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Abstract

The length of an addition chain for n measures the number of multiplications for
computing z" from z. If the cost of the multiplications is taken into account, then
the sum of the elements of an addition chain for n is a better measure for the cost
of computing z" than the length.

In this paper bounds on sums of addition chains are derived, and properties of
optimal addition chains according to the sum cost criterion are studied. It turns
out that the last step in an optimal addition chain for an even number is always

a doubling, and the sum of an optimal addition chain for an odd number n is
asymptotically very close to 5n/2.



1 Introduction

1.1 Motivation

In 1], section 4.6.3, an extensive study of lengths of addition chains is given. An
addition chain for n is defined to be a sequence of integers

1=ay, a1, az,..., a,=n
with the property that for all i = 1,2,...r there exist k and Jwithk<j <iand
a; = a; + ag.
The motivation for studying addition chains is the following:

If there exists an addition chain of length r for n, then z" can be com-
puted in r multiplications from z.

In this motivation, however, only the number of multiplications is counted. It is rea-
sonable to take into account that a multiplication of large numbers is more expensive
than a multiplication of small numbers. If the classical multiplication algorithm is
used then the cost of a multiplication is approximated by the product of the num-
bers of bits of the multiplicands. Building a; = a; + a; from a; and aj then gives a
cost a; * ar. In [2] it has been shown that for this cost function on addition chains,
the addition chain for n obtained by steps of adding one and doubling according to
the binary representation of n, is optimal.

However, there are faster multiplication algorithms. The cost of a multiplication
of two integers by the Schonhage-Strassen algorithm is proportional to

plogploglogp

where p is the number of digits of the result, see e.g. [3], section 7.5. If the logarith-
mic factors are ignored, so the cost of multiplication is postulated to be proportional
to the length p of the result, then building a; = a; + ai from a; and ax requires a
cost proportional to a;. Note that the cost of merely writing down the result of a
multiplication as a p-bit number is also proportional to P-

In this approach the total cost of computing z" using an addition chain for n
is proportional to the sum of the elements of the addition chain. In this paper we
derive bounds on sums of addition chains, and study properties of optimal addition
chains according to this sum cost criterion.



1.2 Definition and summary of results
First we give a definition.

Definition 1 For a positive integer n the optimal chain sum S(n) is the smallest
value such that .
S (n) = Ea;
=1
for an addition chain
1 = ag, a3, ay,..., a, = n.

Any addition chain for n that achieves a sum of S(n) is called optimal. Forn > 1 the
ratio p(n) of n is defined to be S(n)/(n —1). For consistency we define p(1) = 5/2.

If ax < ax-; in any addition chain, then the chain in which a; and ax_; are
interchanged is also an addition chain. Thus we may restrict ourselves to increasing
addition chains without any loss of generality. If an element occurs more than once
in an addition chain, then the chain remains an addition chain after removing a copy.
So throughout this paper we may, and shall, assume without any loss of generality
that all addition chains are strictly increasing.

We shall prove that

5
p(n) > 3

for all odd n, while equality holds if and only if n is a power of 2 plus one, or a
product of numbers of that shape.
On the other hand we shall prove that

p(n) < 2 +0(n),

for all positive integers n.

For even n let m be the greatest odd divisor of n. We shall prove that any
optimal addition chain for n is obtained by extending an optimal addition chain for
m by the chain

2m, 4m, ..., 2"m =n.

Hence optimal addition chains for even numbers are immediately derived from op-
timal addition chains for odd numbers and we may focus on odd numbers. The
optimal addition chains for all odd numbers less than 60 are listed in table 1.

As we might expect, the last element of an optimal addition chain for an odd
number is always the sum of the two elements preceding it. In section 5 we prove
that this holds in general. Furthermore we show that the one but last element of an
optimal addition chain for an odd number not divisible by 3, is always odd, except
in the case of a few small numbers.

Many of the proofs in this paper are given in the following way. Assume that an
optimal addition chain for n does not have the shape that is claimed. Lower bounds
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n [S(n)]| p(n) [ chain(s) n [S(n)| p(n) | chain(s)

1] 0 [2.5000]1 31| 78 [2.60001,2,3,4,7,14,17,31

3| 5 [25000]1,2,3 33| 80 |2.5000 |1,2,4,8,16,17,33

5| 10 |2.5000(1,2,3,5 35| 86 |2.5294(1,2,3,4,7,14,21,35

7| 16 |2.6667[1,2,3.4,7 37| 92 |2.5556 | 1,2,3,5,8, 16, 21,37

9 | 20 |2.5000]1,2,4,59 39 96 |2.5263|1,2,3,6,7,13,26,39
1,2,3,6,9 1,2,3,5,8,13, 26, 39

11| 27 |2.7000 [1,2,3,5,6,11 41| 102 | 2.5500 | 1,2, 4,5,9,18,23 41
1,2,3,4,7,11 1,2,3,5,10, 20,21, 41

13| 31 [2.58331,2,3,6,7,13 43| 106 |2.5238 | 1,2,3,5,10,20,23, 43
1,2,3,5,8,13 45 | 110 |2.5000 | 1,2,4,5,9,18, 27,45

15| 35 [2.5000]1,2,3,6,9,15 1,2,3,6,9, 18, 27, 45
1,2,3,5,10,15 1,2,3,6,9,15,30,45

17| 40 [2.5000 |1,2,4,8,9,17 1,2,3,5,10,20,25,45

19| 47 |2.6111]1,2,3,4,8,11,19 1,2,3,5,10,15,30,45

21| 51 |25500(1,2,3,4,7,14,21 |47 | 120 |2.6087 | 1,2,3,4,7,10,20,27,47

23| 56 |2.5455(1,2,3,5,10,13,23 [ 49 | 121 |2.5208 | 1,2,3,6, 12,24, 25,49

25| 60 |2.5000|1,2,3,5,10,15,25 | 51| 125 |2.5000 | 1,2,4,8,9,17,34, 51

27| 65 |2.5000 |1,2,4,5,9,18 27 1,2,3,6,12, 24,27, 51
1,2,3,6,12,15,27 || 53 | 134 |2.5769 | 1,2,3,5,6,12, 24,29, 53
1,2,3,6,9,18,27 | 55| 137 |2.5370 | 1,2,3,5,6,11,22, 33, 55

20 74 |2.6429(1,2,3,5,6,12,17,29 1,2,3,4,7,11,22,33, 55
1,2,3,4,7,14,15,29 || 57 | 142 | 2.5357 [1,2,3,4,8,11,19, 38,57
1,2,3,4,7,11,18,29 [ 59 | 148 | 2.5517 [ 1,2,3,4,7, 14, 28,31, 59

)

Table 1: Optimal addition chains for the odd integers < 60.




on p(m) for various elements m occurring in the tail part of this optimal addition
chain for n give some inequalities. Then a linear combination of these inequalities
is found giving a lower bound on p(n), conflicting the upper bound on p(n) for n
large enough. Some case analysis is often inevitable. For small n the proof is given
by direct verification.

In the last two sections some remarks and open problems are given concerning
star chains and the lengths of optimal addition chains. It turns out that all our
bounds and results on the shape of optimal addition chains also hold for optimal
star chains, except for the explicit constant we can reach in the O of the result

o(n) < > +0(n12)

2 Lower bounds on optimal chain sums

Lemma 1 Let
veey ak, .-.,ar

be any addition chain. Then

i a; 2 2(a,. ot ak).

i=k+1

Equality only holds for the chain
cevy Gky 2ag, ..., 27 %q, = q,

Proof: By induction to r — k. For r = k it is trivial. For r > k we have

r r—1

Z a; = Z a;+a, 2 2(a,_; —ar)+a, > 2(a, — ax)
s=k+1 i=k+1

since a, < 2a,_; by the definition of an addition chain.
The second assertion follows the same induction: if anywhere a, < 2a,_; then a
strict inequality appears. [

This lemma is one of the basic tools for deriving bounds on p(n); we shall often
refer to it without explicitly mentioning it.
An immediate consequence by choosing k = 0 is the following:

Proposition 1 For all positive integers n we have

p(n) > 2,

where equality holds if and only if n is a power of 2.



Proposition 2 For all positive odd integers n we have

5
Es
where equality holds if and only if n = 1,3,5,9,15, 17,25,27,33,..., i.e. n can be

written as .
129 +1).

p(n) =

Proof: We shall prove that
S(n) 2 2(n — 1)
for n odd by induction to n. For n = 1 this holds. For n > 1 let
l=ag, a3,0a3 ...,a,=n
be an optimal addition chain for n. By definition of an addition chain we have
n=a,=a,+a
for some s,t < r. Since n is odd we have s # ¢; we may assume
s<t<r.
We distinguish three cases:
1. a; is even;
2. a;isodd and s #t—1;
3. a;is odd and s =¢ — 1.

case 1: a; is even.
From the induction hypothesis and a, is odd we conclude that

2 5
Ea; > E(a, -1).

=1
Since ¥, @i > a; and Yicet1 @i 2 2(a; — a,) we also have
¢

Ya2Et(a-a) =

In — 5a,
2 .

2

Further we have



We conclude that
Sm) = Ya > Sa-1)+ 22 40 = 3oy,

=1

which we had to prove.
case 2: q; is odd and s # ¢ — 1.
We have .
Y a; > 2(a, —1).
=1
Since 3 < t—1 we have Y[, a; > a, + a,. We also have T%_, ., a; > 2(a; — a,), s0
we obtain

t
E a; > a, + Gt -+ (at — a‘) = M
i=s41 2 2

Again we have

We conclude that
. 3n —4a 5
S(n) = Ya > 2a,— 1)+ 4% 5
(n) Z;a > 2(a,— 1) + g— tn > 2(
which we had to prove. Note the strict inequality: if p(n) = % then this case 2 will
never occur.
case 3: a; isodd and s =¢ — 1.
There must be u and v such that a¢; = a, + a,. Since a; is odd either a, or a, is
odd, say a,. From the induction hypothesis we conclude that

zu:a.' > ;(a., - 1).

i=1

n_l)a

Further we have

> ai>2(a, —ay)

t=u+1
and
’
D a4 2 a+n.
i=s+1
From s =t — 1 we obtain a, > a,, and we conclude that

S(n) = Sa > g(au—1)+2(a,—a.,)+a¢+n

=1

= 1a +2a,+a +n-—5
b 2u 8 t 2

1 1 3 5
> o _ — —_——
2 2au+2ao+2a.+at+n 2

5
— —_ —1,

~(n—1)



which we had to prove.

It remains to show that, if n is odd, then p(n) = £ holds if and only if n is
a product of numbers of the shape 2* + 1. Then in the above case distinction all
inequalities have to be sharp. This is only possible in cases 1 and 3.

In case 1 two of the inequalities were

¢ ¢
Y ai>a, and > ai >2(a; —a,).

=241 =841

If both inequalities are sharp then a, = 2(a¢ — a,), so a; = 2a,, and
n = a,+a; = 3a,.

In case 3 we applied the inequality

E a; > 2(a, — ay),

i=u+l

which is sharp only if a, = 2*a, for some positive integer k. We also applied the
inequality a, > a,, which is sharp only if a, = a,. Then we have

n = da,+a = 2a,+a, = (2¥%' 4+ 1)a,.

We have proved by induction that the only candidates for equality are products of
numbers of the shape 2% + 1.

On the other hand, for all of these numbers an addition chain giving p(n) = :
can be constructed: if

1=ap, 4, a3,..., a, =n

is a chain giving p(n) = £, then
1 =ao, a1, as,..., a, =n, 2n,..., 257n, (2¥-1 4 1)n, (2F +1)n
is a chain giving p((2¥ + 1)n) = 5. O
The optimal addition chain for a product of numbers of the shape 2% +1 is unique

up to the chosen order of the factors of the product. This is forced by the proof of

the above proposition. For example, if 15 is considered as 3 x 5, then we obtain the
optimal addition chain
1, 2, 3, 6, 9, 15.

On the other hand, if 15 is considered as 5 * 3, then we obtain the optimal addition
chain
1, 2, 3, 5, 10, 15.

For 9 we obtain the two optimal addition chains

1,2,3,6,9 and 1, 2, 4, 5, 9

8



by considering 9 as 3+ 3 and as 23 + 1 respectively. The five optimal addition chains
for 45 in table 1 are obtained by considering 45 respectively as (23 + 1) % 5,3 %3
5,3%5%3,5%(23+1) and 53 3.

Until now we focussed on lower bounds on p(n) for odd n. In section 4 we shall
prove that S(2n) = S(n) + 2n for all positive integers n, and as a consequence for
n = 2% xm, m odd:

m-—1
2(n —1)
where equality holds if and only if m is a (possibly empty) product of powers of 2
plus one.

Before we can derive this lower bound, we first need upper bounds on p(n).

p(n) >2+

3 Upper bounds on optimal chain sums

In this section we sometimes need bounds on the sum of an addition chain containing
more than one fixed element. That’s why we start with a definition.

Definition 2 For a sequence of non-negative integers by, ..., b, the value
S(by,...,b,) is the smallest value such that

S(bl,...,b.) =zr:a,'

=1

for an addition chain
1= Go, @1, G2,..., Gy

for which
(Vi:lSis.s:b.-:OV(Bj:OSjSr:a,-:b.-)).

The corresponding chain is called optimal for b,,...,b,.
The key lemma for deriving upper bounds is the following.

Lemma 2 Letn =mx*2*+a fork>1,m > 0,a >0, and letb,,...,b, be a possibly
empty sequence of non-negative integers. Then

S(n’bl""’b’)s §22+S(m’b1,"-’bna)_';‘—2m.

Proof: Let
1 = ay, a4, a,,..., a,

be an optimal addition chain for m,b,,...,b,,a. Then

1 =ay, aj, ay,..., a,, 2m,..., 2F"'m 2*!'mta, 2%mta=n



is an addition chain for n,b,,...,b,. We obtain

S(nabys..sbh) < S(m,by,...,b,a0) + (2* —2)m +2*'m+a+2*m + a
5
= 5(2km+a)+S(m,bl,...,b,,a)-%_zm

= 22'1+S(m,b1,...,b.,a)—g-—2m.

O

The following proposition gives a general applicable upper bound on S(n); it will
be used as a basic tool in most of the propositions that follow.

Proposition 3 For all positive integers n we have

S(n) < 2.

Proof: For n < 8 the proposition is easily verified. For n > 8 we shall prove the
following more general property:

Property For each integer n > 8 and for each possibly empty sequence
bi,...,b, of positive odd numbers, all < 8, we have

S(n,by,...,0,) Z

We shall prove this property by induction to n using lemma 2 for k = 3.
It has been verified by a computer program that for every n with 8 < n < 64:

e there is an addition chain starting with 1,2, 3 for which the sum is less than
18n/7;

e there is an addition chain starting with 1,2, 3, 5 for which the sum is less than
(18n + 20)/7;

e there is an addition chain starting with 1,2,3,4,70r 1,2,3,5,70r 1,2,3,6,7
for which the sum is less than (18n + 28)/7;

e there is an addition chain starting with 1,2,3,5,7 or 1,2,3,4,5,7 for which
the sum is less than (18n + 48)/7.

We conclude that the property holds for n < 64.
For n > 64 write n =8m +a withm >8 and 0 < a < 8. By definition we have

S(mabl,'--,buo) = S(m,bl,...,b,);

10



since 2 is contained in every non-trivial addition chain we have
S(m, b], P b,,2) = S(m, bl, ceey b,).
Combining this by the induction hypothesis we obtain

S(m, bl,- . .’bl’a) < 18m +4a:—42'.=1 bl' (1)
for a # 4,6.
Let a # 4,6. Applying lemma 2 for k = 3 and 1 we obtain
S(n,by,...,4,) < 57"+S(m,b1,...,b,,a)_§_2m
Sn  18mtdatasiib o

< 7+ 7 2 2m
= Sn 8mta 4FLb
S 3tTw ot
= 18n+420§=1b€
= - .

It remains to prove the property for n = 8m + @ with m >8anda=4ora=6.
Let a be an optimal addition chain for m, bi,...,bs, a/2. Then

a, 2m, 2m+§-, 4m+g-, 8m+a=n
is an addition chain containing n,by,...,b,. Hence
S(n,by,...,b,) < S(m,by,...,b,, .;.)+ 16m + 2a = S(m,bl,...,b.,g) + 2n.
Applying 1 for a replaced by a/2 we obtain

S(n,by,...,b) < S(m,bl,...,b.,g) +2n
18m +2a+437, b

< 5 +2n
< 32m + 4a;— 430, b; 49
18n +43% 7, b

7
This concludes the proof of the property, and hence of the proposition. O
This bound is rather sharp; for example
S(71) 182 18
— = -— R 2.5634 < 2.5T14 ~ —,
T THA 7

A direct consequence is the following result on p(n).

11



Proposition 4 For all positive tntegers n we have

27
<

where equality holds if and only if n = 11.

Proof: For n < 21 we refer to table 1. For n 2> 21 we obtain

Sr) 18 n 18 21 27
= et —_— < — —_——,
p(n) -l ST IS T *H T 1

The bound of proposition 3 was achieved by applying lemma 2 for a fixed number
k = 3. For large n the upper bound on S (n) can be improved by taking larger values
of k, as is done in the next proposition.

Proposition 5 For all integers n > 1 we have
5
S(n) < ?" N
where ¢ = 31/29 ~ 2.308. As a consequence we have

p(n) < 2 +O(n~¥).
Proof: By elementary calculus it is easily shown that

29z 4n 3
P —_< _\/
1a Tz SV

n n
—<x<4,/—.
2y39 ST<4/5

n n
2%/— <2k < 4‘/—
29 =" = 7Va29’

and write n = 2*m + a with 0 < a < 2*. Then by lemma 2 we obtain
S(n) < -522+S(m,a)-—§-—2m
< 57”+S(m)+3(a)-§-zm
5n n 18m +18a¢ a

for each value z for which

Choose the integer k such that

S gt — -3 m
S5n 29a 4m

= — 4 —
2 14 7

< 5n+29*2" 4n
2 14 7 x 2k

< —5§+gv29n.



O

For small numbers we shall always use the bound 18n/7; only for n > 1044 the
bound of proposition 5 is better than 18n/7.

The next proposition compares addition chains for mn with addition chains for
m and for n.

Proposition 8 For all integers m and n both > 1 we have

p(m) + p(n)
p(mn) < —

Proof: By symmetry we may assume that p(n) > p(m). Let
1=ay, a1, a3,..., 6, =n
be an optimal addition chain for n and
1=0bg, by, bs,..., 0,=m
an optimal addition chain for m. Then
1=ap, a1, ay,..., a,, a:by, aby,..., a,b,=mn
is an addition chain for mn. So we have

S(mn) S(n) + nS(m)

(n —1)p(n) + n(m — 1)p(m)
< (n—1)p(n) + n(m — 1)p(m) + (n(m — 1) — (n — 1)) X2 = £(m),

A

2
_ p(m) + p(m)
- (mn_l)_'_z'—"a
p(mn) = ifzm_n)l < p(m);-p(n)_
O

4 Optimal addition chains for even numbers

Combining proposition 1 and proposition 3 we are now able to prove that the last
step in an optimal addition chain for an even number is always a doubling.

13



Proposition 7 Let n > 1 and let
1= ay, a;, ay,..., a, =2n
be an optimal addition chain for 2n. Then a,_; = n and
1=ag, a1, a3,..., ay_1 =n
is an optimal addition chain for n.

Proof: Assume the assertion does not hold. Then the last step in the addition
chain is not a doubling, and there exist s and ¢ such that

g, <as<a,=2n with a,+ a; =2n.
We have the following inequalities:
S(2n) < S(n) + 2n,
S(a,) + a: + 2n < S(2n),
S(ac) + 2n < S(2n).
According to proposition 1 we have
S(a,) >2a,—2 and S(a¢) > 2a, — 2.

According to proposition 3 we have

18n
S _—
(n) < =
Combining these results we obtain
2¢, — 2+ a; < Eﬁ
7
and
a-1< grf
t 7 .

Adding these inequalities gives

n -3 =2(a,+a;)—-3< '2;1-,
so n < 21. For n < 21 it is easily verified that the assertion holds. This contradicts
our assumption. [J

Note that this behaviour of optimal addition chains differs from the behaviour with
respect to the length criterion of addition chains: in [1] it is mentioned that the last
step of a shortest addition chain for 382 is never a doubling. This also proves that a

shortest optimal addition chain for 382 is longer than a shortest addition chain for
382.

A direct consequence of the proposition is the following.

14



Proposition 8 Letn > 1 and k> 0, and let
1 = ag, ay, a,..., a, = 2*n

be an optimal addition chain for 2kn. Then a,_; = 2*=in fori =0,1,...,k and
1=ap, a1, azy..., Gr_p=n

is an optimal addition chain for n. As a consequence
S(2*n) = S(n) + (2¥*! - 2)n.

Combining this result with propositions 2 and 5 we obtain the following main
result.

Proposition 9 Let n > 1 and write n = 2* xm, m odd. Then

2n+'—721——-2—55(n)<2n+—722+c\/5

for ¢ = 2.308, and

m—1 m-—1
— < < _
2m—n M2+ 50—y
The left inequalities are equalities if and only if m can be written as a (possibly
empty) product ‘

[1(2® +1).

2+ +0(27* xm~¥).

5 The shape of optimal addition chains

In this section the shape of optimal addition chains is discussed, in particular we
consider what can be said about the last few steps of them. As the shape of optimal
addition chains for even numbers was determined in section 4, we now restrict to
odd numbers. The results imply strong optimizations of backtracking algorithms
for finding optimal addition chains. These optimizations have been used to check
that there are no more optimal addition chains for 137 and 145 than those listed in
sections 6 and 7.

Proposition 10 Let
1=ag, a1, az,..., a,=n

be an optimal addition chain for an odd number n > 1. Then

n = ar_1 + Gy_3.

15



Proof: If n cannot be written as a,_; + a, for some s, then the number a,_; can
simply be removed from the addition chain, making the sum smaller. Son = a,_;+a,

for some s. Since n is odd we have s < r —1. Assume the proposition does not hold,
sos<r—2.

We distinguish two cases: a, is odd and a, is even. First assume a, is odd. Then

ia.- 2 g(a,—- 1).

i=1

Since Y023, @i > @r—3+8@,_1 > ay+0a,_; = nand Yzl ai > 2(ar_1—a,) = 2n—4a,

we also have )
—

3 5
ig;l @ > 2n + §(2n —4a,).

We conclude that

18 r 5 3 5 21 5
=n > S(n) = Ea; > 5(a,—1)+-8-n+-8-(2n—4a,)+n = -8—n—§,

so n < 47. For n < 47 it can be directly verified that the case in question does not
occur.

Next assume a, is even. Then a,_, is odd, so

a,_1 = @y + a,, for some v < u.
Again we need a case distinction:

1. Let v > s. Then the shape of the optimal addition chain is
1,..,85...58py...yQyuyeeny@roy, T,

so we have

18—n>$(n) > S(a)+av+as+ary+n

7
> 2(ao_l)+av+au+ar—l+n
3n — 2,

so n < 5. For n < 5 the case in question does not occur.
2. Let v = s. Then the shape of the optimal addition chain is
1,...,84,.-.,8uy...,8, + Gy, 2a, + a, = n.

Then in this addition chain the value @, + a, can be replaced by 2a,, giving
an addition chain for n with a smaller sum, so the addition chain was not
optimal. Contradiction.

16



3. Let v < s. Then the shape of the optimal addition chain is

1, i @y BayennyByyenn,Gprog, M.

Combining the inequalities

ia; > S(a,) 2 2(a, — 1)

=1
and .
ZasZS(Gu)+a.22(au—1)+a.
=1
we obtain s 0 ) 3
Zai?_a.—l-i- (a"— )+a‘=—&+ao_2a
=1 2 2
so we have
18 .
Tn>5(n) > 3; +a,—2+a,+a,1+n
5n Qp_1
= — -2
2 2
11n
> — =2
— 4 2

so n < 12. For n < 12 the case in question does not occur.

As all cases led to a contradiction, we have proved the proposition. O

Proposition 11 Let

1 =ap, a1, a2,..., G ="n

be an optimal addition chain for an odd number n > 1,n # 7,11,13,29, and-let a,_,
be even. Then

A1 = 2 % Ayp_2.

As a consequence, n = @y—1 + Gr_2 = 3 * a,_3 18 divisible by 3.
Proof: From proposition 10 we know that n = a,_; + a,—3. Assume that
L/ P, | # 2% Q2.

Let a,_; = a, + a, with v < u. We distinguish two cases: u <r — 2 and u=r—2.
First assume u < r — 2. Then we have

r—2 u

Zai Zzai+ar—2 Z S(au)+ar—2 Z 2(au—1)+ar—2 Zar—l _2+ar—2=n—2

=1 =1
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r—2
Za, > S(ap—2) 2 (a,_g -1).

i=1
Multiplying the first inequality by 3/5 and the second by 2/5 and adding them gives

r—2
zaa 2 3—n+a,_2-—-1—1
=1 5
We conclude
18 3
7n ZG:Z —n+a,._2———1+a,_1+n_ 13_n_1_1,
=1 5 5

so n < T7. It is directly checked that for these values the case in question does not
occur.

Next assume u = r — 2. Since a,_; # 2 * a,_2 we have v < u. Since a,_; is even
we see that a, = a,_; is odd; since a,_; = a, + a, we see that a, is also odd. We
obtain

Ea, > S(ay) > (a,, -1)
and i
Za.ZS(au)+au2 (au—1)+au

Multiplying the first inequality by 10/13 and the second by 3/13 and adding them
gives ’

i“ 15a., 28a., _ i
& i2 13 2
We obtain
18n 15a, 28a, 5
RS > o _
7 >S5 2 Sty g taratn
_ 6n 5
-2 2

so n < 455. For n < 60 the proposition is checked directly, e.g. by using table 1. For
60 < n < 455 and n # 71,89,191 an addition chain with sum smaller than 627(;' -3
is easily found using the construction in lemma 2 by choosing k¥ = 3 or k = 4. For
n = T1,89,191 it is checked that the addition chain constructed in this way has a

sum smaller than S(ay,a,) + a,—1 + n for all possible candidates for a, and a,. O

As a consequence, for n odd, n > 29 and n not divisible by 3, the number a,_,
in an optimal addition chain for n is always odd.

For n odd and n divisible by 3, either a,_; = 2a,-; and n = 3a,— and S(n) =
S(n/3) +5n/3, or a,_; is odd. Both cases occur infinitely many times: the first one

18



for example for n = 3%, the second one for example for n = 22**! { 1, where the
optimal addition chains are built according proposition 2.

In any case, looking for an optimal addition chain for some number n can always
be restricted to looking for an optimal addition chain with a,_; is odd. For this
number @,_; only a small variation is possible, as is shown in the next proposition.

Proposition 12 Let n be an odd number, n > 1. Let
1 =qag, 1, 24..., Gpr =T
be an optimal addition chain for n for which a,_; is odd. Then

n 22n
5 = — - _— . .
*n 2<a 1 < 35 +1 63 xn

Proof: The first inequality is trivial, the second follows from

18n = 5
—7—- > S'(n) 2 Ea.- +n Z S(a,...l) +n _>_ E(a,._l - 1) + n.
i=1

6 Star chains

A reasonable simplification of the notion of an addition chain is the star chain. As
in [1], a star chain for n is defined to be a sequence of integers

1 =ap, a1, az,..., ¢, =n

with the property that for all ¢ = 1,2,...r there exists an integer j with 0 < j < ¢
and

a; = a; + ai_1.
The motivation for star chains is that in the corresponding evaluation of =", the most
recently computed intermediate value can always be retained in the accumulator.

Most addition chains we discussed are star chains. All addition chains in table
1 are star chains. For numbers of the shape

25« (29 +1)

we classified all optimal addition chains, and they all are star chains.
One may wonder whether all integers have optimal addition chains that are star
chains. However, this is not true. For example

1,2,4,8,9,16,32, 64,173,137
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is the only optimal addition chain for 137, proving that S(137) = 345, but the star
chain for 137 with the smallest sum is ‘

1,2,3,4,7,9,16,32,64,73,137

with sum 347.

For values by,...,b, let $*(b,...,b,) denote the minimal sum of a star chain
containing all non-zero elements of by,...,b,. Since all star chains are addition
chains, we always have

S(by,...,b,) < 8*(by,...,bs),

and all lower bounds on S(n) also hold for S*(n).

Translating upper bounds on S(n) to upper bounds on §*(n) can only be done
if the constructed chains are star chains. This holds for lemma 2 if m > a and
m > by,...,b,, and for propositions 3, 4 and 6. In proposition 5, however, the fact

S(m,a) < S(m) + S(a)

is used. For addition chains this is a trivial observation, but for star chains this is
not; we leave as a conjecture that the similar inequality

§*(m,a) < §*(m) + $*(a)

also holds.

Although we cannot use this inequality, we can prove a star version of proposition
5. Only the value ¢ will be slightly worse. First we need a lemma.

Lemma 3 Let m,a be integers withm > a >0, m #0. Then
. 7
S*(m,a) < — +a

Proof: The proof is given by induction to a. For a = 0 we have

" o 18m 3™m
S§*(m,a) = S*(m) < —— 7 o ——+a

For a > 0 let
l=ay, az,..., ar =a

be an optimal star chain for ¢ and m mod a and let
1=b, by,..., by=mdiva
be an optimal star chain for m div a. Then

=ay, G2,..., Gr=a=a*by, axby,..., axb,=ax(mdivae), m
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is a star chain for m and a. Here the last step is addition by m mod a, since
a* (m div @) = m — (m mod a).

Applying this equality, the induction hypothesis for e and m mod a, and the star
version of proposition 4 for m div a we obtain

$*(m,a) < S*(a,m moda)+ax*S*(mdiva)+m

< 317—0a+(mmoda)+a*27((mdwa)—1)+m

10
_ 3Tm +a 17(m mod a)
10 10
3Tm
< —_— .
= To +a
O
Proposition 13 For all integers n > 1 we have
5
S*(n) < -5'1 +cy/n,
where ¢ = 3.9.
Proof: Choose the integer k such that
2F < \/n < 2FF
and write n = 2¥m + a with 0 < a < 2%, Then we have
n a
a<2k$\/r_z§¥=m+2—k<m+1,
s0 a < m. Since v/n < 2F*! we obtain
n
m S Ek— < 2\/1-2_.
By the star version of lemma 2 and lemma 3 we obtain
5
S*(n) < -2'-‘- + §%(m,a) — % —2m
< 5n+37m+a_ —9m
2 10 2
50 1Tm a
= 27Tt
5n 17 1
< - + 10 *2¢/n + '2'\/7;
5
= 7" +3.9/m.



a

Since proposition 3 holds for star chains, propositions 7 and 8 also hold for star
chains. Applying proposition 13 instead of proposition 5 we obtain a star chain
version of proposition 9, in which the constant c is replaced by 3.9.

Propositions 10, 11 and 12 also hold for star chains since only proposition 3 is

applied and all chains found in the verifications for small numbers in the proofs are
star chains.

7 The length of optimal addition chains

What can be said about the length of optimal addition chains? Let the length of an
addition chain

1 =ap, a1, a2,..., Gy =n

be defined by the number r.

The first question to ask is whether the length of an optimal addition chain
is uniquely determined. It turns out that it is not; the smallest example of this
phenomenon is obtained by taking n = 145: there are three optimal addition chains

1,2,4,8,9,17,34,68, 77,145
1,2,4,5,9, 18,36, 72,73, 145
1,2,3,6,9,18, 36, 72,73, 145

of length nine, and also three

1,2,3,5,6,12,17,29, 58,87, 145
1,2,3,4,7,14,15,29, 58,87, 145
1,2,3,4,7,11,18,29, 58,87, 145

of length ten, all of them having the optimal sum $(145) = 364.

Let I5(n) and I (n) be the smallest and the greatest possible length of an optimal
addition chain for n, respectively, and let I(n) be the smallest possible length of an
addition chain for n. Clearly we have

log; n < I(n) < I5(n) < 1§(n)

for all positive integers n. In section 4 it was noted that the second inequality is
strict for n = 382, while in the above example we see that the third inequality is
strict for n = 145.

Since the sum of a strictly increasing sequence of length r of positive integers
always exceeds r?/2, and S(n)/n is bounded, we obtain

I§(n) = O(vn).
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