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Abstract

A new kind of attribute grammars, called higher order attri-
bute grammars, is defined. In higher order attribute gram-
marsmesn'uctmeu'eecanbeexpandedasamultofat-
tribute computation. A structure tree may be stored in an
attribute. The term higher order is used because of the anal-
ogy with higher order functions, where a function can be the
result or parameter of another function. A relatively simple
method, using OAGs, is described to derive an evaluation
order on the defining attribute occurrences which comprises
all possible direct and indirect attribute dependencies. As
in OAGs, visit-sequences are computed from which an ef-
ficient algorithm for attribute evaluation can be derived,

1 Introduction

For quite some time now attribute grammars (AGs) are
used in the field of compiler construction. The GAG-
system, described in [Kastens, Hutt and Zimmerman 81],
and the Synthesizer Generator, described in [Reps 1982]
and [Reps, Teitelbaum and Demers 1983, are typical ex-
amples. The term compilation is mostly used to denote the
conversion of an algorithm expressed in a human-oriented
Source language to an equivalent algorithm expressed in a
hardware-oriented target language. A compilation is usu-
ally implemented as a sequence of transformations (SL,L;),
(L1, La), ..., (Ly, TL), where SL is the source language, TL
the target language and all L; are called intermediate lan-
guages. In attribute grammars SL is parsed, a structure tree
corresponding with SL is build and finally attribute eval-
uation takes place, the TL is obtained as the value of an
attribute. So an attribute grammar implements the direct
transformation (SL, TL) and no special intermediate lan-

This is a copy of the manuscript presented at the
ACM SIGPLAN ’89 Conference on Programming
Language Design and Implementation.

guages are used. The concept of an intermediate language
does not occur naturally in the attribute grammar formal-
ism. Using attributes to emulate intermediate languages is
difficult to do and hard to understand. Higher order attri-
bute grammars (HAGs) provide an elegant and powerful
solution for this weakness, as attribute values can be used

to define the expansion of the structure tree during attribute
evaluation.

This formalism is completely new and distinguishes our
work from normal attribute grammars and attribute coupled
grammars (see {Ganzinger and Giegerich 84]).

To derive an efficient algorithm for attribute evaluation of
AGs, so called OAGs were defined by [Kastens 80]. We
use the same framework to derive an efficient attribute eval-
uation algorithm for HAGs.

In section 2 an informal definition and some examples of
higher order attribute grammars (HAGs) are given. Section
3 contains the definition of higher order attribute grammars.
The reduction of a HAG to an AG and a mapping of an
evaluation order of the reduced AG to an evaluation or-
der of the HAG together with correctness proofs are given
in section 4. Also visit-sequences for a HAG derived by
those of the comresponding reduced AG are given. Section
5 contains the conclusion and final remarks.

2 Informal definition and examples

2.1 Attribute grammars

Complete definition of a programming language (syntac-
tically as well as semantically) can be done using attri-
bute grammars (AGs). The context free grammar G =
(T, N, P, Z) of a language corresponds to structure trees.
Figure 1 shows an example context free grammar for simple
expressions.

In attribute grammars attributes are “associated” with the
non-terminals and terminals of the underlying context free
grammar. For example, the terminal ident in Figure 1 may
have an attribute symbol, being a unique reference to the
denoted identifier. Autribute values are computed by seman-
tic functions in attribute rules. An attribute rule is always



G =(T = { idens, int, real, +, + }
N={Z,E,I",OP}
zZ
P={Z—>E
E—-FOPE
F — ident
F —int
F — real
E—-F
OP — x,+1})

Figure 1: A context free grammar

"associated” with a production of the grammar. We distin-
guish three kinds of attributes: inherited, synthesized and
local attributes. Local attributes are not associated with a
non-terminal or terminal, but with productions and can be
only used by attribute rules of that production.

2.2 An example multi-pass compiler

As an example used throughout this section we consider
a multi-pass compiler for simple expressions in an Algol-
68 like language where priorities of the operators will be
deﬁnedwiminmepmgramandmtbymelang\mge. The
operands of the simple expressions consist of int and real
constants and REF int and REF real variables. We assume
that two operators + and * are defined for integer- as well
as real-arithmetic. Because the priorities of the operators
are defined within the program, the conventional context
free parsing based on fixed operator priorities cannot be
based on them. There are two coercions (type conversions),
dereferencing (REF int — int and REF real — real) and
widening (int — real). The compilation of an expression
now consists of the following four steps:

1) Parsing the operator declarations and the expression

2) Converting expressions based on the declared operator
precedence

3) Type checking and insertion of coercions

4) Code generation

In the rest of this section we will consider each step, except -

parsing the operator declarations, in detail. The type check-
ing and coercion algorithm was strongly influenced by the
one used in [Waite and Goos 84].

23 An example attribute grammar

As an example (Figure 2) we consider the grammar de-
scribing the type checking and coercion computation of
expressions. Each production of the grammar is marked
by the keyword rule and written using EBNF notation (re-
stricted to express only productions). The attribute rules
which belong to a production follow the keyword attribu-
tion. We use a conventional expression-oriented program-
ming language notation for the semantic functions. Partic-
ular instances of an attribute are distinguished by number-
ing multiple occurrences of symbols in the production (e.g.
expression[1], expression[2]) from left to right. Although
conditions are part of the example grammar we will not
mention them any further,

In order to check the consistency of the assignment and to
further identify the + and * operator (step 3 of the expres-
sion compiler), operand types must be taken into account.
For this purpose serve two attributes, primode (a priori type)
and postmode (a posteriori type), for the symbols EXPRES-
SION and NAME, and one attribute, mode for the symbol
OPERATOR. Primode describes the type determined directly
from the node and its descendants; postmode describes the
type expected when the result is used as an operand by other
nodes. Any difference between between primode and post-
mode must be resolved by coercions. The boolean function
coercible(t;, t3) tests whether type ¢, can be coerced to ¢,.
The direct dependencies between attributes (as shown in
Figure 3) are defined by the attribute rules in the produc-
tions. A dependency graph over the attribute instances on a
structure tree for a sentence can be constructed by "pasting
together” the direct dependencies according to the applica-
tions of productions in the derivation of the sentence. An
essential property of a well-formed AG is that this does not
give rise to circularities.

Figure 4 shows the analysis of x := y * 2 + 3.5 according to
the grammar of Figure 2. (assignment.env would normally
be computed from the declarations of x and ».

The following attributes are used:

env the set of pairs (symbol, mode) visible
from the syntactic unit in question.
primode  the mode (int, real, REF int or REF real)
of a syntactic unit before applying coer-
the Tode of a syntactic unit, determined
by the outer context (coercion will yield
this mode).
determines integer or real arithmetic of an
operator.
a unique representation of an identifier de-
notation.

postmode

operation

symbol



The attribute sets are:
Inherited attributes:

{ X.env | X € {name, expression} }
U { X.postmode | X € {name, expression} }
U { operator.mode }

Synthesized attributes:

{ X.primode | X € {name, expression} }
U { operator.operation }
U { identifier.symbol }

The assignment is defined by:

rule assignment ::= name ’:=' expression
attribution
name.env := assignment.env ;
expression.env := assignment.env ;
name.postmode := name.primode ;
expression.postmode := deref( name.primode ) ;
condition must_be_ref{ name .primode )

rule expression ::= expression operator expression
attribution
local prim ;
prim :=
if coercible( expression[1 ].primode, int) and
coercible( expression[2] primode, int)
then int else real fi ;
expression[0] primode := prim
operator.mode := prim ;
expression[1] postmode := prim ;
expression[2] .postmode := prim ;
expression[1].env := expression[0].env ;
expression{2].env := expression[0].env ;
condition coercible( prim, expression[0].postmode )

rule operator ::= '+’
attribution
operator.operation :=
if operatormode = int
then int.addition else real_addition fi ;

rule operator ::= '+’
attribution
operator.operation :=
if operatormode = int
then int_multiplication
else real_multiplication fi ;

rule name ::= identifier
attribution
name.primode :=
defined_type( identifier.symbol, name.env ) ;

rule expression ::= identifier
attribution

expression.primode :=
defined_type( identifier.symbol, expression.env ) ;
condition coercible( expression.primode,
expression.postmode)

rule expression ::= intconstant
attribution
expression.primode := int ;
condition coercible( expression.primode,
expression.postmode )

rule expression ::= realconstant
attribution
expression.primode := real ;
condition coercible( expression.primode,
expression.postmode)

The meaning of the functions deref, must_be_ref, coercible
and defined_type are given informally:

deref(t) t is a mode; returns the derefer-

enced mode of ¢. .
must_be_ref{(t) t is a mode; returns true if tis a

REF int or REF real variable,
coercible(ty, t2) t, and t, are modes; the result is

true if ¢, is coercible to ¢5. t; is
coercible to ¢, if there exists a path
from ¢; to ¢ in the directed graph

below.
REF int
i
int REF real
N\ 7
real

defined_type(s, e) s is a symbol, e is an environment;
returns the mode of s if s € e, oth-
erwise undefined.

Figure 2: An attribute grammar

24 Higher order attribute grammars

There are two non-interchangeable concepts in a conven-
tional AG: the structure tree and the attributes. It is not
possible to define part of the structure tree by means of an
attribute value and vice-versa. In a higher order attribute
grammar (HAG), however, we allow both.

2.4.1 Part of the structure tree := attribute value

As an example we consider the first three steps of our ex-
ample compiler: parsing, restructuring based on the previ-
ously declared operator precedence and type checking and
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Figure 3: The direct dependency graphs

identifier

X tm Yy * 2 + 3.5

Figure 4: Dependencies in an attributed structure tree

coercion. Only after processing operator declarations the
priorities of the operators are known and therefore it is not
possible to define a parser based on the context free gram-
mar reflecting the declared operator precedence. Figure S
shows an expression and three sample trees which are syn-
tactically correct according to the grammar of Figure 2. If
we know that * has greater priority than + then only Fig-
ure 5.c reflects the tree with the correct operator precedence
(we assume left to right expression evaluation). To be able
to use the type checking and coercion defined by the attri-
bute grammar of Figure 2 we need a semantically correct
structure tree.

\+ *
7\
"/ '\ S/
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2
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1 4 1
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. \/

L+ (2% (3+*9q) ((1 +2) *3) 4 1+ ((2*3) »4g

Figure S: Three trees representing the expression 1 + 2 «
3 x 4, based on the ambiguous grammar of Figure 2

The first step, parsing the expression, is done according to
the disambiguous context free grammar of Figure 1. Fur-
thermore, as a result of attribute evaluation a structure tree
reflecting the declared precedences of the operators is com-
puted in the attribute R, .0p_tree (see Figure 6).

list with
declared
operators

O Rl [ Rl.op_tree
(!
2N

\S
i 7\,
3 4/ \5

1+ (2* (3*4))) +5

7\
/\,
BN
2/ \3 4

1+ ((2*3) *4q)) +5

1

Figure 6: Computation of the operator precedence tree

We now extend the conventional AG-formalism with a con-
struction which enables us to use the structure tree com-



puted as an attribute value in R;.op_tree as the structure
tree for the type checking and coercion attribute grammar
of Figure 2. This is done by combining the grammars of
Figure 1 and a slightly changed version of Figure 2 and
adding a new production. The resulting grammar is shown
in Figure 7. The computation of the tree reflecting the de-
clared precedence of operators will be discussed later on.

R—Ry Ry R;:=Ry.optree

Ry —E Ry.0p_tree := the correct operator
precedence tree

E—-FOPE

F — ident

F —int

F — real

E—F

OP — %, +

Ry — A A.env := Ry.env ; Apost := Ra.pri
A—A+A AlO]pri:=it coercible(A[1].pri, int)
and coercible(A[2] pri, int)
then int else real fi
A[1].post := A[O].pri
A[2].post := A[0].pri
A[0].oper := if A[0] pri=int
then int_add
else real_add fi
A[l].env := A[0].env
A[2].env ;= A[O].env
condition coercible(A[0].pri, A[0].post)

A—AxA see above
A —ident Apri:=
defined_type(ident.symbol, A.env)
condition coercible(A.pri, A.post)
A —int Apri = int
condition coercible(A.pri, A.post)
A —real Apri:= real

condition coercible(A.pri, A.post)

Figure 7: Parsing the expression, computation of the oper-
ator precedence tree and type checking and coercion in one
grammar

The overline in R — R, R; indicates that non-terminal X,
in the production is a non-terminal attribute (NTA). Non-
terminal attributes play a dual rdle. During the parsing
of a sentence a non-terminal attribute X is considered as a
non-terminal for which only the empty production (X —1)
exists. During attribute evaluation NTA X receives a value
representing a non-attributed tree derivable from X. Next,

the original parse tree is expanded with the non-attributed
tree computed in NTA X, the non-attributed tree is attri-
buted and attribute evaluation continues. Furthermore, a
non-local attribute is a local attribute, being defined by a
local attribution rule.

In the structure tree two kinds of non-terminal instances are
distinguished, virtual non-terminals (NTAs which are not
yet computed) and instantiated non-terminals (normal non-
terminals and already computed NTAs). Leafs of a structure
tree now can be terminals or virtual non-terminals.

A virtual non-terminal instance in an attributed structure
tree will be indicated as a leaf of the form o, an instantiated
non-terminal as a leaf of the form e (see Figure 8). After
computation of the non-terminal attribute R, in Figure 8
leaf o is replaced by a structure tree. So after expansion
of the tree attribute evaluation continues and type checking
and coercion takes place.

®
list with
declared
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(m} I a Rl.op_trae
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8\
1
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2
/N
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S
list with
declared
operators R1 /‘——\az
(] Rl.op_tree

&
\.

N 7\
TN\ / N\,
AN BN
A N\

(1 + (2% (3 *4))) +5 (L + ((2*3) »4)) +5

Figure 8: Expansion of the structure tree

In a normal AG the parser builds the complete structure
tree, in a HAG the parser builds the structure tree of the
grammar, where all non-terminal attributes are considered to



have empty productions, Furthermore, the attributed struc-
ture tree can be expanded as a result of attribute evaluation.

After expansion the new part of the tree becomes attributed
as well.

242 Attribute value := part of the structure tree

Besides expanding the structure using an attribute value, we

introduce the possibility to store part of the structure tree
in an attribute.

It is sufficient if R; contains a synthesized attribute de-
scribing the structure tree under R,. The above described
construction won't be used any further,

2.5 A linear notation for structure trees

In the previous section part of a compiler was described.
We used an attribute op_tree in which the structure tree of
the semantically correct expression was computed. Because
the functions in attribution rules are defined by means of a
linear notation we need a linear notation for the construction
of structure trees,

We define a signature T associated with context free gram-
mar G and a term-language generated by Xg. Terms in the
term-language correspond to parse-trees for the grammar.
Those familiar with signatures and algebras may skip the
following two definitions and note the following: If T ¢ is
the signature associated with grammar G then the objects
of the Zg-term algebra, T, correspond to parse-trees for
the grammar,

See Figure 9 for an example grammar G, the associated
signature £, a parse tree and the corresponding term.

Definition 2.1 A signature T = (S, OP) consists of

S : the set of sorts
OP :  the set of operation symbols

With each operation symbol is associated an (n +1) wple
of sorts from S, n > 0, called its arity. If F is an operation
symbol and (01, 03, ..., 0, Gpyy) its arity one writes

F:o X 02X ...X 0pn— Opyy

Definition 2.2 Let X = (S, OP) be a signature. A S-term
and its sort are defined inductively by

o if F is an operation symbol with arity — o then
F

is a T-term of sort o.

o if F is an operation symbol with arity ¢, x 03 % . . . x
On = Ony1, 0 2 1, and if ty,ta,...,t, are S-terms
of sort 01, 03, ..., 0, respectively then

F(tl,tz,. . .,t”)

Grammar G: Associated signature ¢ :
rooty(.): R, — A rooty(.): A — Ry
+-: A—-AA 4. AXA—A
A0 A—AA x> AXA—A
var(.) : A — ident var(.) : ident — A
int(])): A—int int(]) : im— A
real(_): A — real real(.): real — A
rootl(_) : R2
_*+ :| A
int (_) : A/\_*_:A\
var(_) A real( ) :| A
2 Y 3.5

rootl (int (2) + (var(y) * real(3.5)))

Figure 9: The grammar G, the signature ¥ and a structure
tree together with the corresponding term

is a Z-term of sort o.

We abbreviate -term as term, if ¥ is evident by the con-
text. The set of all terms of sort o is called the term lan-
8uage of sort 0. The family constituted by the term lan-
guages of sort o, one for each o € S, is called the term
language (generated by X.).

Definition 2.3 Let G=(T, N, Z, P) be a context [ree gram-
mar. The associated signature Tg=(S, OP) is defined as
Jollows:

For each production p € P, p=No — TyNiT;...N, T,
WithT, € T, N;e Nfor0<i<nm, let the arity of oper-
ator symbol p € OP be (Ny,...,N,, Ny) or alternatively
written

P:NixN2x...x Ny, = Ny

Now a term in the term language generated by the signature
Y. associated with grammar G describes a parse tree for

the grammar G. This provides in a powerful and elegant
linear notation for structure trees.

2.6 The complete compiler example

2.6.1 Step 1 and 2, parsing and computation of the
operator precedence tree

As we have seen compiling an expression consists of four
steps:

1) Parsing the operator declarations and the expression



2) Converting expressions based on the declared operator
precedence

3) Type checking and insertion of coercions
4) Code generation

Step 1 of this list is done by the context free parser. Fig-
ure 10 shows the higher order attribute grammar for step
1 and 2. The attribution rules defining the tree with the
right operator precedence are printed in sans serif type
style. In computing the intended operator precedences we
use attributes representing an operator stack and an operand
stack, by lists. A stack trace for the expression 1 2 4 3 is:

optorstack  opndstack

0 0

[*] (1]

(+] ([*,1,2]]

[+] (3,[+,1,2]]

0 [+.[*,1,2],3]

2.6.2 Step 3, type-checking and coercion

Step 2 delivered a new structure tree reflecting the declared
operator precedence, used by step 3, step 3 will deliver a
new structure tree incorporating the coercions well suited
for the code generation of step 4. Note that the first in-
troductory example to attribute grammars (Figure 2), how-
ever, only checks whether an expression is correctly typed.
Therefore we introduce new productions used by step 3 to
construct a structure tree well suited for code generation.
We introduce separate addition, multiply and dereference
productions, like .+;_, _+,_, etc, for integers and reals. The

resulting grammar defining steps 1,2 and 3 is shown in Fig-
ure 11,

2.63 Step 4, code generation

Step 3 generates a structure tree well suited for code gener-
ation. We will generate the usual code for a stack machine.
Integers and reals may have different sized internal repre-
sentations, this explains why we need two kinds of instruc-
tions for every basic operator. The instruction push;q.(adr)
pushes the integer located at address adr on the stack. The
resulting higher order attribute grammar defining all steps
of the example multi-pass compiler is shown in Figure 12.

Note that the computation of step i is based upon a structure
tree of step i-1 and all the intermediate structures differ. We
demonstrated here the use of a HAG as a powerful tool for

constructing multi-pass compilers, a weakness of normal
AGs.

Pr: R—R R Ri:=Rioptree

Ps : Ry - E E.optor := {] ; E.opnd := []
E prioenv := R, prioenv
R, .op_tree := E.op.tree
Pe ; E — FOPE E[1]).optor :=
=1( eval_top(E[0] .optor,
OP.op, [F.sym] ++ E[0].opnd,
E[0] prioenv))
E[l]).0pnd :=
xa2( eval 10p(E[0] .optor,
OP.op, [F.sym] ++ E[0).opnd,
E[0] prioenv))
E[1] prioenv := E{[0].prioenv
E[0].op.tree := E[1).0p_tree
Pid : F — ident Fsym := var(ident.id)
i F.sym := int(int.val)

Preal :

F — real F.sym := real(real.val)

Pend: E—F E.op_tree := root, ( buildtree(
x2( eval.top( E.optor,
Lop, [F.sym] ++ E[0].opnd,
E[0].priocenv))))

Po : OP — opname OP.op := opname.op

rooty(.): Ry — A

e A—AA

ol A—AA

var(_) : A — ident

in(l): A— im

real(): A — real

The following functions are used:

prioenVop)=
ifr 0p=.1.op
then 0 else the declared operator priority (> 0) fi

i(x.y)=x, ®2(X.y)=y

eval 1op([], op, opnd_stack, prioenv) =
([op], opnd_stack)

eval_top(top_op:rest_ops, op, ol:02:rest, pricenv) =
let pl=prioenw(top.op), p2=prioenv(op)
in if pl > p2 — (op:top_op:rest_ops, opnd _stack)
Opl < p2 — eval_top( restops, op, [1op_op,0l ,02]:rest,
prioenv)
nl

buildiree(singleton) = singleton,
buildiree([+.a,b]) = buildtree(a) + buildiree(b),
buildiree([+,a,b]) = buildtree(a) * buildsree(b)



Fi 10: S 1 and 2 of the multi-pass compiler
gure 1P pas e The following functions are used:

findop determines int or real operation eventually followed by
widening, findderef determines int or real dereferencing eventually
Jollowed by widening.

Pr: R—R R: Ry R;:=Riopiree

Rs := Ry.coerce.tree

See Figure 10 for the productions and rules defining R, and

Ry .op_tree.
Pr: R—R R:Rs R, R :=Rioptree
rootz(.): Ry — A A.env := Ry.env Ry := Ry.coerce_tree
Apost := Ry pri Ry := Rs.code_tree
R3.coerce_tree := A.coerce_tree
o A= A4 f,’gﬁf,:i;;( AL} pri, int) See Figure 10 for the productions and rules defining R ; and
and coercible(Af2] pri, int) Ry.opree.
then int else real fi
A[1] post := A[0].pri See Figure 11 for the productions and rules defining R ; and
Al2] post := A[0] pri R .coerce_tree.
A[0].oper := it A[0].pri=ins
then int_add roots(.): Ry —C Ra.code_tree := root, (C.code)
else real_add fi +i_: €C—=CC  Cl0].code := C[1).code ;
A[l].env := A[O].env C[2).code ; add;
Al2).env := A[0] env +r.: €C—CC  C0].code := C[1].code ;
Al0].coerce_tree := C[2].code ; add,
findop(A[1].coerce_tree, +, *%_.: C=CC C[0].code := C[1].code ;
Al2].coerce tree, C[2].code ; mul;
Al0].oper, A[0].post) #r.: €C—=CC  C[0).code := C[1].code ;
condition ) C{2].code ; mul,
coercible(A[0] pri, A[0] post) deref(.): C — ident  C.code := pushiq(
*-: A—AA  seeabove getadr(ident.sym))
var(): A —ident Apri:= . derefe() : C — ident  C.code := push,(
defined_type(ident.symbol, A.env) getadr(ident.sym))
A.coerce.tree := _ widen(): C —C C[0].code := C[1].code ; wide
findderef(ident.sym, A.pri, A.post) inf(.): C— int C.code = push;(int.val)
) condition coercible(A pri, A post) real(): C—real  C.code := push,(int.val)
in(_)): A— im Apri := int
A.coerce_tree := . -
if A.post = real ’m'(f{ ff_, 1;
then widen(int(int.val) wshil): I — int
else int(int.val) :lﬂhr;:)) s 1— rea
condition coercible(A pri, A.post) pushia(_) : I — address
real(): A — real Apri:= real push%(.‘) ;: :ddress
A.coerce_tree := real(real.val) mul, : I —
condition coercible(A pri, A post) add; : I — +
add, : I — +
wide: I—w
roots(.): Ry — C
~+i-: C—=CC
“tro s g -~ g g The function getadr(idens) computes the address of the identifier.
. TP —
*_: C—=CC
derefi() : C — idemt
derefo(.): C — ident Figure 12: Steps 1,2, 3 and 4 of the multi-pass compiler
widen(.): C—C
i) : C—int
real(])): C — real

Figure 11: Steps 1,2 and 3 of the multi-pass compiler




3 Higher order AGs

In this section higher order attribute grammars (HAGsS) are
defined. In AGs there exists a strict boundary between at-
tributes and the parse tree. HAGs remove this boundary.
A new kind of attributes, so called non-terminal attributes
(NTAs), will be defined. These are non-terminals of the
grammar as well as attributes defined by a semantic func-
tion. During the parsing of a sentence a non-terminal attri-
bute X is considered as a non-terminal for which only the
empty production (X —.1) exists. During attribute evalua-
tion NTA X receives a value denoting a non-attributed tree
derivable from X. Next, the original parse tree is expanded
with the non-attributed tree computed in NTA X, the non-
attributed tree is attributed and attribute evaluation contin-
ues. A necessary condition for a HAG to be well-formed
is that the dependency graph of every possible partial tree
does not give rise to circularities.

First, a definition of normal attribute grammars (almost lit-
erally taken from [Waite and Goos 84]) including local at-

tributes is given. Then higher order attribute grammars are
defined.

3.1 Definition of attribute grammars

A context free grammar G = (T, N, P, Z) consists of a set
of terminal symbols T', a set of non-terminal symbols N, a
set of productions P and a start symbol Z € N.

To every node in a structure tree corresponds a production
from G.

Definition 3.1 An attribute grammar is a 3-tuple AG =
(G,A,R). G=(T,N,P,2) is a context free grammar.
A= |J asmu \J AL(p) is afinite set of attributes,

X€TuN pEP
R = | R(p) is a finite set of attribution rules.
PEP

AIS(X) NAIS(Y) # O implies X =Y. For each occurrence
of non-terminal X in the structure tree corresponding to a
sentence of L(G), exactly one attribution rule is applicable
Jfor the computation of each attribute a € A.

Elements of R(p) have the form
a:=f(...,,..).

In this attribution rule, f is the name of a function, o and
7 are attributes of the form X.a or p.b. In the latter case
p.b € AL(p). In the sequel we will use the notation b for
p-b whenever possible. We assume that the functions used
in the attribution rules are strict in all arguments.

Definition 3.2 For each p: Xo — X,...X, € P the set

of defining occurrences of attributes is

AF(p) = {Xi.a | X;.a:= f(...) € R(p)}

U {p.b|pb:=f(...) € R(p)}
An attribute X.a is called synthesized if there exists a pro-
duction p : X — x and X.a is in AF(p); it is inherited if
there exists a productionq : Y — pXv and X.a € AF(q).
An auribute b is called local if there exists a production p
such that p.b € AF(p).

AS(X) is the set of synthesized attributes of X. AI(X) is the
set of inherited attributes of X. AL(p) is the set of local
attributes of production p.

Definition 3.3 An attribute grammar is complete if the fol-
lowing statements hold for all X in the vocabulary of G:

e Forallp : X — x € P,AS(X) C AF(p)

e Forallq : Y — uXv e P, AI(X) C AF(q)
e Forallp€ P,AL(P) C AF(p)

e AS(X)UAI(X) = AIS(X)

o AS(X)NAI(X) =0

Further, if Z is the root of the grammar then AX(Z) is empty.

Definition 3.4 An attribute grammar is well defined ( WAG)
if, for each structure tree corresponding to a sentence of
L(G), all attributes are effectively computable.

Definition 3.5 For eachp : Xo — X;...X, € P the
set of strict attribute dependencies is given by

DDP(p) = {(B,0) | a:= f(...B...) € R(p)}

where a and § are of the form X;.a or b. The grammar is
locally acyclic if the graph of DDP(p) is acyclic for each
p€EP.

We often write (a, 8) € DDP(p) as (a« — ) € DDP(p),
and follow the same conventions for the relations defined
below. If no misunderstanding can occur, we omit the speci-
fication of the relation. We obtain the complete dependency
graph for a labeled structure tree by °pasting together® the
direct dependencies according to the syntactic structure of
the tree.

Definition 3.6 Let S be the atributed structure tree cor-
responding to a sentence in L(G), and let K, ...K, be
the nodes corresponding to an applicationof p : Xo —
X1...Xn and v, & attributes of the form K;.a or b cor-
responding with the attributes a, 8 of the form X ;.a or b.
We write (v — 8) if (a — B) € DDP(p). The set DT(S) =
{(v — 6)}. where we consider all applications of produc-
tions in S, is called the dependency relation over the tree
S.

The following theorem gives another characterization of
well-defined attribute grammars. A proof can be found in
[Waite and Goos 84].

Theorem 3.1 An attribute grammar is well-defined iff it is
complete and the graph DT(S) is a-cyclic for each structure
tree S corresponding to a sentence of L(G).



3.2 Definition higher order AGs

We are now ready to formalize the intuition of the preceding
sections.

3.2.1 Definitions

An higher order attribute grammar is an attribute grammar
with the following extensions:

Definition 3.7 For eachp: Xo — X, ... X, € P the set
of non-terminal attributes (NTAS) is defined by

NTA(p) = {X; | X; := f(...) € R(p)}

Because a non-terminal attribute is also an attribute, an ac-
tual tree may contain NTAs (not yet computed non-terminal
attributes) as leafs. Therefore we change the notion of a
tree. Two kinds of non-terminals are distinguished, virtual
non-terminals (NTAs without a value) and instantiated non-
terminals (NTAs with a value and normal non-terminals).

Definition 3.8 A non-terminal instance X in a tree is
called

® g virtual non-terminal if X € U NTA(p) and the
peEP
Junction defining X has not yet been evaluated

* an instantiated non-terminal if X ¢ | ) NTA(p) or

pEP
X € | NTA(p) and the function defining X has been
pEP
evaluated

Definition 3.9 A labeled tree is defined as Jollows

® the leafs of a labeled tree are labeled with terminal or
virtual non-terminal symbols

o the nodes of a labeled tree are labeled with instantiated
non-terminal symbols

From now on, the terms *structure tree’ and ’labeled struc-
ture tree’ are all used to refer to a labeled tree. In the text
a non-terminal attribute X will be indicated as X, in the
labeled tree a leaf labeled with a virtual non-terminal will
be displayed as o, an instantiated non-terminal node as e.

Definition 3.10 A semantic function f in a rule X :=
f(...) is correctly typed if f returns a term representing
a parse tree derivable from X (see Definition 2.3 for a
definition for term).

This definition will be used to ensure that a NTA X will be
expanded with a labeled tree which is derivable from X.
Note that a check whether a function is correctly typed can
be done statically,
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Definition 3.11 An higher order attribute grammar is com-
plete if the underlying AG is complete and the following
holds for all productions p:Y — pu € P:

e NTA(p) C AL(p)
and for all X € NTA(p):

eXeyu
e For all rules a := f(v) inR(p), X & v
e For all rules X := f(...) in R(p), f is correctly typed

The above definition defines NTAs as local attributes which
only occur as a non-terminal at the right-hand-side of a
production and as an attribute at the left-hand-side of a
semantic function,

3.22 Attribute evaluation

Evaluation of attribute instances, expansion of the labeled
tree and adding new attribute instances is called attribute
evaluation and might be thought to proceed as follows:

To analyze a string according to its higher order attribute
grammar specification, we first construct the labeled tree
derived from the root of the higher order attribute gram-
mar. Then evaluate as many attribute instances as possible.
As soon as virtual non-terminal instance X is computed,
expand the labeled tree derived from the root at the cor-
responding leaf X with the labeled tree in X and add the
attribute instances resulting from the expansion. The vir-
tual non-terminal X has now become an instantiated non-
terminal X. Continue the evaluation until there are no more

attribute instances to evaluate and all possible expansions
are done.

The order in which attributes are evaluated is not defined
yet, but subjected to the constraint that each semantic func-
tion be evaluated only when all of its argument attributes
are available. When all the arguments of an unavailable
attribute instance have come available, we say it is ready
Jor evaluation.

Using the definition of attribute evaluation and the ob-
servation to maintain a work-list S of all attribute in-
stances that are ready for evaluation we get, as is stated
in [Knuth 1968, Knuth 1971) and [Reps 1982], the follow-
ing Attribute Evaluation Algorithm (Figure 13).

The difference with the algorithm defined by [Reps 1982]
is that the labeled tree T can be expanded during semantic
analysis. This means that if we evaluate a NTA X, we
have to expand the tree at the corresponding leaf X with
the tree computed in X. Furthermore, the new attribute
instances and their dependencies of the expansion (the set
DT (X)) have to be added to the already existing attribute
instances and their dependencies and the work-list S must



be expanded by all the attribute instances in DT(X) that
are ready for evaluation.

If we look at the Attribute Evaluation Algorithm, there are
two potential problems:

e non-termination

e attribute instances may not receive a value

evaluate(T)
let T = an unevaluated labeled tree
D = a dependency relation on attribute instances
S = a set of attribute instances that are ready
Jor evaluation
«, B = attribute instances

in
D := DI(T) { the dependency relation over the tree T }
§ := the attribute instances in D ready for evaluation
while S # 0 do
select and remove an attribute instance o from S
evaluate o
if o is a NTA of the form X
then expand T at X with the unevaluated tree in o
D := D U DT(X)
S := S U the atiribute instances in DT(X)
ready for evaluation
A ,
Jor each B that is a successor of a in D do
if B is ready for evaluation
then insert B in S

b

Figure 13: Attribute Evaluation Algorithm

The algorithm might not terminate if the labeled tree T
grows indefinitely, in which case there will always be virtual
non-terminal attribute instances which can be instantiated
(Figure 14).

There are two reasons why an attribute might not receive a
value:

o there is a cycle in the dependency relation D: attribute
instances involved in the cycle will be never ready for
evaluation, so they will never be evaluated.

o there is a non-terminal attribute instance, say X, which
depends on a synthesized attribute of X.
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The second reason may deserve some explanation. Suppose
we have a tree T containing rule p and X is a non-terminal
attribute instance in T'. Furthermore the dependency rela-
tion D of all the attribute instances in T contains no cycles
(Figure 15).

R

|

R-— X ’i
PA: X— A a
A:=pX |

pX: A—- X X
X :=pA I

5

Figure 14: This grammar will expand indefinitely

If we take a closer look at node X in T, then if X doesn’t
depend on synthesized attributes of X it can be computed.
But should X depend on synthesized attributes of X, as
in Figure 15 it can't be computed. This is because the
synthesized attributes of X are computed after the tree is
expanded. So a non-terminal attribute shouldn’t depend on
its own synthesized attributes. To prevent this we let every
synthesized attribute of X depend on X. Therefore the set
of extended direct attribute dependencies is defined.

Definition 3.12 Foreachp: Xo — X,...X, € P the set
of extended direct attribute dependencies is given by

EDDP(p) = {(a — BiBs:= f(...a..) € R(p)}
U {(X —7) | X € NTA(p) and v € AS(X)}

Thus a non-terminal attribute can be computed if and only
if the dependency relation D (using the EDDPs) contains
no cycles. This result is stated in the following lemma.

Lemma 3.1 Every virtual non-terminal attribute will be
computed if and only if there will be no cycles in D (using
the EDDP) during attribute evaluation.

Proof The use of EDDP(p) prohibits a non-terminal attri-
bute 3 to be defined in terms of attribute instances in the
tree which will be computed in 8. Suppose S8, which is
of the form X, depends on attributes in the tree which is
constructed in 8. The only way to achieve this is that 8
somehow depends on the synthesized attributes of X, but
by definition of EDDP(p) all the synthesized attributes of
X depend on 4 and we have a cycle.

]



R X
X:=fXs) R
X — one
Xs:=1 X X.s
X—* two “\I
Xs5:=2 ’

Figure 15: The non-terminal attribute can’t be computed,
a cycle occurs if the extra dependency is added (dashed
arrow)

3.3 Well-definedness and bounded well-
definedness

If D, the previously mentioned dependency relation over
the attribute instances in the tree, contains never cycles
during attribute evaluation all the (non-terminal) attributes
can be computed.

Definition 3.13 An higher order attribute grammar is well-
defined if, for each labeled structure tree S corresponding
to a sentence in L(G) where parts derived by non-terminal
attributes are removed, all attributes are effectively com-
putable and there are only finite expansions of the tree T
and the relation D during attribute evaluation.

It is clear that if D never contains a cycle during attribute
evaluation, all the (non-terminal) attribute instances will be
computed. It is generally undecidable whether a given HAG
will have only finite expansions. For instance whether the
following grammar (Figure 16) is well-defined is undecid-
able.

R

R— X I
PA: X— A x
Ad:= itf...) |

then pX A

else pa l

pPX: A— X X
X:= pA |

pa: A— a A

Figure 16: Finite expansion is not guaranteed

The tree can grow indefinitely or stop after some expan-
sions, which depends on the behavior of the function f.

12

This behavior is generally not computable. So we need to
be sure that the number of expansions of the tree T and
the relation D is finite. A sufficient, but not necessary,
condition is given in the following lemma.

Lemma 3.2 If on every path in every structure tree a par-
ticular non-terminal attribute occurs at most once, there
will be a finite number of expansions of the labeled tree T
and the dependency relation D during attribute evaluation.

Proof The Attribute Evaluation Algorithm is activated start-
ing with a finite labeled tree. Every expansion costs one
non-terminal attribute. Suppose the starting finite labeled
tree meets the requirements of the above theorem and there
are infinite expansions of the labeled tree T and relation D.

Then it is necessary for a branch in the tree to become infi-
nite. So there will be infinitely many nodes in that branch,
but there are only a finite number of non-terminal attributes.
This leads to the observation that there must be a double
non-terminal attribute instance in that branch. This is in
contradiction with our lemma.

o

The above lemma looks harmless, but an effect of this
lemma is the following which we will not prove here. If a
HAG satisfies the above lemma, then the underlying context
free grammar is a special coupled sum of disjoint context
free grammars. Every non-terminal attribute turns out to be
the root symbol of a "non-recursive” separate context free
grammar.

Furthermore, if a non-terminal occurs twice on a path in
the structure tree, then the context free grammar is circular
and this is a decidable problem. It can be solved in time
polynomially depending on the size of the input grammar.

Theorem 3.2 A higher order attribute grammar HAG is
well defined if

® the HAG is complete

o for each labeled structure tree S corresponding to a
sentence in L(G) where parts derived by non-terminal
attributes are removed, no partial built tree contains
cycles in D using EDDP.,

® on every path in every structure tree a particular non-
terminal attribute occurs at most once

Proof It is clear that a well-defined HAG must be com-
plete. The second and third items guarantee that every (non-
terminal) attribute will be computed (see also Lemma 3.1)
and that there will be only a finite number of expansions
(see Lemma 3.2) of the labeled tree and the dependency
relation of the attribute instances.

o



Definition 3.14 Letp : Xo — X, ... X;... X, be a re-
cursive production in the sense that X; is derivable from
X;.

An_ higher order attribute grammar is bounded well-
defined if, for each labeled structure tree S correspond-
ing to a sentence in L(G) where parts derived by non-
terminal attributes are removed, all attributes are effec-
tively computable and each recursive productionp : Xy —
X,...X;... X, generates finite sentences.

A bounded well-defined higher order attribute grammar
gives us the power to define and evaluate recursive func-
tions. Finite expansion of the structure tree, however, is no
longer guaranteed. The following example computes the

faculty number.
Pr:R—F F.n := an integer > 0
PlI:F-TF F(1] :=if F[O].n =1 — P2

OF[0].n # 1 — PI
fi

F{1].n := F[0].n-1
F[0].r := F[1].r  F[O].n
P2 : F — done F[O].r:=1

We used the terms ‘attribute evaluation’ and *Attribute
Evaluation Algorithm’ to define whether an AG is well-
defined. Instead of using an algorithm we could have de-
fined a relation on labeled trees, indicating whether a non-
attributed labeled tree is well-defined. We used the algo-
rithm because from that it is easy to derive conditions by
which it can be checked whether a HAG is well-defined.

4 Ordered HAGs

In [Kastens 80] a condition is described for well-defined
attribute grammars (WAGs): The semantic rules of an
AGmwell—deﬁnedifmdoxﬂyifﬂmisnosenwnce
in the language with circularly dependent attributes. In
[Jazayeri 1975] it was proven that the deciding whether
an AG is well-defined is an exponential problem. In
[Kastens 80] ordered attribute grammars (OAGs) were de-
ﬁned,anattributedgrammarisorderedifforeachsymbol
a partial order over the associated attributes can be given,
such that in any context of the symbol the attributes are
evaluable in an order which includes that partial order. The
ordering property can be checked by an algorithm, which
depends polynomially in time on the size of the input gram-
mar. "Visit-sequences” are computed from the attribute de-
pendencies given by an OAG.

An ordered HAG is now characterized by the following
condition: A partial order on the defining attribute occur-
rences in a production p can be defined. It determines a
fixed sequence of computation for the defining attribute oc-
currences, applicable in any tree production p occurs in.
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Figure 17: The same part of a structure tree in a HAG and
the corresponding reduced AG

In this section a condition, using OAGs, is given in order
to check whether a HAG is ordered.

4.1 Deriving partial orders from AGs

To decide whether a HAG is ordered the HAG is trans-
formed into an AG and it is checked whether the AG is an
OAG. The derived partial orders on defining attribute oc-
currences in the OAG can be easily transformed to partial
orders on the defining occurrences of the HAG.

In the previous section (Lemma 3. 1) it was shown that the
EDDP ensured that every NTA could be computed. The
reduced AG of a HAG is now defined as follows:

Definition 4.1 Let H be a HAG. The reduced AG H’ is
the same as H except that all occurrences of NTA X in
auribution rules are replaced by new inherited attributes
X.atree. There were X is not a NTA the astribute X.atree
8ets a dummy value. Furthermore, all synthesized attributes
of previously NTAs X now contain the attribute X .atree in
the right-hand-side of their defining semantic Junction.

The transformation is demonstrated in Figure 17.

This definition ensures that all synthesized attributes of
NTAY(X.au'eeinﬂlereducedAG)inmeHAGcanbe
only computed after NTA X' (X.atree in the reduced AG)
is computed.

Theorem 4.1 A HAG is ordered if the corresponding re-
duced AG is an OAG.

Proof Map the occurrences of X.atree in the partial orders
of the reduced AG derived from a HAG to NTAs X. The
result are partial orders for the HAG in the sense that the
HAG is ordered.
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Figure 18: The lowest tree shows a cycle in the attribute
dependencies as it is only possible in the reduced AG

o

The reduced AG of a HAG is somewhat pessimistic. Some-
timesaHAGisordwedalmoughthereducedAGis not an
OAG, as is shown in Figure 18.

The class of OAGs is a sufficiently large class for defining
programming languages, and it is expected that the above
described way to derive evaluation orders for HAGS pro-
vides a large enough class of HAGs.

4.2 Visit-sequences for a HAG

The difference with visit-sequences as they are defined by
[Kastens 80] for an OAG is that in a HAG the instruc-
tion set is expanded by an instruction to evaluate a non-
terminal attribute and expand the labeled tree at the corre-
sponding virtual non-terminal. The following introduction
to visit-sequences for a HAG is almost literally taken from
[Kastens 80].

The evaluation order is the base for the construction of a
flexible and efficient attribute evaluation algorithm. It is
closely adapted to the particular attribute dependencies of
the AG. The principle is demonstrated here. Assume that
an instance of X is derived by

S = uYy —, wwXzy —, vvwzy = 5.
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Then the corresponding part of the structure tree is

\ rule p

Y

u X y
/ \ rule q
v w X

An attribute evaluation algorithm traverses the structure tree
using the operations "move down to a descendant node”
(e.g. from K, to K.) or "move up to the ancestor node”
(e.g. from K to K,). During a visit of node K, some
attributes of AF(p) are evaluated according to semantic
functions, if p is applied at K,. In general several visits
to each node are needed until all attributes are evaluated.
Alocalu'eewalknﬂcisassociatedtoeachp. It is a se-
quence of four types of moves: move up to the ancestor,
move down to a certain descendant, evaluate a certain at-
tribute and evaluate followed by expansion of the labeled
tree by the value of a certain non-terminal attribute. The
last instruction is specific for a HAG.

Visit-sequences for a HAG can be easily derived from visit-
sequences of the corresponding reduced AG. In an OAG
the visit-sequences are derived from the evaluation order
on the defining attribute occurrences. A description of a
visit-sequence in an OAG is given, see [Kastens 80] for
a precise definition. The visit-sequence of a production p
in an AG will be denoted as VS(p) and in the HAG as
HVS(p).

Definition 4.2 Each visit-sequence VS(p) associated to a
rule p € P in an AG is a linearly ordered relation ove
defining attribute occurrences and visits. '

VS(p) € AV(p) x AV (p), AV (p) = AF(p)U V(p)
V() = {nesl0<i<np,1 <K <nvyx,X = X:}
vg,0 denotes the k-th ancestor visit, v ¢, i > 0 denotes the
k-th visit of the descendant X;. For the definition of VS (r)

see [Kastens 80]. We now definc the HVS(p) in terms of
the VS(p).

Definition 4.3 Each visit-sequence HVS(p) associated to a
rule p € P in a HAG is a linearly ordered relation over
defining antribute occurrences, visits and expansions.

HVS(p) C HAV(p) x HAV(p), HAV(p) = AV (p) U VE(p)

VE(p) = {e; | 1 < i < np}
where AV(p) is defined as in the previous definition.

HVS(p) = {g(7) — 9(8) | (v — 6) € VS(p)}



with g : AV(p) — HAV(p) defined as

(a) = € if ais of the form X;.atree
Y= a otherwise

e; denotes the computation of the non-terminal attribute X i
and the expansion of the labeled tree at X; with the tree
computed in X;.

Note that a descendant of a virtual non-terminal only can
be visited after the virtual non-terminal is instantiated. The
visit-sequences in the OAG are defined in such a way that
during a visit to a node one or more synthesized attributes
are computed. Because all synthesized attributes of a virtual
non-terminal X depend by definition on the non-terminal
attribute, the corresponding attribute X.atree in the OAG
will be first computed; after that the first visit to a descen-
dent of the instantiated non-terminal will be made.

In [Kastens 80] it is proved that the check and the com-
putation of the visit-sequences VS(p) for an OAG depends
polynomially in time on the size of the input grammar, The
mapping from the HAG to the reduced AG and the com-
putation of the visit-sequences HVS (p) depend also poly-
nomially in time on the size of the input grammar. So
the subclass of well-defined HAGs derived by computation
of the reduced AG, analyzing whether the reduced AG is
an OAG, computation of the visit-sequences for an HAG
and checking whether there are no infinite expansions (see
Lemma 3.2) can be checked and computed in time polyno-
mially depending on the size of the input grammar. Fur-
thermore an efficient and easy to implement algorithm, as

for OAGs, based on visit-sequences can be used to evaluate
the attributes in a HAG.

S Conclusion and final remarks

Higher order attribute grammars were presented. Ithas been
shown how HAGs can be used 10 describe multi-pass com-
pilers. A method to derive evaluation orders was presented,
the algorithm computing the method depending polynomi-
ally on the size of the input grammar. An efficient and
easy to implement algorithm for attribute evaluation based
on visit-sequences was derived by using OAGs.

Currently parallel evaluation of attributed trees is a topic of
research at Utrecht University. Given the parallel evalua-
tion of attributed structure trees and higher order attributed
trees, parallel evaluation within semantic functions can be
achieved too. Semantic functions can be defined by means
of structured trees where the arguments of the semantic
function are definitions for the inherited attributes of the
corresponding attributed tree and the result of the function
is defined as a synthesized attribute of the corresponding at-
tributed tree. So attributed trees and the semantic functions
occurring in them are merged into a single formalism and
may thus both be evaluated in parallel. Semantic functions
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defined by attributed structure trees are defined in a some-
what different way by [Reps and Teitelbaum 1987, p. 47]
and called attribution expressions.

Furthermore, the HAG-formalism will be used as a basis
for the development of a program transformation system,
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