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TRANSFORMATION OF A TERMINATION DETECTION
ALGORITHM AND ITS ASSERTIONAL CORRECTNESS PROOF

Anneke A. Schoone and Gerard Tel

Department of Computer Science, University of Utrecht,
P.O.Box 80.089, 3508 TB Utrecht, the Netherlands.

Abstract. A stepwise transformation of a termination detection algorithm to a distribut-
ed infimum approximation algorithm is presented. The algorithm is transformed together
with its invariants and correctness proof. Thus a (fairly complex) algorithm for the distri-
buted infimum approximation problem is obtained together with a formal (assertional)
proof of correctness, whereas previous algorithms for distributed infimum approximation
were proved correct by operational reasoning.

1. Introduction. Assertional correctness proofs have been recognized as a reliable means
for the verification of distributed programs. These correctness proofs are based on the proven
invariance of propositions about the system'’s state. Operational correctness arguments, which
are based on reasoning about executions of the programs, have all too often tumed out to be
error prone. Recently a quite complicated algorithm for the termination detection problem due
to Mattern [Ma87] was verified by the present authors using assertional methods [ST88].

The problem of distributed infimum approximation [Te86] was formulated as an abstrac-
tion of several known problems in the field of distributed computing, including termination
detection. Other problems include global virtual time approximation [Je85] and an update
problem in Hughes’ distributed garbage collecting algorithm [Hu85]. As termination detection
is a special case of distributed infimum approximation, termination detection algorithms can be
obtained by instantiating general distributed infimum approximation algorithms. On the other
hand, the distributed infimum approximation algorithms in [Te86] were inspired by existing ter-
mination detection algorithms. In [Te89] it was shown that in order to verify a general distri-
buted infimum approximation algorithm, it is sufficient to verify a derived termination detection
algorithm.

This paper further develops the connection between termination detection and distributed
infimum approximation. A termination detection algorithm is transformed into a distributed
infimum approximation algorithm, together with its assertional correctness proof. Although we
describe the transformation of cne particular algorithm rather than a general transformation that
can be applied to any algorithm, we believe that other termination detection algorithms are can-
didates for a similar transformation also. As a result of the transformation we obtain a distri-
buted infimum approximation algoritim together with an assertional correctness proof. The
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tion for Scientific Research (NWO). The email addresses of the authors are anneke@ ruuinf.uucp and gerard@ ruuinf.uucp.
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algorithms for distributed infimum approximation in [Te86] were verified using operational rea-
soning. Operational reasoning attempts to check all possible executions to verify that they
satisfy the requirements. It is felt to be error prone.

This report is organized as follows. Preliminaries and problem definitions are given in
section 2. In section 3 we present the termination detection algorithm to which the transforma-
tion is applied. In section 4 this algorithm is transformed step-wise into a distributed infimum
approximation algorithm. Section 5 contains the conclusions.

2. Preliminaries. We give some mathematical background concerning posets and infimums
in section 2.1. In section 2.2 we discuss models of computation. In sections 2.3 and 2.4 we
present the termination detection and the distributed infimum approximation problem, respec-
tively. In section 2.5 we discuss the algorithm we will derive.

2.1. Infimums. A binary relation < on a set A is a partial ordering if it is transitive,
antisymmetric, and reflexive. The resulting structure (4,<) is called a partially ordered set or
poset. If the poset (A,<) contains a (unique) element 4 such that for all a € A, u <a, then
this element is called "bottom", denoted as: L. Not all posets contain a bottom element, but
we can always add a bottom element to a poset (for example, —oo can be added as a bottom
element to the set of all integers with the usual ordering).

In a poset, an element ¢ is called the infimum of two elements @ and b if it is the
(unique) element satisfying:

(1) c<aandc<b,

(2) forallz withz<ag and z<bh, z<c.

We denote this by ¢ = inf (a,b). The infimum of two elements does not necessarily always
exist, but we restrict ourselves to posets in which the infimum exists for any two elements.

It can be shown that the binary operator "inf" is commutative, associative, and idempo-
tent. Thus the notation inf B, the infimum of B, for finite subsets B of A, is unambiguous
and will be used as a shorthand notation for the repeated infimum of all elements of B.

The importance of the abstract notion of infimum lies in the fact that for any commuta-
tive, associative, and idempotent binary operator (] on a set A, there is a partial ordering on A
such that for all x and y in A, x Oy = inf (x,y) [Kl43]. It tums out that many network
dependent values can be viewed as the infimum of certain local values of the processors in the

network. For example termination of a computation or the election problem can be viewed as
such.

2.2. Models of computation. Throughout this paper we do not specify complete algo-
rithms, but give so-called program skeletons. These are generic descriptions for classes of
algorithms all of which have some common underying structure. A program skeleton consists
of a number of operations, each of which is given by a piece of program. An operation is
viewed as an atomic action, i.e., it is not interruptable. We do not specify anything about an
assumed order in which the operations must take place, but operations can contain a so-called
guard: a boolean expression between braces { }. An operation can only be executed if its
guard is true. For example, a process can only execute the code for receiving a message if
there is a message present to receive.
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From a program skeleton with a set of atomic operations, various tailor-made algorithms
can be built. For example, in the sequel we will have atomic operations which have a guard
that tests for the presence of a token in the process wanting to execute the code. This can be
used to build so-called token-based algorithms in which a token is circulated which collects
necessary information. As nothing is specified about how token-visits are organized, we could
choose for some predestined tour for the token (e.g. a ring) in one algorithm, and we could let
the token take a tour which depends on the information collected so far in another. We could
even choose to implement a token-visit by a message sent to some central process, which col-
lects and computes the information for the whole network.

In the proofs we use the method of assertional verification or system-wide invariants,
first introduced by Krogdahl [Kr75] and Knuth [Kn81]. The idea is that if a relation (between
process variables for example) holds initially, and is kept invariant by all possible operations,
then it will always hold in the distributed system, in whatever order the operations take place
in an actual execution. The proof technique is rather different from "operational reasoning”
which is built on checking all possible executions. The problem with operational reasoning for
correctness proofs is that it is almost impossible not to overlook some odd coincidence of
events which might render a proof invalid.

We distinguish different models of computation, that is different ways to group actions as
atomic operations. In the message-driven model all operations are triggered by the receipt of a
message. Thus in general the program skeleton consists of only one operation B and has the
following form. (We give the name of the process p where the operation takes place as a sub-
script.)

B,: {amessage arrives atp}

begin receive the message; compute; send all appropriate messages end

In the so-called transactional model, the sending of messages and internal computations can be
done spontaneously, thus allowing more freedom in an actual algorithm on the one hand, and
making correctness proofs more intricate on the other hand, simply because of this extra free-
dom. A program skeleton in the transactional model looks like this.

BS,: begin send a message end

BR,: {a message arrives at p }
begin receive the message; compute end

BI,: begin compute end
Note that the basic operation in the message-driven model can be viewed as a special

combination of the send, receive and internal operations in the transactional model. Thus the
message-driven model is just a restriction of the transactional model.

2.3. Termination detection. In the problem of termination detection we assume that there
is some underlying basic computation, carried out by a finite set of processes in a distributed
manner, and that the processes somehow should detect that the computation has terminated.
The problem arises when messages that are in transit in the distributed system are unobserv-
able, but can influence the computation, when they will be received. The termination detection
algorithm which was proved correct in [ST88] was given for the message-driven model of
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computation. In this model the basic computation consists of receiving a message, doing some
computations, deciding what messages should be sent to which processes, and sending those
messages. If we denote the set of processes to which a message is to be sent as B, a process
in this set as b, and the message to be sent as <m, >, then the only operation of the basic
computation B, has the form:

B,: {amessage <m> arrives at p}

begin receive <m>; compute; forall b € B do send <m,>to b od end

Termination of a message-driven algorithm is characterized by
TERM,,; = there are no messages underway.

Once the situation of TERM,,; is reached, the basic operations B for all processes are
disabled, as no messages can arrive at a process. Thus this situation will endure forever, and
TERM,,; is a stable property of the distributed system.

In the more general transactional model of computation it is assumed that internal com-
putation and the sending of messages take place separately from receiving messages. If termi-
nation of a computation is to be detected, it is assumed that a process is either in passive or in
active state, with respect to this computation. Only active processes can send messages, and
only the receipt of a message can make a process active. The state of a process p is main-
tained in the variable X,. Formally the send, receive and intemal actions are described as fol-
lows.

BS,: {x, = active}
begin send <m> to some process b end

BR,: {a message <m> arrives at p}

begin receive <m>; X, = active end
Bl,: begin x, = passive end

Termination of the computation in this model is characterized by:
TERM,, = there are no messages underway and Vp X, = passive.

Again it is easily seen that TERM,, is a stable predicate: when it holds BS actions are
disabled, hence do not occur, BR actions are also disabled, and BI actions have no influence
on the system state whatsoever. It makes no difference to assume that, besides activating mes-
sages, a process can also send messages while passive; as long as these messages are distin-
guishable from activating messages and do not cause their receiver to become active. That no
activating messages are underway is equivalent to all messages underway having passive
status. The actions are now described as follows.

BS,: begin send <m,x, > to some process b end
BR,: {a message <m,x> arrives at p }

begin receive <m,x>; if x = active then X, = active fi end
BIL,: begin x, := passive end

In this formulation, termination is characterized by:
TERM,, = all messages underway are passive and Vp X, = passive.



-5.

Clearly the two models are equivalent with regard to termination. The problem of termi-
nation detection is as follows. An algorithm should be superimposed upon the basic computa-
tion, which allows the processes to detect that termination (denoted as TERM if no model of
computation is specified) occurs. This detection can be formalized by sending a special mes-
sage, entering a special state, etc. For convenience we assume that a process detects termina-
tion by executing a special statement detect. The correctness requirements for the superim-
posed algorithm are the following.

(Independence) It should not influence the execution of the basic computation.
(Safety) If any process executes detect, then TERM holds.
(Liveness) If TERM holds, then within finite time some process executes detect.

Note that it is possible to fulfill these requirements only because TERM is a stable predicate.

24. Distributed infimum approximation. We consider the distributed infimum approxi-
mation problem, as introduced in [Te86], for the most general, i.e., the transactional model.
Processes are assumed to maintain a variable x, which is an element of a partially ordered set
A. Its current value is appended to any message a process sends. Upon receiving a message,
the receiver’s value is replaced by the infimum of the old and the received value. Internal
actions, insofar they influence the value, may only increase the value. Formally, the effect of
the basic computation on the value is described as follows.

BS,: begin send <m,x,>t0 ¢ end

BR,: {a message <m,x> arrives at p }
begin receive <m,x>; x, = inf(x,,x) end

BI,: begin choose x 2x,; x, := x end

The distributed infimum that we seek to "approximate” is defined by:
F = inf ({x]| <m,x> is in transit} v v {x,}.
P

The rules for maintaining values and sending messages ensure that F is a monotone
function. Because of this monotonicity it makes sense to formulate the approximation problem
for F. This approximation can be formalized by sending a special message, setting a dedicated
variable to the value of the approximation, etc. For convenience we assume that a process
yields a value k£ as an approximation to F by executing a statement yield (k). The correct-
ness requirements for the superimposed algorithm are:

(Independence) It should not influence the execution of the basic computation.

(Safety) If any process executes yield (k), then F 2k.
(Liveness) If F 2k, then within finite time some process executes yield (k),
for some k' 2k.

Finally, we note that indeed the termination detection problem can be seen as a special
case of the distributed infimum approximation problem. Let A = {active, passive }, ordered
by defining active <passive. Under this instantiation the actions described in this section read
as those in section 2.3. The condition TERM,, of section 2.3 now reads "passive <F" and
from this it can be seen that if we read detect as yield (passive), the correctness criteria for
distributed infimum approximation and termination detection algorithms match.
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2.5. The new algorithm. Before actually deriving the new distributed infimum approxi-
mation algorithm we present a short discussion of the algorithm and its merits. In contrast to
earlier algorithms, which were verified using operational reasoning, the new algorithm is
verified using assertional reasoning. A major advantage of the new algorithm is the potentially
lower message complexity. Token exchanges can be restricted to processes of interest, namely,
processes that participate in the basic computation. A major disadvantage of the algorithm is
the high volume of information that is maintained both in the token and in processes.

The algorithm is based on a (virtually) circulating token rather than repeated observation
of all processes. Earlier distributed infimum approximation algorithms [Te86] were inspired by
existing termination detection algorithms and inspected all processes again before yielding a
new approximation, even if the computation was concentrated in only a few of them. In
[ST88] a termination detection algorithm was analyzed which was based on a circulating token.
Safety of the algorithm was shown to be independent of the tour this token makes through the
network. A mechanism for determining a tour was presented, such that the token only visits
processes that actually take part in the computation.

Attempts to apply the same principle to distributed infimum approximation led to the
new algorithm. It was shown in [Te89] that, once given the new algorithm, the verification of
its safety property can be reduced to the verification of the safety of a termination detection
algorithm. In this paper we show that the algorithm itself can be obtained by transforming the
termination detection algorithm. Again we concentrate on the safety properties of the algo-
rithm. The design of a mechanism to determine the tour of the token is a very intricate matter
in the case of a general distributed infimum approximation algorithm. This question will be
addressed in section 5.1.

The volume of information is high and the algorithm complex because the token contains
a complete snapshot of the basic computation. It consists of x-values of all processes and sets
of messages that are in transit. It should be noted that the information in the token is "old",
that is, each piece of it is related to an earlier system state. In fact, the information does not
even constitute a "consistent snapshot" in the sense of [LY87]. We shall demonstrate however,
that the information in the token allows for a safe approximation of the value of F. In order
to maintain the necessary information between token-visits, a process p stores sent and
received messages in a local bag variable L,. L, contains separate subbags L,[q] for every
addressee ¢. In a token-visit the contents of L, and x, are copied to the token. Formally, the
algorithm (including the basic computation) is completely described by the following program
skeleton. (For the precise meaning of several symbols see section 4)

Initially

Vp: XI[plsx,, Qlpl= {xl<m,x> initially underway to p },
Vg: L,[q]= @.

BS,: begin send <m,x, > to q; Ly(q]l=L,[q] U{x,} end

BR,: {a message <m,x> arrives at p }
begin receive <m,x>; Ly(pl:= L,[p] u-{x}; x, = inf(x,x,) end

BI,: begin choose x 2x,; x, :== x end
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p: {process p holds the token (Q,X)}

begin forall ¢ do Q [¢] := Q [¢q] UL,[q]; L,[q] = @ od;
X[pl=1x,

end

D,: {processp holds the token (Q,X)}
begin yield (inf(inf X, inf inf Q[p])) end
P

3. The termination detection algorithm. In this section we present a termination detec-
tion algorithm for transactional computations, together with its assertional correctness proof,
The algorithm is a generalization of the transactional model of the algorithm in [ST88], which
was suited for message-driven computations only. The algorithm from [ST88] and its transac-
tional generalization are given in section 3.1. The correctness proof follows in section 3.2.

3.1. Presentation of the algorithm. In the program skeleton of [ST88] each process p
counts all messages it receives, and it counts how many messages it sent to all possible desti-
nations in an array L,. L, has an entry for every destination, and messages received by pro-
cess p are counted negatively in L,[p]). There is a token Q, which collects all these counts.
Q also has an entry for every destination. If a process p has the token Q, it adds L, 0Q
and sets L, to G. The idea is that if there are as many messages received as sent, there can be
no more messages underway. The claim which is proved in [ST88] is that if all entries in 0
are <0, there is termination. Thus a process which holds the token Q could "detect" this
state. We recall the program skeleton in the message-driven model ([ST88]):

Initially
Vp: Q[p]= the number of messages initially underway to p,
Vg: L,(q]1=0.

B,: {a message <m> arrives at p }
begin receive <m>; L,[p]:= L,[p1-1; compute;
forall b € B do send <m, > to b; L,[b] = L,[b]+10d
end

T,: {process p holds the token (Q)}
begin Q = Q+L,; L, = T end

,:  {process p holds the token (Q)}
begin if Q <T then detect fi end

TERM,,; = there are no messages underway.

In the next section we allow that passive processes send messages, albeit passive ones,
but that only active messages can activate other processes. Hence in counting messages, we
now distinguish between active and passive messages. As passive messages do not activate
other processes, it suffices to count active messages. However, we need to extend the token
with an array X with a value for each process p, to record whether a process visited was still
active or not, as active processes now can spontaneously send active messages. The resulting
program skeleton then is:



Initially

Vp: X|[pl= active vX[p]l= Xps
Q [p]1= the number of active messages initially underway to D,
Vg: L,[q]=0.

BS,: begin send <m,x,>10q;
ifxp = active then L,[q] = L(ql+1fi

end

BR,: {a message <m,x> arrives at p }
begin receive <m,x>;
if x = active then L,[p]l=L,lpl-1; x, = active fi
end

BL,: begin x, = passive end

T,: {process p holds the token (Q,X)}
begin Q := Q+L,; L, =T; X [p]:=x, end

D,: {process p holds the token (Q,X)}
begin if 0 <G and X = passive then detect fi end

TERM, = all messages underway are passive and Vp X, = passive.

Next we extend this program skeleton with the auxiliary and ghost variables necessary
for the proof with system-wide invariants, as was done in [ST88). The variables R, S, Q, o
and Q are as in the original extended program skeleton and are explained below. We now
count separately all messages received, and split out the count according to the origin of the
message. For ease of presentation, we notate all counts of received messages in one two-
dimensional array R. Thus R [p,q] contains the number of messages q received from p
since the last token visit to g. Hence ¢ only has access to its own column of R. Likewise,
all messages sent are counted in the two-dimensional array S. S [p,q] contains the number of
messages p sent to ¢ since the last token visit to p. Hence p has only access to its own row
of S. Likewise, Q also now is two-dimensional. Q [p,q] contains the number of messages

sent from p to ¢ minus the number of messages ¢ received from p, as far as accumulated by
the token. Thus Q can contain negative entries.

In f, a process p records where the first active message received since the last token
visit came from, thus recording which process activated it. The variable Q is a queue which
contains for each process p two elements, namely a label b, and a label t,. The order in the
queue Q represents an ordering in important events which have taken place. A label 1,
represents the last token visit to process p (i.e. an execution of operation T,), and a label b,
represents the last activation of p, i.e. a first execution of operation BR, for an active message
after a token visit. The end of the queue Q represents the largest elements or the latest events.
We will write ¢, <b, for: the last token visit to p occurred before the last activation of q.

M is a ghost variable containing in an entry M [p,q] the number of active messages
underway from process p to process g, while the ghost variable N contains in entry N [p] the
value of x,. These variables are only introduced to make stating invariants simpler, we will
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state the changes in these variables in comment. Note that everywhere we only count active
messages.
Initially
Vp: X([pl= x, VX [p]l= active, fp = nil,
Vq: S[p.q1=0, R(p.q1=0, Q[p.q)= M[p,q]20, and b, <z, in Q.
BS,: begin send <m,x,>10 q;
if x, = active
then S [p.q] = S [p,ql+1 *M([p,q]l=M[p,ql+1%)
fi

end

BR,: {a message <m,x> from ¢ arrives at p }
begin receive <m,x>;

if x = active
then R[q.p] = RI[q,p)+1]; (*M[q.pl1=M[q,p]-1%
X, = active; (* N[p] = active %
if f, = nil then f, = ¢; move b, to the end of Q fi
fi
end
Bl,: begin x, = passive end (* N [p] := passive %)
T,: {process p holds the token (Q,X)}

begin f, := nil; move ¢, to the end of Q; X [p]:= x,;
forall q
do Q(p.q1=0QI[p.q1+S[p.q} S(p.q1 = O;

Qlq.p1=0Q1q.p1+R[q,p); Riq.p]1 =0
od
end

D,: {process p holds the token (Q,X)}
begin if Vr,s Q [7,5]<0 A Vr X [r] = passive then detect i end
TERM,,, = all messages underway are passive and Vp Xp = passive,
or, equivalently,
TERM, =Vp,qMI[p.ql=0AYVp N[p]l= passive.

Note that all message counters only count active messages, and that the state of mes-
sages cannot be changed. In other words, passive messages have no effect whatsoever.

3.2. Correctness proof for transactional termination detection. Since in the transac-
tional model the active state is not hidden, as in the message-driven model, we will have to
extend the invariants of [ST88] to reflect this.

Lemma 3.1. For all p and g the following holds invariantly.
(1) R[p,q]20,
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2 Slp.q120,
3 QlIp.q1+Sip.ql=MI[p,q1+R[p,q],
(4) N[pl= passive vX|[pl= active v f, # nil.

Proof. (1). Initally R [p,q]= 0. Only operations BR, and T, can change R [p,q]). The
first does not decrease R [p,q] and the second sets R [p,q] = 0 again. Hence (1) holds.

(2). Initially S [p,q]= 0. Only BS, and T, can change S [p,q], the first does not decrease
S [p.q] and the second sets S [p,q] = 0 again. Hence (2) holds.

(3). Initially Q [p,q]= M [p.,q]l and as R [p,q] = S [p,q] = 0, the relation holds. IfBSp
increases S [p,q1, M [p,q] is increased by the same amount. If BR, increases R [p.q],
M [p,q] is decreased by the same amount. BI actions do not change any message counters.
T, adds S [p,q]1t0 Q [p.q] and sets S [p,q] = O, thus keeping the sum Q [p,q]+S [p,q]
the same. T, subtracts R [p,q] from Q [p,q] and sets R [p,q] = O, thus keeping the
difference Q [p,q]— R [p,q] the same. Hence (3) holds.

(4). Initially X [p]= N [p] or X [p] = active, hence the relation holds. BS, and D, do not
change any of the variables involved. If BR, makes N [p] = active, it sets f, # nil. BI,
can set N [p] to passive, which is all right. T, sets f, = nil and X [p] to N [p]. Since
they are either active or passive, (4) holds. B

Lemma 3.2. For all p and ¢q the following holds invariantly.
(1) SI[p.q1>0 = f, #nil vX[p]l= active,

) f,, #nil & t,<by,

(3 fp#nil = R[f,.p]1>0.

Proof. (1). Initially S [p,q]= 0. BS, can only increase S [p,q] if x, = active, ie. if
N[p]= active. With lemma 3.1(4) we have that N [p]= active implies f, # nil or
X [p] = active. BR, does not change S [p,q] or X [p], and if it changes f,, it sets
fp # nil. BL, and D, change none of the variables involved. T, sets S [p,q] = 0. Hence
(1) holds.

(2). In BR, f, is set to # nil if and only if b, is moved to the end of Q, and T, sets
fp = nil and moves ¢, to the end of Q. Hence (2) holds.

(3). Initially f, = nil. If BR, sets f, t0 q, R [q,p] was set to a value > 0, too. Other BR,
actions do not decrease R [p,q]. T, sets R[f,,p] to 0, but sets f, = nil also. Hence (3)
holds. W

Lemma 33.
fp=nil v{Q £,.p1+S [£,.p1>0 A (Q [£,.P1SO = 1 <bj <b, VX [f,] = active)}.

Proof. Initially f, = nil. T, sets f, = nil. BI and D do not change any of the variables
involved. BSfP does not decrease S [f,,p]. Consider BR,. Assume f, # nil beforehand.
Then the second disjunct holds, and will not be violated by BR,. Assume f, = nil. If f, is
set to some value ¢, then by lemma 32, R{q,p]>0. Thus with lemma 3.1
QOlq.p1+S(q,p)>0, and hence @ [q,p]1>0 or S[q,p]>0. If the former holds we are
ready. If the latter holds, we have with lemma 3.2 f, # nil or X [q] = active. The former
implies ¢, <b,, and as in the current BR, action b, is moved to the end of Q, 1z, <b, <b,
holds. If f, # nil, we must consider actions BRf’ and Tfp also. If f f, = nil before the BRf’
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action, then bf’ <t and either @ [f,,p]1>00r § [fp.p]1>0and X [fp] = active holds. Nei-
ther of these statements is violated by BRf’. If f £, * nil before the BRfP action, none of the
variables involved is changed. Tf’ might set X [f,] = passive, and sets § [ fpsp1=0. As

Q(fpp1+S [fp,p1>0 beforehand, now Q [fp.p]>0 holds. Thus the relation holds invari-
antly. B

Theorem 34. TERM,, v3p,q O [p,q1>0v3Ip X [p]= active.

Proof. Assume TERM, does not hold. Then 3p,q M [p,q]>0 or 3p N[p] = active
holds. Let p and ¢ be such that M[p,q]1>0. Then S[p,ql+Q0[p,q]>0. Thus
QI[p.q1>00r X [p] = active or f, # nil, by lemmas 3.1 and 3.2. On the other hand, let p
be such that N [p] = active. Then X [p] = active or f, # nil. Assume fp #nil. Let q be
the process with the smallest b, and f, # nil. With lemma 3.3 we have that X [ fql = active
orQ [f,,q]1>0, since bf'>b,,. [ |

Lemma 3.5. Vp,q (Q [p,q120v X [p]= active Vi, <b,<t, )

Proof. Initially O [p,q] = 0. BS, BI, and D do not change any of the variables involved.
BR, does not change Q [p,q] or X [p]. If t, <b, held beforehand, then fp #nil, and the
ordering Q is not changed. T, sets S [p,q1=0,s0Q [p,q]20 follows. T, setsR [p,q] =
0, and 1>t and t,>b,. Thus Q [p,q]120 or S [p,q]>0. The latter implies t, <b, or
X [pl=active. N

Theorem 3.6. 3p,q Q [p.q1>0 = 3Ar ¥ QO [s5,r]>0v3r X [r] = active.

Proof. Let there be an entry Q [p,q]1>0. If for all u,v Q [u,v]20, then Y. Qlp.q1>0.

Thus assume there are some negative Q elements. Let s be the pro:ess such that
dx Q(x,s]<0 and ¢, minimal. Thus S[x,s]>0. Let r be the process such that
3y S[r,y1>0 and b, minimal. Then we know with lemma 3.5 that t, <b, <t,. Moreover,
b, 2b,, and f, # nil or X [r] = active. Assume f, # nil. Then t, <b, and with lemma 3.3
we have Q [f,,r]1>0 or X [f,] = active, since S [ f,,7]>0 and by, <b, leads to a contradic-
tion with the minimality of b,. Since 1, <b, $b, <t,, we know that Vx Q [x,r]20. Hence
Y. Q[x,r]1>0. In all other cases there is an active X element. B

x

Thus for detection purposes the values ¥, Q [¢,p] suffice, and we can use the previous

q
program skeleton if we define

L,[pl=SIp.pl- X RIlq.,p)., and L,[q)l= S([p.qlforp #q.
q
This establishes the safety of the program skeleton of section 3.1.

4. Termination detection as distributed infimum approximation. Now we are
going to write the program skeleton for termination detection in terms of distributed infimum
approximation. Remember that termination detection can be considered as determining whether
the infimum of all local values (of processes and messages) is passive, in the (partial) ordering
where passive 2active. Let k be a fixed element from the partial ordering with which we



-12-

want to compare all local values. The formulation of the previous program skeleton then
becomes:

Initially
Vp: X[pl=x, vX[pltk, f, = nil,
Vg: S[p.q1=0, R(p,q}=0, Q[p,q]1= M[p.q]20, and b,<t, in Q.

BSP: begin send <m,x,>10q;
if x, 2k
then S [p,q]:= S [p.q]+1 *M([p,ql=M[p,ql+1%
fi

end

BR,: {a message <m,x> from ¢ arrives at p }
begin receive <m,x>;

ifx¢k
then R [q.p]l:=R[q,p]+1; (*M[q,pl=M[q,p]-1%
Xp = inf(x,x,); (*N[p] = inf(x,x,) ®
if f, = nil then f, == ¢q; move b, to the end of Q fi
fi
end
BI,: begin choose x 2x,; x, = x end (*N[pl=x%

T,: {process p holds the token (Q,X)}
begin f, := nil; move s, totheend of Q; X [p]:= X
forall ¢
do Qf(p.q]l=0QI[p.q1+S[p.qk Slp.ql1=0;

Qlq.p1=QIlq.p1+R[q.p); R(q.p1:=0
od
end

D,: {process p holds the token (Q,X)}
begin if Vr,s Q [r,s]<0 Ainf X [p]2k then yield (k) fi end
P

TERM,, = all messages underway are 2k and Vp x, 2£,
or, equivalently,
TERM, =Vp,q M[p,ql=0AinfN [p]2k.
14

The formulation of the invariants is essentially the same, if we replace " = passive" by
"2k" and " = active" by "2k". Likewise, we can reformulate "3p X [p] = active” as
"inf X [p]12k". The reason for the notation of "#&" instead of "< k", is that in general

p

posets this is not equivalent, as there can be incomparable elements.

Note however, that although we can correctly decide with this program skeleton whether
the distributed infimum has reached the value &, this cannot be used as such for distributed
infimum approximation. The reason is, that we want the token to reflect the continuously
changing distributed infimum, and not just wait until it reaches some fixed value k. Hence we
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need to change the program skeleton such that it handles all possible values of k£ simultane-
ously. Processes now have the problem to decide which messages to count: previously, only
messages ¢k were counted. As all values of k are a priori possible, processes now had better
count all messages, and count separately for all different values such that the necessary infor-
mation for some k can be extracted later on. The straightforward extension for, for example,
the one counter R [p,q] would be a set of counters R ** [p.q] for each possible value k. If
there are many more possible values k than values actually used in messages, we can also use
counters R* [ P,q] = the number of messages q received from p with a value = k since the
last token visit, only implementing counters with values # 0. Another possible implementation
is using one multiset R [p.q] which contains as many instances of the value k as there were
messages from p received by ¢ with a value of k. In this last case we need the convention
that the multiset which represents the token matrix element Q [p,q] can contain values nega-
tively, corresponding to negative counters. If a value & is deleted from Q [p,q] while it is
not there, it is added as a negative value. If a value k is added (positively) to Q [ P.q] and
Q [p.q] contains this value negatively, then the negative value is deleted. Thus positive and
negative values cancel each other, just as in the case of counters. If we want to consider the
positive elements of a set R [P .q] negatively and vice versa, we will write — R [p.q). If we
take the infimum over a multiset which contains elements negatively, we do not take the nega-
tive values into account.

4.1. Extended program skeleton for distributed infimum approximation. We will
now rewrite the program skeleton of section 3.1 for all values of k simultaneously in terms of
multisets. For ease of comparison, we state the corresponding statements in terms of counters
R**[p,q] in comment.

Initially

Yp: X[plsx,,

Vq: S(p.q1=@, Rip.ql= @, Qlp.ql=MIp.ql,
Vk: b, <t, in Q¥ f = pij,

BS,: begin send <m,x, > t0 g;
S[p.ql:=S[p.qlv{x} (*M[p.ql =M[p.,qlU{x}¥

(» forall k with x, 2k do S** [p,q]:= S**[p,q]+1 0d
end

BR,: {a message <m,x> from ¢ arrives atp}
begin receive <m,x>;

R[q.pl=RI[q.plu{x}; (*M[q,pl==M[q,plu—-{x}%
(* forall k with x 2k do R**[q,p]:= R**[q,p]+1 od %)
X, = inf(x,x,); (*N[p] = inf(x,x,) ¥

forall k with x 2k A f,*%= nil
do f,** := q; move b, to the end of Q** od
end

BI,: begin choosexep; X, = x end (*Npl=x+%
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T,: {process p holds the token (Q,X)}
begin forall k do f,** := nil; move 1, to the end of Q** od;
X[pl=1x;
forall ¢
do QI[p,ql=QIp.q1USIp.q); Slp.ql =D
Qlq.p1=QI[q.pP1V-RIq.p); Rlq.pl =D

od
(* forall £
do forall g
do 0%*1p,ql=0%*[p,q1+S*[p,ql; S**[p.q)=0;
0%* [q.p]1 = 0* [q.,p]1-R* [q.p); R*¥*[q,p]1=0
od od
*)
end

D,: {process p holds the token (Q,X)}
begin yield (inf(infinf Q [r,s], inf X))

(+ if forsome k Vr.s Q#**[r,51<0 A inf X 2k then yield (k) fi %)
end

kTERM, = all messages underway are 2k and Vp x, 2k,
or, equivalently,
kTERM, =inf(inf M,inf N)>k.

To simplify notation we write M, N, S, R, and X for UM([p.q), V{NI[pl},
P P
PUqS (p.ql, ,,U,,R [p.q], and kPJ{X[p]}, respectively.

4.2. Correctness proof for a fixed value of k. We begin by reformulating the lemmas
and theorems of section 3.2 in terms of counters R** [p,q] etc. We will not give the
corresponding proofs as they are completely analogous to those in section 3.2.

Lemma 4.1. For all p,q, and k the following holds invariantly.
(1) R*[p,q120,

@ S*[p.q120,

3) Q% 1(p.q1+S** [p.q1= M** [p,q1+R**[p.q],
@ NIplzk vX[plEk v =nil.

Lemma 4.2. Forallp,q, and k the following holds invariantly.
(M S*[p.q1>0 = f = nil vXplk,
@ frFr#nil < t,<b, in Q¥F,
3 frrni :Rl"[f**ppo
Lemma 4.3.
ka___ ml v
Q* 1A p1+S* (2 p150 A (O3 [, p1<0 = ta<byp<b, VXIf, H2k)}.
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Theorem 4.4. For all k the following holds invariantly.
(3p.q M*[p,q1>0v3p N[pl¢k) = 3p,q 0**[p,q1>0vIp X [p]2k.

Lemma 4.5. For all £ the following holds invariantly.
vp.q (2**1p.q120 vX [p]2k v, <b, <1, in Q¥*),

Theorem 4.6. For all k the following holds invariantly.
dp,q Q** [P,q)1>0 = 3r ZQI" [s,r]1>0v3r X[rlk.

s

Next we establish the relation between multisets and counters. We denote "is contained
negatively in" by "€, ".

Lemma 4.7. For all p,q, and k we have

(1) R*[p,q)>0 < I with((2k AleR[p,ql) « infR [p,ql2k,
@ S5*1(p,q1>0 = A with {2k AleS[p.q))  infS [p.qlEk,
3 0%*[p.q1>0 < A with((2k AleQ[p,q)) « infQ [p.ql%k,
@ 0*[p.q1<0 = Il with ¢k Ale,, O[p.q)

() M**[p,q1>0 & Al with(( 2k AleM[p.ql) < infM [p,ql2k,
(6) 3p N[pl¥k < infN ¢k,

(M 3p XIipltk & infX k.

Proof. Obvious from the program skeleton and properties of the partial ordering and infimum.
|

We can now rewrite the lemmas and theorems in terms of infimums of sets instead of
counters. Note that for example inf U R [p,q] = infinf R [p,q], whereas inf U Q [p,q]
P P P

is not necessarily equal to inf inf Q [p,q]. This is the case because the multiset Q [p.q] can
P

contain elements negatively, and these elements could cancel other elements in the union
U Q [p,q] that contribute to the infimum inf inf Q [p,q].
4 P

Lemma 4.8. For all p,q, and k the following holds invariantly.
(1) R p,q] contains no elements negatively,

(2) S [p.q] contains no elements negatively,

3 QIlp.q1vSIip.ql=MIp.q1UR[p.ql,

@) NIplzk vXplEk v f*=nil.

Proof. Combine the proof of lemma 4.1 with lemma 4.7. H

Note that (3) implies that all elements which are contained negatively in Q [p,¢q], occur
in S [p,q] and hence are canceled in the union.

Lemma 4.9. Forall p,q, and k the following holds invariantly.
(1) infS[p,qlk = f**#nil vXIpl}k,

@ frr#nil < t,<b, in Q*,

3) frFr=nil = infR(fFplEk.

Proof. Combine the proof of lemma 4.2 with lemma 4.7. W
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Lemma 4.10. For all p and k the following holds invariantly.
£t = nit v {inf(Q [£,#5p] US [£,2%p1) 2k A

(inf O [£,*.p12k = 1 3u<b u<b, in Q¥ vX [£,242k)}.
Proof. Combine the proof of lemma 4.3 with lemma 4.7. =

Theorem 4.11. For all k the following holds invariantly.
inf (M UN)2k = 3p,q inf Q [p,ql¢k vinfX #k.

Proof. Combine the proof of theorem 4.4 with lemma 4.7. W

Lemma 4.12. Forall p,q, and k the following holds invariantly.
Al €ng Q[p.ql with [ 2k = X [pl2k v1,<b, <1, in Q¥

Proof. Combine the proof of lemma 4.5 with lemma 4.7. W
Theorem 4.13. For all k the following holds invariantly.
3p.qinf Q@ [p,ql¢k = 3rinf UQ [s.r1¢k v3r X (rl1¢k.
s

Proof. Combine the proof of theorem 4.6 with lemma 4.7. W
4.3. Distributed infimum approximation. The consequence of theorems 4.11 and 4.13
is that we now know which value to take as an approximation of the sought infimum.
Theorem 4.14. inf(inf X,inf inf U Q [q,p]) < inf(M UN).

P q

Proof. Take k = inf(inf X,inf inf U Q [g.p]) and use theorems 4.11 and 4.13. W
P q

Hence the value inf(inf X,infinf U Q [q,p]) is a continuous approximation of the
P q

distributed infimum inf (M UN). We will now rewrite the program skeleton for distributed
infimum approximation with multisets, where all features that were only necessary for the
proof are left out. As all references to the value & will disappear, this is indeed a program
skeleton suitable for distributed infimum approximation.

Initially
Vp: XI[plsx,, Qlp)l= {xl<m,x> initially underway to p },
Vg: L,iq)=@.

BS,: begin send <m,x, > to ¢; Lylq] = L,[q] v{x,} end
BR,: {a message <m,x> arrives at p }
begin receive <m,x>; L(p]l= Ly[p] v-{x}; x, = inf(x,x,) end
BI,: begin choose x 2x,; x, := x end
T,: {process p holds the token (Q,X)}
begin forall ¢ do Q0 [¢] := Q [¢] VUL, (q]; Ly(q]l:=O od;

X[pl=1x
end
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D,: {process p holds the token (Q,X)}
begin yield (inf(inf X, infinf Q[p])) end
P

Thus it is indeed possible to transform a termination detection algorithm to a distributed
infimum approximation algorithm together with its assertional correctness proof.

S. Conclusions. We proposed a new and fairly complex algorithm for distributed infimum
approximation. The algorithm was obtained and its safety verified by systematically deriving it
from a termination detection algorithm for the so-called transactional model of computation.
To complete the development of the algorithm we will briefly sketch four options for the
organization of token-visits together with their liveness properties (section 5.1). Related work
will be discussed in section 5.2.

S.1. Token tour, liveness, and message complexity. What mechanisms can direct the
token visits in such a way that liveness of the resulting algorithm is guaranteed while the mes-
sage complexity of the algorithm remains as low as possible? We briefly discuss four options
for such a mechanism: a predefined tour, movements based upon information in the token,
movements on request of processes, and a token as a process on a fixed location.

The easiest mechanism is to define a cyclic tour through all processes and send the token
along this tour repeatedly. This solution does not exploit the main advantage of our scheme
(as explained in section 2.5) because it implements a repeated observation of all processes.
Liveness of this solution is easy to demonstrate. When the token has completed a full tour
after F has reached a value 2k, all values 2k have disappeared from the token and the next
D operation yields an approximation ¥’ with ¥’ 2k. Unfortunately, an infinite number of
token-visits can occur without any progress being made.

The efficiency of this scheme can be improved by using mformanon in the token. The
token is only sent to processes with the property that a change in the information of this pro-
cess possibly results in an increase of the approximation included in the token. If the ordered
set A contains two incomparable elements however, it is still the case that an infinite number
of token moves can occur without any progress being made, due to the liveness requirement.
Let p and ¢ be the only two processes, X, and x, be incomparable, F = inf(x,,x,), and no
messages are underway. An internal action in p could increase x, to sup (x,,.xq) which
would increase F to x,, and similarly an internal action in q could increase F to x,. Thus the
token is forced to visit both p and ¢ infinitely often even if no further basic actions take place.

If however the ordering in A is total, we can refine the mechanism further so that a pro-
cess holds the token until its own component in the token contains no negative entries and has
a higher infimum than the token as a whole. By the totality of A the mechanism still satisfies
liveness, and now the number of token moves is bounded by the number of operations in the
basic computation. This is used especially in termination detection.

A possibility to reduce the number of token-visits in the above mechanism for non-total
A is to send the token to a process only on its request. A process requests the token only if it
has an update to make to its contents. This again bounds the number of token-visits to the
number of operations in the basic computation, but now (due to the unpredictability of the
token location) the request messages become the complexity bottleneck.
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Finally, it is possible to let the "token" reside in a fixed process, and have the processes
send their updates to the token in a message. In this scheme the token is viewed as a process
rather than as a wandering message. In this case we must take care that the updates are pro-
cessed in the correct order. The fault-tolerance of this scheme can be improved by having
several copies of the token process as in [HJ87].

Concluding this section, we see that determining the token moves and obtaining liveness
is a more delicate question in the new algorithm than it was in the underlying termination
detection algorithm. If the new algorithm should be used in practice, efforts should be made to

evaluate the message complexity of the sketched mechanisms in an analytical or empirical
manner.

S5.2. Related publications. The problem of distributed infimum approximation was first
posed in [Te86] and its treatment was further developed in [Te89]. As noted already in
[Te86], the problem generalizes the problem of termination detection, but more direct applica-
tions of its solutions are found in [Hu85] and [Je85]. [KI43] is an early, axiomatic treatment
of the used concepts poset and infimum.

The relation between the distributed infimum approximation problem and the termination
detection problem was further developed in [Te89]. It was shown that the verification of (the
safety of) a distributed infimum approximation algorithm can be done by verifying a suitable
derived termination detection algorithm. The conclusion is, that all of the essential difficulties
of the distributed infimum approximation problem are somehow present in the problem of ter-
mination detection already. This poses the question whether a general termination detection
algorithm can be "upgraded” to to an algorithm for distributed infimum approximation.

We chose to try this out with a termination detection algorithm by Mattern [Ma87),
because this algorithm shows interesting properties that are not obtained by the known algo-
rithms in [Te89]. Earlier [ST88] we developed a correctness proof for this algorithm using the
method of system-wide invariants, as advocated in [Kr78), (Kn81], and [Te89). A similar ter-
mination detection algorithm was proposed by Hélary et al. [HJ87], who introduced the idea of
implementing the token as a process rather than as a message. The algorithm is based on
snapshots that are collected by the token, but these are not necessarily consistent in the sense
of [LY87]. It was however shown in [LY87] that termination is strongly stable, that is, it can
be detected even using inconsistent snapshots. This paper generalizes the results of [Ma87],
[ST88], [LY87], and [HJ87] to the problem of distributed infimum approximation.
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