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Abstract

In this paper we study some foundational aspects of the theory of PDL. We
prove a claim made by Parikh [12], namely, the existence of a Kripke model & that
is universal in the sense that every other Kripke model M can be isomorphically
embedded in it. Using this model we give different and particularly easy proofs of
the Completeness Theorem for the Segerberg axiomatization of PDL and the Small
Model Theorem. We also give an infinitary axiomatization for PDL and prove it
complete using a syntax model A4, by a technique that is well-known from Modal
Logic. We prove that &/ and A are isomorphic. Finally, we briefly turn to Dynamic
Algebras and show that the characteristic algebra’ of & is initial in the class of
*-continuous Dynamic Algebras.

1 Introduction

Logics of Programs are formal systems for reasoning about the behavior of computer
programs. In these formal systems, computer programs are viewed as a means to enable
certain logical formulae. The formulae may be propositional or first order, giving rise
to propositional and first order program logics, respectively. Pratt [13] recognized the
possibility of modeling program logics by means of Modal Logic. His idea was fully
developed by Fischer and Ladner [3] and many other authors; see Harel [6] for a
rather complete survey of results up to 1984. If we view a program to be defined by its
inputfoutput (or before/after) behavior then Modal Logic provides a natural framework in
which we can develop a program logic. Each program a is associated its “own” modal
operator Qa, or {(a). For a propositional program logic we can take a set of primitive
programs and rules that determine how more complex programs can be built. With
each rule we can define how the modal operator for the more complex program relates
to the modal operators of the building blocks. In this approach the modal operators for
the primitive programs are parameters. See Goldblatt [4] for an introduction to Modal
Logic and its connection with logics of programs.

In this paper, we focus attention on a propositional program logic, namely Propositional
Dynamic Logic or PDL in short. In PDL programs are regular expressions over a set
of primitive programs; in particular, there is a nondeterministic looping operator *
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for programs. In the PDL framework, programs can enable propositions by means
of a possibility operator (. Thus, when « is a program and ¢ is a proposition, a{¢
states “program o can terminate with ¢ holding upon termination”. We will write
(o) instead of a¢, as is common in PDL. In this paper we study some foundational
aspects of the syntax and semantics of PDL and focus attention on the consequences
of introducing the looping operator x. In a way, we argue that looping is inherently
infinitary, thus giving rise to an infinitary axiomatization. The argument is split in two
major parts, outlined below.

The logic is interpreted over Kripke models and we will prove the existence of a
Kripke model ¢ that is universal in the sense that every other Kripke model M can be
isomorphically embedded in it. In this we prove a claim of Parikh [12]. The model &/
also appears to be a powerful tool in the study of the logic. We give two applications.
First, Segerberg gave an axiomatization for the logic that is sound and complete, i.e.,
validity and derivability coincide (c.f. [10]). We give another proof of the completeness
of the system using the model ¥, which is particularly easy. Secondly, we prove the
corectness of the construction of a Small Model satisfying a formula ¢ iff ¢ is satisfiable

as given by Sherman and Harel [6, 16]. Again, the proof uses the model & and is
particularly straightforward.

Next, we define an infinitary axiomatization for PDL that we prove complete using
a technique that is well-known from Modal Logic (see {4]), namely, by constructing a
syntax model A for the logic. The state space of A constists precisely of the set of all
maximal consistent sets of formulae. As a rather immediate consequence we deduce
that #/ = A. This infinitary system can be viewed as the propositional variant of the
infinitary axiomatization for first-order Dynamic Logic [4, 6, 11]. We also show that
we can use this technique to define a syntax model from the finitary Segerberg system
which is universal in the class of non-standard Kripke models.

In the last section we briefly introduce Dynamic Algebras and +-continuous Dynamic
Algebras. Each Kripke model M is associated a characteristic Dynamic Algebra 4.
We show the algebra Zf to be initial in the class of -continuous Dynamic Algebras.

2 Preliminaries

In this section we review the syntax and semantics of PDL. For a more detailed
treatment, see Harel [6] or Kozen and Tiuryn [11].

2.1 Syntax

The syntax of PDL is based on two disjoint sets of primitive symbols, namely the set

®p = {pO’pla .. }

of primitive predicate symbols, and the set

Ho = {ao,al, . }



of primitive program symbols. From these base sets we recursively define the sets of
PDL propositions ® and programs II:

1. & C &,

if g, € dthenopVv,~¢c &;

if a €Il and ¢ € ® then (a)¢ € &;
I C II;

if a,f €l then aUB,a;8,0* € II;

AU S i

if ¢ € ® then ¢? € II.

We abbreviate ~(—¢ V =) to ¢ A 1h; 2@V Y to ¢ — ¥; (¢ = ) A (Y = ¢) to ¢ — 1. We
further abbreviate —{a)-¢ to [a]¢.

2.2 Semantics

First we give an informal semantics for the above construction. The meaning of the
propositional connectives is exactly like in ordinary, classical propositional logic CPC.
Therefore, PDL can be seen as an extension of CPC, i.e., all tautologies of CPC are valid
PDL formulae. Primitive programs are exactly what their name suggests: uninterpreted
programs or inputfoutput relations, which is essentially the way we view programs in
general. That is, programs are black boxes and their input/output behavior completely
characterizes their relevant aspects; two programs are equivalent if and only if they
constitute the same input/output relation. The meaning of the operator ; is program
concatenation; thus, o; 3 means “first execute program o and then execute §”. U
means nondeterministic choice; o U 8 means “choose nondeterministically program
a or B and execute it”. The x-operator is a nondeterministic looping operator and
o* means “execute o a nondeterministically chosen number of times”. In the sequel
we often abbreviate o; ;- --;a (n times) to a®. Thus o* can be viewed as “choose
n nondeterministically and execute o™”. The operator ? is a testing operator and ¢?
means “test ¢ and proceed if true”.

The operator ¢ is the usual modal operator and the meaning of ()¢ is “program o
can be executed with ¢ holding upon termination”. Its dual, [a]¢, therefore means
“whenever program o terminates, ¢ holds”.

Formally, PDL formulae are interpreted over Kripke models.
Definition 2.1 A Kripke model is a triple A = (WA, 14, pA) where
o WA is a set of states;
o 1A : &g > 2% is an interpretation function for the primitive predicate symbols;

o pA: Tl — 2W*XW is gy interpretation function for the primitive program symbols.



Usually we write a Kripke model as A = (W, r,p) when no confusion can arise. We
further use the terms “Kripke model”, and “model” interchangeably. The interpretation
functions extend to the whole sets ® and II:

o p(aUB) =p(a)up(B);

p(a; B) = p(a) o p(B), where o is relation composition;

p(e*) = Ui<w p(@), the reflexive transitive closure of p(a);
p(9?) = {(s,9) eW x W | s € n()};

m(¢V ) = m(4) U n();

m(=¢) =W - n(¢);

o n({e)p) = {s € W | 3t € W.((s,t) € p(@) At € 7(¢))};

We say that a proposition ¢ is satisfiable in a model A if and only if there exists a state
s in A such that s € 7(¢) and we write A, s E ¢. We omit A when it is clear from the
context. We say that ¢ is A-valid and write A E ¢ if A,s E ¢ for each s € W. We say

that ¢ is valid and write F ¢ if ¢ is A-valid for every model A. Clearly, ¢ is valid if and
only if —¢ is not satisfiable.

In the sequel of this paper we use ¢, 9, ... . to denote propositions and ¢, 3, . .. to denote
programs.

2.3 Axiomatization
We now present an axiomatization for PDL as proposed by Segerberg [17].

Definition 2.2 The set of axioms AX for PDL contains

b

. axioms for propositional logic;
2. {(a)p Ala]p — (a)(dV ¥);
3. (@) ¢V ¥) & (a)oV (a)y;
4. (aU )¢ « (a)pV (B)¢;
5. (a; B)¢ — (a)(B)¢;
6. (¥Np =Y AP

7. ¢V (a)(a*)¢ — (o*)g;

8. (a*)¢ — ¢V (a*) (=4 A (a)d).

In addition we have the following inference rules:



1. modus ponens: from ¢, ¢ — 1, infer 1;
2. modal generalization: from ¢, infer [a]¢, for any o € 1.

As usual, we define a derivation to be a finite sequence of well-formed formulae, each of
which is an instance of an axiom or the conclusion of an inference rule whose premisses
occur earlier in the derivation. The last formula occurring in the derivation is called
the conclusion of the derivation. If, for any formula ¢, there exists a derivation of which
¢ is the conclusion, we say that ¢ is derivable and write I ¢.

Axioms 1-3 are not particular for PDL but hold in most modal systems. The dual of
axiom 3 reads

[e)(¢ — ) — ([a]¢ — [o]¥)

which states that the logic is normal in the terminology of Modal Logic. Axiom 8 is
called the induction axiom, and is better known in its dual form

¢ A e*](¢ — [a]g) — [o*]4.

Note the resemblance between this axiom and the induction axiom in arithmetic. The
intuition behind axiom 8 is that if a program o* enables a proposition ¢, then the
proposition is always true or there is a point in the looping of the program where the
proposition becomes true for the first time.

Inspection of the system AX immediately gives us the next proposition.
Theorem 2.3 (Soundness Theorem) If - ¢ then kE ¢.

A familiar fact of PDL is its lack of compactness. For an easy example, consider the
infinite set T":

I = {-4,~(x)¢,~(a?®)8,...} U {{e*)¢$}
= AuU{{a*)¢}

Every finite subset I' C T has a model: suppose (o*)¢ € I and let i be the largest
integer such that ~(a')¢ € I'. Then each model M that satisfies ={a)¢ for j < i and
(o**1)¢, satisfies I'. Yet the whole set I' cannot have a model, for A is precisely the

definition of —=(a*)¢. Note that this non-compactness property is essentially caused by
the x-operator.

3 A Universal Model Theorem for Kripke Models

In this section we establish a nontrivial property of Kripke models, namely the existence
of an model U that is universal in the sense that every other model can be isomorphi-
cally embedded in it. In this, we prove a claim of Parikh [12], which seems not to have
been developed in the literature. We also exhibit some immediate corollaries. We first
establish some facts about models for PDL.

Definition 3.1 For each model M the relation = on the state space WM is defined by:
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s=tiff M,sk ¢ <= M,tF ¢.
For each model M we now define the collapse of M to be the model M. = M/ =:
s = {t]s=t}
wMe {sc | s e WM}

™e(p) = {sc|s €M)}
pMe(a;) {(sestc) | (3,t) € pM(a;)}

The following lemma is immediate.
Lemma 3.2 For each proposition ¢,
M, sE ¢ iff M., s. E ¢.

The lemma in effect states that we only need to consider models of cardinality at most
X;, that is, the cardinality of the power set of &. ’

Lemma 3.3 For every model M and program a,

1. if (s,t) € p(a), then V. (M, tE ¢ => M, s E (a)@);
2. if (s,t) € p(), then Y. (M, sF [a]p = M, tE §);
3. VoM, tE ¢ => M, s (a)d) iff Vo.(M, s E [a]d => M, tE &).

Proof.

Clauses (1) and (2) follow immediately from the definition of . For clause (3): V¢.(M, s
[al¢ => M,t F @) iff Vo.(M,t ¥ ¢ = M,s ¥ [a]d) iff Vo.(M,t E ~¢p = M,sE
~(a)~¢) iff V. (M, tE ¢ = M, sE (a)y). O

In the light of Lemma 3.3 we can define for each model M another model M., called
the extension of M, by:

WM" = WM,

Moz = oM,

pM=(a) = {(s,t) | V$(M, s E [a]¢ => M, t E $)} for a primitive
By Lemma 3.3, pM(a) C pMe+(a) for each primitive program a. Note that pM(a) need
not equal pMe=(a). Consider for example the case in which M, s k [a]¢ only if ¢ is valid.

Then, for every t € WM, (s,t) € pMe=(a). Obviously, pM¢=(a) can be substantially larger
than pM(a). We extend pMe= to the whole set II in the usual way.

Lemma 3.4 For each proposition ¢,

Mz, sE G iff M,sE ¢.



Proof.

(«=) Since pM(a) C pMe=(a) for each primitive program g, it is easy to see that for each
@ € I, pM(ax) C pMe=(e). The proof proceeds by induction on the complexity of
¢. The only non-trivial case is ¢ = ()%, which follows from the inclusion given
above.

(=) Let Mc;,sF ¢. We define the mapping R : IT +» 2W*xWH py.

R(a) = {(8,8)|V¥.(M,sF [a] == M, tF )}
= {(8,)) |V (M,tF ¢ = M, sF ()¢}

for a € II. Note that, by Lemma 3.3(3), we may use both conditions interchange-
ably in the definition of R.

Claim 1. M, sk ¢ iff M, s Eg ¢, where Fg is defined as the relation E except that
we use R(a) instead of p(a).

Proof of claim. Induction on the structure of ¢. The only non-trivial case is
¢ = (a). Let M,s F (a)®. Then there exists a state ¢ such that M, ¢ E
¥ and (s,t) € p(a). But then (s,t) € R(a) by the construction of R and
M, s Fr (a)i. Conversely, let M,s Fr (a)¥; then there is a state ¢ such
that (s,t) € R(a) and t F 9. Suppose that there exists no state ¢ such that
(s,t) € p(@) and M, t 1. Then M, s [a]-9 and, by the definition of R, if
(s,t) € R(a), then t F =1. Contradiction.

Claim 2. For each a € II, pMe(a) C R(a).

Proof of claim. Induction on the complexity of . For a primitive, the claim
holds by definition. Next we consider more complex programs a.
Case1: a = fU~.

Clearly, p(8Uv) = p(8) U p(7) € R(B) U R(y). The last union equals:
{(s,8) |Vo.(t F ¢ => sF (B)) VVS.(tF ¢ => s (7)¢)}
It is easy to see that this set is contained in:

{(5,1) | V.(tF ¢ => s (BB V s F (7)9)}

which is R(BU 7).
Case 2: a = (;4.
p(B;7) = p(B) o p(v) € R(B) o R(v). Now,

R(B) o R(7) = {(s,1) | Fu.((s,u) € R(B) A (u,t) € R(7))}
Let (s,) € R(B) o R(y). Then, for each ¢,
tk¢= sk (B){(7)¢
hence (s,t) € R(B;7v) and R(B) o R(v) C R(B;7).
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Case 3: a = 5*.
By the former argument we get
p(8™) € R(B)

for each n < w. We further have, for each n < w,
R(B") C R(5%)

Suppose (s,t) € R(8"); then t F ¢ => s E (8")¢ for all . Surely t & ¢ =
s F (B*)¢ for all 4, by the definition of p(6*). Hence (s,t) € R(8*). Hence,
by induction on n,

p(8%) = U »(8) € |J R(B) C R(B).

i<w i<w

Note that this is the place where we use the infinitary properties of 5*.
Case 4: a = 9.

Clearly, p(4?) = R(%?) follows immediately by the definitions of p and R.
The proof of the lemma now follows by induction on the structure of 4. Again, the

only non-trivial case is ¢ = (a)9. If M., s F (a)y then, by claim 2, M, s kg {a)y
and hence, by claim 1, M, s F (). a

Next we define, for each model M, the model M by replacing every state in WM by

the set of propositions that hold at that state. We denote the state in W™ corresponding
to s by 3. It is easy to see that

M,sFE = M,5Ep=>dc3

for each proposition ¢ € &.
Definition 3.5 For each model M, the canonical model for M is M]= (7\710)83.

Theorem 3.6 For each proposition ¢ and each model M, M, s & ¢ iff [M], [s] E .

Proof.
Immediate from Lemma 3.2 and Lemma 3.4. O

We can now define a universal Kripke model &/. Consider the class K of all Kripke
models. For each M € K we define the mapping 0 : WM — W¥ by:

Om(s) = {¢| M,sF ¢}.

We let the set of states W¥ of the universal model be exactly the set of all subsets of
® that can be obtained this way (when M ranges over all Kripke models). That is, for
U C o Ve WYiff U = f(s) for some model M and state s € WM. We define ¥ by:

m(p;) = {s € W | pi € 5}
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for 0 < i < w. The interpretation for the primitive programs is defined as:
P(a5) = {(s,t) € WY x W¥ | V9.([a;)6 € s = ¢ € 1)}

for 0 < j < w. Note that the states of U consist of all semantically consistent complete
sets of formulae.

We can also describe the Universal Model as the model which results from “pasting
together” all canonical models [M] for all Kripke models M. All states in I are “copies”
of states in some canonical model [M].

Lemma 3.7 For each canonical model [M)] and o € 11, pMl(a) C pH(a).

Proof.
It follows immediately from the definitions of pi*] and p¥ that, for primitive a, piMl(a) C
p#(a). The lemma follows. O

Lemma 3.8 Consider the universal model U.
1. Foreach ¢ € ® and a €11,
(a)p € s <= Tt.(s,t) € p(a)APETL.

2. Foreach ¢ € ®,

U,sF ¢ if and only if ¢ € s.

Proof.

1. (=) Let(a)¢ € s. Then there exists a canonical model [M] and a state [s] € WM
such that (@)¢ € [s]. Then there exists a {t] € WM such that ([s], [t]) € pM(e)

and ¢ € [t]. Hence, by Lemma 3.7, (s,t) € p4(a) and ¢ € t.
(<) Again define the function R : Il — 2"*W as in Theorem 3.4 except that

we use € instead of . By the proof of that theorem, p(a) C R(a). Hence, if
(s,t) € p(a) and ¢ € ¢, then (s,t) € R(e) and by the definition of R, (a)¢ € s.

2. The proof is by induction on the structure of ¢. For ¢ primitive, the lemma holds
by definition.

Case 1: (=% VX)

sF ¢V x iff s F 9 or s F x iff, by the induction hypothesis, ¥ € s or x € s iff
% V x € s by the maximality of s.

Case 2: (¢ = ﬂ’(/))
Similar.
Case 3: (¢ = (a)¢)

s F {a)y iff there is a state t € W such that (s, t) € p(a) and ¢ F ¢ iff ¢ € t by the
induction hypothesis and (a)¢ € s by the first part of the lemma.

9



The following theorem is an immediate consequence of the lemma.

Theorem 3.9 There exists a universal Kripke model U = (WY, x¥, o) such that for each
Kripke model M = (WM, xM, pM) there exists an embedding 054 : WM — WY such that
M, sk ¢ iffU,0m(3) E ¢ for each well-formed formula ¢.

Proof.

The model U constructed above and mappings 6 for each M are the required model
and mappings. a

We give two immediate consequences of Theorem 3.9 which will be instrumental for
obtaining the results of the next section.

Lemma 3.10 1. For all propositions ¢, ¢ is satisfiable if and only if ¢ is U-satisfiable.
2. For all propositions ¢, ¢ is valid if and only if ¢ is U-valid.

4 Applications

In this section we prove the completeness of the system AX and the correctness of a
construction for a Small Model using the Universal Model i.

41 Completeness of AX

To prove completeness of AX we adapt the Lindenbaum construction [1] to PDL: We
impose a Boolean algebra structure on the state space W¥ of ¢. With each proposition
¢ we associate the set of states that satisfy ¢:

¢l = {s € W | s ¢}
Let P be the set of all such |¢|. We define a partial ordering < on P:
4] < |9] iff F ¢ — ¢
Lemma 4.1 B = (P, <) is a complemented distributive lattice, that is, a Boolean algebra.

Proof.

By propositional reasoning we have
1 — true

F false —

for all propositions . Hence we can take |true] = 1 and |false| = 0 in B.

10



Let |¢| € P. Then its complement, |¢|°, is defined as:

|#l° {s|sF¢}°
{sls¥ ¢}
{s| s F -4}
= |4l

and |-¢| € P.
Let |4, |¥| € P. Then:

lglnlyl = {s|skFe}n{s|skEy}
= {s|sFEodAsF Y}
= {s|sFonry}
= |¢Ad|

Hence |¢| N [¢| € P. By propositional reasoning,
F(pAy) > dand b (A 9) — 9.

Hence |¢ A 9| is a lower bound for {|¢|, |%|}. Suppose |x| is a lower bound too. Then
Fx — ¢and F x — 4. Hencel x — (¢A). This shows that |¢A 9| is the greatest lower
bound, i.e. the infimum of {|¢|,|s|}. Similarly, |¢ v ¢| is the supremum of {|¢|,|¥|}.
Thus B is a lattice.

Let |¢|,|%],|x| € P. Then |(¢ A ¥) V x| € P and because
F{eA¥)Vx) o (eVX)A (P VX))

we get from the Soundness Theorem,

(@A) VXl =I(dVX)A (VX
This shows that B is a complemented distributive lattice. a

Lemma 4.2 In the Boolean algebra B,

1. |¢| = 1 if and only if - ¢;
2. |¢| = 0 if and only if + .

Proof.

1. Let [¢| = 1. Then for each || € P, || < |#|- Hence, for each |¢|, F ¢ — ¢.
Choose 9 so that |- 9, then , by modus ponens, I ¢. Conversely, suppose + ¢.
Then, for each 1, ¥ — ¢. Hence, for each ¥, || < |4|, so |¢| = 1 in B.

2. Similar. O

Lemma 4.3 For all proposition ¢, if U E ¢ then & ¢.

1



Proof.

Suppose that ¢ is not provable in the system AX. Then, by lemma 4.2, in the Linden-

baum algebra B, |¢| # 1 and so |-¢| # 0. Hence there exists a state s € |~¢| such that
U,sF ~¢. Hence ¢ is not U-valid. m]

Theorem 4.4 (Completeness Theorem) F ¢ if and only if - ¢.

Proof. One direction is the Soundness Theorem. The other direction follows from
Lemmas 3.10 and 4.3. 0

4.2 The Small Model theorem

We find another application of Theorem 3.9 in a different proof of the Small Model
theorem. This theorem is one of the basic results of the theory of PDL and was first
discovered by Fischer and Ladner [3]. It states that every proposition ¢ that is satis-
fiable, is satisfiable in a model with 2/¢| states. This fact immediately gives rise to a
naive doubly-exponential time decision procedure for the validity problem for PDL: to
check whether ¢ is valid, generate all models with 2/¢l states and cycle through them
in search for a model that satisfies ~¢. If such a model doesn’t exists, then ¢ is valid.
Sherman and Harel [6, 16] proved the existence of a singly-exponential time procedure
by constructing a model A that satisfies ¢ iff ¢ is satisfiable, following an idea of Pratt
[14]. Thus one can construct a model in polynomial time and check whether this model
satisfies ~¢ in exponential time.

We first need a notion of the “subformulae” of a PDL formula ¢. This concept is
captured by the Fischer-Ladner closure of ¢ [3].

Definition 4.5 Let ¢ € & be a PDL formula. The Fischer-Ladner closure of ¢, denoted by

FL(¢), is the smallest set S of formulae containing ¢ and satisfying the following closure rules
forall a € ly, o, B € Il and +,x € ®:

YeES —= YeSs
PVXES = 9Y,x€S
(a)peS = ves
(aB)peS = (a)B)peS

(auBypesS = (a)y,(B)pES
(eSS = ,(a)a*)peSs
(WX €S = o¥,x€S

The Fischer-Ladner closure of ¢ is the set of all “subformulae” that are relevant for the

meaning of ¢. The set FL(¢) induces an equivalence relation =4 on the state space W
of any model M:

s=¢tiff Y € FL(@).(sF ¢ <= tE )

In other words, we “collapse” s and ¢ if they are not distinguishable by any formula
of FL($). We now define the quotient model M/FL(¢):

5] = {tls=¢t)
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WMIFL®) = ([s]|s € WM}
wM/FL@) (p;) {[s]| s € 7™(p;)} for all p; € &0
pMFED(aj) = {(1s], [1]) | (s,) € p™M(az)} for all a; € Ty

nM/FL(4) and pM/FL() are extended inductively to II and & in the usual way. The
following lemma, called the Filtration Lemma, is crucial for the theorem:

Lemma 4.6 (Filtration Lemma) For all ¢ € FL(¢):
L. if ¢ = (a)x then Vs,t € WM{(s,1) € pM(a) = ([s], [t]) € PM/FL@O)()};
2. for all states s: M,sFE ¢ <= M/FL(¢),[s] E .

Proof.

Tedious but straightforward induction on the structure of ; see [3, 4] for details. 0
We now consider the quotient model ¢/ FL(¢).

Lemma 4.7 For each v € FL(¢)
v is satisfiable iff 1 is U | F L($)-satisfiable.

Proof. The lemma follows from Lemma 3.10 and the Filtration Lemma. O

Next we give another representation for the states of the quotient model &/ FL(¢): for
each [s] € WH/FL(9), et 3 be the set

§={¢|[s]Fyand ¢ € FL(¢)}U{-9|[s]F ¥ and y € FL(¢)}

That is, 3 is the set of formulae from FL(¢) that hold at [s] together with the negations
of the formulae from FL(¢) that don’t hold. We define the model Z; by mapping in
the filtration model U/FL(¢) each state [s] onto 3. The interpretation functions are
adapted in the obvious way. From this construction we immediately get the following
lemma.

Lemma 4.8 For each formula ¢ € FL(¢) and [s] € WY/FL(#),
UIFL(¢),[s|E ¥ iff U, 5E % iff ¥ € 5.
Theorem 4.9 For each formula ¢ € FL(¢),

% is satisfiable iff 1 € §
for some state 3 € U,
Proof.
Immediate from Lemmas 4.7 and 4.8. O

The sets of formulae 3 are called atoms of FL(¢) and play a crucial role in the definition
of the model Ay. For the definition of A4 we follow the exposition in [6].
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Definition 4.10 Let Z be the set of PDL formulae in which all formulae of FL($) and their
negations occur. Then an atom of F L(¢) is defined to be a subset A C Z such that for every
o,pell and ¢, x € &:

if-peZ thenype Aiff WwgA

ifYyvxeZ thenypvyxeAifpeAorxe A

if (af)y € Z, then (aB)p € Aiff (a)B € A

if(aUp)p € Z,then (aUB)Yp € Aiff (a)p € Aor (B)yp € A

if (a*)y € Z, then (o*)p € Aiff p € Aor (a)o*)p € A

if (Y1)x € Z, then (Y?)x € Aiffpy € Aand x € A.
Note that for all ¢ € FL(¢), either 1 or -4 is contained in each atom. Denote the set of
all atoms of F'L(¢) by At(¢). From the definition of atoms it follows that an A € At(¢)
is free of “obvious” or internal contradictions. In the construction of the model A4
we will eliminate the “nonobvious” or external contradictions also. This model will

be constructed in phases. For the definition of the interpretation functions = and p

we limit ourself, without loss of generality, to the primitive predicate and program
symbols occurring in ¢.

.Ao = (Wo, Wo,po) is defined by
o Wy= At(¢);
o mo: Do — 2Wo by A € mo(p) iff p € A4;
e po: g — 2WoxWo by (A, B) € po(a) iff

1. there is a (a)y € A with ¥ € B, and
2. for every [a]yp € A, ¥ € B.

For i > 0, Ajy1 = (Wi41, iy, pit1) is defined by

o Wit1 = {4| A € W;, and for every (a)y € A, there is B € W; with (4, B) € pi(a)
and ¢ € B};

* miy1(p) = mi(p) N Wigy;

* pit1(a) = pi(a) N (Wiya x Wip).

Here p] is the ordinary extension of p; to II, except that for ¥ € Z we define p/(¢?) =
{(A, A) | ¥ € A}. The unprimed p is the usual extension.

It follows from the finiteness of At(¢) and the fact that W;,; C W; that there is a j for
which the construction closes up; i.e. A; = A; for each i > j. Accordingly, set Ay = A;.

The following lemma is the main technical lemma we need for our final result.

Lemma 4.11 For every A € W4s,
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1. for each (a)y € FL(¢),
(a) € A iff there exists a B € W4s with (A, B) € p(a) and 4 € B;

2. for each ¢y € FL(9),
Y Aiff Ay, A ¥,

Proof.

The proof proceeds by simultaneous induction on the structure of a in (1) and the
structure of 9 in (2). See [16] for details. O

Theorem 4.12 (Small Model Theorem) For all 1 € FL(9), v is satisfiable iff ¢ € A for
some A € WAs,

Proof.
In the light of Theorem 4.9, we only need to prove that W¥¢ = W4s, from which the
theorem follows.

o WAs C W¥: immediate from the construction of #y;

e suppose there exists an atom A € W¥ and A ¢ W4¢. As we have started from
the set of all atoms in W, there exists a phase i in which the first such atom
is removed from W;;;. Inspection of the algorithm shows that this can only
happen if there exists a formula (a)y € A such that there exists no B € W; with
(A, B) € pi(a) and ¥ € B. But A € W¥ and hence there exists a state B € W¥s
with (A, B) € p(a) and ¢ € B. Because A is the first state to be removes, B € W;.
Contradiction. m]

5 An infinitary axiom system

Intuitively, the nature of the x-operator requires an infinitary axiom system. We define
the system AX,, as such an infinitary system. The induction axiom is replaced by an
inference rule with an infinite set of premisses.
Definition 5.1 The infinitary axiom system AX, contains the following axioms.

1. All PDL axioms, except the Induction Axiom;

2. [e*]¢ — [a'le, for each i < w;

In addition, we have the following inference rules:

1. modus ponens: from ¢, ¢ — , infer i;
2. modal generalization: from ¢, infer [a]@, for any a € 11;
3. oo-rule: from {3 — [B; &!l¢}icw, infer ¢ — [B; a*]¢p.
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In a way, we treat [a*]¢ as an “abbreviation” for A\, [ce’]¢. By contraposition, we have,
for each ¢ < w,

(a')p — (a*)9.

We define a derivation in AX,, to be a countable sequence of well-formed formulae,
each of which is either an instance of an axiom or the conclusion of an inference rule
whose premisses occur earlier in the sequence. The last formula in the sequence is
called the conclusion of the derivation and any formula ¢ for which such a derivation
exists is called derivable or provable and we write I, ¢.

From the Soundness Theorem for AX, we immediately get a Soundness Theorem for
AX .

Theorem 5.2 (Soundness Theorem) If o, ¢, then F ¢.

In both systems, AX and AX,, derivability of formulae of the form [a*]¢ is closely
related, as the following theorem shows; a proof of the theorem can be found in [7].

Theorem 5.3 1. In the infinitary system AX,,, the induction axiom is derivable.

2. In the Segerberg system AX, F [a*](¢ — [a]¢) — (¢ — [a”]¢) for each n < w.
We next give some definitions. Let Pr(AX.) = {4 |Fo ¢} be the set of all provable
formulas of the axiom system AX. For any subset & C &, let T be the union £ U
Pr(AXs) closed under modus ponens and oo-rule. T is a theory if & = T. Intuitively,
Y contains all immediate consequences of I; in particular, if {[a’]¢ | i < w} C %, then
[a*]p € T.
Definition 5.4 Let T be a set of formulae and ¢ a formula.

1. ¥ ko ¢ if and only if ¢ belongs to every theory that contains .
2. We say that % is inconsistent iff T |, false.
3. We say that X is consistent iff ¥ is not inconsistent.

4. ¥ is maximally consistent iff X is consistent and for each ¢ € ®, either ¢ or ~¢ € X.

We give some useful lemmas.

Lemma 5.5 Let X be a maximally consistent theory. Then (o*)¢ € X implies (o™)¢ € T for
some m < w.

Lemma 5.6 Let X be a theory. Then X &, ¢ iff ¢ € Z.

Theorem 5.7 LU {¢} oo Y ifand only if T Fo, ¢ — 9.

Proof.
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Suppose that ¥ U {¢} Fo, 1. Let
A={¢|Zke ¢ — ¢}

We will show that A is a theory containing XU {¢}. Since ¢ — (¢ — ¢') is a tautology,
¥’ € Ain case ¥’ € T or ko, 9. Since ¢ — ¢ is a tautology, ¢ € A. Hence T U {¢} C A.

From the tautology
(6= ¢1— (6= (61— 62)) = (¢ — 42)
we deduce that A is closed under modus ponens.

Finally, suppose that
{1 — [B;0"]¢2 | n < w} C A.

From the assumption we can deduce, using the co-rule and propositional reasoning,
that

L ke ¢ AdyL — [B; 0¥,

Hence A is closed under the co-rule. This proves one direction; the other direction is
trivial. (]

Corollary 5.8 X U {¢} is consistent iff T Vo, =

We now define a model A by:

WA ={sC ®|Pr(AX) C s and s is maximally consistent };
o m4(p) = {s| p € s} for primitive predicate p;
o pA(a) = {(s,1) | Vip.([a]® € s = ¢ € t)} for primitive program a.
Lemma 5.9 For each proposition ¢,
A sFEoiff p€s.
Proof.

We proceed by induction on the complexity of ¢. For ¢ a primitive predicate, the
theorem holds by definition.

(¢=9%Vx). A sEypVxiff A,sF ¢ or A, sk x iff, by induction hypothesis, % € s or
X € s iff 9 V x € s, by construction.
(p=). A,skE-piff A, sH o iff ¢ & s iff 9 € s.

(¢ = (a)¥). The only nontrivial case. We prove this case by induction on the structure
of a.

First let & = a be a primitive program. A, s E (a)9 iff there exists a state ¢ such
that (s, t) € p(a) and A4, t F 9. By induction hypothesis, ¥ € ¢t and by the definition
of p(a), (a)® € s. Conversely, suppose {(a)y € s. Consider the set

I'={¢|[al¢ € s}.
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Claim 1T is a theory.

Proof of claim 1 Pr(AX,,) C T, by the definition of s. Suppose ¢, ¢ — ¥ €T,
then ¢ € T since the logic is normal. Suppose ¥ — [§; §7]¢ € T for all i < w, then
[a](¥ — [6;8°]¢) € s for all i < w hence [a]y — [a][é; 5*]¢ € s by the maximality of
s. We argue that [a](¢ — [6; 8*]¢) € s. Suppose not. Then —[a](y — [§; 8*]¢) € s
or

(a)(D A (8;8*)-¢) € s
and, by Lemma 5.5,
(a)(¥ A (8;8™)¢) €

for some m < w. Contradiction. Hence T is closed under the oo-rule and is a
theory.

Extend I to the set I' = T' U {¢}.

Claim 2 I is consistent.
Proof of claim 2 Suppose I" is inconsistent. Then, by Corollary 5.8, T o, —%. By
Lemma 5.6, =% € T or [a]-% € s. But (a)i € s by assumption. Contradiction.

Hence I can be extended to a maximally consistent set t. By the definition of p,
(s,t) € p(a) and by induction hypothesis, A,t F ¥. Hence, A, s £ (a)4. The case
a is primitive, is proved. The other cases follow easily.

A, s (x?)9 iff A, sE x A4 iff, by induction hypothesis, x A ¢ € s iff (x?)¢ € s.
A,sF (aU ) iff A, sk (a)y Vv (B)y iff (a)y v (B)Y € s iff (aU B) € s.
A, s E (o; B) iff A, s E (a)(B)¢ iff (a)(B)Y € s iff (o;8)% € s.

Dually we prove [o*]¢ € s iff A, s F [a*]y. A, s F [a*]y iff, by definition of Kripke
models, A, s F [a"]y for each n < w, iff, by induction hypothesis, [a"]y € s for
each n < w, iff, by the oco-rule, [0*]9 € s. O

With Lemma 5.9 we can easily prove the completeness of the system AX:
Theorem 5.10 (Completeness Theorem) For each PDL formula ¢, o ¢ iff F ¢.

Proof.

One direction is the Soundness Theorem; for the other direction: let ¢ be such that /o, ¢.
Then Pr(AXe) U {~¢} is consistent and can be extended to a maximally consistent set
s by Lindenbaum’s Theorem. Hence, s € W4 and A, s F -¢ by Lemma 5.9, which
implies that ¢ is not valid or ¥ ¢. a

Since the Segerberg axiomatization is complete for PDL, we have the following corol-
lary.

Corollary 5.11 Forall ¢ € ®,
FoiffE ¢ iff Foo ¢

Let U be the model as defined in the previous section. An immediate observation leads
to the next lemma.
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Lemma 512 WA = W¥,

Proof.

By Soundness, each s € W¥ is maximally consistent and Pr(AX,,) C s so WY C W4,
Conversely, WA C W¥ by Completeness. |

By the lemma and the constructions of / and A we get:

Theorem 5,13 U == A.

In fact we may say that &/ and A are only two different names for the same model and
conclude that U = A.

6 Non-standard Models

We have introduced a completeness technique for PDL which is based on an infinitary
axiom system. One might ask whether this technique is applicable to the “normal”
axiomatization as well. The answer to this question is “No”. The difficulty in proving
a lemma such as Lemma 5.9 lies in the case ¢ = [a*]¢. Let us see what happens when
we try to prove the case. We can prove that A, s F [o*]¢ implies [a"]y € s for each

n < w, but we may not infer then that [e*]¢ € s. In fact, we can prove the following
theorem.

Theorem 6.1 Let

=
I

Pr(AX) U {4, [al¢, [a%), ..} U {-[a*]$}
= Pr(AX)uAU{-[a*]¢}

Then T is consistent.

Proof.

Suppose T' inconsistent. Then for some finite subset I' = {¢o, ¢1,...,9n} C T,
I’  false.

Or
FdoA---Adp — false.

Without loss of generality, we may assume that ¢,, = =[a*]¢) and the other ¢; € A. By
Soundness, then, for all models M and states s € WM, M,sE ¢ A-- A dp_1 — [a*]¢.
But counterexamples are easily found. Hence T is consistent. O

Essentially, this is the same argument as we used for proving incompactness. There we
saw that an infinite, semantically inconsistent set could not be proved to be inconsistent,
by proving inconsistency of each of its finite subsets. In fact, each of its finite subsets
was consistent. For exactly the same reason, namely syntactic consistency of each of
the finite subsets of I, we must conclude that T itself is syntactically consistent. Yet it
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surely is not semantically consistent in standard Kripke models. We therefore conclude

that syntactic and semantic consequence are two different notions in the case of the
axiom system AX and standard models.

As has been noted in [4, 11], we can construct a syntax model A’ from the Segerberg
axiomatization that is a non-standard model in the following sense.

Definition 6.2 A non-standard Kripke model is any model M that is a Kripke model
according to Definition 2.1, except that pM(o*) need not be the reflexive transitive closure of

pM(a), but only a reflexive transitive relation containing pM(c) and satisfying the induction
axiom.

In a way we might view this relaxation as a means to “compactify” the logic: the set T
from Theorem 6.1 is satisfiable in a non-standard model. In non-standard models the
set p(o*) is simply larger than in standard models.

The construction of A’ proceeds as follows. Let consistency for I be defined in the
usual way (cf. [11]).

o WA = {sC & | Pr(AX) C s and s is maximally consistent};
o m4'(p) = {s| p € s} for primitive p;
o pA' (@) = {(s,1) | Vo.([c]¢ € s = ¢ € 1))}.

Note the definition of p4’ which is defined for all programs, rather than only for prim-
itive one’s.

Theorem 6.3 Let A’ be the syntax model constructed from the Segerberg axiom system as
indicated above. Then

1. A’ is non-standard;

2. A’ is universal in the class of non-standard models.

Proof.
For (1), see [4, 11]. For (2), it is sufficient to prove

A sE¢iff € s.

To prove this claim we can adapt the proof of Lemma 5.9, or see [2]. O

Corollary 6.4 The Segerberg system AX is complete for PDL with respect to non-standard
models.

Note that the infinitary system is not complete with respect to these models.
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7 Dynamic Algebras

In this section we introduce the notion of Dynamic Algebras [8, 9, 15] and study the
relationship between these algebras and Kripke models.

Dynamic algebras were introduced by Kozen [8, 9] and Pratt [15] to give PDL a more al-
gebraic interpretation, in much the same way as Boolean algebras give an interpretation
for propositional logic.

A dynamic algebra is a two-sorted algebra D = (K, B, ) where K is a Kleene or relational
algebra and B is a Boolean algebra, for which a scalar multiplication ¢ : K x B — B
is defined. The basic operators for the Boolean algebra are A, v and -; the operators
for the Kleene algebra are ;, U and . The defining axioms for the Boolean algebra
are standard. However we do not have equality for the Kleene elements. Instead we
axiomatize the meaning of (. As we have seen, there exist two axiomatizations for PDL
that are sound and complete; Pratt used the Segerberg system and Kozen the infinitary

sytem to axiomatize his versions of Dynamic algebras. We concentrate on the version
of Kozen, which is called x-continuous. Hence we have as axioms:

1. the axioms for Boolean algebras;
2. (a)0=0;

3. ()($V ) = (@ V (a)¥;

4. (a; B)¢ = (a)(B)4;

5. {aUB)é = (a)pV (B)¢;

6. (0*)¢ = Vicu(a')$.

Here we have used ¢, 9 to denote the Boolean elements and o, 3 to denote the Kleene
elements. Let o and II, be the sets of names for (primitive) propositions and programs
as defined in section 2. These names act as names for constants in these algebras. Let D
be the class of all x-continuous dynamic algebras with sets of constants &; and II,. D is
equationally defined and thus has an initial algebra Z. We construct Z as follows. Let T
be the term algebra generated over ® and Ilp. Then T = (®,11,0) and T = (&/=,1I, Q).
Let D be any member of D; then every assignment of elements of D to the sets &, and
IIp extends to a homomorphism of 7 into D. An immediate observation is

IF¢=9iff koo ¢ & 9.

With every Kripke model M we can easily associate a dynamic algebra M. With every
¢ € ® we associate the subset |¢| C W where |¢| is defined by:

¢l = {s | M,sF ¢}

Denote the set of all such subsets |¢| by |®|M. Similary, with every o € I we associate
the function |a| defined by:
(lel)@] = [{a)4]

Denote the set of all such functions |a| by |II|M. We let M = (|®|M, |TI}M, ).
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Lemma 7.1 For every Kripke model M, M is well-defined.

Proof.

We have already proven that |®|M is a Boolean algebra. For the Kleene part of M: let
a € |II|JM. Then

(& = |a]) Immediate.
(@ =l|al;|81)

(lal; 1BDI¢l = (ladXIBDI¢l
{laDl(B)4]

|{ex; B) 4]

(&= || U |B]) Similar.
(@ = lal*)
(laf*)4l

Vi
= Vil
= 1V(amdl
o)

il

O

Next we consider the algebra U. A first observation is that every (associated) algebra
M is a subalgebra of I/: the embedding 6 of WM into W¥ extends to an embedding
of M into . The main result of this section is now immediate.

Theorem 72 U =T

Proof.
Consider the mapping f : I ~ I defined by:

o f(I¢l) =&
o fla) = e
[ is clearly surjective. f is injective as well:

UF|gl# Y] <= UEPoY
< Kooy
<= T K=Y
= IF¢#vy

Finally, by Lemma 7.1, f is a homomorphism. a
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