The systematic construction of a
one-combinator basis

J. Fokker

RUU-CS-89-14
May 1989

R Rijksuniversiteit Utrecht

W%
?:;f. Vakgroep informatica
¥

7 AL A Padualaan 14 3584 CH Utrecht
Corr. adres: Postbus 80.089, 3508 TB Utrecht
Telefoon 030-531454
The Netherlands




The systematic constriaction of a one-combinator basis

J. Fokker

Technical Report RUU-CS-89-14
May 1989

Department of Computer Science
University of Utrecht
P.0.Box 80.089, 3508 TB Utrecht
The Netherlands



the Systematic Construction of a One-Combinator Basis

Jeroen Fokker
Dept. of Computer Science
University of Utrecht
PObox 80.089
3508 TB Utrecht
the Netherlands

may 1989

Abstract

A single closed A-expression that generates all A-expressions is constructed. The derivation
is carried out in a systematic way. The resulting basis is simpler than bases known in the
literature.

1 Combinator bases

A combinator is a closed A-term, i.e. an expression formed by A-abstraction and application that
does not contain free variables. Some commonly used combinators are

S = Mgz.fz(gz)
K = Jzy=
I = Az

In this article, lower case is used for variables in the language of A-calculus, and upper case for
variables denoting A-terms. Fixed expressions are non-italic. Application associates to the left, so
ABC means (AB)C. Abstractions range as far as possible, 5o Az.AB means A\z.(AB). Multiple
abstractions are abbreviated, so Azy.A means Az.\y.A.

Combinators are of great importance for the implementation of functional programming lan-
guages (see [3]). Functional programs can be translated to an applicative combination of combina-
tors, thus removing the need for M-abstraction. A set of combinators from which all closed A-terms
(modulo a-, 8- and n-conversion) can be constructed using application is called a basis. Curry [2)
discovered that finite bases actually exist:

Theorem 1. {S,K, |} is a basis.
Proof: Given a A-expression, eliminate all abstractions by repeated application of the following
rules:

Azz = |
Az.A = KA if z ¢ Free(A)
Az.AB = S(Az.A)(A\z.B)

These rules cover all possible cases, since the body of an abstraction is either the bound variable
(rule 1), another variable (rule 2), an application (rule 3), or another abstraction (which can be
eliminated first). The process terminates as it only introduces abstractions of smaller terms. Rule
1 is sound by the definition of |. Rule 2 is sound by

KA = {def. K}

(Azy.z)A = {p-reduction}

Ay.A = {a-conversion, z ¢ Free(A)}
Az.A



Rule 3 is sound by

S(Az.A4)(Az.B)

(Afgz.fz(g92))(Az.A)(Az.B) {B-reduction (twice)}
:\\z.f:;.A)z((Xz.B)z) {n-conversion (twice)}
. O

{def. S}

It is well known that the | is not necessary in the basis:

Theorem 2. {S,K} is a basis.
Proof: By theorem 1, {S,K, 1} is a basis. Replace all occurrences of | by SKA, where A is an
arbitrary term, e.g. K. This rule is sound by

SKA = {def. S}
(Afgz.fz(9gz))KA = {B-reduction (twice)}
Az Kz(Az) = {def. K}
Az.(Azy.z)z(Az) = {B-reduction (twice)}
Az.z (m]

The central problem of this article is to find a single combinator X such that {X} is a basis.

2 A one-combinator basis

We now construct a basis of one combinator. The importance of this basis is mainly theoretic;
bases for praactical use tend to be larger rather than smaller ¥han {S,K,I}. The construction is
an example of systematic derivation of a solution from its specification. In the process of program
transformation, typically some steps are strongly motivated by the context, and some stepe are
creative design decisions. In the construction below, three design decisions are explicitly identified.
We tried to be as little creative as possible. Simplicity is the driving force in the derivation, in
order to obtain the most “natural” result.

The goal is to construct a combinator X from which K and S can be constructed by application.
Then, by theorem 2, every closed A-term can be built. Neither of the combinators K and S forms
a basis in its own. Therefore both K and S are a combination of more than one X.

As a first design decision we suppose that both are an application whose the lefthand side is a
single X. We try and find expressions A and B such that

XA K
XB S

Of course A and B have to be distinct. As a second design decision we choose A and B to be the
two simplest distinct expressions that can be made with X, and as K is simpler than S we choose
A to be simpler than B:

o

A = X
B = XX
The specification now reads
XX = K
XXX) = S
and by using the first line in the second one
XX = K
XK = §

As X is applied to functions (X and K), it is of the form Af.M . Now we must construct the body
M out of f. It is not clear where f is to be used in M. But as it is a function, our third design
decision is to apply f to something. As f may be instantiated with K, and K has two arguments,
we try to apply f to two arguments. Thus we have



X = AMfPQ
We solve P and Q in this equation. This can be done by calculation:

S = {specification}
XK = {def. X}
P

so P=S, and
K = {specification}
XX = {def. X}
XPQ = {def. X}
PPQQ = {P=§S}
SSQQ = {def. S}
SQ(QQ)

To unfold the definition of S at this point, we need three arguments. We therefore use extensionality,
and state that for all A and B

A = {def. K}
KAB = {above}
SQQQ)AB = {def. S}
QA(QQA)B

This is clearly fulfilled by @ = Azyz.x .
We can summarize this derivation in
Theorem 3. Let X = Af.fS(Azyz.z) . Then {X} is a basis.
Proof: By theorem 2, {S, K} is a basis. Replace all occurrences of K by XX and all occurrences of
S by X(XX). These substitutions are sound by the derivation above. o

3 Comparison to other bases

In Barendregt [1] some other one-combinator bases are given. The first was found by Meredith in
1963. Some simpler forms were found by Bohm, Barendregt and Rosser. We quote their solutions
from [1]:

Meredith

Aabed.cd(a(Az.d))
X3x2

X4(KX4)
X4(X4UX2)X2
VUXHXVI)(KX*)))
Xf F(FS(K

XX

X(XX)

A F(FS(KK))K

XXX

X(XXX)

3/ FKSK

XXX

X(XX)
Af.fS(Azyz.xz)
XX

X(XX)

Bohm

Barendregt

Rosser

Fokker

WXXOXXVWX XXX X<cX
S| T R 0 B VA T B S R T




To evaluate the simplicity of the various solutions, we define the size of an expression to be the
number of abstractions and applications in it, and measure the simplicity of a solution by the
size of the respective X, K and S. Another criterion for simplicity is the number of normal-order
reduction steps it takes to reach normal form, and the (sum of the) sizes of the intermediate
expressions during this reduction. Our systematically derived solutions are the smallest in size,
and are comparable to Rosser’s in normalization speed.

size K S
X K S | steps sizes | steps  sizes
Meredith 74 152 380 41 3622 68 17681

Bohm 22 47 N 29 2509 63 7792
Barendregt | 18 56 75 24 1803 53 5923
Rosser 14 4 4 8 262 11 316
Fokker 12 25 38 9 167 12 352

4 Another calculation

Rosser’s solution can be calculated from its specification in a similar way as we did in section 2.
The specification reads (note the extra X in the first line):

XXX K
X(XX) = S

A sufficient condition for XXX = K is XX = KK (in fact this is the condition for XXX = K). As
before we use the first line in the second one to get

XX KK
X(KK) S

Note that KKABC = B, so KK needs three arguments. Therefore in this construction we suppose
X to be of the form

X = Af.fPQR

As before we calculate by S = X(KK) = KKPQR = Q and KK = XX = XPQR = PPQRQR =
PPSRSR that

Q =5
PPSRSR = KK

We are left with one equation in two unknowns (P and R). It has many solutions, some of which
can be found easily. For example:

e P = Aabcde.e and R = KK
e P = )abede.c and R = KK
e P = )Aabecde.ce and R=K
e P=Kand R=K

Only the last one is not completely obvious. It is justified by KKSKSK = KKSK = KK. This solution
yields Rosser’s X = Af.fKSK. It was the fact that there is one equation with two unknowns that
motivated us to look for a simpler X.



References
[1] Barendregt, H.P.: The lambda calculus, its syntax and semantics. North-Holland, 1984.
[2] Curry, H.B. and R. Feys: Combinatory logic Vol. I. North-Holland, 1958.

[3] Peyton Jones, S.L.: The implementation of functional programming languages. Prentice-Hall,
1987.



