Bit-Optimal Election

in Synchronous Rings

Hans L. Bodlaender and Gerard Tel

RUU-CS—-89-2
January 1989

» Rijksuniversiteit Utrecht

0’ [-)
<. 3
5,.5 Vakgroep mformatlca
IINNY

Padualaan 14 3584 CH Utrecht

Corr. adres: Postbus 80.089, 3508 TB Utrecht
Telefoon 030-531454 ‘

The Netherlands




Bit-Optimal Election in Synchronous Rings

Hans L. Bodlaender and Gerard Tel

Technical Report RUU-CS—89-2
January 1989

Department of Computer Science
University of Utrecht
P.O. Box 80.089, 3508 TB Utrecht
The Netherlands.






Bit-Optimal Election in Synchronous Rings

Hans L. Bodlaender and Gerard Tel

Department of Computer Science, University of Utrecht,
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands.

Abstract: An election algorithm is presented for synchronous rings with unknown
size. The bit complexity of the proposed algorithm is linear in the number of
processes. The time complexity is polynomial in the number of processes, but ex-
ponential in the smallest identity of any process.

1 Introduction

In recent years considerable attention has been given to the problem of electing a leader in a
network of processes. The purpose of an election algorithm is to bring the network in a state
where one and only one process has the status elected, while all other processes have the status
defeated. To make a deterministic solution possible we assume that each process has a unique
identification number, which is a positive integer. Also we assume that the topology of the
network is a ring and we denote the number of processes by N

A distinction is usually made between synchronous and asynchronous networks. In an
asynchronous system the transmission delay of a message is finite, but unpredictable and not a
priori bounded. In a synchronous network the processes act in rounds, or phases, and a mes-
sage sent in one round is guaranteed to be received in the next round.

For asynchronous rings election algorithms exist that use O (NlogN) messages and this is
optimal, regardless whether N is known to the processes or not [DKR82, Pe82, PKR84]. For
synchronous rings we have to distinguish between the case that N is known to the processes
and the case that N is not known. If the processes know N, there exists an algorithm using
O (N) messages of O (1) bits, thus achieving the optimal complexity of O (N) bits [SR85]. For
the case where the processes do not know N there exists algorithms that use O (N) messages,
but Q(N1ogN) bits [Vi85, FL87]. The question whether an algorithm exists using O (N') bits
remained open [OS89]. In this paper we answer this question in the affirmative by presenting
an algorithm with the desired properties.

The work of the second author was supported by the Netherlands Organization for Scientific Research
(NWO). The email addresses of the authors are hansb@ruuinf.uucp and gerard@ruuinf.uucp.



-2 .

2 Description of the algorithm

The proposed algorithm is a combination of three known algorithmical ingredients. The first
one is the election algorithm for (unidirectional) rings by Chang and Roberts [CR79]. The
second one is a technique by Vitanyi [Vi85] and Frederickson and Lynch [FL87] to reduce the
message complexity of election algorithms when they execute on a synchronous network. The
third one is a method to transmit any message using only a constant number of bits in a syn-
chronous network.

In the election algorithm by Chang and Roberts each process sends a token over the ring
containing its own identity. A process, say with identity i, that receives a token <j> acts as
follows. If j > i the token is purged. If j <i the token is forwarded. If j = i the process
obtains the elected status and sends a special message around the ring to abort all activity in
other processes and force them to obtain the defeated status. To establish the correctness of
the algorithm, let m be the smallest identity of any process. A process different from m does
not obtain the elected status because its token does not pass process m. m obtains the elected
status because all processes forward its token. This algorithm uses Q(N?) messages in the
worst case, but only O (NlogN) in the average case. In a variant, which we shall use in this
paper, process i also purges a token <j> if i has earlier received a token <j’> with j* < j.

As the winning token makes only N steps, future "looser” tokens contribute most to the
message complexity. Vitanyi [Vi85] proposed to delay a token <j> by f(j) time units
(rounds) in every process, where f is a suitably chosen function. The algorithm now com-

pletes in N.f (m)+ O (N) rounds, and the total number of token passes for loosers is bounded
by STYL ("})(:)0 )7 Choosing f(i) equal to e.g. 2 yields an O(N) bound on the
i>m

number of messages.

In a synchronous system any message, regardless of its contents, can be transmitted using
O (1) bits by coding its contents in time. Assume the contents of a message is a positive
integer. To send a message, say M, in round x, a process sends <Open> in round x and
<Close> in round x +M. If a process receives <Open> in round s and <Close> in round 1, it
accepts the message ¢ — 5. Note that although coding in time assumes a synchronous underly-
ing network, the system is no longer synchronous when it is used because the transmission
time of a message is no longer bounded.

We shall demonstrate in the following that it is possible to combine these three
ingredients into one algorithm. First we describe in detail the protocols for the communication
of tokens. To transmit a token <j>, a process sends an <Open> message and j rounds later a
<Close> message. If, however, the transmission of a new message is required in the mean-
time, the current transmission is implicitly aborted by sending a new <Open> message. The
sending protocol is as follows (initially SendTimer = — 1).



procedure transmit (M ):
begin send <Open> ; SendTimer = M end

At the beginning of each round:
SendTimer = SendTimer — 1

At the end of each round:
if SendTimer = 0 then send <Close>

Thus the executions of the transmit procedure result in a message pattem (<Open>* <Close>)*
to be sent over the link. The receiving process accepts a message each time it receives a
<Close> message. The receiving protocol is as follows.

Upon receipt of <Open>:
RecTimer = 0

Upon receipt of <Close>:
accept(RecTimer)

At the beginning of each round:
RecTimer = RecTimer +1

Using these protocols, a message M is accepted M + 1 rounds after it is transmitted (unless the
transmission is aborted for a new one).

Each process in the ring implements the sending protocol, the receiving protocol, and the
actual election procedure. We shall now describe the latter. The procedure (for process i)
includes the spontaneous transmission of a token <i>. Transmission is started at the latest
when an <Open> message is received, and it is done at most once in every process. The vari-
able min; initially has the value i. On acceptance of a token <j>, j is compared to min; and
i. If j > min;, nothing is done and the token ends its existence. If j = i the process obtains
the elected status and sends a special <Stop> message around the ring. The <Stop> message
aborts all activity in other processes. If j < min;, min; is set to j and, after a delay of f (j)
rounds, <j> is transmitted. The complete election procedure is described as follows (initially
min; = i).



-4.

Spontaneously or triggered by the receipt of an <Open> message:
transmit <i>

procedure accept (j):
if j < min; then
begin min; .= j ; ElecTimer = f(j) end
else if j = i then { i is elected }
begin send <Stop> ; status := elected end

Upon receipt of <Stop>: { min; is elected }
if i # min; then
begin send <Stop> ; status := defeated end
abort all activity

At the beginning of each round:
ElecTimer := ElecTimer — 1

At the end of each round (but before the possible sending by the sending protocol):
if ElecTimer = 0 then transmit <min;>

3 Correctness of the algorithm

The correctness of the algorithm is shown in the same way as for the algorithm in [CR79].
Let m be the smallest of the identities. The token of any process other than m, if it reaches m
at all, is purged by m, hence no process other than m obtains the elected status. A process
that spontaneously starts the procedure transmits its identity and thus triggers the start of the
procedure in the next process in the ring also. It follows that if any process starts the pro-
cedure, eventually m starts the procedure. The token <m > is forwarded by every process, and
its transmission or its delay are never aborted. It follows that eventually m accepts its own
token and obtains the elected status.



4 Complexity analysis

The complexity of the algorithm is derived in the same way as for the algorithms in [Vi85].
Again let m be the smallest identity. At the latest in the N® round of the execution of the
algorithm m transmits its token for the first time. It takes m + 1 rounds to be transmitted and
is delayed for f(m) rounds in every process, hence it returns to m within N.(f (m)+m + 1)
rounds. The <Stop> message completes its tour in less than N rounds so the total running
time of the algorithm is bounded by T = 2N + N (f (m)+m + 1) rounds.

Next a bound on the number of token transmissions is derived. <m> is passed N times.

A token <j> is delayed for f (j) rounds in each process and takes j +1 rounds to be transmit-

T

ted, so in T rounds its transmission is initiated at most l-—,-—,-—l-l times. The total number

FO)+j+
of token passes is thus bounded by N + ¥, r,—T_———-L where I denotes the set of process
jer FU)+j+1
identities excluding m .
The analysis is completed by supplying a suitable function f. Take f(i)= 2 —i— 1
and let C denote the number of initiated token transmissions. Now
2N+N(f(m)+m+1)
CsN+Y T LT 1
j§l FG)+j+1

<N+N+ 3 2N+N(j"'(m')+m +1)
jer F@+j+1

m
<N+N+ Y ——————2N+N'2
j>m 2

= N+QN+N.2") 3 L

j>m

= W +QN+N.2") o

S 4N

We find that the number of <Open> and <Close> messages is bounded by 4N. The number of
<Stop> messages is n, hence the total number of messages (<Open>, <Close>, and <Stop>) is
bounded by 9N. Each of the three messages is represented in a constant number of bits, hence
the bit complexity of the algorithm is O (N). Under this assignment of f the time complexity
of the algorithm is O (N.2™).



5 Conclusions

An election algorithm was given for synchronous rings with unknown size, using a linear
number of bits. This settles an open question of [0S89].

The algorithms in [OS89] operate in global phases, in which processes gain more and
more information about N and m. In our algorithm each process has its own token running

around the ring. Each process acts, so to speak, individually. In this case the latter approach
yields a lower complexity.

The approach can be adapted to networks with a weaker synchronicity property, such as
Archimedian networks [Vi85]. Also it is possible to use the same approach to derive algo-
rithms for topologies other than a ring.

By improving details of the algorithm or a more carefull complexity analysis the bound
on the complexity can be improved, but by no more than a constant factor. We chose to keep

the presentation clear and short, for our only purpose was to show that an algorithm exists with
a linear bit complexity.

References:

[CR79] Chang, E., R. Roberts, An Improved Algorithm for Decentralized Extrema Find-
ing in Circular Arrangements of Processes, Comm. ACM 22 (1979) 281-283.

[DKR82] Dolev, D., M. Klawe, and N. Rodeh, An O(n log n) Unidirectional Algorithm for
Extrema Finding in a Circle, J. Algorithms 3 (1982) 245-260.

[FL87] Frederickson, G.N., and N.A. Lynch, Electing a Leader in a Synchronous Ring, J.
ACM 34 (1987) 95-115.

[0S89] Overmars, M., N. Santoro, Time vs Bits: An Improved Algorithm for Leader Elec-
tion in Synchronous Rings, Proceedings STACS89.

[PKR84] Pachl, J, E. Korach, and D. Rotem, Lowerbounds for Distributed Maximum-
Finding Algorithms, J. ACM 31 (1984) 905-918.

[Pe82] Peterson, G.L., An O(nlogn) Unidirectional Algorithm for the Circular Extrema
Problem, ACM ToPLaS 4 (1982) 758-762.

[SR8S] Santoro, N., and D. Rotem, On the Complexity of Distributed Elections in Syn-
chronous Graphs, in: Proc. 11th Workshop on graph-theoretic concepts in com-
puter science, 1985, pp. 337-346.

[Vi85] Vitanyi, P.M.B., Time-Driven Algorithms for Distributed Control, Tech. Rep.
CS-R8510, CWI, Amsterdam, The Netherlands, 1985.






