Distributed hierarchical routing

P.J.A. Lentfert, A.H. Uittenbogaard, S.D. Swierstra
and G. Tel

RUU-CS-89-5
March 1989

o g Rijksuniversiteit Utrecht

& %
E%%ﬁ%’é Vakgroep informatica
¢ v
N Padualaan 14 3584 CH Utrecht
Corr. adres: Postbus 80.089, 3508 TB Utrecht

Telefoon 030-531454
The Netherlands

Distributed hierarchical routing

P.J.A. Lentfert, A.H. Uittenbogaard, S.D. Swierstra and G. Tel

Technical Report RUU-CS-89-5
March 1989

Department of Computer Science
University of Utrecht
P.O.Box 80.089, 3508 TB Utrecht
The Netherlands

Distributed Hierarchical Routing

P.J.A. Lentfert, A.H. Uittenbogaard, S.D. Swierstra, G. Tel
Department of Computer Science, University of Utrecht
P.O.Bozx 80.089, 3508 TB Utrecht, The Netherlands

Abstract

In this report a partitioning method and associated distributed routing
algorithm on hierarchically divided networks are presented. This algorithm is
based on a newly defined metric: the hierarchical distance. Important features
of the algorithm are:

o Absence of centralized control: The algorithm is fully distributed, i.e., no
node has special information and all nodes execute the same algorithm.
The absence of essential components, whose malfunctioning would ren-
der the network useless, implies that the network is more reliable.

o Compact routing tables: As a result of hierarchically dividing the net-
work, the size of routing tables remains small. The route, determined
with these tables, along which messages travel will not always be the
shortest path between source and destination. However, if the hierarchi-
cal division satisfies reasonable assumptions, the length of a chosen path
does not differ by more than a constant factor from the shortest path.

® Dynamical update of routing tables: A distributed insertion algorithm
is presented with which nodes recompute their routing tables after the
coming up of a link. The insert algorithm does not require special nodes
that possess global information.

o Locality of changes: As a result of the hierarchical division and of the
hierarchical distance upon which information in routing tables is based,
changes in the network topology only affect routing tables of nodes
nearby. No node outside a specific area around a topology change par-
ticipates in the update algorithm.

o FErtensibility: As a result of the locality of updates, networks can become
very large without excessive communication overhead for keeping routing
tables up-to-date.

1 Introduction

In every network the routing problem arises: a computer on location X in the net-
work that intends to communicate with a computer on location Y somewhere else

1

in the network, must determine a route to Y for its messages to proceed along.
Many methods have been described, such as centralized-, distributed and hierarchi-
cal routing (see, for examples, [7, 8, 10]).

In a centralized routing there is a Network Routing Centre. All computers ask this
specialized computer for information when they seek a route to some destination.
The disadvantages of this method are obvious: success or failure of the routing
depends on the NRC’s functioning; since all the requests for routing information
and answers from the NRC must travel over a limited number of links near the
NRC, these links can become saturated; etc.

In a network using a distributed routing method, the computers have all infor-
mation at their disposal necessary to determine a route themselves. A disadvantage
of many distributed routing algorithms is that a computer must hold a lot of in-
formation to guarantee that every message sent, arrives within finite time at its
destination. Another drawback of this method is the necessity to exchange much
information by many computers after a change in the network topology (such as
failure or coming-up of a computer or link). The exchange of this information and
the actions taken by the computers, in response, (such as the determination of a
new route to some destination) might take a lot of time. Moreover, distributed al-
gorithms are hard to understand, and even harder to prove correct (cf., [3]). Theory
about distributed algorithms and their correctness proofs is beginning to develop
(cf., [1, 11]).

By using hierarchical routing the amount of information per node can be seri-
ously reduced. A network in which routing is managed in a hierarchical way, is split
up in different domains. These domains are connected through special computers,
often called gateways. When a computer wants to send a message to some computer
in a different domain, it must know through which gateway(s) the domain can be
reached. By splitting the domains the same way the network is divided, the amount
of information a computer must hold can be seriously reduced (see, [5]). A disadvan-
tage of the method is the use of gateways. As with the use of a NRC in centralized
routing, the use of gateways does have serious drawbacks. Another consequence
of hierarchic routing is that because computers have no complete knowledge of the
network topology, the routes along which messages are routed are usually not the
shortest paths between source and destination.

In this report a new routing method is described: distributed hierarchical routing.
This method is, as the name already suggests, a combination of distributed and
hierarchical routing. This combination adopts advantages of previous methods,
while some of the disadvantages are avoided. The result is a method in which all
computers have an equal status, that is, they posses the same kind of information
and execute the same routing algorithm. This is the distributed part. By dividing
the network hierarchically in domains, sub-domains, sub-sub-domains, etc. it is not
necessary to hold large (complete) routing tables.

Other distributed hierarchical routing algorithms have been described (cf., [2])
and analysed (cf., [4, 5]). What distinguishes our algorithm from these, is that
it is based upon another distance metric. The newly defined hierarchical distance

between computers in the network used in this report takes into account the hier-
archical division of the network. This means that details of parts of a path that are
inside domains of which the first computer on the path has no internal knowledge do
not count in the value of the hierarchical distance to the last computer on the path.
This contrasts with the methods in [2] and [5] in which distances are expressed in
terms of the least number of hops between two computers.

Using the hierarchical distance has the following advantage. When minor changes
in the topology of the network occur, such as the coming up of a link between two
computers in the same domain, this does not affect the value of path-lengths between
computers outside the domain, even if the paths lead through the domain. Therefore,
only nodes in a small area around the change have to update their routing tables.
In other words, the effect of a topology change is only local. Again, we emphasize
that although using the hierarchical distance has advantages, it does not result in
optimal routes.

In Section 2 the routing algorithm is presented. In Section 3 the insertion algo-
rithm is presented. In Section 4 the problems introduced when deletions occur are
described. Section 5 contains some remarks about current research.

2 The Routing Method

2.1 Introduction

In this section, a distributed routing algorithm on hierarchically divided networks is
presented. The algorithm results in loop-free paths from source to destination. The
method described is based on a newly defined metric, which is called hierarchical
distance. This metric is based on the well-known distance metric in "flat” (i.e., non-
hierarchical) graphs. The hierarchical distance between two nodes in the network
is a tuple of distances, for every level in the hierarchy the length of a path between
domains on that level. For reasons to be explained the hierarchical distance is not
symmetric, i.e., the hierarchical distance from node a to node b is not necessarily
the same as that from node b to a. Correctness of the algorithm follows from the
fact that each time a message is relayed to a next node, the hierarchical distance to
its destination decreases.

In section 2.2 the model upon which the routing algorithm is defined is described.
In section 2.3 the routing method is described. In section 2.4 it is described how
the method can be applied to networks in which domains are allowed to overlap.

2.2 Model

This section introduces the kind of networks the routing algorithm is assumed to be
used on. Furthermore, a structure on the networks, namely the hierarchical division,
is defined. Based on this structure some basic definitions are presented, which will
be used in the definition of hierarchical distance in the next section.

2.2.1 Network and Division

The routing algorithm is a distributed algorithm. This means that the networks it is
intended for will have to satisfy some properties. In the first place, every computer
is supposed to have local memory and computing capacity. Next, no computer
has (direct) access to another computer’s memory. Finally, computers cooperate
by exchanging messages over links connecting them. These links are fault-free and
have a first-in-first-out (FIFO) behaviour. The former (fault-free) means that any
message sent by a computer will be correctly received by the computer at the other
side within finite time. The latter (FIFO) means that messages are received in the
order in which they are sent.

A network is identified with a bidirectional weighted graph, the network graph.
The computers correspond to the nodes of this graph, the communication links
between the computers correspond to the links in this graph. The set of links of the
network graph is denoted by the identifier E. The weights of the links reflect some
cost associated with the links, e.g., the delay over the link. For routing, links with
low weights are preferred to links with high weights.

The networks just described are assumed to be hierarchically divided. This
means that computers which, for some reason, belong together are grouped into
domains. These domains, in turn, are grouped into superdomains, etc. Opposite
to this bottom-up description, in this report a hierarchical division is interpreted in
a top-down way: the network is a superdomain, divided into several subdomains,
which in turn are divided into subsubdomains, etc. In this view, nodes are the
smallest possible domains.

Domains are allowed to overlap, i.e., domains may share (parts of) subdomains.
However, the following description assumes non-overlapping domains. Later on, it
is described how the more general (overlapping) divisions can be made to fit this
description.

The division of a network is modelled as a tree, called the division tree. The
network domain corresponds to the root of this tree. The subdomains of a domain
correspond to sons of the node corresponding to the domain. The leaves of the
division tree correspond to the computers in the network.

On the leaves of the division tree the network graph is imposed: two leaves are
connected by a link in this graph if and only if they represent computers that are
directly connected in the network. Note that the links of this imposed network
graph are not part of the division tree (which would no longer be a tree if this were
the case). Note that every subtree of the division tree induces a subgraph of the
network graph.

One more, rather strong, restriction to the division of networks is made in this
report, namely that divisions are hierarchically connected. What is meant by this
is formally defined in Section 2.2.3.

The following convention will be adopted throughout this report. Leaves in the
division tree are denoted by small letters (a, b, ...). A link in E between the leaves
a and b is denoted by {a,b}. Arbitrary nodes in the division tree (not necessarily

leaves) are denoted by capitals (4, B, ...).

2.2.2 Basic Definitions

Before embarking on defining new concepts related to the routing method, first the
terminology and notations used for some well-known concepts with regard to trees

are described. This section then concludes with a translation of these concepts in
terms of the network.

Definition 2.1 (Son of, Father of) When node A is a son of B, and B is the
father of A.

O

Note, that if A is a son of B, then A # B. The transitive closure of the
son/father-of relation is defined next.

Definition 2.2 (Descendant of, Ancestor of) Node A is a descendant of B,
and B is an ancestor of A, if A is a son of B or if A is a descendant of a son
of B.

O

Definition 2.3 (Brother of) If A and B (A # B) are sons of the same node, they
are called brothers of each other.

O

Definition 2.4 (Neighbour of) Node A is a neighbour ofnode B, if B is a brother
of A, and if there are leaves a and b in the subtrees below A and B respectively (or
if A= a and B = b), such that {a,b} is a link in E.

O

Nodes in the division tree are uniquely defined by their paths.

Definition 2.5 (Treepath) The treepath to a node in the division tree is the list
of nodes on the path from the root to that node.
O

Note that the treepath to a node is a prefix of the treepath to all of its descendants.

Definition 2.6 (Level) The level of a node is the length of the treepath to the
node minus one. The level of node A is denoted by |A|. The level of the division
tree is the maximum of the levels of all leaves. We denote the level of the division
tree by v.

O

The root of the network tree has level 0, and the sons of a node with level 7 have
level ¢ + 1.

Everything defined above in terms of a tree, can be interpreted as modelling
relations and concepts with regard to a division in a network. Because of the way
in which the division tree is defined, it is clear that the counterpart of the son-of
relation is the subdomain-of relation and that the father-of relation corresponds to
the superdomain-of relation. The transitive closure of the subdomain-of relation
is called the contained-in relation, and of superdomain-of: contains. Domains are
called brothers if they are subdomains of the same domain. Domains are called
neighbours if they contain nodes that are connected by a link. The counterpart of
a treepath in a division tree is called the address of a domain. Domains, especially
nodes, in the network graph, are uniquely determined by their address, and every
domain has exactly one address. (This is no longer the case if overlapping of domains
is allowed.)

The level of a domain indicates its depth in the division. The domain containing
the whole network has level zero, whereas the individual nodes have higher orders.
When a domain has level ¢, it will be refered to as a sub‘-domain.

2.2.3 Special Definitions

In this section the definitions of new concepts related to the routing algorithm are
introduced.

Definition 2.7 (DIFF) For nodes A and B (A 76 B, A not a descendant of B),
DIFF(A, B) is the first node on the treepath to B that is not on the treepath to A.
If Ais a descendant of B, DIFF(A, B) is B.

O

If A and B are not descendants of each other, e.g. if A is a node and B is a domain
not containing A, several remarks can be made with regard to this definition. In
the first place, DIFF(A, B) is a brother of DIFF(B, A), i.e., DIFF is not symmetric
in its arguments. Furthermore, every ancestor of DIFF(A, B) is an ancestor of
both A and B, whereas no descendant of DIFF(A, B) is an ancestor of A. Finally,
| DIFF (A, B)| = |DIFF(B, A)|.

Definition 2.8 (Visible to) Node A is visible to node B if A is a brother of B or
if A is a brother of an ancestor of B.
0O

Note that if A and B are not descendants of each other DIFF(A, B) is visible to A
(but not to B).

This visibility concept is very important for the rest of this report. Note that
when a domain is visible to a node (in the network graph) none of the domains
contained in it are. Furthermore, when a domain is visible to a node, the domain
does not contain the node, but the superdomain of the domain does. The routing

algorithm is now based on the fact that every node keeps a table in which informa-
tion is stored about how to reach its visible domains. When a message has to be
forwarded to a node, it is determined (by inspecting the node’s address) in which
visible domain it is contained (there exists exactly one such domain!). The message
will then be forwarded according to the routing information for that visible domain.
Storing only one item of information for a visible domain and not for every single
node in it, reduces the size of routing tables considerably. Kleinrock and Kamoun
([5]) showed that under certain assumptions the size of the tables for nodes in a hier-
archically divided network containing N nodes can be reduced to O(log N) entries.
This reduction is important when N is very large.
Routing deals with paths, so next paths are defined.

Definition 2.9 (Path) A path from leaf a to leaf b in the division tree is a list

(ao, ..., a1) of leaves in the division tree, where ag = a, a; = b, i # j = a; # a; and
{a;,a.-+1} € E.
0

Since a hierarchical routing algorithm is being described, now a definition of a
path that applies to any level of the division is given.

Definition 2.10 (Path’, Length) A path’ from node A to node B in the division
tree, where A and B have level i and are brothers, is a list (Ao, ..., A;) with A = A,
A1 = B, and A; is a neighbour of Ajy; (0 < j <1—1). The length of this path® is
defined as

-1
min{zw(ai7ai+l)lai € Aj,aiy1 € Aia, {ai’ai+1} € E},
=1
with w(a;, a;;1) the weight of the link {a;,a;4;} and € the descendant-of relation.
d

Now it is possible to define when a division of a network is hierarchically con-
nected.

Definition 2.11 (Hierarchically Connected) A division is hierarchically con-
nected if between every pair of brothers on level i a path’ exists.
|

As mentioned before, all divisions are assumed to be hierarchically connected.

Just as the definition of paths was extended to that of path’s, now the definition
of link weights is extended. In a flat (i.e., not hierarchically divided) network, links
are assigned costs reflecting, for example, the delay over the link. In addition to this
value, a hierarchical link weight also reflects the level of the neighbouring domains
it connects. If for leaves a and b, |DIFF(a,b)| = ¢ (i.e., @ and b are in the same
sub’~!-domain, but in different sub*-domains), from the hierarchical link weight of
link {a, b} this level ¢ can be derived. A link between two leaves in one sub‘-domain,
therefore, has another hierarchical weight than a link between two leaves in different

7

sub‘-domains (even if the costs of the links are equal). This enables us to ensure that
paths used for routing between leaves within the same domain do not contain leaves
outside the domain (which, by the assumption of hierarchically connectedness, is
always possible). We will arrive at this later on.

The hierarchical link weight is defined as a (v + 1)-tuple, with one non-zero
element that reflects the cost of the link. The position of this non-zero element in
the tuple reflects the level of the domains it connects. This is formalized in the
following definition. (By 0; we mean 0,...,0.)

baneunt
1 times
Definition 2.12 (Hierarchical Link Weight) Let {a,b} € E have weight w.
Let 6 = |DIFF(a,b)|. The hierarchical link weight of link {a,b} is defined as the
following (v + 1)-tuple:
HW({a, b}) = (65, w,ﬁ,,_a).

O

Hierarchical link weights are ordered lexicographically.

Since "internal details” of subtrees not containing a specific leaf are made ”in-
visible” to that leaf, it is straightforward to also hide for a leaf irrelevant details of
paths starting at it. We assume that parts of paths that lead through subtrees of
which a leaf has no internal knowledge do not contribute to the hierarchical length.
This hiding of details is established by defining the hierarchical length of a path as
a (v + 1)-tuple in which the i-th element is the length of a path’ between brothers

on level ¢ visible to the leaf. Moreover, these path’s must all be in the direction of
the destination, i.e., the end-point of the path.

Before the hierarchical path length is formally defined, first the operator ”@;”,
used in that definition, is defined.

Definition 2.13 (Hierarchical Length Addition) Let the length of a path P
from a to b be (do, . ..,d,) and let the length of a path P’ from b to c be (dj, ..., d.).
Then the length of the path P.P’ from a to c is

(dos ..., du)®i(dy, - ..,d,) = (dy,...,di_y,di+di,diss, . ..,d,), where i = | DIFF(a,b)|.

O

Definition 2.14 (Hierarchical Path Length) Let P = (ao,...,q;) be a path in
the division tree, and let D; = HW ({ai,ai41}) and 6; = |DIFF(a;, a;41)| (0<i<
I —1). The hierarchical length of P is defined as:

LEN(P) = (Do®s,(D1®s, (- - - ®8,_,(Di-1®4,_,(0.)) - . .)))-

Just as in a flat network, the hierarchical length of a path can be determined
by (recursively) counting backwards from destination to source: the (hierarchical)
length of a path from a node to itself is "zero”, the (hierarchical) length of a path
(a0, a1,...,a) is the (hierarchical) weight of the link {ao,a;} ”plus” the (hierarchi-
cal) length of the path (ay,...,q).

As mentioned before, the hierarchical length of a path is a (v + 1)-tuple in
which the i-th element corresponds to the length of a path’. However, it has been
argued that only the lengths of path’s between visible nodes are relevant to the
source. This is exactly what is realized by the special sum-operator @; used in
the definition. Suppose the hierarchical length of a path from node b to node c is
L = (dy,...,d,) and suppose node a is connected to node b by a link with hierarchical
weight (0;,w,0,_;). This implies that |DIFF(a,b)| = i, so the ancestor of b with
level i (say B') is visible to a. Therefore, details about path’s for j > i refer to
subtrees under B* visible to b but not to a. Adding (0;,w,0,-;) to L renders the
last v — ¢ elements of the tuple zero, thereby hiding these details for a.

Now that the hierarchical length of a specific path is defined, we can continue
defining the hierarchical distance between two leaves in the division tree. As in the
flat definition, the hierarchical distance between two nodes is the minimum of the
hierarchical length of all possible paths. Note that the definition of hierarchical path
length is not symmetric, i.e., the hierarchical length of a path from a to b is not
necessarily the same as the hierarchical length of the reverse path from b to a. This
is because the hierarchical lengths refer to details of domains in which the leaves
are contained, whereas a and b are not contained in the same sub‘-domain for every
t. Because the hierarchical length is not symmetric, the hierarchic distance will
not be symmetric either. Therefore, the hierarchical distance will always be defined

between a source node a and a destination node b; the hierarchical distance from a
to b.

Definition 2.15 (Hierarchical Distance) Let a and b be two leaves in the divi-
sion tree. The hierarchical distance from a to b is defined as:

DIST(a,b) = min{ LEN(P)|P path from a to b},

where "min” specifies the lexicographic minimum.
O

Theorem 2.1 For all leaves a, b and ¢, with i = | DIFF(a, b)|:
DIST(a,c) < DIST(a,b) &; DIST(b,c).

Proof: Direct from the definitions of @®; and DIST.
O

Theorem 2.2 For all leaves a and ¢ in the division tree:

DIST(a,c) = min{ HW ({a, b}) ®; DIST(b,c)|{a,b} € E Ai = |DIFF(a,b)|}.

9

Proof: From Theorem 2.1 and the definitions of DIST and LEN.
O

Theorem 2.3 If node D in the division tree is visible to leaf a, and if b and c are
descendants of D, then:

DIST(a,b) = DIST(a,c).

Proof: By hierarchically connectedness, DIST(b,c) = (Oipj41, - - -), and DIST(a,b) =
Oy, 1,...), 1 > 0 (because DIFF(a,b) = D). Therefore, DIST (a, b)®p;DIST(b,c) =
DIST(a,b). Using Theorem 2.1:

DIST(a,c) < DIST(a,b) @ p| DIST (b, c) = DIST(a, b).

Equivalently,
DIST(a,b) < DIST(a,c).

The theorem follows from the above two inequalities.
O

From this theorem it is justified to refer to the hierarchical distance from a leaf
to a node. (If node a is contained in domain D, the hierarchical distance of a to D
can be defined to be (0,).) This will be used in the the routing method.

2.3 Routing Method
2.3.1 Introduction

The routing problem for node a in the network graph consists for any (reachable)
destination c of the determination of an outgoing link {a,b}, such that the path,
beginning with (a, b), that is recursively built (in b) ends up in c. A routing algorithm
is a distributed algorithm, executed by every node in the network to obtain a solution
of an instance of the routing problem. When a computer in a network has to send
messages to a computer somewhere else in the network, it sends these messages
over the link determined by the routing algorithm (for that specific destination).
Assuming that the message contains the address of its destination, the receiving
neighbour will execute its share of the routing algorithm to relay the message one
step further.

It is essential that routes are loop-free. Furthermore, it is desirable that the paths
along which messages are routed are optimal according to some qualitative criterion.
Often used criteria include minimum number of hops and minimum delay. Our
criterion is to minimize the hierarchical path length. It is obvious that this does not
guarantee that the total weight of the path is minimal. This shortcoming, however,
is inherent in the hierarchical nature of the algorithm. Consider, for example, a
situation in which all links have weight 1, and consider a source node that has
connections to several nodes in a domain that is visible to it. This source node has
in its routing table only information related to the visible domain as a whole, i.e., no
distinction is made between the nodes in it. Messages to be sent to any node in the

10

visible domain will be treated alike, so the link returned by the routing algorithm
will, as long as routing information does not change, always be the same. Thus,
the path a message travels along towards the node incident with another link will
not be optimal. That is, the number of hops is not minimal, for the node could be
reached in one hop, but will not be reached in less than two hops.

Using the hierarchical path length as a criterion upon which to base routing
decisions thus cannot guarantee that shortest paths are found. However, we have
the strong feeling that when the network is divided according to several reasonable
assumptions (for example regarding the diameter of domains) the found paths will
not differ by more than a constant factor from the optimal path. This issue is dealt
with in a separate report.

2.3.2 Algorithm

Having already defined hierarchical distances, the description of the routing method
is straightforward. Nodes hold routing tables in which there is an entry with infor-
mation for every domain that is visible to them. This entry consists of two fields:
the LEN-field, containing the hierarchical distance to that domain, and the VIA-
field, containing the first link on one of the shortest path(s). This use of hierarchical
distance from a node to a domain was justified by Theorem 2.2. The routing al-
gorithm executed by a node consists simply of executing the following two actions:
determine in which visible domain the destination is contained, and use the routing
table to determine over which link to relay the message towards that domain.

An intuitive description which appeals more to the general ideas behind the
hierarchical routing and to the hierarchical distance concept is presented after the
formal definition of routing tables and algorithm.

Definition 2.16 (Routing Table) The routing table RT, of node s in the network
graph contains entries for all domains D that are visible to s:

RT,(D) = (via,len),

where len is the hierarchical distance from s to D, and via is the first link on a path
to D with hierarchical length len.

The first entry of this record is called the VIA-field, the second entry LEN-field.
O

The LEN-field is not used in the routing algorithm. The reason for storing it
nevertheless, is that it is used when computing routing tables in the initialization
phase. Also when, as a consequence of topology changes, routing tables have to be
updated, the LEN-field is used. The issues of initialization and updating of routing
tables are treated in Section 3. In the routing algorithm described below, the index

s added to procedure names indicates that these procedures are executed by node
8.

11

The function of procedure MAIN, is to interface between the part of a node that
performs the receiving of messages and the actual routing algorithm.

Function FIRSTDIFF returns the ancestor of the destination that is visible to s.
This is implemented by inspecting the destination’s address and comparing it with
the address of s. The shortest prefix of the destination’s address that is not a prefix
of the address of s is the address of that ancestor.

ROUTING ALGORITHM for node s.

MAIN, = forever
receive message m with destination d;
if (s =d)
then accept m
else send m over the link determined by ROUTE,(d)
fi

reverof

ROUTE,(d) = RT,(FIRSTDIFF(a,,a4)). VIA
where a, is the address of s and
aq is the address of d

FIRSTDIFF(a,,a4) = hd(aq) : if (hd(a,) = hd(ag))
then FIRSTDIFF(ti(a,), t!(aq))
else ()
fi

O

It can be easily verified that the algorithm is correct, as is stated in the following
theorem.

Theorem 2.4 When routing is performed on a hierarchically divided network with

routing tables as described and using the above algorithm, any message arrives at its
destination.

Proof: From Theorem 2.1 it follows, that every time the message is sent over a link,
the hierarchical distance to the destination decreases. Since hierarchical distances
are bounded from below (by (0,)), the theorem follows.

O

2.3.3 Informal Approach

In this section the routing method is informally described. The source node in
which a message resides is denoted by s, and the destination node is denoted by d.
The address of s is denoted by (Sy,...,S,) and the address of d by (Do, .. . D).
Furthermore, | DIFF(s,d)| is abbreviated to 6,80 D; = S; for 0 <i < § — 1, and Dj;

12

and S5 are brothers (both are contained in Ds_1). After having executed the routing
algorithm, node s sends the message over link ! determined by RT,(D;). VIA.

By definition, there exists a path beginning with ! and whose hierarchical weight
equals DIST (s, d). Recall the way this hierarchical distance is defined (Section 2.2.3).
Every path from d to s is examined and a link on the path between two neighbouring
sub’-domains contributes to the hierarchical distance of it: its weight is added to the
i-th element of the tuple and values of elements corresponding to higher hierarchical
levels are removed (by making them zero).

Since the hierarchical length of a path that is completely inside D;s_; has at
least (6 — 1) zeroes in front, it follows, that any path completely inside Ds_; is
(lexicographically) shorter than any path containing also nodes outside Ds_;. Thus,
DIST(s,d) is the hierarchical length of a path that is completely inside Ds_;. By
hierarchically connectedness of the division, such a path exists.

Now, consider DIST(s,d) more closely. As can be seen from the above de-
scription, the element on the é-th position indicates the length of a shortest path®
starting with S5 and ending with Ds. Let Bs be the neighbour of S5 on the path.
On ”adding” the link weight of the link on the path from s to d between S5 and B;,
all elements on positions > § + 1 of the hierarchical length determined thus far are
made zero. Therefore, the values on those positions in DIST(s,d) are determined
by lengths of path’s inside S5. For example, the (6 4+ 1)-st element in DIST(s,d)
is the length of a path®*! from Ss,; to D’syy, where D’s, is the subdomain of S
containing a node connected to a node in B;.

Recursively we find that the j-th element of DIST (s, d) is the length of a path?
within S;_; from S; towards B; where B; contains a node connected to a node in
the neighbouring sub’-domain on the shortest path’ to B;_;. In the example of
Figure 1 the following holds:

DIST(s,d) = (0,1,2,3)
= (0,length shortest path from S5 to Ds,
length shortest path from S5y, to D'syq,
length shortest path from s to D's,,).

Having pointed this out, the routing decision s takes (i.e., route over link /) can
be considered as a short-cut of the following chain of reasoning. To reach node d, the
message has to first reach Ds; once it has arrived in that domain, it will be directed
further onwards to d. To reach Dj, the message must hop from sub®-domain S5 to
Ds along a shortest path®. Therefore, it should be directed to the neighbour of S5
on this path®. In order to reach this neighbour, the message must be routed along
a shortest path®*! from Sj;, towards a sub®!-domain of S5 in which there is a
connection to the neighbour. In order to reach this subdomain it must hop from
sub®*!-domain Ss;; to that subdomain. Continuing this way, ultimately s finds that
it must send the message to a neighbour node. The link to this node now, is the
one stored in RT,(Ds).

13

Figure 1: Example division

2.4 Unravelling

So far, it has been assumed that divisions are such that domains do not overlap.
This allows us to model a division as a tree. Since in this division tree every node
has exactly one treepath assigned to it, the set of domains that are visible to a
node is uniquely determined. This property is used in the routing algorithm, since
the information a node keeps in its routing table is defined with respect to this set
of visible domains. In this section we describe the refinements to be made when
overlapping domains are allowed.

We define overlapping of domains by a domain being a subdomain of several
superdomains. This cannot be modelled by a tree, since a node in a tree cannot
have several fathers. A division in which domains overlap can be modelled by a
DAG, a directed acyclic graph, which is called the division DAG. As before, it is
assumed that there is a network domain that contains all other domains. Therefore,
every DAG in which there is exactly one "root” is the division DAG of a division.

Recall from the definition that a node is visible to another node if it is a brother
of an ancestor of the node. Visibility, therefore, is very much determined by the
path in the DAG to a node. If a node has two paths to it (which, in a DAG,
is possible), it has two sets of ancestors, and thus two sets of visible nodes. We
conclude that visibility depends on the "DAG-path” under consideration and the
definition of visibility has to be refined to: visible relative to a DAG-path.

In terms of the network this translates to the following: depending on the address

14

of a node, the node has to keep different information (since the set of domains visible
to it depends on this address). Consider a node s that is part of two domains S;
an S. Than s has (at least) two addresses: a;, (indicating that s is in S;) and a,,
(indicating that s is in S;). Every subdomain in S is visible to every node in i,
except the subdomain containing the node. The same holds for subdomains in Sy;
these are only visible to nodes in S;. Therefore, if s acts under the alias ay,, it has to
keep information about subdomains of S;. But this information it should not keep
if it acts under the alias a;,. Equivalently, acting as as,, it has to keep information
about subdomains of S;, which it does not keep acting as ay,.

As this example suggests, the information a node possesses, and the routing
decisions it takes based upon this information, vary upon the address in use of the
node. Once this is understood, it is but a small step to the following crucial remark.
Instead of considering a node as an entity with different addresses whose actions are
based upon the address in use, a node can be considered as being built up of several
independent processes; one for each address. These processes can be considered
as virtual nodes with only one address. Since virtual nodes in reality are part of
one physical node it is reasonable to assume that they are connected to each other
by means of virtual links. Two physical nodes connnected by a physical link, can
thus be viewed as two sets of virtual nodes, interconnected by a set of virtual links
(which, when implemented, are multiplexed over the physical link). This process of

regarding nodes with multiple addresses as sets of virtual nodes, is called unravelling
of the division.

Definition 2.17 (DAG-Unravelling) Unravelling DAG D, consists of repeatedly
applying the following transformations to D until D is a tree:

1. Let A be a node in D with fathers By,...,B,, n > 1.
2. Let A;,..., An be copies of A pointing to copies of the subDAGs under A.

3. Change every link in D from B; to A into a link from B; to 4; (1 <i < n).

The implications of unravelling on the network graph have been described above,
the following definition formalizes things a bit.

Definition 2.18 (Network-Unravelling) Suppose a network graph with edge set
E is imposed on the leaves of a division DAG D. Unravelling the network graph is
the result of unravelling D and, wherever in that process copies are made of a leaf
a, extending F as follows:

1. For every {a,b} € E:

15

¢ remove {a,b} from E,

o for every copy a; of a, add {a;,b} to E.

2. For every pair a;, a; of copies of a, add {a;,q;} to E.

O

We conclude that overlapping domains do not pose any problems in the face of
the routing method; if the network is considered to be unravelled, every node again
has exactly one address.

3 The Insertion Algorithm

3.1 Introduction

In this section a distributed algorithm is presented for every node to compute correct
routing tables after a link or domain has been added to the network. This algorithm
is an extension of Tajibnapis’ algorithm for flat networks (cf., [6, 9]) in case of
insertions.

In Section 3.2 the insertion algorithm is described. In Section 3.3 the algorithm
is proven to be correct, i.e., if the algorithm terminates, the resulting routing tables
are correct, and within finite time after the last update the algorithm terminates.

3.2 Insertions

The insertion of a domain can be interpreted as the coming up of the nodes that
are part of the inserted domain. The insertion of a node can be regarded as if the
node is connected to the rest of the network by the coming up of the links incident
with the node. Therefore, the insertion of domains can be considered as the coming
up of a number of links, namely all links that join two nodes of which at least one
is part of the domain. Since the network is also a domain, the initialization of the
network can be considered as a special case of the insertion of a domain after the

coming up of all links.
It is assumed that nodes incident with a link are able to detect the coming up
of links. This is modelled by the nodes receiving notifications of these events.

It is assumed that a notification is received before any other message
sent after the coming up of a link.

Next the insertion algorithm is presented. From Theorems 2.2 and 2.3, it follows
that the hierarchical distance from node @ to a visible domain D, DIST(a, D),
satisfies the following relation:

DIST(a, D) = min{ HW ({a, b}) &; DIST(b, DIFF (b, D))
|{a,b} € E Ai = |DIFF(a,b)|}. (1)

16

If node a is part of domain D, then RT, does not have an entry for D. In this
case, by definition RT,(D).LEN = (0,).

When in a computation the value of a table entry, that does not (yet) exist is
used, the value (55,) is used instead, where (55,) @; len = len @; (55,) = (0,), for
every 0 <: <.

Function dist,({a, b}, D) denotes the minimum, according to b, of the hierarchical
lengths of the paths starting with {a, b}, towards D (which is visible to a). If b is not
(vet) informed about how to reach D’ = DIFF (b, D), then RTy(D’).LEN = (3,).
In that case, D cannot be reached via link {a,b}, and we define dist,({a, b}, D) =
(35,). In other words:

dista({a, b}, D) = HW({a,b}) ®:; RTo(DIFF(b, D)).LEN, where i = |DIFF(a,b)|.

Relation 1 induces the following global algorithm for computing correct routing
tables:

for as long as routing tables change do:
for every node a do:
for every domain D visible to a do:
RTo(D).LEN := min{dist,({a, b}, D)|{a,b} € E}
RT,(D).VIA := {a,b}, such that: dist,({a,b}, D) = RT,(D).LEN
rof
rof
rof

This algorithm will be transformed into a distributed one. In order to keep RT,
up-to-date, a has to be informed about changes in b’s routing table, if {a, b} € E. To
accomplish this, every time RT,(D’).LEN changes, node b informs its neighbours
about this change. Also, if b finds out that a is a new neighbour, then b informs its
new neighbour about its routing table.

Neighbours of node b are informed about entries in RTj by update-messages. An
update-message has the form: < UPDATE;b; D’;len >>, where b is the address of
the sender, D’ is the key of the entry and len equals RTy(D').LEN at the moment
b sent the message. The last two fields of an update-message need not be filled in.
This is initially the case, because at that moment no table entries are available.

When link {a, b} has come up, a and b send each other their routing table entries
to be able to recompute their routing tables. If no entries are available in RT,, a
sends an update-message containing only its address.

When a receives an update-message from b, the information in it is processed
in two phases. Both phases consist of the execution of function PROCESSINFO,.
This function has three formal parameters: {a,b}, D and len. Execution of it
results in a assigning the minimum of RT4(D?).LEN and len to RT,(D°).LEN,
where D® = DIFF(a,D). If RT,(D?).LEN = len, then RT,(D?).VIA := {a,b}.
Further, a determines whether RT,(D?) has changed and update-messages need to
be sent to all neighbours in result.

17

In the first phase PROCESSINFO, is used to determine whether a path (viz.,
{a,b},) of hierarchical shorter length than the one currently in use towards B® =
DIFF (a,b) has been revealed by the message. This, for example, is the case if the
update-message is the first received over {a, b}.

In the second phase, a uses the information in the update-message (if available) to
obtain possibly better routing information. From update-message < UPDATE; b; D;
len > (a ¢ D), received by a, it follows that there is a path to D' = DIFF(a, D)
starting with link {a, b} of hierarchical length HW ({a, b})®;len (with i = | DIFF(a, b)|).
This path must be the hierarchical shortest of all paths to D¢ a is informed about
starting with link {a, b}. If @ € D, the update-message does not contain information
about a domain that is visible to a and a does not have to change any table-entry
as a result.

INSERTION ALGORITHM for node a

ON RECEIPT OF A NOTIFICATION OVER {a,b}:

if no entry in RT,
then Send « UPDATE;q; —; — > over {a, b}
else for every entry RT,(D) do:
Send <« UPDATE;a; D; RT,(D).LEN > over {a, b}
rof

ON RECEIPT OF AN UPDATE-MESSAGE <« UPDATE; b; D;len >>:

PROCESSINFO,({a, b},b, HW({a, b}));
if the last two entries of the update-message are filled in
thenifag D
then i := |DIFF(a,b)|;
PROCESSINFO,({a,b}, D, HW ({a, b}) ®; len)
fi

PROCESSINFO,({a, b}, D, len) =

DS .= DIFF(a, D);

if D% does not have an entry in RT,

then Make_Entry(RT,(D))

fi;

if len < RTo(D°).LEN

then RT,(D%).LEN := len;
RT,(D%).VIA := {a,b};

18

Send < UPDATE; a; D%; RT,(D%).LEN > to every neighbour
fi

3.3 Correctness Proof

In this section a correctness proof of the insertion algorithm is given. The assertional
proof method is used, in which one reasons about the program’s state instead of its
behavior. The matter of correctness proofs for distributed algorithms is extensively
treated in [1, 11]. In [6] the method is demonstrated on Tajibnapis’ routing method
([9]). The proof in this section is based on Lamport’s proof.

The following property of the algorithm is proven:

After a topology change (if no other updates take place), the nodes will
eventually obtain correct routing tables.

In accordance with the assertional proof method this property is proven by show-
ing that the following two properties hold:

PR1: If the system is stable (i.e., no update-messages need be pro-
cessed), then the computers have correct routing tables.
PR2: After an update, the insertion algorithm will terminate.

Throughout this section a and b denote nodes executing the insertion algorithm,
B’ = DIFF(a,}), § = |DIFF(a,b)|, D is a domain that is visible to b and does not
contain a, and D® = DIFF(a, D).

The proof of property PR1 uses the following predicate:

P(a,D%) =
for every link {a, b}:
if there is no notification underway on {a, b}
then if there is an « UPDATE;b; D;len > underway on {a,b} to a
then (1) the last such message must follow a notification and
must contain the current value of RT(D).LEN
else (2)if RT,(D®).VIA = {a,b}
then RT,(D®).LEN = HW ({a,b}) ®s RTs(D).LEN
else RT,(D®).LEN < HW({a,b}) ®s RTs(D).LEN
fi and
if RT4(B?®).VIA = {a, b}
then RT,(B%).LEN = HW ({a,b})
else RT,(B%).LEN < HW({a,b})
fi and
there are no notifications on {a, b}

rof

19

The conditions in the predicate are referred to by the given labels, for example,
condition 1 states that there is no notification over link {a,b} to b, there is an
< UPDATE; b; D; len >> underway on {a,b} to a and the last such message must
follow a notification and must contain the current value of RT,(D).LEN.

In Lemma 3.1 predicate P(a, D®) is proven to be an invariant of the algorithm.
From this lemma it follows that in a stable state the routing table entries contain
correct values. In Lemma 3.2 it is proven that when the algorithm has terminated
every node has in its routing table information about all domains that are visible
to it. From these two lemmata Theorem 3.1, which states property PR1, easily
follows. Theorem 3.2 concludes the proof.

Lemma 3.1 Predicate P(a, D®) is an invariant of the algorithm.

Proof: In the initial state no link exists. Therefore, initially P(a, D?) is true.

From the definition of P(a, D?), we see that the following actions affect the truth
value of P(a, D®).

Coming up of the link {a,b}: This immediately places a notification on
{a,b}, making the predicate true. This notification will be received by a and b
before any other message and no other notification will follow this notification. The
receipt of the notification by b causes b to send to ¢ update-messages, including
< UPDATE; b; D; RTy(D).LEN >, making condition 1 true.

Receiving < UPDATE; b; D;len > by a: The only case that processing
these fields could change the truth value of P(a, D?) is if this is the last such update-
message on that link and condition 1 was true before. From condition 1 it follows
that a received a notification over {a, b} earlier and there are no more notifications
on that link. It is clear that after processing this message the following holds:
RT,(B®).LEN < HW({a,b}) and if RT,(B?).VIA = {a,b} then RT,(B*).LEN =
HW ({a,b}). Now, suppose the two last fields of the message are filled in. Condition
1 then implies that len contains the current value of RTy(D).LEN. It is clear that
after processing condition 2 will hold.

O

Lemma 3.2 When the system is stable, the following holds: if domain D is visible
to a, then RT4(D) exists.

Proof: Because the division is hierarchically connected, there exists a path P be-
tween a and a node s such that:

e s has a neighbour d € D, and
e D is visible to all nodes on the path (including s).

Consider the moment the link {s,d} came up. Both s and d receive a notification
over that link. This causes both nodes to send each other at least one update-
message.

20

After s received the first such update-message, it recomputes RT,(D). Thus,
RT,(D) exists. By assumption link {s,d} remains working, and therefore, RT,(D)
will not be removed.

Consider the last time s created RT,(D). This causes s to send each neighbour
this entry in an update-message. Thus p, the following node on P will receive this
message too (if {s,p} has not come up yet, it will be sent when the link {s,p}
comes up). Receiving the message, p recomputes RT,(D). Again, RT,(D) remains
existing, and p sends this entry in an update-message to all its neighbours, including
the following node on the path.

Continuing the argument, it follows that node a receives an update-message
containing information about D, which causes the creation of RT,(D) and after
which the entry remains existing.

O

Theorem 3.1 When the system is stable, all nodes have correct routing tables.

Proof: From Lemma 3.2, it follows that the routing table of node a contains an
entry for each domain visible to a.

From Lemma 3.1 predicate P(a, D?) is an invariant. In a stable state, condition
1B holds. From this condition and Theorems 2.2 and 2.3, it follows that RT, of
node a contains correct values.

O

Theorem 3.2 After the coming up of links has ceased, the system eventually be-
comes stable.

Proof: It will be proven that the insert algorithm terminates, by giving a bound-
function V. This is a bounded function of the state of the complete network which
decreases in every step of the algorithm and is bounded from below.

This function V has as value the vector (e, M + D,[), where

e = the total number of unprocessed notifications.

M = a vector containing elements m(ly, ...,1l,) for every combination (except (0,))
of values for the [; in reversed lexicographic order, where each (ly,...,1,) is
the hierarchical length of an existing path in the network or equals (55,).

D = a vector containing elements d(lo,...,l,) for every combination (except (0,))
of values for the [; in reversed lexicographic order, where each (ly,...,1,) is
the hierarchical length of an existing path in the network or equals (53,).

m(l) = the number of update-messages in transit (i.e., already sent, but not yet
received and processed) reporting the value [.

d(l) = the number of pairs (a, D) such that RT,(D).LEN =1.

21

It is obvious that V' has a minimum value, since every constituent is a nonnegative
integer. V has a bounded number of elements because the number of paths in the
network is bounded. To show that V' keeps decreasing, the actions performed by
node a whilst processing notifications and update-messages, must be considered.

Processing a notification decreases the leftmost element e, of V, obviously de-
creasing V.

Suppose node a receives an <« UPDATE; b; D;len >-message. The processing
of these messages by a involves the following steps:

1. Remove the message from the network in order to process it.
2. Recompute RT,(B?).

3. If RT4(B®) has changed, then send its new value, in an update-message, to
every neighbour.

4. If D does not contain a, recompute RT,(D?).

5. If RT,(D’) has changed, then send its new value, in an update-message, to
every neighbour.

Let dB, be the original value of RT,(B%).LEN, and dB, its new value. In the
same way, dD), is the original value of RT,(D®).LEN, and dD,, its new value.
The five actions have the following consequences for the value of V:

Decreases m(len).

Decreases d(dB,), if dB, > dB,.

Increases d(dB,) and m(dB,,), if dB, > dB,.
Decreases d(dD,), if dD, > dD,.

Increases d(dD,) and m(dD,,), if dD, > dD,.

Consider the influence of actions 2 and 3 on V:

ok W b=

dB, = dB,: m(len) decreases, thus V decreases.

dB, < dB,,: It is obvious that this case cannot occur.

dB, > dB,: The dB,-component that has increased lies to the right of the dB,-
component that is decreased. The overall result on V is that its value decreases.

Consider the influence of actions 4 and 5 on V:

dD, = dD,;: From above it follows that V decreases.
dD, < dD,: It is obvious that this case cannot occur.

dD, > dD,: The dB,-component that has increased lies to the right of the dB,-
component that is decreased. The overall result on V is that its value decreases.

O

22

G
N :
D

Figure 2: Example Network

G
% 3
D

Figure 3: Example Network

4 Deletions

It is not straightforward to adapt the deletion algorithm described in [6, 9] for the
case of hierarchical divisions. The method of Tajibnapis and Lamport in the face of
deletions is based on every node keeping information about its neighbours’ routing
tables.

Whenever a node determines that the path over which it routed to some desti-
nation has its (hierarchical) length increased, the information about the neighbours’
routing tables is used to determine whether an alternative path with a shorter (hi-
erarchical) length is available.

As an example, consider the network of Figure 2. When a detects the failure of
{a,n}, from its extra information it knows that via b, D can still be reached. This
algorithm, however, may not terminate as is demonstrated by the next example.

Consider the network as depicted in Figure 3. The corresponding routing tables
are given in Figure 4. Suppose link {a, n} fails. Node a determines that a path via
neighbour b to visible domain D is the hierarchical shortest, with hierarchical length
[0,2,2]. Node a announces this new length to b. Node b then determines that the

23

[9] William D. Tajibnapis. A correctness proof of a topology information main-

tenance protocol for a distributed computer network. Computer Systems,
20(7):477-485, July 1977.

[10] Andrew S. Tanenbaum. Computer Networks. Prentice/Hall International, Inc.,
Englewood Cliffs, N.J., 1981.

[11] Gerard Tel. The Structure of Distributed Algorithms. PhD thesis, Rijksuniver-
siteit Utrecht, Utrecht, February 1989.

27

A possible solution is to split a domain that is no longer hierarchically connected
into two domains that are. Splitting a domain may also be useful in case a domain,
as a result of many insertions into it, has grown larger than is desirable.

Another open problem is how to join two domains into one.

5.5 Hierarchical Synchronization

During the execution of the update algorithm, the information nodes obtain con-
verges to the correct routing information. Everytime a node updates a table-entry
the result of this update is reported to its neighbours. It might be possible to re-
duce the amount of communication if nodes inside one domain reached agreement
on what data they keep in their table-entries before this information is sent to nodes
in other domains. It seems useful to investigate how such a synchronization can be
obtained and what the advantages and disadvantages of it are.

References

[1] K. Mani Chandy and Jayadev Misra. Parallel Program Design — A Foundation.
Addison-Wesley Publishing Company, Inc., 1988.

[2] J.J. Garcia-Luna-Aceves. Routing management in very large-scale networks.
Future Generations Computer Systems, 4(2):81-93, September 1988.

[3] J.M. Jaffe, A.E. Baratz, and A. Segall. Subtle design issues in the implementa-
tion of distributed, dynamic routing algorithms. Computer Networks and ISDN
Systems, (12):147-158, 1986.

[4] Farouk Kamoun and Leonard Kleinrock. Stochastic performance evaluation of
hierarchical routing for large networks. Computer Networks, (3):337-353, 1979.

[5] Leonard Kleinrock and Farouk Kamoun. Hierarchical routing for large networks
(performance evaluation and optimization). Computer Networks, (1):155-174,
1977.

[6] Leslie Lamport. An assertional correctness proof of a distributed algorithm.
Science of Computer Programming, (2):175-206, 1982.

[7) Mischa Schwartz. Routing and flow control in data networks. IBM Research Re-
port RC 8353 (No. 36329), IBM Thomas J. Watson Research Center, Yorktown
Heights, NY 10598, USA, October 1980.

[8] Mischa Schwartz and Thomas E. Stern. Routing techniques used in com-
puter communication networks. IEEE Transactions on Communications, COM-

28(4):265-278, April 1980.

26

functions (e.g., routing).

e The devices connected to the network, being freed from the task of performing
network functions, can spend (almost) all their computing capacity to their
specific task.

e If the devices connected to the network consist of Transputers, the network
can be used for communication within the devices; the distinction between
network and device vanishes. (Of course, network devices must be such that
failure of one device does not affect the network nor any other device.)

5.2 Link Weights and Load Balancing

The routing algorithm described in this report is such that messages to be routed
from one domain to a neighbouring domain are routed over the least weight link(s)
between the domains. If all links have equal weight, all links will be used. If, on
the other hand, only one has least weight, all traffic (under consideration) is routed
along this single link, leaving all others idle. This may be intended: if link weights
reflect, for example, the delay over links messages are routed over the shortest delay
path. In many cases, however, it may be unwanted: if there exist many links, all
(or most of them) should be used for routing.
Several interesting questions arise:

e How can the definition of hierarchical length be adapted to not count as the
distance between two domains the minimum link weight, but some weighted
average of all link weights?

e How can link weights be dynamically changed and how can routing information
be kept up-to-date in this case? Is it possible to introduce thresholds: as long
as link weights do not exceed a threshold, routing information is not adapted
in response to minor changes.

5.3 Analyses

As mentioned in Section 2.3.1 the paths found by the routing algorithm usually are
not minimum weight paths. Under what conditions can the method be expected to
deliver short paths? Does there exist a class of divisions that is very well suited to
use the routing method upon?

Further analysis also has to be performed to determine the complexity of the
update algorithms.

5.4 Splitting and Joining Domains

An interesting question arises when, as a consequence of a deletion, a domain is no
longer hierarchically connected. Since the assumption of hierarchically connected-
ness is essential in the routing algorithm, actions have to be undertaken in this case.

25

RT, | LEN | VIA RTy | LEN | VIA

p |02 {an) p {0,210 a8

Figure 4: Routing Tables

RT,(D) RT,(D)
LEN VIA LEN VIA
0,2,0 a,n} 0,2,1] | {a,b} Initially
0,2,2 a,b} 0,2,1] | {a,b} After 1 announcement
0,2,2] | {a,b} 0,2,3] | {a,b} After 2 announcements
0,2,4] | {a,b} 0,2,3] | {a,b} After 3 announcements
0,2, 0] | {a,b} 0,2, 00] | {a,b}

Figure 5: History

minimum hierarchical length of the paths to D via a is [0,2,3]. Because [0,2,3] <
[0,3,0], the information that there is a path to domain D with length [0,2,3] (via
node a) is stored in b’s routing table. Subsequent announcements produce the infinite
history as shown in Figure 5.

In general, without sufficient precautions taken, when the weight of a link‘ be-
tween two sub‘-domains increases, nodes within those domains may end up increas-
ing the j** element (j > i) of the hierarchical distance they keep in their routing
tables for destinations reached over that link’ ad infinitum.

5 Further Research

In this section we briefly mention several topics that are subject of current research.

5.1 Implementation

The routing algorithm described in the previous sections has been developed for use
in a network of Transputers. A Transputer is a fast processor with (four) commu-
nication links. As a result of these links, Transputers can easily be connected, thus
creating a network. Several advantages of such a network are:

o It will be an open network. It is easy to connect devices to the network since it
is not necessary to have the operating systems of the devices perform network

24

