Structured NC

B. Scholten and J. van Leeuwen

RUU-CS-89-6

March 1989

Rijksuniversiteit Utrecht

Vakgroep informatica

Padualaan 14 3584 CH Utrecht

Corr. adres: Postbus 80.089, 3508 TB Utrecht
Telefoon 030-531454

The Netherlands

Structured NC

B. Scholten and J. van Leeuwen

Technical Report RUU-CS-89-6
March 1989

Department of Computer Science
University of Utrecht
P.O.Box 80.089, 3508 TB Utrecht
The Netherlands

o,

Structured NC

Bertha Scholten and Jan van Leeuwen

Abstract

In this paper we introduce the class Structured NC (or SNC for short)
which is a subclass of NC with the property that any circuit in it should be
structured. A structured circuit is a circuit in which the gates are organised
in a number of layers, each with the same number of gates and the same
connections between gates in a layer. We will distinguish several subclasses
of SNC differing in depth of the circuits and fan-in and fan-out of the gates.
Relations among these subclasses and between these subclasses and NC and
AC will be derived and we will show how to transform circuits from one class
into equivalent circuits in other classes. Furthermore for some problems we
present structured circuits having fan-in as well as fan-out < 2; for parallel
prefix and addition these circuits are of depth O(logn) with only O(n) gates
in a layer, which is optimal for structured circuits. For multiplication we will
consider three methods and derive structured circuits for them.

1 Introduction

In the past few years a lot of research has been done on the complexity of parallel
algorithms. Complexity classes like NC' and AC (classes of problems solvable by
logspace uniform families of circuits) have been introduced and studied by various
authors (see e.g. [Col, Co2, KaRa, Ru2]). In this paper a new class is introduced.
This new class, Structured NC (or SNC for short), is a subclass of NC with the
property that any circuit in it should be structured. A structured circuit is a circuit
in which the gates are organised in a number of layers, each with the same number
of gates and the same connections between gates in a layer. This restriction greatly
simplifies the circuits and their description, as a circuit can be represented by the
connections of one layer together with its depth and the functions of all gates in
the circuit. This means that if the gates are programmable, then we do not have to
build the whole circuit; instead it suffices to build just one layer and feed the output
of the layer back into this layer. This time the gates are programmed according to
the next layer of the circuit. This process is repeated as many times as the depth
of the original circuit. Hence the final output is equal to the output of the original
circuit and is thus the solution to the problem. It is readily seen that this approach

greatly simplifies the actual construction of the circuit, especially when the circuit
is large.

In SNC, we can distinguish several subclasses, according to the depth of the
circuits and the fan-in and fan-out of the gates. Relations among these subclasses
and between these subclasses and NC and AC are derived. For some problems
structured circuits are given with only a small increase in the number of gates
compared to the unstructured circuits.

The paper is organized as follows. In section 2 we state the basic definitions
about NC, AC and SNC which will be used throughout the rest of the paper.

In section 3 we will compare different SNC classes. Circuits with different fan-in
or fan-out will be considered and it will be shown how to transform circuits of one
class into equivalent circuits in other classes.

In section 4 we will show how AC-circuits can be transformed into SNC} ,-
circuits without using the general method of section 3. This results in circuits using
less gates in a layer than if we would have relied on the general method.

In section 5 we will show some problems to be in SNC3,, the class of problems
solvable with uniform circuit families of structured circuits having depth O(logn)
and with gates with maximum fan-out and fan-in of 2. The problems considered
are: parallel prefix, addition and multiplication. For parallel prefix and addition we
find structured circuits with O(n) gates in a layer, which is optimal for structured
circuits. For multiplication we consider three methods: the ‘three for two trick’, the
method of Karatsuba and Ofman, and the algorithm from Schonhage and Strassen.

In the last section we give a summary of the relationships between different NC,
AC and SNC classes and indicate some directions for further research.

2 Preliminaries

In this section we present some basic definitions which will be used throughout this
paper.

As usual a (boolean) circuit can be seen as a directed acyclic graph with labelled
nodes (called gates). The label of a node indicates the function that the gate per-
forms. Nodes with indegree (fan-in) zero are called input gates or constant gates
(constant gates are labelled either 0 or 1). Nodes with outdegree (fan-out) zero are
called output gates. The other gates are labelled NOT if the fan-in equals one, and
OR or AND for gates with fan-in > 2. The depth of a circuit is the length of the
longest path from some input node to some output node. The depth of a gate g in
a circuit is the length of the longest path from an input gate to this gate g. In the
remainder the size of the input (i.e. the number of input gates) will be denoted by
n.

The class AC¥, k > 0 is the class of all problems solvable by a logspace uniform
family of circuits with a polynomially bounded number of gates, and depth O(log* n).
Furthermore AC is defined as AC = {Ji>; AC*. (A family of circuits is logspace
uniform if the description of the circuit for inputs of size n can be generated by a

Turing machine using O(log n) workspace.)

The class NC*, k > 1 is the class of all problems solvable by a logspace uniform
family of circuits with a polynomially bounded number of gates, all gates with fan-in
< 2, and depth O(logFn). NC is defined as NC = Uk>1 NCE.

A structured circuit is a circuit built from a number of layers, each with the
same number of gates and the same lay-out. The first layer consists of the input
gates (gates at depth 0) all gates that can be reached from the input gates using
only one connection, and the connections between them. We can number these
gates, ¢7,...,90 (input gates) and g},...,gl. All other layers will have the same
connections as this one and thus there is a numbering of gates possible where the
gates at depth d are numbered gf,..., g4, such that there are connections from g¢
to g3t1,...,g%*" then for all & (0 < d < the depth of the circuit) g& will have
connections only to gj':“, e ,g}{“. Note that the functions (labels) of the gates
g¢ and g¥ with d # d' may still differ. A layer at depth d consists of the nodes at
distance d from the input gates, the nodes at distance d+1, and the edges (sometimes
called connections or lines) between these nodes. When no confusion may arise we

generally will omit the upper-index d (indicating the depth) when numbering the
gates.

Definition 1 (i) SNC¥, k > 1 is the class of all problems solvable by a logspace
uniform family of structured circuits of depth O(log* n) with a polynomially bounded
number of gates, all gates with fan-in < 2.

(i) SNC = Uk>1 SNCk,

Like in NC*, in SNC* all gates have fan-in < 2 and arbitrary fan-out (i.e. at
most polynomial, because there are a polynomially bounded number of gates in the
circuit). Structured circuits were introduced because of their simplicity. Gates with
unbounded fan-out are hard to build and hence we would also like to have some
restriction on the fan-out of the circuits. We define:

Definition 2 The class SN C";’(n)'q(n), k > 1 is the class of all problems solvable by
a logspace uniform family of structured circuits with a polynomially bounded number
of gates, of depth O(logF n) and with gates with fan-out < p(n) and fan-in < q(n).

For the sake of generality we have also added an index to indicate the maximum
fan-in. If unbounded fan-out (fan-in) is allowed, we write - for p(rn) (¢(n)). Thus
by definition SNC* = SNC¥,

We allow the gates in SNC-circuits to take the following functions (which are a.
little different from the usual functions): SELECT (one of the inputs and ignore the
others), NOT (one of the inputs), AND (some of the inputs and ignore the others),
and OR (some of the inputs and ignore the others). Besides these gates there will be
input-gates (fan-in = 0) and output-gates (fan-out = 0), some of which are dummy,
and constant-gates, which are a special kind of input-gates. The dummy gates are
needed because the number of input and output gates should be equal to the number

3

of gates in the other layers and this might be larger than n. The possiblility for gates
to ignore some of the inputs is introduced because as we will see, gates will often
have fan-in larger than two, where in different layers gates actually need different
inputs. Because of the structure property all layers have to be the same, so all inputs
will be the same in each layer. Each gate can choose in each layer which inputs and
which function it will use there.

With these functions selecting which inputs to use, the gates in SNC circuits
might seem more powerful than those in NC or AC circuits. However in situations
where gates in NC or AC would profit from using this selection property of the
functions, the input lines that are not selected might as well be left out of the circuit
as they have no function at all. In SNC circuits this is not possible as all layers
have to be the same and in some other layer one of the not selected inputs might
be useful. Note that this means that SNC* C AC* and SNC* = SNCk, € NC*.

By allowing the selection property to the functions of the gates we do not make
circuits in SNC., more powerful than structured circuits without this selection
property, because the fan-in is bounded by 2:

Lemma 1 All functions allowed by gates in SNC., circuits can be simulated by
gates with the functions AND, OR, NOT and gates where input=output, hereby
increasing the size and depth of a circuit only by some constant.

Proof: Input, constant, NOT gates with one input and gates where input=output
have fan-in < 1 and do therefore not use the selection property. Gates with fan-in
2 may use the selection property and next we will show how to avoid using this
property by using only ordinary AND, OR, NOT, constant gates and gates where
input=output.

We replace all layers in the circuit by 3 new layers, with for all gates with fan-in
2 five extra gates in each layer. The gates with fan-in 1 will in these two extra layers
have gates where input=output. This will not change the order of magnitude of the
problem in either depth or width (i.e. the number of gates in a layer). The layers
will be as in Figure 1. We see that all operations can be simulated using only AND,
OR, NOT, constant gates and gates where input=output. As we can easily verify
from Figure 1 this will not increase either fan-out or fan-in of the original gates, and
the added gates have fan-out, fan-in < 2.

The result of this is that the selection property allowed for gates in SNC-circuits

does not really make circuits in SNC.,; more powerful than if these functions were
not allowed. O

When unbouded fan-in is allowed the structured circuits with gates which do
have the selection property generally cannot be replaced by structured circuits with
gates without this property (without increasing the size or depth of the circuit).
However, as we will see later on, we are able to transform structured circuits with
unbounded fan-in (fan-out) into structured circuits with bounded fan-in (fan-out).
These circuits can be replaced as above by circuits with gates with functions not
containing the selection property.

Possible functions for the gates :
AND, OR, SELECT, NOT.

Possible output from c :

aAb,aVb,a, b, NOT(a), NOT(b).

Figure 1: Replacing select gates by a number of ordinary gates.

3 Comparing different SNC classes

In this section we will state some useful theorems dealing with the fan-out and fan-in
of gates in structured circuits: by increasing depth and size of a circuit we are able
to decrease the number of connections in a layer. This also helps us to transform
unstructured circuits into structured ones with resonable fan-out and fan-in. The
constructions used to transform the circuits will later on prove to be quite useful in
transforming circuits for specific computations into circuits that are in other (more
practical) complexity classes. From these theorems we also derive relations between
specific complexity classes.

Theorem 1 Let c, be a structured circuit of depth D(n) and with S(n) gates each
layer, for 5(n) some polynomial in n, in which each gate has fan-out < p(n) and
fan-in < q(n). Then there ezits an equivalent ciruit ¢}, of depth D(n)* ([log p(n)] +
[log ¢(n) —1]), with 5'(n) < S(n)* (p(n) + q(n) — 3) gates each layer and each gate
having fan-out, fan-in < 2.

Proof: The general idea behind this proof is as follows. We will first only consider
decreasing the fan-out of the gates by adding extra gates. For each gate we add
about p(n) extra gates. We replace the original connections by connections from
about half of the new gates, each with fan-out 2, which together represent all the
original connections. All other gates that have been added will be used to reach all
these gates in log(p(n)) layers, using a binary tree structure. This way the output

Possible funcions for the gates :

AND, OR, NOT, input=output.
Possible output from c : ‘
aAb,aVb,a,b, NOT(a), NOT(D).

(NOT(a A b), NOT(a V b))

Figure 2: Example of reducing the fan-out.

of each gate of the original circuit can be directed to its original destinations in
log(p(n)) layers. See Figure 2.

Now somewhat more formal. We assume p(n) and ¢(n) to be powers of 2 and
show how to transform one layer. As the circuit is structured, the other layers
can be treated in exactly the same way. Let the gates from the original circuit be
91(0),- - -, gs(n)(0), with outgoing lines from gate g;(0) to gates 9i;5(0) (1 £ 5 < p(n)
and 1 < i < S(n)). We omit the upper-index in the numbering of the gates as we
only consider one layer. First we will reduce the fan-out (maximal p(n)) per gate
to 2. For this purpose we add gates gi(1),---,g:(p(n) — 1) to the right of the gates
9i(0). The outgoing lines from g;(0) to gates 9i5)(0) (for 1 < j < p(n)) will be
replaced by the following connections:

(1) : gi(0) — gi(2).
(2) J#0, even : gi(j) — g(j +2*1),
gi(i) — gi(j —2*),
with k such that 2F | j and 2F+! ¢ 5.
(3) J#0, 0dd : gi(j) — gi(;(0),
9i(5) — giG+)(0).
Now the fan-out of the original gates has been reduced to 1, and that from the new
gates has become 2. The fan-in of the original gates (g;(0)) will not increase because
of this operation, while the fan-in of the new gates is 1. This follows from (1)-(3),
and the observation that j 4+ 2¥-1 = j’ 4 2¥'-1 (with j, % and j, k' satisfying the
constraint given in (2)) iff j = j'. Next we will replace each layer by log p(n) + 1
layers. Now consider a connection g;(0) — g;(;)(0) in the original circuit. We will
show that, using the above connections, g;(;(0) can also be reached from ¢;(0) and
that thus our new circuit correctly simulates the old circuit. Because of connection
(3) and since we have log p(n) + 1 layers, we must show that g;(j) (j odd) can be

log p(n

log q(n

ooo gon

Figure 3: Example of the reduction of both' fan-out and fan-in.

reached from ¢;(0) in log p(n) layers. This follows from the fact that in ! layers the
gates g.-(mﬂz-','l) for m = 1,3,...,2" — 1 can be reached, which is easily proved by
induction on l. Observe that we can identify g;(0) with g.-(’-’%ﬁl), thereby saving one
layer in the new circuit.

Analogous to reducing the fan-out we can reduce the fan-in of a maximum of
g(n) to 2. The formal proof will be the same as that for the fan-out and is therefore
omitted. Figure 3 gives an example of the above described transformation.

We have shown how to reduce the fan-in and fan-out, and used a factor p(n) +
g(n) — 2 extra gates per layer and a factor log p(n) + log g(n) extra layers compared
to the original circuit. Having D(n) as the depth of the original circuit, the depth
D’(n) of our newly formed circuit will be:

D'(n) = D(n) *(logp(n) +logg(n) —1)
= O(D(n) *logn)
And the number of gates S'(n) of each layer:

S'(n) = S(n)*(p(n)+g(n) —3)

It is straightforward to extend the proof for p(n) and ¢(n) not powers of 2. We
will again take p(n)+q(n)—3 times as many gates each layer. To reach the [ﬂ.}l'l and
[ﬂ;l] gates that will represent the old connections, we need a depth of [logp(n)]

+ [log g(n)] — 1 for each layer in the original circuit. In this way we find a circuit
with depth D(n) * ([log p(n)] + [logg(n)] —1). g

The transformations as used in the proof of Theorem 1 are such that they will
not harm the uniformity of a family of circuits. They do not make the construction

7

O goo

O oon

of the circuits of different input size significantly more difficult. Using this theorem
we may conclude:

Corollary 1 SNC* C SNC}3?

Proof: For any family of circuits in SNC* we can find some polynomial p(n) such
that the number of gates in each circuit is smaller than p(n). Thus the maximum
fan-out of the gates in each of these circuits can not be larger than p(n). Using
Theorem 1, we can reduce fan-out of these circuits to 2, which will result in circuits
of depth O(log® n * log p(n)) = O(log*+! n). The number of gates in a layer will be
O(p(n) * p(n)) = O(p(n)?), which again is bounded by some polynomial in n. We
now have a family of structured circuits, each with bounded fan-in and fan-out and
of depth O(log*** n). O

C14,C2

Corollary 2 SNCk = SNC§, (for constants c;,¢; > 2).

Proof: 1t is clear that SNCf, C SNC¥ _ and the other way around follows from
Theorem 1: take p(n) = ¢; and ¢(n) = c;. The SNC#%, circuit uses O(c; +¢3) = O(1)
extra gates each layer and the depth will increase no more than O(log ¢; +log¢;) =

o(1). O

Theorem 1 only tells us about relationships between different structured circuits.
It is also interesting to have some general theorem which shows how unstructured
circuits can be turned into structured ones with bounded fan-in and fan-out. For
this purpose we may use the former theorem to reduce the number of connections
once we have found a structured circuit.

Lemma 2 The Structuring Lemma.

Let S(n) be the size and D(n) the depth of a circuit with fan-out < p(n) and fan-
in < g(n) we can build an equivalent circuit which is structured and has depth
O(D(n) * (log(D(n) * p(n)) + log(D(n) * ¢(n)))) and O(S(n) * D(n) * (p(r) + g(n)))
gates each layer. In the so formed structured circuit all gates will have fan-in, fan-
out < 2.

Proof: The first task is to ‘square’ the circuit, i.e. to make layers where each
layer has the same number of gates. A gate in an unstructured circuit is in layer d if
the longest path from the input gate to that gate has length d. Now we simply make
the number of gates in each layer equal to the number of gates in the largest layer
by adding dummy gates (without connections). As the total (unstructured) circuit
needs S(n) gates we will never need more than S(n) gates in each layer to ‘square’
the circuit. Although by now all layers have the same number of gates, the circuit is
still not structured, because the connections differ per layer. To solve this we project
the layers onto each other, i.e. we will use all connections from each layer in all the
other layers. But now a new problem arises: a gate may have fan-out O(D(n)*p(n))
and fan-in O(D(n) * ¢(n)) (the old fan-in/fan-out times the number of layers in the

8

circuit). Now we can use the method of the former theorem to reduce the number
of connections (per layer), leaving us with a structured circuit with bounded fan-
in and fan-out of depth O(D(n) * ([log(D(n) * p(n))] + [log(D(n) * ¢(n))])) and
O(S(n) * D(n) * (p(n) + q(n))) gates each layer. O

Corollary 3 NC* C SNCE$*.

Proof: For any family of circuits in NC* we can find some polynomial p(n) such
that the number of gates in each circuit is smaller than p(n) (fan-in < 2). Thus the
maximum fan-out of the gates in each of these circuits can not be larger than p(n).
Using the Structuring Lemma, we can structure these circuits which will result in
circuits with depth O(log* n xlog(p(n)*log* n)) = O(log**! n). The number of gates
in a layer will be O(p(n) *log* n* p(n)) = O(p(n)? * log* n), which again is bounded
by some polynomial in n. We now have a family of structured circuits, each with
bounded fan-in and fan-out and of depth O(logF*+! n). o

In the same way we can prove:

Corollary 4 AC* C SNC}3!.

4 AC" circuits in SN C35

We have seen before that AC® C SNC}, as a result of the Structuring Lemma.
The so formed SNC*-circuits need in each layer the square of the total number of
gates needed in the corresponding ACP circuits. This large increase in the number
of gates can be diminished somewhat as our next theorem will show.

Theorem 2 For any family of circuits C = {¢;}, i > 1 with C € AC® and each
cn € C having O(s(n)) gates, there exists an equivalent family of circuits C' = {c}},
¢ 21 and C' € SNC}, with each circuit having O(}gé)n:) gates in a layer.

Proof: We will restrict ourselves to one layer of the AC-circuit transforming it
into a SNCj, circuit. For the other layers we can do the same and the constant
number of different layers of structured circuit we get can be projected onto each
other, forming a layer for the structured circuit representing the total AC? circuit.
The so formed structured circuit will be in SN Cl ., for some constants ¢y, c;. Using
Corollary 2 we may transform this into a SNC}; circuit with the number of gates
and the depth the same within some constant factor.

With the following we will reduce both fan-out and fan-in as well as structure the
circuit. For this we first define the problem a little different. The layer we examine
cannot have more than s(n) gates (the total number of gates in the circuit), and thus
we can see this layer as s(n) subsets of {1,...,s(n)}. The subsets S; (1 < < s(n))
represent the sets of incoming lines of gate i: j € S; if and only if there is a connection
from gate j to gate ¢ in the layer under consideration.

9

k k k s(n)
blocks of k elements
E
I e 10 . —1 I'_/\'_I
12 B s(n)
S MO~ 1o 0
S2 |O[OJ1]--- [oO 0
Ss (O[110].-- 1 1
______________________ 0 : no connection
1 : there is a connection (to S;)
Se(n~1)[OO[T[~- [0 1
Ssny IO [0 0

Figure 4: How we can picture the different S;’s.

Since in an AC-circuit every gate uses only one operation on all its elements
(AND, OR, or NOT), we will devide the S;’s into three groups:

e a group of S;’s where gate 7 uses the operation NOT,
e another group of the S;’s where gate 7 uses the operation AND and
e the S;’s where gate ¢ uses the operation OR.

We will show how to reduce the fan-in of the AND gates; the OR gates may be
treated in the same way (increasing the size of the circuit only by a factor two). To
this end we devise a structured circuit, such that the fan-out of the input gates”
of the layer is reduced at the same time. We only consider the groups of S; where
the operation used is AND. The order in which the elements of S; are considered is
of no importance (AND and OR are associative). We group the elements of S; in
blocks of size k. The sets S; now consist of a maximum of ’(k—") blocks of k elements
each. We can picture this as in Figure 4.

Now consider one block, say the block corresponding to the first k (possible)
input gates. Every S; (1 < i < s(n)) has such a block, but there are only 2F
different blocks possible. For each column we thus only need to assemble 2% groups
of k elements, instead of s(n) groups of k elements, and when finished every S;
can pick the values (blocks) it needs. Every (input) gate has to be able to reach
(or not reach) the 2% blocks. This can be arranged with a structured circuit of
depth O(log 2%¥) = O(k) in the following way. We direct all k¥ inputs to 2* blocks
by each gate having connections to its neighbours. After log2* layers all 2F blocks
will be reached by all k inputs (Figure 5a). The blocks will now have k gates each.
Composing the k values in each column (and discarding some on the way) can be
done by a structured circuit of depth O(log k), for all ﬁiﬁ * 2F blocks in parallel, also
just using connections to neighbours (Figure 5b).

For the circuit described above the maximum width (corresponding to the num-
ber of gates in a layer of the structured circuit) will be 0(2%2 * 2¥ x k). The depth

10

s(n)

original

depth k

2% s(n)

gates.

b

depth Ic

25 s(n)
X 5

Cc
depth lo

depth o

s(n).

original

AND-part

replaces all AND gates in a layer

inputs

N7\ /\/\

2k : 2k

2K blocks of k
A\

g k

g s(n)

gates

number of S;'s that number of S:'s that
need this input

need this input

........... N

/NN /N AN

k
2

Figure 5: The total replacing circuit.

11

k
2

number of S;'s that
need this input

i

is O(k) (Figure 5a,b) .

Next we will need a structured circuit to direct the output of the i(,:ll * 2K
blocks (of by now only 1 bit each) to the different gates S; (1 < ¢ < s(n)). The s(n)
different S;’s each need ﬁ,‘ﬂ blocks and this leads to a total number of s(n) * i(,:-‘l
necessary input lines. The sum of the fan-out of all blocks together will be smaller
than this (ﬂ-’,?i). For each block we add a number of gates equal to the number
of S;’s to which the output of the block should be directed. (We cannot say exactly
how many this will be for each block seperately but the total number will not exceed
2L',?i) For each block this will be no more than s(n) (the total number of S;’s), and
these gates can be reached with a structured circuit of depth O(log s(n)), all gates
having constant fan-out and fan-in. This part of the circuit can be pictured as in
Figure 5c.

Now each S; can select the neccesary gates as input. In O(log ﬂ,:—‘l) layers (the
number of inputs for each S; is 3‘,:—‘)-) these inputs can be directed with a structured
circuit to each S; (Figure 5d).

We know that s(n) is some polynomial in n (follows from the definition of AC)
and s(n) = Q(n) (the circuit has at least as many gates as the number of inputs) and
thus O(log s(n)) = O(log n). Thus this last part of the circuit has depth O(log n)
and width O(*2).

In the above described manner we may replace a layer of the AC? circuit by
O(k+log n) layers each being the same and of which the gates have fan-in and fan-out
bounded by some constant. (Project the constant number of described layers on each
other.) The number of gates (each layer) that we use for this is max(s(n)* 2k, ﬂi—ﬁ)
If we take k = } log s(n) then the depth of the structured circuit will be O(log ») and

the number of gates needed for each layer will be O(max(s(n)*2%1o82(n), -,—‘—(ﬁL)) =

5 loga(n
o),

V%’e repeat this for the operation OR and also for the operation NOT. It is
neccesary to consider the operation NOT also to make sure that we reduce the fan-
out of all the gates (also the ones that have connections with many NOT gates).
After working this out for the other layers of the AC? circuit we compose them,
thus getting a layer with for all gates fan-in and fan-out bounded by some constant
and O(%ﬂ);) gates. Using Theorem 1 we can find for each circuit an equivalent
structurea circuit with for all gates fan-in, fan-out < 2, leaving the size of a layer
and the depth the same within some constant. When using O(log n) of these layers,
we can simulate the original AC? circuit and have found an equivalent SNC3, circuit
with O({—((g);—) gates in a layer.

All operations on the circuits are quite straightforward. Thus the construction of

the circuits doesn’t become essentially harder and the family will therefore remain
uniform. O

Remark: The total number of connections in an AC? circuit can be ©(s(n)?).
In our SNC? circuit replacing an AC? circuit we use a total number of connections

12

that is O(s(n)?) and hence we probably cannot expect to do better.

Generalizing Theorem 2 to AC* circuits for arbitrary k, leads to a result that is
slightly different from the result when using the Structuring Lemma from section 3.
Using the Structuring Lemma we can transform ACF circuits with s(n) gates into
SNC33! circuits with O(s(n)? log* n) gates in a layer. We can see an AC¥ circuit also
as O(log* n) subsequent AC® circuits, which can each be transformed using Theorem
2 into SNCj, circuits, each having 0(5(1'1—) gates in a layer. Putting these O(log* n)
different layers together by projecting the layers onto eachother will result in a layer
with gates with fan-in and fan-out = O(log* n). Thus we have transformed the AC°

circuit into a structured circuit of depth O(log*+! n) with O(%—El:-) gates in a layer,

all gates with fan-in, fan-out = O(log*n). Using Theorem 1 we can reduce the
fan-in and fan-out of this structured circuit to 2, increasing the size and depth of
the circuit. Finally this results in a stuctured circuit of depth O(log* nloglogn) (a
little larger than when using the straight forward method), with O(s(n)?logF~! n)
gates in a layer (a factor log n less) all gates with fan-in, fan-out < 2. thus the total
number of gates is O(s(n)?log* nloglog n) instead of O(s(n)?log*+! n).

5 Some problems in SNC!

In this section we will show some basic arithmetic operations (that are in NC?) to

be in SNC'. In doing so we will try to keep the number of gates necessary in the
SNC!-circuits as small as possible.

5.1 Parallel Prefix

The Parallel Prefix problem is as follows: Given z1,x3,:- -, &,, and some associative
operation * (in our case generally A or V), calculate the n prefix products: zy,z; *
T2, Ty * T2 * T3, -+, Ty * Ty *- - *T,. This is possible with a (unstructured) circuit of
depth O(logn) and size O(n) as follows [LaFi]: (We assume n to be a power of 2)
Input is 1,23, -+, z,. We form the products z;_; * z; for ¢ even, save the value
Ti-1, and go into recursion with the products z;_; * ;. As we go deeper in recursion
the size of the products will increase. When returning from this recursion we will
find the products x; * x5 % - - - % ; for ¢ even, and we can easily form the products
Ty*To*- - *Tiy from zy*zo*: - xz; and z;4,. See Figure 6. We can easily structure
this circuit when we are not concerned about increasing the number of connections
per gate. For this purpose we move the inner block (C(%)) over to the right and
fill the left half with the remaining lines. Now we can take the number of gates per
layer n (less is impossible because the first and the last layers of the circuit need
at least n gates). We can achieve this by adding extra (dummy) gates on the lines
that have less gates than others, and thus filling up the number of gates per layer
to n (this way a lot of gates will be formed where fan-in = fan-out = 1). Our next
move will be to project all layers onto one another to assure that all layers will be
the same. With this kind of layers we can built a structured circuit (all layers are

13

I T2 T3 Ty Tpn-3 Tn-2 Tn-1 Tn

O
=
L
O

o~
[N I
S’

=]

! Ty *...*In_s T1*...%Tpn -1
L T1*T2 zl*’:?*x"" TL*.kTy

Figure 6: Circuit for parallel prefix.

the same) of depth O(log n) and width n.

The correctness of this (structured) circuit follows from the correctness of the
unstructured circuit, as we have not changed the original circuit essentially. Thus
this structured circuit solves the Parallel Prefix problem. In the original circuit all
gates have fan-in, fan-out < 2 and we only add gates with fan-in=fan-out=1 and,
considering that we take O(logn) of these layers together we can easily see that we
will get fan-in and fan-out of O(logn) for all gates in the circuit.

Using Theorem 1 from section 3 we can reduce the fan-in, fan-out of O(logn)
to 2. This will give us a structured circuit for the Parallel Prefix problem of depth
O(log nloglogn) and with O(nlogn) gates each layer.

Theorem 3 There ezists a structured circuit for the Parallel Prefiz problem with

depth O(lognloglogn) and O(nlogn) gates each layer, and with for each gate both
fan-in and fan-out < 2.

Comparing this result with that of the unstructured circuit we see that the depth
has been increased with a factor loglogn and that the total number of gates of O(n)
of the unstructured circuit has become O(nlog?nloglogn) in the structured one.
When we examine the original Parallel Prefix circuit closer, we notice that as we
go deeper in recursion we will find a decreasing number of gates, and less and less
action takes place. The exact position of the lines without gates in those layers is not
important, as long as they will be back in position upon returning from recursion.
We can use this observation to make our structured circuit more economical.

Theorem 4 Parallel Prefix € SNC}, with O(n) gates each layer.

14

T *..xTp_2 Ty % XTn

8

o g g

x, O =] = 2%, xy g it B = 2 U
<

x, L x, xy x, Yy =yx,) EX 0,0

Q x,- xp =Xy]
<

x, O zg O =,y yxg » xy 2, xp2, 01

g

< =
< =

. - o . . 3 o
X1 Xq=Xp Xy-Xg Xq=X, Xq-Xg Xq=Xg X;=X7 X4-Xg

Figure 7: A structured circuit for parallel prefix. (n = 8)

Figure 8: Layout of a layer of the structured circuit for parallel prefix.

Proof: We will show that we can malke a circuit for Parallel Prefix with 4logn —3
layers in SNC}, with n gates each layer. From Corollary 2 it then follows that
circuit is also in SNC3,. The idea here is that in the first 2logn layers the right
half of the circuit (and next the right half from that half etc.) is the part where
work is done. There increasingly large products of z;’s will be formed. In the other
(left) part of the circuit, data will be moved around to make room for the results
from the right part. Halfway we reverse this process: the left part brings data to the
(increasing) right part, where they will be assembled. We can accomplish this by
using in the lower half of the circuit the connections which are reflections of those
used in the upper half. This way the results will be moved back, to be at the right
place exactly at the right moment. Figure 7 gives an example for n = 8.

To be precise, we have a structured circuit of depth 4log n — 3, width n, and the

15

following connections:

i — i 1<i:<n

gi — giy1 lngn—l
g2 — gpyi 1<i<nf2
92i-1 — g; 1<i<nf2
gi — g2i-1 1SiSn/2
g3+i — gu 1<i<n/2

It is easy to prove that with these connections the maximum fan-in and fan-out of
all gates g; (1 < ¢ < n) will be four. We have pictured a layer of the so formed
structured circuit in Fig 8 (for n = 16).

In the following the variable m has been added for notational reasons only. We
start the circuit with m; = z; (1 < i < n) and build the results in the m;’s such
that at the bottom of the circuit m; = z; *...*z; (1 < i < n). All my’s will start
at g; and be shifted to different gates in the circuit, finally returning to gate g;. We
will use level to denote a number of consecutive layers, usually two except for the

middle (log n-th) level which consists of one layer and level 0 which consists of zero
layers.

16

Claim 1 After j levels of the circuit the following holds:

a.j=0: input, 0 layers
gi contains m; 1<:<n
mg =z; 1 S] S n
b.1<j<logn: 2 layers per level
i contains Mmaj;_(2i-1)n
i>3+3+ -+ H=n-%
Mmai—1 =231 1<i<n/2
Myi—g = T4i-3* Tgig 1 <i<nf4
Mgi—g = Tgi-7 * Tgi-¢ * Tai—5 * Tgi—a 1 <1< n/8
Majigi-1 = Tasi-(2i-1) * Toii-(25-2) * * * * ¥ Toji_gj—1
1<t < nf2
M2j; = T2ji-(2i-1) * Tii—(25-2) * * ** * Toji
1<i<n/2
c.j=logn: 1 layer per level
gn contains m,,
Mai—q =221 1<i<n/2
Myi—2 = T4 3%Tgi3 1<:<nfd
miu_,- =$1*---*$§_; 1_<_i§2
d. logn < j <2logn —1: 2 layers per level
gi contains mgateg n=(j+1){—(22leg n~(j+1) 1)
1> N = mGEy
my =T %k - %xTy
m'; =Ty ke k xg_
mi'_,- "—'wl*"‘*zi'—i 1Si$4
My210g n—(i+1)4 = Ty k0 k Tozlog n—(i+1)4
1 <4 < gmegm
Mg210g n—(j+1)j_22logn—j = To2log n—(j+1)j(23log n=(j+1) ~1) LR
To2log n—(5+1)§-2210g n—j
1 <t < mmpeony
Myi—2 = T4i-3*Tgig 1<i<nf4
M1 =31 1<i<n/2

Proof: Level 0 represents the input, g; gets z; as input, so Claim 1 is true for
j=o.

We prove part (b) of the claim by induction on j. At the start of level 1: g¢;
contains m; and m; = z; (end of level 0). We will use connections g; — g¢; and
gi — gi+1. We can now arrange that mg; = i1 * 25 (and mai_; = z4;_;). After

17

this layer g; still contains m; . In a next layer we will use the connections g; — go+i
and gz;_y — ¢; and thus after this layer g; will contain mq;_,, for i > 2. Thus (b)
is true for j = 1. Suppose that (b) is true for j, we will show it to be true for j + 1.

We will leave my;_1,m4i_3,...,Mgj;—pi-1 unchanged. When observing myjs1;_s;
and mgj41; for 1 < ¢ < n /29t we find that these are exactly the m,j;_o; for 1 <
i < n/27 (as specified by the claim). Thus mgj41;_g; = Toittio(2i41—1) * * * * * Tojtri_gi
and Mmayis1; = Taisrim(2io1) * * - * * Toitr;. We will leave myjs1;_y; unchanged and try
to arrange:
Maj414 1= Majt1i95 * Mojt1; = .’122,'+1,-_(2;'+1_1) ¥ o0 X Tojtlg.

The contents of the different m;’s will then be as according to the Claim (b) with
for j the value j + 1 substituted. We will only be able to arrange this if there is a
connection from gate g;» containing my;+1;_y; to gate gy containing msj41; . We know
that gate g; has Maii—(2i-1)n and gate gin contains mg;u_(2i_1)n for ¢/,4" > n — 5
Now suppose that

29! — (27 — 1)n = 2/+1i then ' = &ZI" 4 2; and
24" — (29 — 1)n = 27+ — 2 then " = B0 4 95 1.

It follows that ' = i — 1 so there is a connection from gate g;» to gate gy, namely
gin — giny1 for ¢',4" > n — . Now all m;’s have values as they should have at the
end of level j + 1. An extra layer is needed to direct the right values to the different
gi’s. At the end of level j g; contains Maji—(2i-1)n for ¢ > n — 2. Consider ¢ with
it = 21’ — n (thus ¢ will be even) and ¢ > n — £. We will use the connections

gk — g3k 1< k<3
gok-1 — gk (1< k< 3).

Because ¢ is even we will use the connections g; — Ip+i- Thus 9p4j gets the

m from gate g; which is Maji—(2i-1)n (at level j + 1), for ¢+ > n — 7. Now gate
9342i=n = gi contains Mmy;(zir—n)—(2i—1)n = Maitijr—pi+in fOr @/ > n — 7. We may
now conclude that at the end of level j + 1 the data are organized as specified by
Claim 1(b), and thus the claim is true for 1 < j < logn. Note: it is easy to verify
that in case we use all the connections g2i—9gp+i 1 < ¢ < n/2 and gyi1—g;
1 <7 < n/2 (see (b)) or all the connections g;—gsi—1 1 < ¢ < n/2 and gp+i —
g2i 1 <1 < n/2 (as will be needed for part (d)) no ‘collisions’ of data will occur.
Part (c) of the claim follows easily by taking j = logn — 1 in (b). All gates then
have the right m;’s for after level log n, the only action that remains to be taken is
changing m,. That is m, :=mp *xm, = 23 *--- % Tp *Togy * - * T, We will use
the connection g,.; — g, because g,_; will contain ma and g,, will contain m,,.
The proof of part (d) of the claim is analog to that from part (b) and for that
reason left out. O

With this claim it is easy to show that Parallel Prefix € SNC} ,. It follows from

the used connections that the fan-in and fan-out for each gate have a maximum
of 4. We can also see that the above described circuit realises the Parallel Prefix

18

Dr 91 P2 92 p3 93 py G4 9In-3Pn—-29n-2Pn-1gn-1Pn g,

Pr§1P2 §o a =ORgates
® = AND gates
Ca
[s]
¢ c2 c3 4 Cn-3 Cn-2 Cn_y1 Cn

Figure 9: Circuit to produce the carry bits.

problem: take j = 2logn — 1, then with input z;,z,,...,, the output of gate g;
will be: z; x z3 *...* z; (1 <1 < n). The width of the circuit is n and the depth is
2(logn —1) 4+ 1 4+ 2(logn — 1) = O(log n) layers.

Combining this result with Corollary 2 completes the proof. O

Remark: Of(logn) depth and O(n) gates per layer is optimal for circuits in
SNC;, as the unstructured circuit already needs depth O(logn) (and we only con-
train ourselves by requiring the circuit to be structured). The width of the structured

circuit has to be at least the maximum of the number of in- and output gates, which
is n.

5.2 Addition

The addition problem takes two n-bit binary numbers z;...z, and y;...y,, and
produces its n + 1-bit binary sum 2;...2p4;.

Theorem 5 Addition € SNC}, with O(n) gates each layer.

Proof: To add = and y we first form p and g such that p; = z; Vy; and g; = z; A ;.
From these we calculate the carry bits ¢; (1 < 7 < n) with a circuit similar to
that for the parallel prefix problem (see Figure 9), knowing that we are able to
transform that circuit into a SNC}, cicuit with O(n) gates per layer. We want ¢;
to be (ci_1 Api) V g; for all 1 <1 < n (where ¢g = 0).

First we form p;, §; (1 < ¢ < %) with §; = psi—1 A pai and §; = (g2i—1 A p2i) V gai-
With these p; and § we will produce the corresponding &, which can be used to
calculate the ¢; that corresponds to p; and g;. We define &; as & = (-1 ABi) V &

19

(and & = 0). The & that will be formed in this way will be the ¢;; as can be shown
by induction on ¢ in the following way:
& =(CoAP)Va
=(aAp:) Vg
= (&1 APV §i
= (C2i—2 A P2i A p2i—1) V (g2i—1 A p2i) V g2
= (((c2i-2 A P2i=1) V g2ic1) A p2i) V 9ai
= (C2i—1 A p2i) V 9o
= Cai

Hr

Thus after this step we have computed c; for ¢ even. Computing ¢; for i odd is now
simple, since czit1 = (C2i A P2ig1) V 92i41.

Once the carry bits are known it is easy to form the output bits z; from the p;
and g; and these carry bits (¢;—;).

The explained parts can be put together to form a structured circuit of depth
O(logn) and with O(n) gates in a layer and fan-in and fan-out bounded by some
constant. Using Corollary 2 we can reduce the fan-in and fan-out to 2 without
changing the bounds on depth and size in order of magnitude. O

Note that this result is optimal as for a circuit with gates with fan-out and fan-in
< 2 we need depth at least O(log n) to compose all inputs and for structured circuits
O(n) gates in a layer is minimal.

5.3 Multiplication

So far we have only considered problems which are not just in NC?, but in AC? as
well. Multiplication however is in NC? and not in AC® as shown in [FuSaSi], and
we will show it to be in SNC?. In section 3 we have shown AC® to be a subset of
SNC! (Corollary 4, take k = 0), and thus when multiplication is in SNC! we may
conclude that AC? is a proper subset of SNCL.

The multiplication problem takes two n-bit binary numbers as input and pro-
duces its 2n-bit binary product as output. There are several circuits of depth
O(logn) known to solve this problem, each using a different method to produce
the product, resulting in a different number of necessary gates. We list three of
them, the Three for two trick ([Of, Wa, KaRa, We]), the method from Karatsuba
and Ofman ([Sa, We]) and the best bounded fan-in circuit known, from Schonhage
and Strassen([ScSt, AhHoUl, We]). See Table 5.3. The second column gives the
size of the circuits needed when the circuit is allowed O(logn) depth. The third
column gives the necessary number of gates in a layer when we structure these cir-
cuits using the Structuring Lemma from section 3, which gives us circuits of depth
O(log nloglogn). The last column indicates the necessary number of gates when
structuring the circuits using depth only O(log n) by making use of the special prop-
erties of the circuits considered. So far we only have been able to do this for the
Three for two trick-circuits.

20

Method Unstructured Structured Structured
Depth — | O(logn) O(log nloglogn) O(log n)
number of gates gates/layer gates/layer
Three for O(n?) O(n?log n) O(n?)
two trick
Karatsuba O(nlos3) O(n'&31og n) ?
and Ofman
Schonhage- O(nlog nloglog n) | O(nlog® nloglogn) ?
Strassen

5.3.1 Three for two trick

We can transform the multiplication problem into the problem of n additions of
2n-bit numbers. When taking three 2n-bit numbers at a time and adding them bit
by bit we get 2-bit numbers for each three bits we add. The upper bits together
form a 2n-bit number (the upperbit number) , and so do the lower bits (the lowerbit
number). Adding the upperbit number followed by a zero to the lowerbit number
will give us the sum of the original three numbers. Thus we have transformed (in
a constant number of steps) the addition of three numbers to the addition of two
numbers.

Using the Structuring Lemma we easily get a O(log? n) depth, structured circuit
with O(n®log n) gates each layer. We can fairly easily reduce this to a structured
circuit with O(log n log log n) depth and O(n? log n) gates each layer by adjusting the
original circuit a little: reducing the fan-out of the gates to a constant by replacing
the first layer which directs the inputs to the n different sums by O(log n) layers,
and some tree structure to direct all inputs to the numbers to be added.

To obtain a structured circuit of depth O(log n) we study the NC? circuit more
closely, and we are particularly interested in layers where the fan-out is not bounded.
The first layers are concerned with forming the n numbers to be added. This results
in a fan-out of O(n) for the input gates, and as we have seen before we can replace
this layer by O(log n) layers, where we direct each input only to a constant number
of gates, giving the same total result. This can easily be a structured circuit, of
O(n?) gates each layer and depth O(log n). We are left with n numbers to be added.
We use 2n bits to represent each of these numbers. This is neccesary for structuring
the circuit, as the addition of small (n bits) and large (2n — 1 bits) numbers has to
fit within the same connections. For the next O(log n) layers (three for two trick) we
can easily use a type of layer which takes three numbers (2n bits each) and makes
two out of them, shifting them to the left as far as possible. After O(logn) layers
just two numbers will be left, and we can use a stuctured circuit depth O(logn),
size O(n) to add these two (as in section 5.2). In total we get a constant number of
structured circuits of depth O(log n) and gates with constant fan-in and fan-out. We
can according to Theorem 1 (using projections, adding gates where input=output,
etc.) make a structured circuit of O(logn) depth out of these with bounded fan-in
and fan-out and O(n?) gates each layer. This leads to:

21

Theorem 6 For the Three for two trick algorithm for multiplication there ezist
structured circuits with bounded fan-out and fan-in of depth O(log n) and with O(n?)
gates each layer.

5.3.2 Karatsuba and Ofman

The number of gates needed in the former circuit for multiplication can be reduced
by using a different algorithm for multiplication. Suppose we want to multiply
T=z1...cpandy =y;...Yn. Leta:'=a:1...a:i-_,a:”=a:in_ﬂ...w,.a,ndy':yl...yg.
and y"” = y241...yn. The algorithm for multiplication from Karatsuba and Ofman
is based on a divide and conquer approach and the observation that:

z*y=2"%p +2% % (ps — (p1 +p2)) + P2
where pr=z'xy', pp=2a"*y", p3=(z'+2")*(y' +y")

With this a multiplication of size n can be replaced by three multiplications of size 2.
The multiplications can be done in parallel, for the additions we can do something
special as to make them work not only in size O(n), but also in constant depth
(the representation of numbers needed for this has been studied by Melhorn and
Preparata [MePr]).

Theorem 7 (Wegener 1987) The Karatsuba and Ofman algorithm for multiplica-

tion can be implemented such that the resulting circuit has size O(n!°83) and depth
O(logn).

When examining the circuit closer we observe that all gates have bounded fan-
in and bounded fan-out. As the circuit has depth O(logn), we can transform this
into a structured circuit of depth O(logn) with O(n'*¢3logn) gates in a layer and
fan-out, fan-in = O(logn) and thus:

Lemma 3 Multiplication € SNC} 04 ,000gm) With O(n1°83log n) gates each layer.

Using the Structuring Lemma we can conclude the following,.

Theorem 8 For the Karatsuba and Ofman algorithm for multiplication there ezist
structured circuits with bounded fan-out and fan-in of depth O(lognloglogn) and
with O(n'°83log n) gates each layer.

The algorithm for multiplication from Karatsuba and Ofman uses a divide and
conquer approach to solve the problem. It looks as though circuits using this cannot
easily be structured without increasing the depth of the circuit, unless only one
part of the division is not trivial (that is, really is a smaller instance of the whole
problem). For the circuit for the parallel prefix problem this is the case so structuring
that is possible without significantly increasing the depth of the circuit. For the
Karatsuba and Ofman algorithm however, all parts in which we divide the problem
are non-trivial instances of the original problem and (even if this would only be
two subproblems) thus we cannot easily structure the circuit without increasing the
depth of the circuit.

22

5.3.3 Schonhage-Strassen

The Schonhage and Strassen algorithm for multiplication makes use of the Fast
Fourier Transform.

Theorem 9 (Wegener 1987) The algorithm of Schonhage and Strassen leads to a
circuit for multiplication of size O(nlog nloglogn) and depth O(logn).

The circuit of Schonhage and Strassen as described in [We] uses gates with bounded
fan-out as well as fan-in only. Using the Structuring Lemma once more we conclude
the following:

Theorem 10 For the Schonhage and Strassen algorithm for multiplication there
exist structured circuits with bounded fan-out and fan-in of depth O(lognloglogn)
and with O(nlog® nloglogn) gates each layer.

6 Summary and directions for further research

In this paper we have introduced an interesting class of problems solvable with
structured circuits, called SNC. In the general case, using SNC circuits instead of
NC or AC circuits will give an increase in depth of O(logn). This is not a very
high price compared to the amount of simplicity using structured circuits introduces.
Remember that we just needed one layer of the structured circuit with programmable
gates. Then we would direct the output of the layer back into the layer itself and
after repeating this process a number of times the problem will be solved. Thus the
O(log n) increase in the depth of the circuits is in fact only an increase in time and
not in the number of gates. In the special cases we have considered (Parallel Prefix,
Addition, Multiplication) even this extra factor log n of depth can be avoided.

Within the class SNC there are several subclasses which differ in the maxi-
mum fan-out and fan-in of the gates and in the depth of the circuits: we defined
SNCk p(n).a(n) 1O be the class of families of structured circuits with depth O(log* n)
and fan-out < p(n) and fan-in < g(n). We have related different SNC classes to
each other and showed how to transform non-structured circuits into structured
ones, thus being able to relate SNC to NC and AC. We can summarize the rela-
tionships among the classes as below:

ACk C SNC}3' C SNC*1 C NCH+1 C SNCk+1 C ACH (k > 0)

From these relationships we may conclude that SNC = AC = NC.

Moreover we showed multiplication to be in SNC}, while we know that multi-
plication is not in AC®. Thus we may conclude that AC® # SNCj,.

Besides multiplication we have shown some other useful problems to be in SNC} ,.
These are parallel prefix and addition, for both of which we can build structured
circuits with only O(n) gates in a layer. This number of gates in a layer is minimal

23

for structured circuits as the size of the input (n) puts a minimum on the width of
the circuits.

Next we will indicate some directions for further research concerning classes of
SNC.

In [Ru2] we find that NC* for k > 2 is the same class when defined with Ug,
Up, Upc or Ug. uniformity, where Ugg-uniform means logspace uniform which is the
uniformity that we have used to define SNC. It would be interesting to investigate
if the same holds for SNC*.

Furthermore we could study the class of structured Alternating Turing machines
(SATM for short). This would be the equivalent of the ATM’s for which NC* =
ATM?* such that SNC* = SATM*. For an explanation of ATM’s see e.g. [Ru2,
Rul, ChKoSt, KaRa). ,

Finally for NC* (Ug.-uniform) there is a complete problem known (under AC®
reduction), namely the boolean formula value problem ([Bu]). A question still open
is whether there are (natural) complete problems for SNC? as well.

References

[AhHoUl] Aho, A.V., J.E. Hopcroft and J.D. Ullman, The Design and A#alysia of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

[Bu] Buss, S.R., The boolean formala value problem is in ALOGTIME, Proc 19th
Annual ACM Symp. on Theory of Computing, 1987, pp.123-131.

[ChKoSt] Chandra, A.K., D.C. Kozen, L.J. Stockmeyer, Alternation, JACM
28(1981), pp.114-133.

[Col] Cook, S.A., Towards a complexity theory of synchronous parallel computa-
tion, Enseign. Math. 27(1981), pp.99-124.

[Co2] Cook, S.A., A taxonomy of problems with fast parallel algorithms, Inform.
and Control 64(1985), pp.2-22.

[FuSaSi] Furst, M., J.B. Saxe and M. Sipser, Parity, circuits and the polynomial
time hierarchy, Math. Systems Theory 17(1984), pp.13-28.

(KaRa] Karp, R.M. and V.L. Ramachandran, A survey of parallel algorithms for
shared-memory machines, in: J. van Leeuwen (Ed.)Handbook of Theoretical
Computer Science, North-Holland Publ. Comp., Amsterdam (to appear).

[LaFi] Ladner, R.E. and M.J. Fischer, Parallel prefix computation, JACM 27(1980),
pp-831-838.

[MePr] Mehlhorn, K. and F.P. Preparata, Area-time optimal VLSI integer multiplier
with minimum computation time, IC 58(1983), pp.137-156.

24

