*)(¢ — [0]8)) — (¢ — [*]9).
2. Using axiom 7, we have

F [a*]y — (¥ A la][0’]¥)
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where ¢ = ¢ — [a]¢. Assume | [a*]p. Thent+ ¢ — [a]¢ and I [a][a*](¢ — [a]¢).
Another application of axiom 7 yields

F [a](¢ — []¢) A [@®][a*](4 — []9)-
We may now infer
[ — [o7]¢.
As we have - ¢ — [a]¢, we can deduce
k¢ — [o*]8.
And the theorem follows by induction on n. . a

One sound inference rule in the system AX is the so-called reflexive transitive closure
rule (c.f. [17]) which reads:

(pVix)y) = ¢
(a*)¢ — ¢

When we substitute (a*)¢ for ¢ in the premise of this rule, the conclusion is true, for
the premise is valid by axiom 7. Thus this rule says that (a*)¢ is the least (with respect
to logical implication) PDL proposition to do so, which is consistent with the infinitary
axiomatization for the x-operator.

2.3.1 A completeness technique

In the following chapter we prove the completeness of the Segerberg axiom system
using a Universal Model. A model U is called universal (c. [21)) if, for each model M,
there exists a mapping 8¢ : WM — WY such that for each state s € WM and each
PDL formula ¢:

M, sk ¢ iff U, 0pm(s) E ¢.

Berman [3] gave a completeness technique for PDL which we review in this section.
We use this technique to prove completeness of AX .

We first give some definitions. Let Pr(4Xo) = {¢ |Foo #} be the set of all provable
formulas of the axiom system AXo.

Definition 2.7 Let X be a set of formulas and ¢ a formula.

1. ¥ Foo ¢ if and only if there is a (finite or countable) subset &' C % such that oo AT —
o.

2. We say that ¥ is inconsistent iff T Fo false.
3. We say that T is consistent iff ¥ is not inconsistent.

4. ¥ is maximally consistent iff ¥ is consistent and for each ¢ € @, either ¢ or ¢ € L.
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We now define a model A by:

o WA = {sC & |Pr(AX,) C s and s is maximally consistent };

o 7A(p) = {s| p € s} for primitive predicate p;

o pA(a) = {(s,t) | V¥.([a]¥ € s => ¢ € 1)} for primitive program a.
Lemma 2.8 For each proposition ¢,

A,sEdiffpes.
Proof.
We proceed by induction on the complexity of ¢. For ¢ a primitive predicate, the
theorem holds by definition.
(p=vVx). AsEypVxiff A sk ¢ or A sk x iff, by induction hypothesis, ¢ € s or
x € s iff ¥ V x € s, by construction.

(¢ = 9). A, sE - iff A, sH iff o & s iff 29 € s.

(¢ = {(@)%). The only nontrivial case. We prove this case by induction on the structure
of a.

First let a = a be a primitive program. A, s F (a) iff there exists a state such
that (s,t) € p(a) and A, ¢ F ¥. By induction hypothesis, ¢ € ¢ and by the definition
of p(a), {a)y € s. Conversely, suppose (a)¢ € s. Consider the set

I ={¢|[d¢c s}

Claim. T is consistent.
Proof of claim. Suppose T is inconsistent. Then there exists I’ C T such that

Foo AT — false
or
Foo @1 A-+-Adu A+ — false
Foo [a]1 A -+« A[a]@n A - - - — [a]false
As b, false — ¢ for all ¢, we get, by Modal Generalization and axiom 2,

koo [alfalse — [a]-9

Foo [alr A -+ Afalpa A - - — [a] ¥
Hence [a]~% € s or —(a)® € s. Contradiction.
Extend T to the set I’ = T' U {¢}.

Claim. I" is consistent.
Proof of claim. Suppose I" is inconsistent. The only way inconsistency can occur
is by {¢'}. So suppose there are B1y- -y Pm, - - - € T such that

Foo 1A Adm AP A---— false
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Hence,
Foo P A APm A-re—

Foo [a]@1 A -+ Alaldm A - -+ — [a] -9
Hence [a]—u/: € s. Contradiction.

It is easy to see that the set Pr(AXy) U I" is consistent. Hence this set can be
extended to a maximally consistent set ¢.

Claim. (s,t) € p(a).
Proof of claim. ¢t € W4 by definition. And for all propositions ¢:

[alpes=>9eTCI'Ct

Hence (s,t) € p(a) by the definition of p.

By the last claim, since ¢ € t, A, s F (a)® and the case o is primitive, is proved.
The other cases follow easily.

A, s E (x?) iff A, s E x A ¢ iff, by induction hypothesis, x A 9 € s iff (x?)y € s.
A,sE (aUB)yiff A,skE (a)yV (B)¢ iff (a)y v (B)¢ € s iff (aup)y € s.

A, s E (a; B¢ iff A, s F (a)(B)9 iff (a){B)¢ € s iff (o; B)¢ € s.

Dually we prove [o*]y € s iff A, s F [a*]9. A, s F [a*]9 iff, by definition of Kripke

models, A, s £ [a"]y for each n < w, iff, by induction hypothesis, [a"]¢ € s for
each n < w, iff, by the co-rule [o*}¢ € s. m|

Corollary 2.9 For each program o and proposition ¢,

(@)¢ € s iff there exists a t € W such that (s,t) € p(a) and ¢ € 1.
With Lemma 2.8 we can easily prove the completeness of the system AXq:
Theorem 2.10 (Completeness Theorem) For each PDL formula ¢, o ¢ iff F ¢.

Proof.

One direction is the Soundness Theorem; for the other direction: let ¢ be such that I/, ¢.
Then Pr(AXo) U {~¢} is consistent and can be extended to a maximally consistent set
s by Lindenbaum’s Theorem. Hence, s € W4 and A,s F ~¢ by Lemma 2.8, which
implies that ¢ is not valid or # ¢. a

The following theorem abstracts our technique for proving completeness.

Lemma 2.11 (Completeness Lemma) Let AX' be any sound axiomatization for (a variant
of) PDL, that is, AXo C AX'. Construct the model A as indicated using AX'. Then, if

A,sEgifandonly if g€ s

then
1. AX' is complete;

14



2. A is a Universal Model.
Proof.

1. Suppose ¢ is such that lf ¢. Then Pr(AX \u{~¢} is consistent and can be extended
to a maximally consistent set s by Lindenbaum’s Theorem. Then s € WA and
A, s E ~¢. So ¢ is not valid.

2. For each model M define the mapping 8 : WM — W4 by

Om(s) = {¢| M, sF ¢}.

0(s) is maximally consistent, for if ¢ ¢ O4(s) then M, s ¥ 1; hence M, s F -7
and ~% € O (s). By Soundness, Pr(AX’) C O4(s). Hence O(s) € WA, Then

M, sk ¢ iff ¢ € 0u(s) iff A, 0pm(s) F ¢
which implies that A is universal. O

2.3.2 Application: PDL with concurrency

In this section we give an application of our completeness technique for a variant
of PDL. In this application we use the infinitary system AXq and the variant is an
addition of axioms to this system.

Peleg [22] defined a variant of PDL by introducing the concurrency operator 1 : IxM+— 1T
which has the following semantics for any Kripke model M:

M, sE (an B¢ iff M,sF (a)¢ and M, sF (B)¢.
An axiomatization for the resulting logic follows easily.
Definition 2.12 The set AXc of axioms for PDL with concurrency contains:

1. the system AXoo;
2. (an B « (a)p A (B)o.

Using the technique from the previous section, we readily get a completeness result for
the logic.

Theorem 2.13 The system AXc is complete.
Proof.

By the Completeness Lemma, we only need to consider the additional case ¢ = {anB)¢.
This can be proved by a simple extension of the proof of Lemma 2.8.

Let ¢ = (o N B)y. Then A, s F ¢ iff, by definition, A,s F (a)¢ and 4,s E (B)¢ iff, by
induction hypothesis, {(a)y € s and (8)y € s iff, by construction, ()9 A (B)Y € s iff
(anpB)p€Es. m]
In chapter 4 another application of this completeness technique is given for the case of

an infinitary axiom system for a fragment of Propositional Dynamic Logic of Context-
Free Programs.
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2.3.3 Discussion

We have introduced a completeness technique for PDL which rests on an infinitary
axiom system. One might ask whether this technique is applicable to the “normal”
axiomatization as well. The answer to this question is “No”. The difficulty in proving
a lemma such as Lemma 2.8 lies in the case ¢ = [a*]1. Let us see what happens when
we try to prove the case. We can prove that A, s E [a*]¢ implies [a"]y € s for each

n < w, but we may not infer that then [a*]¥ € s. In fact, we can prove the following
theorem.

Theorem 2.14 Let

I = Pr(AX)U{4,[a]s,[a%]¢,...} U {-[a*]¢}
Pr(AX)u AU {-[a*]¥}

Then T is consistent.

Proof.

Suppose I' inconsistent. Then for some finite subset I = {¢o, ¢1,...,¢n} C T,
I’ - false.

Or
FgoA---Adp — false.

Without loss of generality, we may assume that ¢, = -[a*]s» and the other ¢; € A. By
Soundness, then, for all models M and states s € WM, M, sk ¢g A -+ A ¢y — [0*]d.
But counterexamples are easily found. Hence T' is consistent. a

Essentially, this is the same argument as we used for proving incompactness. There we
saw that an infinite, semantically inconsistent set could not be proved to be inconsistent,
by proving inconsistency of each of its finite subsets. In fact, each of its finite subsets
was consistent. For exactly the same reason, namely syntactic consistency of each of
the finite subsets of I’, we must conclude that T' itself is syntactically consistent. Yet it
surely is not semantically consistent. We therefore conclude that syntactic and semantic
consequence are two different notions in the case of the axiom system AX.

The Theorem does not hold, however, in the case of an infinitary axiom system. We
may infer [a*]) from A and I’ proves inconsistent. In this case, syntactic and semantic
consequence do coincide.

It is interesting to compare the discussion which arose between Kozen and Pratt con-
cerning the equational definition of an algebraic structure underlying PDL and the above
remarks. Pratt defined a Dynamic Algebra which had the Segerberg axiom system as
its equational definition; Kozen proposed a x-continuous Dynamic Algebra which in-
corporated the infinitary system AX,. Kozen proved the following theorem.

Theorem 215 1. Standard Kripke models and x-continuous Dynamic Algebras share the
same L, ., theory.
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2. There exists an first-order sentence o such that for each standard Kripke model A, AF o,
but there exists a Dynamic Algebra D such that D E —o.

Kozen then concluded that looping is “inherently infinitary”, which agrees with our
findings using model theoretic arguments.

The Segerberg axiom system is, however, complete for PDL [16] (see also Chapter 3 of
the present paper). As a result we have, for each ¢ € &,

Foiff Foiff oo ¢

since both logics are interpreted in the same class of models. Hence provability in both
axiom systems coincide.
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Chapter 3

A Universal Model Theorem for
Kripke Structures

In this chapter we prove the existence of a Universal Model for PDL in a very natural
and intuitively appealing way following Parikh [21]. Using this model, we prove a
Completeness Theorem for the Segerberg axiom system AX and give a different proof
for the Small Model Theorem.

3.1 The Universal Model Theorem

In this section we establish a nontrivial property of Kripke structures, namely the
existence of an structure U that is universal in the sense that every other structure can
be isomorphically embedded in it. We further exhibit some immediate consequences
of this fact.

3.1.1 Some model theory

In this section we establish some facts about models for PDL and the theory of Kripke
models.

Definition 3.1 For each model M, the theory of M is the set
Th(M) = {¢|3s € WM. M, sE ¢}.

This definition gives a notion of equivalence of models: two models M; and M, are
equivalent iff Th(M;) = Th(M;,). Notice, however, that M; and M; need not be
isomorphic, as the following example shows.

Example. Let WM. = WMz = {0,1,2,...,w}. Let My,nF p; iff My, n E p; iff i < n.
M;,wE p; and M,,w F p; for all j. Now let pMi(a) = {(0,n) | n < w} and pM2(a) =
{(0,n) | » < w}. Then M; and M; are not isomorphic but Th(M;) = Th(Mz) and
both models even have the same formulae holding at the same states of W. a
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Definition 3.2 For each model M the relation = on the state space WM is defined by:
s=tiff M,sF ¢ <= M,tF ¢.
For each model M we now define the collapse of M to be the model M, = M/ =:

8 = {t |s= t}
WMe = (5.|s e WM}
Me(p) = {sc|s€xM(p;)}
pMe(aj) {(se20) | (3, 1) € pM(a5)}

The following lemma is immediate.

Lemma 3.3 For each proposition ¢,
M,sFE ¢ iff M.,s. F ¢.

The lemma in effect states that we only need to consider models of cardinality at most
R;, that is, the cardinality of the power set of ®.

Lemma 3.4 For every model M and program o,

1. if (s,t) € p(cx), then V. (M, tE ¢ => M, s E (a)d);
2. if (5,1) € p(ax), then V.(M, s E [a)d = M, tE §);
3. Vo.(M,tE ¢ => M, sE (a)) iff Vo.M, s E [a]p => M, tE ).

Proof.

Clauses (1) and (2) follow immediately from the definition of . For clause (3): V¢.(M, s E
[alp = M,t E ¢) iff Vo.M, t ¥ ¢ = M,s i [a]d) iff V$.(M,t F ¢ => M,s E
~(a)¢) iff V. (M, tF o = M, sE (a)¥). !

For each program a we define the mappings Dom(a) and Ran(e) by:

Dom(a)={s e W |3t e W.(s,t) € p(a)}

Ran(a) = {t € W | 33 € W.(s,1) € p(a)}
In the light of Lemma 3.4 we can define for each model M another model M., called
the extension of M, by:

WMez WM;
M = M,
pMez(a) = {(s,t) | YVH(M, s E [a]p => M, tE $)} for a primitive

By Lemma 3.4, pM(a) C pMe=(a) for each primitive program a. Note that p*(a) need
not equal pMe=(a). Consider for example the case in which M, s F [a]¢ only if ¢ is valid.

Then, for every t € WM, (s,t) € pMe=(a). Obviously, pM¢=(a) can be substantially larger
than pM(a). We extend pMe= to the whole set II in the usual way.
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Lemma 3.5 For each proposition ¢,
M, sE P Iff M,sF ¢.

Proof.

(¢=) Since pM(a) C pMe=(a) for each primitive program g, it is easy to see that for each
a € I, pM(a) C pMe=(a). The proof proceeds by induction on the complexity of
¢. The only non-trivial case is ¢ = ()4, which follows from the inclusion given
above.

(=>) Let M., s ¢. We define the mapping R : Il +> 2W*xWH py.

R(e@) = {(s,1) |V¥.(M,sF [l = M,tF ¢)}
= {(s,1) | V. (M, tE ¢ => M, s (a)}

for a € II. Note that, by Lemma 3.4(3), we may use both conditions interchange-
ably in the definition of R.

Claim 1. M, s ¢ iff M, s Er ¢, where Fg, is defined as the relation F except that
we use R(a) instead of p(c).

Proof of claim. Induction on the structure of ¢. The only non-trivial case is
¢ = (a)p. Let M,s E (a)ip. Then there exists a state ¢ such that M,t F
¥ and (s,t) € p(a). But then (s,t) € R(a) by the construction of R and
M, s Er (a)y. Conversely, let M,s Fg (a)y; then there is a state ¢ such
that (s,t) € R(a) and t F 1. Suppose that there exists no state ¢t such that
(s,t) € p(a) and M, tE 1. Then M, s F [a]~9 and, by the definition of R, if
(s,t) € R(a), then t F ~¢. Contradiction.

Claim 2. For each a € II, pMe=(a) C R(a).

Proof of claim. Induction on the complexity of a. For a primitive, the claim
holds by definition. Next we consider more complex programs a.

Case1: a =P U4.
Clearly, p(BU v) = p(8) U p(v) C R(B) U R(v). The last union equals:
{(8,) | Vo.(tF ¢ => s F (B)) VV.(t F ¢ = s F (7)4)}
It is easy to see that this set is contained in:
{(s,8) | Vo.(tF ¢ = s F (B)pV s F (1)¢)}

which is R(BU 7).
Case 2: a = ;7.
p(B;7) = p(B) o p(v) C R(B) o R(7). Now,

R(B) o R(7) = {(s,t) | Ju.((s,u) € R(B) A (u,t) € R(7))}
Let (s,t) € R(B) o R(7). Then, for each ¢,
tE¢=> sk (BN1)¢

20



hence (s,t) € R(8;7) and R(B) o R(7) C R(B;7)-
Case 3: a = f*.
By the former argument we get
p(B") € R(B")
for each n < w. We further have, for each n < w,
R(8™) € R(8)

Suppose (s,t) € R(6"); then t F ¥ = s F (8")% for all ¥. Surely t F y =
8 F (B*)¢ for all ¢, by the definition of p(3*). Hence (s,t) € R(8*). Hence,
by induction on =,

p(6%) = |J p(8°) € |J R(F') C R(B).

<w i<w

Note that this is the place where we use the infinitary properties of §*.
Case 4: a = P?.
Clearly, p(y?) = R(¢?) follows immediately by the definitions of p and R.

The proof of the lemma now follows by induction on the structure of ¢. Again, the
only non-trivial case is ¢ = (a)9. If M., s F ()% then, by claim 2, M, s Fg (a)y

and hence, by claim 1, M, s F (a)y. m]

Next we define, for each model M, the model M by replacing every state in WM by

the set of propositions that hold at that state. We denote the state in W™ corresponding
to s by 3. It is easy to see that

M,sEd = M,5Fp+=>¢€3
for each proposition ¢ € &.
Definition 3.6 For each model M, the canonical model for M is [M] = (M, )cs.
Theorem 3.7 For each proposition ¢ and each model M, M, s E ¢ iff [M], [s] E ¢.
Proof.
Immediate from Lemma 3.3 and Lemma 3.5. 0O
3.1.2 The Universal Model

We can now define a universal Kripke structure 4. Consider the class K of all Kripke
structures. For each M € K we define the mapping O : WM —» W¥ by:

Om(s) = {¢| M, sF ¢}.
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We let the set of states W of the universal model be exactly the set of all subsets of &
that can be obtained this way (when M ranges over all Kripke structures). That is, for
¥ C® ¥ e WHiff U= (s) for some model M and state s € WM, We define 7 by:

m™(p) = {s € W¥ | pi € 5}
for 0 < i < w. The interpretation for the primitive programs is defined as:
#H(a;) = {(s,1) € W¥ x W¥ | Vg.(la;]¢p € s = ¢ € 1)}

for 0 < j < w. Note that the states of U/ consist of all semantically consistent complete
sets of formulae.

We can also describe the Universal Model as the model which results from “pasting
together” all canonical models [M] for all Kripke models M. All states in Y/ are “copies”
of states in some canonical model [M].

Lemma 3.8 For each canonical model [M) and o € 11, pMl(a) C pH(a).

Proof.
It follows immediately from the definitions of pi™! and g that, for primitive a, piMl(a) C
p4(a). The lemma follows. 0

Lemma 3.9 Consider the universal model U.
1. Foreach¢ € ® and a €11,
(a)p € s <= Tt.(s,t) e pla)ApEL.

2. Foreach ¢ € ®,

U,sE ¢ ifand only if ¢ € s.

Proof.

1. (=) Let(a)¢ € s. Then there exists a canonical model [M] and a state [s] € WM]
such that (a)¢ € [s]. Then there exists a [t] € RanlMl(e) such that ¢ € [t].
Hence, by Lemma 3.8, t € Ran¥(c) and ¢ € t.

(<=) Again define the function R : II —~ 2W*W a5 in Theorem 3.5 except that
we use € instead of . By the proof of that theorem, p(a) C R(a). Hence, if
(s,t) € p(a) and ¢ € ¢, then (s,t) € R(c) and by the definition of R, {a)¢ € s.

2. The proof is by induction on the structure of ¢. For ¢ primitive, the lemma holds
by definition.

Case 1: (¢ =% Vx)

sF ¢V x iff s F 4 or s E x iff, by the induction hypothesis, ¥ € s or x € s iff
% V x € s by the maximality of s.
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Case 2: (¢ = )

Similar.

Case 3: (¢ = (a)y)

s F (a) iff there is a state t € W such that (s,t) € p(a) and t = ¢ iff ¢ € ¢ by the
induction hypothesis and (a)¢ € s by the first part of the lemma. m]

The following theorem is an immediate consequence of the lemma.

Theorem 3.10 There exists a universal Kripke structure U = (WY, x4, g1 ) such that for each
Kripke structure M = (WM, xM, pM) there exists an embedding 0,4 : WM > W such that
M, sE ¢ iffU,0pm(s) F ¢ for each well-formed formula ¢.

Proof.

The model & constructed above and mappings 4 for each M are the required model
and mappings. Let M be any model and s € WM. Then M, s E ¢ iff ¢ ¢ (8] for [¢]
in the canonical model [M] and hence ¢ € s for s € W¥ by the construction of U. By
Lemma 3.9, U,s F ¢. Conversely, let U, s k= ¢. Then, again by Lemma 3.9, ¢ € s and
hence, ¢ € [s] for some canonical model [M). Then [M], [s] F ¢ and each model M
such that [M] is canonical for M, satisfies ¢. =]

Note that the theorem implies that the mapping 6 is an isomorphic embedding in the
terminology of model theory.

3.1.3 Some consequences

In this section we give two immediate consequences of Theorem 3.10 which will be
instrumental for obtaining the results of the next two sections.

Lemma 3.11 For all propositions ¢, ¢ is satisfiable if and only if ¢ is U-satisfiable.

Proof.
¢ is satisfiable iff there exists a model M and a state s € WM such that M, s £ ¢ iff
U,0pm(3) F ¢ O

Lemma 3.12 For all propositions ¢, ¢ is valid if and only if ¢ is U-valid.
Proof.
(=>) Immediate.

(+=) Suppose ¢ not valid. Then there exists a model M and a state s € WM such
that M, s ¥ ¢. Hence U, 0,4(s) ¥ ¢ and ¢ is not U-valid. O

3.14 Some more model theory

Parikh [21] defined two notions of equivalence of models.
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Definition 3.13 For models M and N of PDL, let

1. M = N iff Th(M) = Th(N);
2. M=, NiffVs € WM3s' € WAV € 8.M,sF ¢ N,sE¢and Vs € WN3Is" ¢
WMYY € BN, 8 Evp <= M, s"E Y.
Theorem 3.14 For all models M and N of PDL,
MEN =M=, N=M=N.
where = denotes “is isomorphic to”.

The proof of the theorem is trivial, but note that none of the converse implications hold.

However, in all equivalence classes induced by these relations we can find canonical
elements.

Definition 3.15 Let C be any class of Kripke models and M € C. Then

1. M is canonical for C iff

(@) ¥s,t € WM.(s # t => 3g.(s F p AL E =g));
(b) Vs,t € WM. ((3,1) € p(a) <= Yb.(s F [a]p => t E é).

2. M is canonically closed for C iff

(@) M is canonical for C;

(b) for any M’ € C and ' € WM', if for all ¢ there exists a s € WM such that
M s E ¢ => M,s E ¢, then there exists a so € WM such that for all ¢,
M8 E¢=> M, soE 6.

Note that the “only if” part of condition (1b) holds in all models because of the seman-
tics of O, but in canonical models, the p(a) is “packed full” so that the other direction
holds as well. Condition (2b) states that if a canonically closed model M has arbitrarily
close “approximations” to s’, then M contains a “copy” so of &', that is, a state s, such

that {¢ | M,s0 F ¢} = {¢ | M',s' E ¢}. In this sense the word “closed” can be given a
topological meaning.

Let X be the class of all Kripke models and XM the class of all models M such that
[M] is canonical for M.

Theorem 3.16 1. [M)] is canonically closed for KIM,

2. U is canonically closed for K ;

Proof.
Immediate from section 3.1.1. . 0
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3.2 Completeness of AX

“To prove completeness of AX we adapt the Lindenbaum construction [1] to PDL: We
impose a Boolean algebra structure on the state space W¥ of /4. With each proposition
¢ we associate the set of states that satisfy ¢:

¢l = {s € W|sF ¢}.
Let P be the set of all such |¢|. We define a partial ordering < on P:
|9l < |l iff ¢ — .
Lemma 3.17 B = (P, <) is a complemented distributive lattice, that is, a Boolean algebra.
Proof.
By propositional reasoning we have
¥ — true
F false — 9

for all propositions 1. Hence we can take |true| = 1 and |false| = 0 in B.
Let |¢| € P. Then its complement, |§|, is defined as:

1¢l° = {s|sF¢}°
{s|s¥% 6}
{s|sF ¢}
= ||

and |ﬂ¢| € P.
Let |4, |¥| € P. Then:

lglnlyl = {s|skE}In{s|sF}
{s|sEdAsSFEY}
{slskFonvy}

¢ A 9|

Hence |¢| N |¥| € P. By propositional reasoning,
F(¢Ad)— dandF (4AY) — P

Hence |¢ A 9| is a lower bound for {|¢]|,|¥|}. Suppose |x| is a lower bound too. Then
Fx — ¢and F x — ¥. Hence - x — (¢A+). This shows that |¢A 1| is the greatest lower
bound, i.e. the infimum of {|¢|,|¥|}. Similarly, |¢ V 9| is the supremum of {|¢},]¥]}.
Thus B is a lattice.

Let |¢|, %], |x| € P. Then |(¢ A %)V x| € P and because
FeA¥)Vvx) e (V)N (¥VX))
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we get from the Soundness Theorem,

@A)V Xl =18V X)A(FV X
This shows that B is a complemented distributive lattice. ]

Lemma 3.18 In the Boolean algebra B,

1. |¢| =1 if and only if - ¢;
2. || = 0 if and only if F .

Proof.

1. Let |¢| = 1. Then for each |¢| € P, |¢| < |¢|. Hence, for each |¢|, F ¢ — &.
Choose 1 so that I ¢, then , by modus ponens, } ¢. Conversely, suppose + ¢.
Then, for each 1, I ¥ — ¢. Hence, for each 9, |¥| < |4|, so |¢] = 1 in B.

2. Similar. O

Lemma 3.19 For all proposition ¢, if U F ¢ then - .

Proof.

Suppose that ¢ is not provable in the system AX. Then, by lemma 3.18, in the Linden-
baum algebra B, |¢| # 1 and so |-¢| # 0. Hence there exists a state s € |-¢| such that
U, s F ~¢. Hence ¢ is not U-valid. O

Theorem 3.20 (Completeness Theorem) F ¢ if and only if - ¢.

Proof. One direction is the Soundness Theorem. The other direction follows from
Lemmas 3.12 and 3.19. O
Remark. Let A be the model as defined in the pre%rious chapter from the infinitary
axiom system AX,,. An immediate observation leads to the next lemma.

Lemma 3.21 WA = WY,

Proof.

By Soundness, each s € W¥ is maximally consistent and Pr(4Xo,) C s so W¥ C W4,
Conversely, W4 C W¥ by Completeness. o

By the lemma and the constructions of 2/ and A we get:

Theorem 3.22 U = A.

In fact we may say that & and A are only two different names for the same model and
conclude that U = A.
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3.3 The Small Model theorem

We find another application of Theorem 3.10 in a different proof of the Small Model
theorem. This theorem is one of the basic results of the theory of PDL and was first
discovered by Fischer and Ladner [6]. It states that every proposition ¢ that is satis-
fiable, is satisfiable in a model with 2! states. This fact immediately gives rise to a
naive doubly-exponential time decision procedure for the validity problem for PDL:
to check whether ¢ is valid, generate all models with 2/~ states and cycle through
them in search for a model that satisfies ~¢. If such a model doesn’t exists, then ¢ is
valid. Sherman and Harel [10, 32] proved the existence of a singly-exponential time
procedure by constructing a model A, that satisfies ¢ iff ¢ is satisfiable. Thus we can
construct a model in polynomial time and check whether this model satisfies ~¢ in
exponential time.

We first need a notion of the “subformulae” of a PDL formula ¢. This concept is
captured by the Fischer-Ladner closure of ¢ [6].

Definition 3.23 Let ¢ € & be a PDL formula. The Fischer-Ladner closure of ¢, denoted

by FL(¢), is the smallest set S of formulae containing ¢ and satisfying the following closure
rules for all a € Iy, o, € M and ¢, x € ®:

PYpeS = YES
YVYES = P,x€S
(a)p €S = YeS
(af)yp €S = (a)B)yp€ES
(auB)pesS = (), (B)peS
(VeSS = ¢,(a){a*)PES
(¥Nx €S => ¢,x€S

The Fischer-Ladner closure of ¢ is the set of all “subformulae” that are relevant for the

meaning of ¢. The set FL(¢) induces an equivalence relation =4 on the state space W
of any model M:

s=4 tiff Vi) € FL(¢).(sE Y <= tF 1)

In other words, we “collapse” s and ¢ if they are not distinguishable by any formula
of FL(¢). We now define the quotient model M/FL(¢):

] = {tls=et}

WMIFL®) = {[s]|s € WM}
TMIFL@#)(p,) {[s] | s € #™(p;)} for all p; € Bo
pMIFL@) a;) = {([s],[t]) | (s,t) € pM(a;)} for all a; € To

I

wM/FL(#) and pM/FL(¢) are extended inductively to I and & in the usual way. The
following lemma, called the Filtration Lemma, is crucial for the theorem:

Lemma 3.24 (Filtration Lemma) For all ¢ € FL(¢):
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L if Y = (a)x then Vs,t € WM{(s,t) € pM(a) = ([s], [t]) € pM/FL#)(a));

2. for all states s: M,sE ¢ <= M[FL(¢),[s] F .
Proof.
Tedious but straightforward induction on the structure of ; see [6] for details. O
We now consider the quotient model &/ FL(¢).
Lemma 3.25 For each ¢ € FL(¢)

v is satisfiable iff 1 is U | F L(¢)-satisfiable.

Proof. The lemma follows from Lemma 3.11 and the Filtration Lemma. a

Next we give another representation for the states of the quotient model 2/ FL(¢): for
each [s] € WHY/FL(9), ]et 3 be the set

§={¢|[s]Fyand ¢ € FL(¢)}U{~¥|[s]F -y and ¢ € FL(4)}

That is, 3 is the set of formulae from FL(¢) that hold at [s] together with the negations
of the formulae from FL(¢) that don’t hold. We define the model &y by mapping in
the filtration model U//FL(4$) each state [s] onto 3. The interpretation functions are

adapted in the obvious way. From this construction we immediately get the following
lemma.

Lemma 3.26 For each formula 1 € FL(¢) and [s] € WH/FL(#),

U[FL(),[s|F ¥ iff Uy, 5F piff p € 5.
Theorem 3.27 For each formula v € FL(¢),

v is satisfiable iff 1 € 3
for some state 3 € Uy.
Proof.
Immediate from Lemmas 3.25 and 3.26. O

The sets of formulae 3 are called atoms of F L(¢) and play a crucial role in the definition
of the model Ay.

Definition 3.28 Let Z be the set of PDL formulae in which all formulae of F L(¢) and their
negations occur. Then an atom of FL(¢) is defined to be a subset A C Z such that for every
a,felland ¢, x € &:

if-peZ, thenpe Aiff v ¢ A

ifpvx€Z, thenpvxe Aiffpe Aorxe A

if (aB)¥ € Z, then (af)p € A iff ()P € A

if (0 UBYY € Z, then (a UB)p € Aiff (a)p € Aor (B)p € A
if (a*) € Z, then (o*)p € Aiffp € Aor (a)(a*)p € A

if (Y?)x € Z, then (Y?)x € Aiffp€ Aand x € A.
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Note that for all ¥ € FL(¢), either v or -4 is contained in each atom. Denote the set of
all atoms of FL(¢) by At(¢4). From the definition of atoms it follows that an A € At(¢)
is free of “obvious” or internal contradictions. In the construction of the model A,
we will eliminate the “nonobvious” or external contradictions also. This model will
be constructed in phases. For the definition of the interpretation functions = and p
we limit ourself, without loss of generality, to the primitive predicate and program
symbols occurring in ¢.

.Ao = (Wo, 1l'o,po) is defined by
L Wo = At(¢),
o mo: Bg — 2Wo by A € mo(p) iff p € 4;
o po: IIg — 2WoxWo by (A B) € po(a) iff
1. there is a (a)1 € A with ¢ € B, and
2. for every [a]t) € A, ¢ € B.
Fori> 0, .A.'+1 = (I’VH_], 1r;+1,p.'+1) is defined by
o Wit1 = {4| A €W, and for every (a)y € A, there is B € W; with (4, B) € p(a)
and ¢ € B};
o mit1(p) = mi(p) N Wigs;
* pit1(a) = pi(a) N (Wiyr x Wiy).

Here p| is the ordinary extension of p; to II, except that for ¥ € Z we define p(¢¥?) =
{(A, A) | ¢ € A}. The unprimed p is the usual extension.

It follows from the finiteness of At(¢) and the fact that W;,; C W; that there is a j for
which the construction closes up; i.e. A; = A; for each i > j. Accordingly, set A4 = A;.

The following lemma is the main technical lemma we need for our final result.
Lemma 3.29 For every A € WAs,

1. for each () € FL(¢),
(a)y € A iff there exists a B € WA+ with (A, B) € p(a) and ¢ € B;

2. for each ¢ € FL(¢),

Y E Aiff Ag, AE 9.
Proof.
The proof proceeds by simultaneous induction on the structure of o in (1) and the
structure of ¥ in (2). See [32] for details. O

Theorem 3.30 (Small Model Theorem) For all 1 € FL(¢), ¥ is satisfiable iff 1 € A for
some A € W4s.
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Proof.

In the light of Theorem 3.27, we only need to prove that W = W4s, from which the
theorem follows.

o W4+ C Wls: immediate from the construction of Uy;

e suppose there exists an atom A € W and A ¢ WA4+. As we have started from
the set of all atoms in W, there exists a phase ¢ in which the first such atom
is removed from W;;;. Inspection of the algorithm shows that this can only
happen if there exists a formula ()3 € A such that there exists no B € W; with
(A, B) € pl(a) and 9 € B. But A € W4 and hence there exists a state B € W¥s
with (4, B) € p(a) and ¢ € B. Because A is the first state to be removed, B € W;.
Contradiction. O

Remark. The above described filtration technique stems from Modal Logic where a
somewhat stronger result has been obtained. First define a notion of subformulae of a
Modal Logic proposition ¢. The set of all subformulae S f(¢) of a formula ¢ is defined
by:

Sf(p) = {»}
Sfdvx) = {oVvxIUSF(e)USF(x)
Sf(~¢) = {-4}uUSf(s)

Sf(o¢) = {O4}uSf(9)

We define a subset I' of the set of well-formed formulae & to be a filtration set if T is
closed under subformulae, that is,

¢ € T implies Sf(¢) C T.
I’ induces an equivalence relation ~r on the state space of any model M = (S, R,V):
s~rptiffforall g €T, M,sF ¢ iff M,tF ¢.

We denote the equivalence class to which a state s € S belongs by |s|. We can define a
model M’ = (St, R', V), called the I'-filtration of M, by:

o Sr = {|s|| s € S}

o |s| € V(p) iff s € V(p) for primitive p
and R’ must satisfy:

1. if (s,t) € R, then (|s],|t]) € R’; and
2. if (]|, |t]) € R, then for all ¢,

if O € T and M, skE O¢, then M, tE ¢.
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- Note that we still have some liberty in choosing the relation R’. We can prove the
following lemma.

Lemma 3.31 (Filtration Lemma) If ¢ € T, then forany s € S,
M, sE ¢ iff M',|s| E 6.
We now give some examples of filtrations.
1. The smallest filtration.
(Isl, It]) € Re iff 3¢’ € |s|3¢ € |t].((s', ') € R).
2. The largest filtration.

(Is], [t]) € R iff for all ¢, O¢ € T and M, s F ¢ implies M.t F ¢.

Observe that, in the context of PDL, the Filtration Lemma is proved for a smallest
filtration. Observe further, that Lemma 3.5 proves a special case of a largest filtration,
namely, the case that we take I' to be the whole set of well-formed formulae.
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Chapter 4

PDL with Repeat

In this chapter we study the effect of adding a predicate, repeat, for programs. This
predicate holds of a state s, iff there are states s; for i < w such that (s;, 3;41) € p().
That is, repeat(c) holds when o* can diverge when executed from so. The main tool
we employ is the notion of the computation tree of a program a. We use it to show that
repeat(c) is equivalent to an infinitary formula . Thus the predicate repeat is definable
in infinitary PDL, that is, the variant of PDL in which we allow for infinite conjunctions
and disjunctions of arbitrary formulae. This logic is easily definable analogous to 4 X
we only have to replace the co-rule by a general infinitary rule for formulae. Thus we
have the following inference rule:

o oo-rule’: from {¢, | n < w}, infer A, ., ¢n.

4.1 Computation trees

Definition 4.1 Let M = (W, =, p) be any Kripke structure. For each program o € 11 and
state s € W, the computation tree of o rooted in s is the tree TS = (V, E) where V is a set
of vertices and E is a set of edges, defined by

e seV
o if (t,t')ep(a)and t € V, then (t,t') € Eand t' € V.

Note that each vertex in T2 may have countably many descendants and that T itself
may be infinitely deep. Note also that the same state may occur in several distinct
nodes in T2 and if a state lies on a cycle, then it occurs infinitely often in T2. Let T,
be any computation tree rooted in s on any Kripke structure M. An a-path departing
from s is any branch in 7,,. When s,1,,...,1, are the vertices on that branch, then the
path is of length n. When the path is infinitely long, its length is w. Intuitively, an
a-path is any computation sequence of ao*.

Definition 4.2 For any program a € 11, repeat(c) holds at state s iff there exists an a-path
of length w departing from s.
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- Note that repeat(c) holds if and only if o* can diverge. We can define a partial ordering

Co of computation trees by setting T2 T, T, iff there exists an embedding f : T2 > Tt
- such that if (2,¢’) € E, then (f(t), f(t)) € E', where E (E) is the set of edges of T? (T®).
Two trees T; and T; are a-equivalent, T2 =, T:, iff T2 C, T: and Tt C, T2. If, for two
a-trees T and TV, T C, T, then T' is at least as deep as T. This notion of equivalence
between computation trees is somewhat coarse, but good enough for our purposes as
we are only interested in whether the depth of a tree is finite or infinite.

For the rest of this section we are not interested in a particular program « or structure
M, so we drop sub- and superscripts. We define a class D of computation trees over
some (appropriate) Kripke structure as:

D={D;|i<w}

by the following recursive definition:

* D, is the a-tree rooted in s; that contains an a-path departing from s; of length
n for each n < w but no path of length w;

® Djy, is the a-tree rooted in s;4; that consists of a copy of D, and has a copy of
D; appended to the endpoint of each finite path;

e D, is the a-tree rooted in s, such that D; C, D, for each i < w.

Note that this definition is unambiguous up to a-equivalence. For convenience, we set
Di = (‘/n Et) .

Theorem 4.3 For each i < w,

1. D; Co Diya;
2. Diy1 Za D;.

Proof.

- 1. Trivial.

2. We prove D; L, D;; the claim then follows by an easy induction on i. Assume
towards a contradiction that D, C, D; and let f be the witnessing embedding.
Let ¢ be the root of the copy of D, that is attached to the endpoint of the path
of length 1 in D;. Then (s3,t) € E, and hence (f(s3), f(t)) € E;. Necessarily,
f(s2) = 81, hence f(t) lies on a branch of finite length. But ¢ has departing
branches of any length. Contradiction. m]

Lemma 4.4 Let T = (Vr, ET) be any a-tree that only contains finite paths. Then T T, Dy
for some k < w.

Proof.

We define the following embedding f : T — D; for some i < w which will be de-
termined in the construction of f. Suppose t is the root of T. Then t has at most
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countably many descendants ¢, s, .. . at distances n;,n, ... such that ¢; has departing
branches of finite but unbounded length. The other branches departing from ¢ have
length bounded by some integer m. Embed these branches in the branch of length m
in the uppermost copy of D, in D;. Embed ¢; as the root of the copies of D;_; located
at the endpoints of the branches of length n; and repeat the process starting from t;.
This process must eventually, after a finite number of times, stop as T only contains
finite branches. In fact, this number determines the i we were looking for. a

We define a collection of formulae ¥ = {¢; | i < w} by the following recursive defini-
tion: .

o 1= Nico(a)true;
* Ynt1 = Aicw(0)¥n.
Note that ¥, holds at a state s iff the program a can be executed from s an arbitrarily

number of times; 1, holds iff we can n times execute the program an arbitrarily number
of times. The following theorem follows immediately from the definitions.

Theorem 4.5 For each i < w,

1. 85'=1/ij01‘j$i,'

2. s.-Jh/;,-forj > .
We let 9 be the formula

v= N\ ¥
i<w

Corollary 4.6 For each i < w,

1. s; E;

2. s, F 1.
The following theorem is easily seen to hold.

Theorem 4.7 s, E repeat(a).

We can now state the main result of this chapter.
Theorem 4.8 Let M = (W, r,p) be any Kripke structure, let « € Il and s € W. Then
s F repeat(a) iff s F 9.

Proof.

Let T be the o-tree rooted in s. If s F repeat(a), then there exists an a-path departing
from s of infinite length and T¢ =, D,,. Hence, s F 9. Conversely, if s ¥ repeat(a), then
every path in T} is of finite length and T2 C, D; for-some k < w. Hence, s ¥ 1. ]
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4.2 Bisimulation

Recall the definition of the relation = on states in Definition 3.2:
s=tiff sk <= tF¢.

We now define the relation 2, on computation trees by T 2, T' iff T =, T’ and if
f:T — T, then s = f(s) for all s € T. For two states s and ¢, we define the relation
~q by s ~, t iff, when T, is the computation tree of a rooted in s and T} is the
computation tree of o rooted in ¢, then T, &, 7). We define the relation ~ on states
by s ~ t iff s ~, t for all a € II. The relation ~ is the relation of bisimulation on states.
Note that we have not required that the two states come from the same model. Thus
we can extend to a notion of bisimulation between models. For two models M; and
My, let My S, M, iff for every state s € WM: there exists an state t € WMz such that
s ~, t. We say that M, ~, M, iff M; <, M, and M, <, M. We let M; ~ M, iff
My ~, M, for each a € II.

It is obvious that, in order to study (a variant of) PDL, we only need to consider the
equivalence classes of ~ in the class of all Kripke structures.

4.3 On decidability of PDL with repeat and other philosophical
topics

An important question to ask is whether the logic of RPDL remains decidable. Streett
[34] has argued that this is the case. His argument appears to be, however, incorrect.
It seems to go awry in an inductive proof of the central lemma 4.14 in his paper, where
an illegal application of the induction hypothesis is used. This error calls for some
attention. Remember the Fisher-Ladner closure of a formula ¢, FL(¢). This notion in
generally introduced as “a notion of subformulae” for a formula ¢. Naively we can
now define a relation on formulae < by

P £ ¢ iff P € FL(¢).

We might use < as a proper notion of subformulae. The relation < is, however, not
well-founded. Consider the following example of an infinitely decreasing chain, with
a primitive,

("] > [alla*]e > [a*]6 > -

Hence, we may not perform induction over this relation. This is exactly what has
happened in [34]. Inspection of < shows that this happens only in this case: the x
operator causes the trouble. This implies that, when we want to perform induction
on the structure of ¢, we have to prove the case “¢ = (a*)¥” manually; we have no
induction hypothesis to invoke.

Kozen and Tiuryn [17] recognized the problem and went to try to define a somewhat
more appropriate notion of subformulae and came up with the relation < which indeed
proved to be well-founded. The only trouble with < is that it contains not only p, for
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p a primitive predicate symbol, but also (a*)p as < minimal elements. Hence we still
have to prove this case specially in an inductive proof.

Note that the difficulty in defining a well-founded notion of subformulae is caused
by the incompactness of PDL. They come together in the impossibility of defining
syntactically a Universal Model using the (finitary) Segerberg axiom system. Using an
infinitary axiom system, we can easily define the subformulae of a formula [a*]¢ to be
the set {[a"]¢ | n < w}. This relation is well-founded and suited for structural inductive
arguments.

Streett [34] proved that PDL with Repeat has more expressing power than normal PDL.
From this result we immediately infer the expected result that Infinitary PDL has more
expressive power than PDL.
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Chapter 5

Propositional Dynamic Logic of
Context-Free Programs

In this chapter we develop a theory of Propositional Dynamic Logic of Context-Free
Programs, or PDLc¢r in short. We first address the validity problem for PDLcr and
then give an axiomatization for (a fragment of) PDL¢r and prove the completeness
of this axiomatization.

5.1 The Validity Problem

As in ordinary PDL, the propositions and programs are built from two sets &, and
Il of primitive predicates and programs respectively. In contrast to PDL, we allow
programs to be all context-free definable expressions over II,. The semantics for the
resulting propositions in the logic is similar to the semantics for PDL-expressions. We
let this brief description be the informal syntax and semantics for PDL¢r, for the time
being; we digress further on the subject in the subsequent sections.

We associate with each program a a set L(a) C II§, namely, the set of all execution
sequences of a. L(a) and p(a) are related in that if w = w; ... w, € L(a) and (s,t) €
p(wy) and (¢/,1') € p(w,), then (s,t') € p(a). Conversely, if (s,t') € p(a), then there
exists a w € L(a) as described above. In effect, we view a program o as a context-free
grammar (i.e. a recursive set of production rules) over terminals ITp and some fixed set
of nonterminals. Then L(a) consists of all words generated by the grammar a. Note
that we have restricted our definition for II by excluding tests. Since the results in this
section are negative, they carry over to the more general case.

We first give a handy definition used throughout this section.

Definition 5.1 Let C be a class of programs over Io. Then PDLc is the propositional dynamic
logic with programs drawn from C. In particular, we use RG for regular programs; CF for
context-free programs and L for a fragment of linear context-free programs.

Note that “ordinary” PDL is PDLgg. The following theorem is due to R. Ladner. The
proof presented here is from [11].
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Theorem 5.2 For any o, € I, p € By,
F ((e)p — (B)p) iff L(a) C L(B).

Proof.

(¢<=) Immediate from the definition of {(a)p.

(=) Letw € L(a) and w = by - - - b, where the b; are (not necessarily distinct) elements
from IIp. Define the Kripke structure A,, = (W4w, 14w pAv) such that
o W= {uo,...,un};
o 7(p) ={un};
o p(b;) = {(wi,u;) | j =i +1}.

Clearly, then, A,,,uo F (a)p and hence, by the assumption, A,, %o F (8)p. And
this implies that w € L(f). |

Corollary 5.3 The validity problem for PDLcr is undecidable.

Proof.

The corollary follows from Theorem 5.2 the fact that the equivalence (and hence the
inclusion) problem for context-free grammars is undecidable. m]

The following theorem shows that the validity problem is in fact highly undecidable.
The theorem is due to Harel, Pnueli and Stavi [11, 12].

Theorem 5.4 There exist atomic programs a and b such that:

1. the validity problem for PDLgg, sap0 s TIi-complete;
2. the validity ﬁroblem for PDLpG (a0ba pagay is II}-complete.

where a®By2 is defined as the program \J; ., ¢*Bv’.

An important issue in the theory is to determine for what class C of the context-free
programs, PDL¢ remains decidable. Theorem 5.4 seems to indicate that this class is
little more than the regular programs. The following conjecture is due to Olshansky
and Pnueli.

Conjecture. PDL g, 454 is decidable.

As Harel noted in [10], undecidability of the two classes of logics could be explained
by the observation that in the presence of a program a®ba® or of both programs a®b4
and b2a®, an a-transition in the pushdown automaton recognizing the language, might
require either pushing or popping the stack since a plays a dual role in these languages.
On the other hand, an a in a®52 need only the stack to be pushed and an b to be popped.
A treatment of PDLcr, in which we allow pushdown automata to act as descriptions
of the programs used, might shed some more light on the subject.
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5.2 Syntax and semantics

In this section we define the syntax and semantics of a fragment of PDLc¢y, namely
PDL;. In this fragment we restrict the admissible set of programs to include only a

fragment L of the linear context-free programs. In this fragment, only productions of
the form

X —aXb
X—=a

for nonterminals X and terminals (including €) a and b. In this choice we follow Harel
[9], who uses exactly the same set of programs to describe the first-order Dynamic
Logic with respect to this set. The definition of the set II follows [9] closely. The reason
behind this choice is that the theory would become too cumbersome and technical
details would block the view on underlying principles.

PDL,, is formally defined as follows. Let ®; and II, be sets of primitive predicates
and programs, respectively. That is,

@0 = {po,p1,---}

Iy = {ao, a1,...}
We further have a set = of program variables, denoted by X, X, ...
The definition of the set ® of propositions is exactly like in chapter 2.
The set II’ of program terms is defined as:

1. Ho (_: H';

2. ECI;

3. ifa,fell'"’thenaUBand a; 8 € II';

4. if r € II' and X € E then uX.7 € I'.

The term pX.7 is intended, intuitively, to represent the (recursive) program consisting
of an execution of 7 and whenever the variable X is encountered, we again execute .
A program variable X is said to be bound if it occurs in the scope of a y; it is said to

be free otherwise. A program is said to be closed if it contains no free X € =. We now
define the set II to be the largest subset of II’ in which all terms are closed.

Convention. We denote uX.7(X) by 7*(f).

For a term T we write 7(X) to indicate that r has a free occurrence of X. Accordingly
then, for such a 7 we may write r(a) for the program r with each occurrence of X
replaced by a.

Define 7%(a) = & and 7*+1(a) = 7(7%(a)). We then can give the definition of p(7*(f))
as
p(r*(£)) = U p(r*(false?)).
i<w

PDL;, is interpreted over Kripke structures and the definitions for p, 7 and F are
exactly like in chapter 2, except that we replace p(a*) by p(7*(f)).
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5.3 Axiomatization

In this section we propose an axiomatization for PDL;. Recall that the set of valid

PDL;, propositions forms a II}-complete set by Theorem 5.4: the program construct
a® ByA is defined as

a®py? = uX.(aXy)UB.

Accordingly, this set can’t be finitely axiomatizable. We therefore propose an infinitary
axiom system (c.f. [13]).

Definition 5.5 The set of axioms AX|, for PDLy, contains

1. the axioms for propositional logic;
2. (@) Aol — (a)(oV ¥);
() (Vv Y) o (a)dV ()

4. (aUB)p & (x)pV (B)¢;

5. (a; B)¢ = (a)(B)¢;
6
7

w

(YNP o YA
. [7*()¢ — [ri(false?))s for all 0 < i < w;

In addition we have the following inference rules:

1. modus ponens: from ¢, ¢ — o infer 1;
2. modal generalisation: from ¢ infer [a]¢ for any o € I1;
3. co-rule: from {1 — [r'(false?)|v}icw infer ¢ — [r*(f)]e.

Note that, in fact, we have introduced [7*(f)]¢ as an abbreviation for A\;,[7*(false?)]¢.
We get from Axiom 7, by contraposition, (r¢(false?)}¢ — (r*(f))¢ and we can regard
(r*(f))¢ as an abbreviation for V/;,(7*(false?))¢.

We define a derivation to be a countable sequence of well-formed formulae, each of
which is either an instance of a axiom or the conclusion of an inference rule whose
premisses occur earlier in the sequence. The last formula in the sequence is called the
conclusion of the derivation. Any formula ¢ for which such a derivation exists is called
derivable or provable; we write }-7, ¢.

Theorem 5.6 (Soundness Theorem) If -1, ¢ then F ¢.

Proof.

Inspection of the system AXy, shows that all axioms are valid and that rules of inference
preserve validity. a



5.4 Completeness

In this section we prove the completeness of the system AX, adapting the completeness
proof of Lemma 2.8. First we define the set Pr(AX;) C @ as the set of all provable
propositions in the system AX;. Now let the Kripke structure A = (W, r,p) be given

by:
o W={sC®|Pr(AX) C s and s is maximally consistent}.
o 7(p) = {s | p € s} for all primitive p;
e p(a)={(s,) | V$.([a]p € s = ¢ € 1)}

We extend 7 and p in the usual way to the sets & and II to get a Kripke structure. Note
that we can again define p by p(a) = {(s,t) | Vé.(¢ € t => (a)¢ € s}.

Definition 5.7 Let T be a set of formulae. T is consistent if not T +, false.
Lemma 5.8 For all propositions ¢, A,sE ¢ iff ¢ € s.

Proof.

We use induction on the structure of ¢. All cases carry over from Lemma 2.8, but now
there is the additional case ¢ = (7*(f))%, which we dually prove below.

s E [T*(f)]y iff s E [ri(false?)]y for all 0 < i < w iff [r(false?)]y € s, by induction
hypothesis, hence [7*(f)]¥ € s by construction. Conversely, let [7*(f)]¥ € s. Then, for

all ¢, [r*(false?)]y € s. Hence, by induction hypothesis, s & [r*(false?)}4 and s E [7*( )}
by definition. 0O

Theorem 5.9 (Completeness Theorem) For all propositions ¢,

EoifftL ¢.
Proof.
One direction is the Soundness Theorem. The other direction follows from Lemma 5.8
and the Completeness Lemma. a
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Chapter 6

Related Topics

In this chapter we review some related topics and give a brief outline of results obtained
there which are relevant in our exposition.

6.1 Propositional Algorithmic Logic

Mirkowska [19] defined a propositional version of Algoritmic Logic [31] called PAL.
PAL is closely related to PDL but differs in some minor and some more major respects.
We treat syntax and semantics of PAL in a manner which resembles PDL.

6.1.1 Syntax, semantics, axiomatization

Like PDL, PAL has two syntactic objects, programs and propositions. Programs are built
from a set of primitive programs I, by the following rules.

¢ If o and 3 are programs, then o; 3 and a U 3 are programs;

¢ if a and 3 are programs and ¢y is a formula of CPC, then while ¢, do « od and
if ¢o then « else 3 fi are programs.

Note that PAL has both deterministic and nondeterministic choice operators. Further-
more it has only deterministic looping,

PAL has two modalities () and 0O, which are not related as ¢ = ~0-. The semantics
of (a)¢ is “program a can terminate with ¢ holding” but the meaning of [a]¢ is “all
executions of a are successful and ¢ holds upon termination of each of them”. The
PAL formula [a]¢ relates then to the LPDL formula —loop(c) A [a]¢ A (a)¢. The last
term is needed to insure that a can be executed, which otherwise causes =loop(a) and
[]¢ to hold vacuously. Note that the decidability of PAL follows from the decidability
of LPDL. PAL formulae are constructed just like PDL formulae.

Like PDL, PAL is interpreted over Kripke models. The relation p is extended in the
usual way for ; and U but needs special attention for the two other program connectives.
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. . . (s,t) € p(a) and M, s F ¢y;
(s,t) € p(if ¢o then « else § fi) iff { (s,8) € p(B) and M, s E ~go.

o (s,t) € p(while ¢9 do o od) iff, for some i < w, (s,t) € p((if ¢o then o fi)*) and
M, tE —¢y.

Note that p is well-defined since we only allow CPC formulae in the construction of
while and if programs.

Again the function 7 induces the relation F and the two deterministic program con-
nectives need again special care. One can prove the following lemma [19].

Lemma 6.1 For each program a and CPC formula ¢,
M, s (while ¢y do a od)y iff M, sk ((if ¢o then o £i)')(~¢o A ¥)

for some i < w.

In the above lemma, the program

if ¢p then o i

is an abbreviation for
if ¢o then « else skip fi.

Thus, if if ¢ then o fi reaches a state s such that M,s F —¢g after ¢ executions, it
also reaches that state after j > ¢ executions. It just “stays there” for some time.
Such an equivalence does not hold in general for [while ¢ do a od]y, however. The
if-direction is valid, because there must be an upperbound to the number of steps a
while program takes in order to terminate successfully. The only if-direction, although,
is not valid. However, if we consider only special structures, then an analogous lemma
can be obtained. These structures are required to have the so-called finite degree of
nondeterminism property, that is, for each s € W and for any o € II, the set

R(a,s) = {t € W | (s,t) € p(a)}

must be finite.

Lemma 6.2 For each program o and CPC formula ¢y, if M has the finite degree of nondeter-
minism property, then

M, sk [while ¢ do o od]y iff M,sF [(if ¢ then o fi)¥](=¢o A ¥)

for some i < w.

Mirkowska then defined an infinitary axiom system for PAL. We adopt the convention
that any occurence of o in a axiom or rule must be understood as ¢ on all places or
as O on all places (with a slight abuse of notations). pref denotes an arbitrary prefix
to the expression, that is, pref € ({[a] | a primitive} U {(a) | a primitive})*. We define
notions of derivability etc. as usual.
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Definition 6.3 The axiom system AXpay, for PAL contains:
[a)¢ — ()¢

(a)true — [altrue for primitive a

o(a; B)¢ « oa(ofid)

o(if ¢ then a else 3 fi)p — (o A 0oad) V (o A 03¢)
o(while ¢y do a od)¢ « (—do A @) V (g0 A oa(o(while ¢9 do a od)e)))
(aUB)g = (a)pV (B)¢

[e U B]¢ — [a]é A [B]6

(a)(@V ¥) & (a)pV (a)y

[e)(¢A %) = [a]p Ala]y

[a]~¢ — ~(a)¢

11. [altrue — (~(a)¢ — [a]-¢)

© % N S G A W N R

~
<o

We further have the following inference rules:

1. modus ponens: from ¢ and ¢ — 1, infer i;
2. modal generalisation: from ¢ — 1, infer cag — oarp;
3. co-rules: from {prefo (if ¢ then a fi)i(¢ A ~do) — V}icw, infer
prefo (while ¢9 do o od)¢ — 9.
In the above definition, a and 3 denote arbitrary programs, ¢ denotes any CPC formula
and ¢ and ¢ any PAL formulae.
Inspection of the axiom system immediately gives the following theorem [19].

Theorem 6.4 The system AXpay, is sound.

6.1.2 Completeness

In this section we review the completeness technique used in [19] to prove axiom sys-
tems for theories based on PAL complete. That is, axiom systems with some additional
clauses. For example, we could add the axiom

(a)¢ — [a]é

to ensure that all programs considered are functional. The additional axioms must
ensure, of course, that the resulting theory must be interpreted over f.d.n. models. It
is instructive to compare this technique with the one we employ in chapter 3.

We first define @ to be the set of all well-formed formulae of (a theory based on) PAL.
We define the equivalence relation = on & by:
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o=y iffFd—yYand k¢ — ¢.

We let [¢] denote the equivalence class of ¢ under =. We now define the Lindenbaum
algebra L.

Theorem 6.5 The algebra L = (®/ =, A, V, ) where:

o [¢lv¥]=[sVY];
o -[¢] = [~¢);
o [S]A[¥]=[8AY]

is a Boolean algebra. In this Boolean algebra:

1 [l < [¥liff ¢ — o
2. [¢]=1iffF¢;
3. [¢]=0iff|7’¢.

Theorem 6.6 For arbitrary formulae ¢, CPC formulae ¢o and any program a, the following
equalities hold.

1. [pref [while ¢o do a od]¢] = sup, . [pref [(if #o then a fi)*](~do A ¢)];
2. [pref (while go do & od)¢] = sup;.,.[pref ((if do then a fi))(~¢o A §)].
where pref is an arbitrary prefix.

By this theorem the Lindenbaum algebra can be considered as as a Boolean algebra with
an at most enumerable set of infinite operations. Hence the algebra is a Q-algebra [30].
By a Qfilter in the algebra L with a set of infinite operations Q, we shall understand
a maximal filter that preserves all Q-operations. That is, a maximal filter F such that
sup; <, [pref o (if ¢o then o fi)'(~¢o A ¢)] € F implies that there exists an ip < w such
that [prefo (if ¢o then a fi)o(~¢g A ¢)] € F.

The following theorems from [30] are important.

Theorem 6.7 For every non-zero element a in a Boolean algebra B with an at most enumerable
set of infinite operations Q, there exists a Q-filter F such that a € F.

Theorem 6.8 If the theory T is consistent, then the Lindenbaum algebra L of that theory is a
non-degenerate algebra and, by Theorem 6.7, the family of all Q-filters in L is a non-empty set.

The proof of completeness of axiomatizations for various theories based on PAL which
are interpreted in f.d.n. models proceeds by showing that we can construct a “canonical
structure” for that theory. The state space of that model consists of the set of all Q-filters
in the Lindenbaum algebra of that theory. For primitive programs a, (F,F’) € p(a)
iff (a)true € F and, for every formula ¢, [a]¢ € F implies ¢ € F'. For primitive
propositions p , F € n(p) iff p € F. We can now show that for this model M,
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M, FE ¢ iff [§] € F

for all ¢ € ®. From this, completeness easily follows.
Theorem 6.9 The system AXpay, is complete.

Proof.

Suppose I/ ¢, then [~¢] # 0 in the Lindenbaum algebra of that theory and hence, by
Theorem 6.7, [~¢] € F for some Q-filter . From this it follows, M, F k —¢ rendering
¢ not valid. O

6.2 Temporal Logic

One major drawback in the theory developed so far is the impossibility to describe the
run-time behavior of programs. In fact we view programs as being

1. computational, or designed to compute some explicit output;
2. executed instantly (as we only keep track of their input/output behavior).

Thus we are unable to model programs that are not supposed to compute something
and/or to terminate ever. Networks, operating systems or database systems are prime
examples of these programs. We can say that the latter provide an environment which
reacts to inputs, rather than which computes an output from an input. Hence Pnueli
[23] proposed the term reactive systems for this kind of computer program. He defined
a logic, called Temporal Logic of Programs, which we briefly discuss below, to describe
the behavior of reactive systems.

6.2.1 Background

Before we go into details, let us first develop some intuition behind the logic. One
approach can be to associate with each program the set of all execution paths, that
is, functions ¢ : w — W which enumerate consecutive states in one computation of
a program. This is essentially the way programs are viewed in Temporal Logic. We
then introduce modal operators to reason about properties of paths. Things we are
interested in to describe include:

e throughout the computation of a program a condition ¢ holds, or ¢ holds in each
state of the computation path;

e during the computation a condition ¢ is enabled, or ¢ holds in some state of the
path;

e during a computation, some condition ¢ holds until a condition ¢ is enabled.
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See [20, 29] for a discussion of these and related items.

One aspect of time is implicit in this approach, namely, that time is a linearly ordered
set. For this reason, the logic is called linear time. A consequence is that we only are
able to describe properties of one particular path, or properties of all paths. We cannot
state something like “there exists a path which validates such-and-such”. In order to be
able to do so, we must associate with each program its computation tree (c.f. [9]). In this
approach, in each moment of time there exist (possibly) many alternative “futures”, or
next states. This logic is therefore called branching time as we view time as a branching
tree. Now we are able to state properties like the one mentioned above.

Lamport [18] has defined a linear and a branching time logic, and has compared their
expressive power. This requires some ingenuity since he proved that basicly the logics
are incomparable, that is, there exist sentences which are valid in one logic but not in
the other. With an appropriate comparison condition, he proved that linear time logic
is more expressive than branching time logic and concluded that we only need the
former.

Emerson et al. [4] later refuted his argument by showing that Lamport had used two,
too restrictive kinds of logic and that his result on more expressiveness of linear time
logic does not hold in more general logics. They conclude that, although linear time
logic may be more suitable to verify preexisting programs, branching time logic has
a right on its own, especially in program specification. We would like to add the
argument for branching time logic, that it suits more naturally the concept of program
as it arises in the context of PDL than linear time logic does.

6.2.2 Linear Time

Pnueli [23] defined a Temporal Logic with linear time. We give basic definitions, fol-
lowing the exposition in [8]. Like PDL, TL has a set of primitive predicates ®o. The set
® of all formulae is defined as:

e &, C 9P;
b if¢>,¢e<1>,then¢v¢,—-¢€ ®;
o if ¢,9 € ®, then O¢,O¢,0U¢ € &.

The meaning of the modal connectives is:

¢ O means “henceforth” (i.e. from now on, including the present);
o O means “next” (i.e. at the next state);
¢ U means “until”;

¢ (), as usual, is shorthand for -O-.

The logic is interpreted over a state sequence model. A state sequence is a pair (S,0)
where S is a set of states and o : w — § is a surjective function, enumerating S as a
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sequence
00y01ye+e90pngeres

Note that repetitions are allowed and necessary when S is finite.

A model is a triple M = (S,0,7) where 7 is an interpretation function for primitive
predicates, as usual. The relation
M,jE¢
meaning “¢ is true at the j-th state o; in M”, is defined by
M,jEp iff o; € n(p)
M,jE¢VY iff M,jEdor M,jEY
M,jE~¢  iff MK
M,jEQ¢ iff M,j+1F¢
M,jEDO¢ iff forallk>j M,kF ¢
M,jE Uy iff forsomek > j, M,kFE 4 and
for every i such that j < i < k,
M,iE ¢

Intuitively, this semantics amounts to a multimodal logic with two modalities and
interpreting O by the relation <, and O by the relation Succ. Apart from that, we
have the connective U. The connection between the two modalities is that O is the
reflexive, transitive closure of (). This observation is the key to the completeness
theorem to follow.

We define the following set of axioms AX7y, for TL:

1. O(¢—¥) - (0¢— O9)
O(¢ — ¢¥) = (O¢ = OY)
O¢<-0¢

0¢ - ¢A0O0O¢

a(¢ — O¢) — (¢ — O¢)
U — O¢

U = PV (6 A O(eUY))

N oo ok W N

We further have the inference rules modus ponens and two necessitation rules, namely,
from ¢ infer ¢, or O¢. The first two axioms, together with the necessitation rules
state that the logic is normal in both modalities. Axiom 3 expresses the interpretation
of O by a total function. Axioms 4 and 5 correspond to the interpretation of O by the
reflexive transitive closure of . Note the similarity between these axioms and axioms
7 and 8 from PDL. Axiom 4 implies immediately the reflexivity schema O¢ — ¢
indicating that O defines a reflexive relation. Axiom 5 expresses the induction principle
that any set that contains o; and is closed under the taking of successor states, must
contain all states from o; on.

These remarks lead immediately to the following theorem.
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Theorem 6.10 The system AXty, is sound.

The proof of the completeness of the axiom system involves an interesting use of the
Filtration technique described in chapter 3. We give the main points of the completeness
proof below.

First, construct a model M’ = (S', R, Ry, 7’) as follows: S’ consists of all maximally
consistent sets s of formulae such that Pr(AX7;) C s. The relations Rf; and Rb are
defined as

(s,t) e Ry iff {$| DpES}CE
(s,t) E Ry iff {$| Op €8} Ct

n’ is defined as usual: 7'(p) = {s | p € s}. Fix a formula ¢ such that I/ ¢. Then there
exists a state sy € S’ such that ¢ ¢ s4. Let

S = {u| (s4rv) € (Rig)*).
We will work with this state space, that is, with the model M" = (S, R, ’o, x'). As

5 is provably not the reflexive transitive closure of R, we will have to collapse the
associated model by filtration to achieve that property.

As a filtration set T, we define
I =5f(¢)u{OD0% | O% € Sf(4)}U{O#UX), O~x, OO, x | $Ux € Sf(4)}
The definition of I'-filtration is adapted as follows.
s=rtiffsnT =tnT.

We let [s] be the equivalence class of s under =r and define Sp = {[s] | s € S}.
A relation R on St is defined to be a I'filtration of R, if and only if

1. (s,t) € Ry implies ([s], [t]) € Ro, and

2. ([s) [t]) € Ro implies {¢ | Oy € sNT} C ¢.
Likewise for Rp.
Lemma 6.11 If a relation R on St is a T-filtration of R(, then R, is a I-filtration of Ri5.
We let 7 be the valuation induced by =’ in the obvious way. So now we have constructed
a model M = (Sr, Ro, Ry, 7) in which one relation is the reflexive transitive closure
of the other. In order to get our computation path model we have to enumerate the

state space Sr. We therefore introduce the notion of a cluster. Let R be any binary
relation on Sp. R induces an equivalence relation ~g by

s~ptiff [s=1t]or[(s,t)€ RA(t,3) € R].

Definition 6.12 A cluster of a binary relation R, is an equivalence class of ~Rg.
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We denote such an equivalence class of a state s by C,. We can order clusters by putting
C, < C iff (s,t) € R. Likewise, we have an ordering < on clusters. Note that clusters
can have one or more states, in general countably many.

We can picture a chain of R-clusters, called an R-chain, as follows.
e 0os0—o0—oe—o > -

In this picture, the — denotes the relation <. When an R-chain is finite, we have a
first and a last element in the chain. This will necessarily be so when the state space is
finite.
We now define the relation R¢ on Sr by

(z,y) € Re iff Vs € 23t € y((s,t) € Rp).

Then R¢ is reflexive, transitive and connected and hence the R°-chain contains the whole
set Sr. We further have R¢ C RE. Thus the R°-cluster of each point is contained in

the R -cluster of that point, and so each R -cluster decomposes into a sequence of
Reclusters. ~

We now “unwind” the Rg-chain, by unwinding all the R°-clusters in each element of
the chain. If C is the first R°cluster, then C can be unwound into a finite Ry-list,
starting from any predescribed point z € C, as follows. If y € C, then (z,y) € R¢, so
(z,y) € RE and hence there is an Ro-list z = zo,...,2, = y. We can extend this list
to contain all of C. We then “move to the next” cluster in the chain, and so on, until
we reach the last R“(‘)-cluster in the chain (which must exist since Sr is finite). We then
move circulary through this last cluster, repeating this list ad infinitum. The sequence
of points we get from this procedure is our computation chain ¢. We can now prove
the following lemma.

Lemma 6.13 Let M = (Sr,o0,7). If $ €T, then for any j € w and s € o,
dpESIff M,jF ¢.

Now we have our machinery to prove the completeness theorem.

Theorem 6.14 AXrty, is complete.

Proof.

Remember I/ ¢ and ¢ ¢ s4 for some state sy in the state space of all maximally consistent
sets of formulae. Taking a j such that [s4] = 0;, Lemma 6.13 gives M, j i¥ ¢ and hence
¢ is not valid. ]

Observe that we can easily define a multi-temporal logic in which we allow for (count-
ably) many computation paths, each having its own O, O and U operators. The axiom-
atization, labeled by the path name, remains complete: we can adopt the completeness
proof to generate a falsifying model for any non-theorem of the system.

6.2.3 Branching time

We first observe that linear time Temporal Logic is perfectly suited to reason about
existing (specifications of) programs: we can translate the program to a description
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of a computation path model and properties of the program we are interested in,
are expressible in the language. Among those properties are concepts like fairness,
termination etc. See [24] for a survey of current trends in linear time Temporal Logic
and what we can do with it.

We also observe that this Temporal Logic is less suited for specifying programs: prop-
erties like “from state s there exists a terminating execution of the program” are not
expressible. This is, of course, caused by the fact that we have only a single execution
path at our disposal. A state s can partake in any number of paths. Once we have
selected one particular path, we have lost track of the others.

In branching time Temporal Logic, on the other harid, the execution of a program is
modeled as a computation tree. At any state s we have the whole subtree rooted in s
at hand. Thus the set {¢ | s F ¢} contains the information of every execution started in
s. Hence we are able to discuss the existence of computation paths and the possibility
that a property becomes true at some path. Branching time Temporal Logic, therefore,
seems to be well equiped for specification purposes.

Another observation is that a computation tree, which can (and generally will) contain
many instances of the same vertex. We can, then, model the computation of a program
by a directed computation graph. This approach may have some advantages over
computation trees in the case when we want to model the computation of a set of
interacting programs: they give rise to different sets of edges on the same set of vertices.

As an example of a branching time Temporal Logic, we will briefly discuss the logic
UB as formulated in [2]. In this logic, a set of both linear time (for properties holding
along one particular path) and branching time (for properties holding on some or all
paths) modalities are defined. Like the other logics we have discussed, the properties
are formulated as propositional formulae.

In the logic, we must quantify over branches as well as over states in one branch. The
set of modalities chosen in {2] is:

VG¢ holds at s iff ¢ is true at all nodes of the subtree rooted at s (including s).

VF¢ holds at s iff on every path departing from s there is some state at which ¢ is
true.

VX ¢ holds at s iff ¢ is true at every immediate successor of s.

3G¢ holds at s iff there is a path departing from s such that ¢ is true at all states on
this path.

3F¢ holds at s iff ¢ is true at some node in the subtree rooted at s, i.e. there is a path
departing from s such that ¢ is true at some state on this path.

31X ¢ holds at s iff ¢ is true at some of the immediate successors of s.
Semantics for this logic follow easily. We use the convention to denote states by s,t
and branches by . We will in the semantics quantify over states in the model and

branches in the computation tree. The relation R we use is the relation which defines
the tree.
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[
.

s F p iff s € w(p) for atomic p
sEdVYiffsEporsk

sk ¢ iff s i ¢

SEVG iff VEVi(t € b => t F ¢)

s 3G iff IVi(t € b=> t E ¢)
skEVX¢ iff Vi((s,t) € R = tF ¢)
sE3F iff It € bALE §)

s EVF iff Vb3t(t € bA L F ¢)

s 3X ¢ iff 3t((s,t) € RALE @)

© ® N o U ok W PN

The following axiomatization is provably complete for UB [2].

1. VG(¢ — %) — (VG¢ — YG)
VX(¢— ) — (VXé — VX))
VG¢ - VX AVXVGo

VG($ — VX $) — (¢ — VG9)
VG(¢ — ¥) — (3G$ — 3GY)
3G — ¢ A IXIGH

VG¢ — G

VG(¢ — IX¢) - (¢ — 3G9)

® N o @ e W

In addition we have the following rules of inference.

1. If ¢ is a substitution instance of a tautology, then I ¢.
2. modus ponens, from ¢, ¢ — 9 infer 1.

3. necessitation, if - ¢ then I VG¢.
Note that, by axioms 1 and 2, the logic is normal in the modalities VG and VX. The
other modalities are defined as abbreviations, and so are the other logical connectives.

Observe the similarity between this axiomatization and the system AX7y, defined in
the previous section. .
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