New Techniques for the Union-Find Problem

J.A. La Poutré

RUU-C5-89-19
August 1989

Utrecht University

* s
2, & Department of Computer Science

<
; X Padualaan 14, P.O. Box 80.089,
™ 3508 TB Utrecht, The Netheriands,
Tel. : ... + 31- 30 - 531454

New Techniques for the Union-Find Problem

J.A. La Poutré

Technical Report RUU-CS-89-19
August 1989

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

An extended abstract of this paper will appear in the Proceedings of the First

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 90), January 1990,
San Francisco (U.S.A.).

New Techniques for the Union-Find Problem*

J.A. La Poutré

Department of Computer Science, University of Utrecht,
P.O. Boz 80.089, 3508 TB Utrecht, The Netherlands

Abstract

A well-known result of Tarjan (cf. [10]) states that a program of up to n
UNION and m FIND instructions can be executed in O(n + m.a(m,n)) time
on a collection of n elements, where a(m, n) denotes the functional inverse of
Ackermann’s function. In this paper we develop a new approach to the prob-
lem and prove that the time for the k** FIND can be limited to O(a(k,n))
worst case, while the total cost for the program of UNION’s and m FIND’s
remains bounded by O(n + m.a(m,n)). The technique is part of a family
of algorithms that can achieve various trade-offs in cost for the individual
instructions. The new algorithm is important in all set-manipulation prob-
lems that require frequent FIND’s. Because a(m,n) is O(1) in all practical
cases, the new algorithms guarantees that FIND’s are essentially O(1) worst
case, within the optimal bound for the UNION-FIND problem as a whole.

The algorithms run on a pointer machine and do not use any form of path
compression.

1 Introduction

Let U be a universe of n elements. Suppose U is partitioned into a collection of
(named) singleton sets and suppose we want to be able to perform the following
operations:

¢ Union(A4,B,C): join the two sets named A and B and call the result C,

e Find(z): return the set name in which element z is contained.

The occurring set names must satisfy the condition that, at every moment, the
names of the existing sets are distinct. The problem of efficiently implementing

*This research was partially supported by the ESPRIT II Basic Research Actions Program of
the EC under contract No. 3075 (project ALCOM).

1

Union-Find programs is widely known as the disjoint set union problem or just the
”Union-Find problem”.
Several data structures and algorithms for the Union-Find problem have been de-
veloped. In [4] a set union algorithm was presented that takes O((n + m).log* n)
time for all Unions on n elements and for m Finds, where log* denotes the "iterated
log-function”. In 1975 (cf. [10]) Tarjan considered the well-known set union algo-
rithm that uses path compression. He proved that the worst-case time bound for
this algorithm is O(m.a(m, n)) for n —1 Unions and m > n Finds, where function a
ibs defined as follows. Firstly, the Ackermann function A(z,z) is defined for 7,z > 0
y

A(0,z) = 2z forz >0

A(Z,0) = 1 fori >1

A(i,z) = A(G—1,A3,z—1)) fori>1, z>1.

and the functional inverse of the Ackermann function is defined for m,n > 1 by
a(m,n) = min{i > 1|A(¢,4[m/n]) > n}.

The algorithm can be run on a pointer machine (i.e., a machine model in which no
arithmetic on memory addresses is possible) and moreover it satisfies the separation
condition (i.e., at any moment the records in the data structure can be partitioned
into disjoint sets that have no pointers to each other, where each set of records
corresponds to exactly one set of elements) (cf. [11, 9] for a precise description). In
[11] a lower bound was proved on the time complexity of any Union-Find program
that can be run on a pointer machine and that satisfies the separation condition: a
program of n — 1 Unions and m Finds takes at least Q(m.a(m,n)) time, if m > n.
In [2] and [12] the lower bound was extended to (n + m.a(m, n)) time for all n and
m. Until now all known algorithms that can be run on a pointer machine satisfy
the separation condition. Finally, in (5] the algorithm presented in [4] was combined
with path compression yielding a time bound of O(n.log® n+m) time for all Unions
on n elements and for m Finds.

In this paper we reconsider the Union-Find problem and study the question of
bounding the individual complexity of the Finds. We present a collection of Union-
Find structures that each take O(1) time per Find in the worst case. l.e., we
present a collection of structures UF(z) (: > 1) that solve the Union-Find problem
on a pointer machine, such that for UF(z) a Find operation takes O(z) time and all
Union operations together take O(n.a(i,n)) time for a universe of n elements (: > 1,
n 2> 2), where a(,n) is the row inverse of the Ackermann function that is given by

a(i,n) = min{j|A(i,5) 2 n}.

(The row inverse a(z,n) for some fixed i is a slowly increasing function: the higher
the index : is, the slower the function a(i,n) grows in n. On the other hand, the
inverse Ackermann function a(n,n) grows slower than any row inverse function.)

2

Moreover, by means of these structures a Union-Find structure is given that has a
worst-case time of O(a(f,n)) for the f** Find while the total time complexity for m
Finds and n—1 Unions is O(n+m.a(m,n)). This structure therefore differs from the
structures that use path compaction (cf. [10, 12]) in the fact that the worst-case time
bound of a Find is small instead of the worst-case time bound of a Union. Because
a(m,n) < 3 in all practical situations, the new algorithm guarantees that Finds

are essentially O(1) worst case, within the optimal time bound for the Union-Find
problem as a whole.

The techniques and results stated in this paper have the following applications. On
the one hand, the results can be used in cases in which a low worst-case time of a
Find is more important than that of the Union(s) because of additional computations
(e.g., cf. [8]). Furthermore, because a(m,n) is O(1) in all practical cases, the new
algorithms guarantees that Finds are essentially O(1) worst case, within the optimal
bound for the Union-Find problem as a whole. On the other hand, the techniques
can be used to design an efficient (generalized) Split-Find structure that runs on a
pointer machine (cf. [6]) (a generalized Split divides an interval I into two intervals
I, and Ir: I, is the concatenation of a bounded number of subintervals of I and I,
is the remainder; the usual Split is a special case), and e.g. a structure to maintain
2- and 3-(edge-)connected components (cf. [8]). This is because of the possibility of
maintaining structural information by means of these techniques, whereas e.g. path
compression destroys this kind of information. Furthermore, the techniques can be
used as a part of a proof for a general lower bound for the complexity of Union-Find
algorithms on a pointer machine (cf. [7]).

Asin [9, 10, 11, 12] we consider the Union Find problem in terms of nodes in a pointer
machine. We will not explicitly keep track of the 1-1 correspondence between these
nodes and the elements and set names in the actual computing environment (if
these would appear to be different). However, our procedures are such that the 1-1
correspondences can easily be maintained when necessary.

The paper is organised as follows. In Section 2 the Ackermann function and pointer
machines are considered. In Section 3 we present a collection of structures UF(z) for
all integers : > 1 by means of an inductive construction, starting from the structure
UF(1) that in fact is equivalent to a well-known simple Union-Find structure that
takes O(n log n) time for all Unions. Inductively we will describe UF(i+1) by means
of UF(z). The structure UF(z) will turn out to have a time complexity for a Find of
O(7) in the worst case and a time complexity for all Unions of O(n.a(,n)): these time
bounds are proved in Section 4. In Section 5 we consider how the transformation of
UF(2) structures to other UF(s’) structures can be employed to yield a time bound
of O(n + m.a(m,n)) for all Unions on n elements and for m Finds. In Section 6 we
consider the problem of insertions of elements.

2 Preliminaries

2.1 The Union-Find problem and pointer machines

We formulate the Union-Find problem in terms of nodes as follows (also cf. [9, 10,
11, 12]). Let U be a collection of nodes, called elements. Suppose U is partitioned
into a collection of singleton sets and suppose to each singleton set a (new) unique

node is related, called set name. We want to be able to perform the following
operations:

* Union(s,t): given two (pointers to) set names s and ¢, join the corresponding
sets into a new set, relate either s or ¢ to it as set name and dispose the other
one, and return (a pointer to) the resulting set name.

¢ Find(z): given (a pointer to) element z, return (a pointer to) the set name in
which element z is contained.

The occurring set names must satisfy the condition that, at every moment, the
names of the existing sets are distinct.

As usual, a pointer is a specification of some node (e.g., its unique name or some
other identifier) and a node may contain additional information in some field (e.g.
a string, symbol or pointer).

The above description differs slightly from the description given in [10, 12] where
nodes that represent elements represent set names too, but it easily seen that because
the fields of nodes can be chosen arbitrary and because (a pointer to) the resulting
set name is returned by Union(s,), other descriptions can easily be simulated.

We describe a pointer machine informally. For a detailed description we refer to
[10]. A pointer machine is a machine of which the memory exists of (equal) records.
A record in memory is only accessible by means of a pointer to that record, i.e.,
a pointer can be seen as the internal address of the record in memory. Fields of a
record may contain either data values or pointer values. However, no arithmetic on
pointers is possible: the only operations on pointers is assignment and comparison.
Therefore, a record can not be obtained by calculation of its address but only by
means of following a sequence of pointers.

Now in the Union-Find problem on a pointer machine each node is identified with
some unique record in the memory of that pointer machine. Note that this means
that nodes have a fixed number of fields and that nodes can only be reached by means
of pointer values on which no arithmetic is possible. Therefore we will describe our
Union-Find structures in terms of nodes only and we will not distinguish between a
node and the record that represents that node in a memory.

With respect to the 1-1 correspondence between the elements in a pointer machine
mode] and the elements in a actual computing environment we only mention some
well known techniques (that also apply for [9, 10, 11, 12]): if these elements in the
environment are records themselves, the 1-1 correspondence can be implemented by
means of bidirectional pointers. On the other hand, if the elements are represented
by arrays, then the 1-1 correspondence can be implemented by means of pointers in
the one direction and indices in the other direction. Moreover, note that records can
be implemented by means of arrays, where pointers are in fact indices in the arrays.
Finally, with respect to the correspondences of the set names in a pointer machine
and the set names in the environment, similar remarks can be made. Then these
1-1 correspondences can be used and adapted (if necessary) just before and after
the executions of Union(s, t) and Find(z) operations and in this way the operations
Union and Find as described in Section 1 can be achieved.

Finally, in the algorithms we use lists (or equivalently: sets) that can be manipulated
in the following way. We make use of lists of (pointers to) nodes that allow the
following operations: two lists can be unioned or a node can be inserted in a list, both
in O(1) time, and a list can be enumerated or removed in linear time. Obviously,
an implementation of a list as doubly linked linear list of nodes with additional
pointers to its two end nodes will do (where the union can be performed just by
concatenating the linear lists). We do not make these operations explicit in our
algorithms, but only state the mathematical operations like "U” for the union of
two lists and " {z}” for the list consisting of the element z only.

2.2 The Ackermann function

The Ackermann function A is defined as follows. For i,z > 0 function A is given by
A(0,z) = 22 forz >0
A(z,0) = 1 forz: >1 (1)
A(t,z) = A(G-1,A(G,z—-1)) fori>1, z>1.

It is easily seen that A(i,1) = 2, A(:,2) = 4 and A(i + 1,3) = A(:,4) for i > 0.
Moreover we have

A(0,z) = 2z
A(l,z) = 2°

22"2 } z two’s
A(2,z) = 2

" 22}2}1 two two's
2 2 } - two’s

92 }2 two’s

AB,z) = 2_ ~*
z braces

In fact, for every ¢, A(¢ + 1,z) is the result of z recurrent applications of function
A(z,.) (cf. A(1,2z), A(2,z) and A(3,z)), as stated below.

Lemma 2.1 Let A9(i,y) := y and A=+)(i,y) := A(:, A®(i,y)) for i,z,y > 0.
Then A(i,z) = A®(E—-1,1) fori> 1, z > 0.

Proof. Straightforward by induction on z. O
Lemma 2.2 A(¢,2') > A(i,z) for all i > i, 2’ > z.

Proof. By induction it follows that for every i, A(i,z) is strictly increasing in z
and A(z,z) > 2z. Next it follows by induction that for every z, A(Z,) is strictly
increasing in i. This concludes the proof. (Also cf. [10].) o

Definition 2.3 1. The row inverse a of the Ackermann function is defined by
a(i,n) = min{j > 0|A(i,) = n) (2)
fori,n > 0.
2. The functional inverse a of the Ackermann function is defined by
a(m,n) = min{i > 1|A(¢,4[m/n]) > n} (3)
form >0, n > 1. Here we take [0] =1 in contrast to its usual definition.

Note that a(0,n) = a(n,n). The above two definitions differ slightly from those
appearing in [10, 11, 12]. However, it is easily shown that the differences are bounded
by some additive constants (except for the functions a(0,n) and a(1,n)). We state
some lemmas.

Lemma 2.4

a(z, A(z, z)) = z (20, >0)
a(t, A+ 1,z+1)) = A(i+1,z) (:20,z2>0)
a(i,n) = a(t,a(i—1,n))+1 (121, n>2)

Proof. By (1) we have a(i, A(: + 1,z + 1)) = a(s, A(i, A(: + 1,2))) = A(i + 1,z).
Moreover, since n > 2 implies a(¢,n) > 1 and by (2), (1) and 7 > 1 we find

a(i,n) = ‘

= min{j > 1/4(,j) > n)

min{j > 1|A(i — 1,A(i,j — 1)) 2 n}
min{j > 1/4(i,j — 1) > a(i - 1,n)}
min{j’ 2 0|A(i,;")) 2 a(i = 1,n)} +1
a(i,a(i —1,n)) + 1.

6

O

The following lemma shows the relation between two successive row inverse func-
tions.

Lemma 2.5 Let a®(i,n) := n and aU+)(i, n) := a(i,aV(i,n)) fori,j >0, n > 1.
Then a(i,n) = min{jla®)(i —~ 1,n) = 1} for i,n> 1.

Proof. Note that n > 2 equals a(i,n) > 1. Hence, by Lemma 2.4 it follows by
induction that a(i,n) = a(i,a¥)(i — 1,n)) + j if a(i —1,n) > 1. Since a(,1) =0,
this yields the required result. a

Thus we have for n > 1:

a(07n) = [%1

o(l,n) = [logn] = min{j|[2] =1)
a(2,n) = log*n = min{j|[log") n] =1}
a(3,n) = min{j|log"” n = 1}

where as usual, the superscript (j) denotes the function obtained by j consecutive
applications.

Lemma 2.6 a(i,n) < a(,n') fori >4, n' > n.

Proof. By Lemma 2.2. O

By means of the row inverse of the Ackermann function we can express the functional
inverse a as follows.

Lemma 2.7 o(m,n) = min{i > 1|a(i,n) < 4.[m/n]}.
Corollary 2.8 o(m’,n’) < a(m,n) form' > m and n' < n.

.2 b
Finally, note that a(m,n) < 3 for n < 2” } 05536 two's (which will be the case for
all practical values of n).

For simplicity, we extend the Ackermann function as follows:
A(3,—1) =0 for all i > 0.

Notation 2.9 The set of all integers greater or equal to -1, is denoted by N_,. The
number of elements of a set S is denoted by |S|.

We state some more lemmas that we will need in the sequel.

Lemma 2.10 Leti > 2, n > 0. Then a(i,n) > 5 = a(i,n) < L.a(i — 1,n).
Proof. Suppose a(i,n) > 5 (and hence n > 2). Then Lemma 2.4 gives
a(i,a(t —1,n)) = a(i,n) - 1
and therefore by (2)
a(i —1,n) > A(i,a(i,n) — 2). (4)
Since A(2,5 — 2) = 16 > 3.5 and since A(2,z + 1 — 2) = 24(2=-2)_it follows that
A(2,z —2) > 3.z for z > 5. Applying this (by means of Lemma 2.2) in (4) yields
a(i—1,n) > 3.a(z,n) ()
O

Lemma 2.11 Letn > 1, f > 0. Then

a(f,n) < a(0,n) = f > nA8.f > n.a(a(f,n),n)
Proof. Let af,n) < a(0,n). Then by Lemma 2.7

0 f
4-[;] < a(a(f,n),n) < 4-[;]-
Since [0] =1 this yields f > n and n.a(a(f,n),n) < 8.f. O
Lemma 2.12 Letn > 1 and let f, and f, be such that
a(fz+1,n)=a(fo,n)—1=a(fi +1,n) =1 = a(f1,n) — 2.

(Hence, fi and f; are two consecutive values of f "after” which the value of o(f,n)
decreases.) Then f, > 3.f; > 3.n.

Proof. Let f; and f; be as defined above.

First, for all f such that a(f 4+ 1,n) = a(f,n) — 1 we have by Lemma 2.7

4.[f/n] < a(a(f +1,n),n) < 4.[(f +1)/n].
Hence f/n must be a (positive) integer, which yields

f f

- eN A 4.; <ala(f+1,n),n) < 4(% +1). (6)

Note that f, and f; are two such consecutive values of f for which the value of
o f,n) decreases.

Let a1 = a(fi + 1,n). By ofy + 1,n) = a(f; + 1,n) + 1 it follows that a; > 2.
Because of ; = o(fi1+1,n) = &(f;,n)—1 and Lemma 2.7 we must have a(a;,n) > 5.
Applying Lemma 2.10 yields

a(a; — 1,n) > 3.a(ay, n). (M)

Combining (7) and (6) gives (by using a(f; + L,n)=a; —1)

3.4.% <3.a(aq,n) < a(ag —1,n) < 4(Iz +1).
n
Hence,
Byl
n n
and since by (6) {;L and :n& are integers, this gives f, > 3.f;. Lemma 2.11 provides
the second inequality f; + 1 > n since a(f; + 1,n) < a(fi,n) < a(0,n). O

2.3 Obtaining Ackermann values

First consider the Ackermann function as an infinite matrix A with Ackermann
values: A(t,z) (i > 1, £ > —1). Note that A(i,—1) = 0, A(2,0) = 1, A(3,1) = 2
A(i,2) = 4 and that A(z,3) = A(z—1,4) (1 >1).

Let n be a integer, n > 1. Suppose we only need Ackermann values A(Z, z) to
compare with numbers n’ for 0 < n’ < n, i.e. evaluating a predicate n’ < A(i, z),
and only for ¢ > 1 and —1 < z < a(i,n). (In our algorithms we have this situation:
for a universe of size n the size m of a set in it "grows” and from time to time
5 1s compared with some A(7,z) with z < a(i,n).) If all Ackermann values that
are at least n are replaced by the value oo, then this does not influence the above
comparisons. Note that by (2) A(i,a(i,n)) > n and A(,a(i,n) — 1) < n. By
Equation (3) it follows that A(a(n,n),4) > n. By A(a(n,n) + 1,3) = A(a(n,n),4)
and by Lemma 2.2 this gives that A(¢,3) > n for i > a(n,n). Therefore, if all
Ackermann values that are at least n are replaced by oo in the matrix, then all rows
with row number at least a(n,n) + 1 are identical.

Therefore, it suffices to have a table that contains the values A(3, z) for
1<i<a(n,n)+1 A -1 <z <a(,n).

where all values A(i,a(?,n)) (1 < i < a(n,n) + 1) are replaced by co. (In fact,
we even can do with less.) In this case, row a(n,n) + 1 represents all rows : with
t > a(n,n).

In correspondence with these observations we define the following notion and we
obtain a lemma.

Definition 2.13 Let n, be an integer, ngg > 1. An Ackermann table for nack

with row number ag is a table A’ with number a,q = a(Ngek, Nack) that contains
values A'(i, z) for

1 <4 < ofnack Nack) + 1 A =1 < 7 < a(i, naek) (8)

with A'(i,a(i, nack)) = 0o and A'(i,z) = A(4,z) otherwise.

Lemma 2.14 Let A’ be an Ackermann table for naor with row number auex. Then
the following holds for 0 < n' < ngg, 1> 1, -1 < z < a(t, ngek):

n' < A(i,z) & n’ < A'(minfi, apu + 1}, 7).

In this Subsection we consider how to compute Ackermann tables for some Ngcr and
how to store them: firstly by a matrix array and afterwards by a pointer structure.

2.3.1 Matrix Representation

Suppose we want to represent an Ackermann table for n,. by a matrix. Then this
matrix needs columns numbered from —1 up to a(1, Nack) and rows numbered from 1
up t0 Qgek +1 = Q(Ngck, Nack) + 1. Since ager cannot be computed directly, an upper
bound like log n can be taken. Let A’ be the matrix that represents the Ackermann
table for ngex. Then A’ can be computed by means of the algorithm given in Figure 1,
where n is taken instead of n,. We consider the algorithm briefly.

Note that in line 2 7 + 1 is used instead of just 1. This is for convenience in the
sequel. In line 2 it is used that A(1,z) = 2% and that 2*+! = 274 2%, Furthermore, if
row ¢ + 1 is computed, then ain has the value a(¢,n) (i.e., the "last” element of row
¢ and hence A'(3,ain) = c0). Moreover, the definition of the Ackermann function is
used straightforward and finally in line 7 it is used that if A(i + 1,z) > ain then
A(r+ 1,z 4+1) = A(5,A(i + 1,z)) > A(¢,ain) > n. Therefore it easily follows
that the algorithm computes the Ackermann table for n. Note that the entire table
can be computed by means of additions and comparisons only, since the expression
2.A'(i + 1,z) occurring in line 2 can be replaced by A'(i + 1,z) + A'(i + 1, z).

2.3.2 Node Net Representation
Since we want to run our algorithms on a pointer machine, we represent the Ack-
ermann table for n,4 by a "node net”, i.e., a collection of nodes (records) that

represent the entries A’(¢,z). Apart from nsc, a positive integer i, is given too.

10

Figure 1: The (matrix) computation of the Ackermann table A'.

(1) i:=0; A'(1+1,-1) := 0; A(1+1,0):=1; z:= 0;

(2) do A'(i+1,z)<n —A(i+1,z+ 1):=2At+1,z);z:=2+1 od;
(3) A'(1+1,z):=o00;i:=i+1; ain:= 1z,

(4) doain>3vi=1

(5) —A(i+1,-1):=0; A'(i+1,0) :=1; z := 0;

(6) do A'(i +1,z) # oo

(7) —if A(i+1,2) > ain —A'(i+ 1,z +1) := oo

gS; [A(i+1,2) <ain —A(i+1,z+1) := A'(i, A'(1 4+ 1,2))
9 fi;

(10) z:=z+4+1

(11) od;

(12) t:=1+1;ain:=zx

(13) od;

(14) Qqaek = 1—1

Each node contains a value of the Ackermann table for Nack- The node net consists of
(say, "horizontal”) linear lists of nodes corresponding to rows of the matrix presented
above, while the first nodes of the lists themselves form a (say, "vertical”) linear list
corresponding to the column —1. In this description we will denote each node in
the net by its coordinates in the corresponding Ackermann matrix. (Hence, node
(¢,7) represents the coefficient A’(i,z).) Moreover, the Ackermann net contains
the parameter agc, the pointers rowse and row, that point to the first nodes of
TOWS Qqaqt and 1 respectively (i.e., nodes (aack, —1) and (1, —1) respectively) and an
additional pointer row: that points to the first node of row (min{io, ager + 1}, —1).
Finally, in each node (i, —1) the value a(i,n) is stored together with a pointer to
node (i,a(i,n)). The structure of the node net is illustrated in Figure 2. We call
such a node net an Ackermann net for ng.

Now the Ackermann table A’ can be computed in a similar way as in the case of
a matrix representation. We only need to make the obvious adaptations to deal
with records and pointers instead of array locations and to deal with the additional
pointers that have to be present in the net. We describe the alterations w.r.t. the
algorithm given in Figure 1. Firstly, together with variable 7 used in the algorithm
a pointer is maintained that points to the node (i,—1), except initially at line 1
(¢ = 0), where pointer rowi is initialized to point to node (1, —1). For each value
A'(i + 1,-1) that is created in the algorithm of Figure 1 (viz., line 1 and 5) a
node is created an it is appended to the linear "vertical” list that corresponds to
column —1. Moreover, such a node is taken to be the first node of the "horizontal”

11

Figure 2: An Ackermann net.

Bw1

\li_'l&l:!—m—m_ _[:L.;Dinf
IIZJ—\D—D—D—D— — O —[inf

gwillﬂd—D—D—D_ — 0O —Qinf

—

O—0—0O—Qinf

row-ack alpha-ack

/‘ [:@—D—E;Dinf
O

list corresponding to row i + 1. For each other value A'(i + 1,z) (z > 0) that
is computed in the algorithm of Figure 1, a node is created containing that value
and it is appended to the list representing row i + 1. Together with the variable
z used in the algorithm a pointer is maintained that points to the node (:+1,z2)
(where row 7 + 1 is the row that is computed). Then all comparisons w.r.t. values
A'(141,z) as performed in lines 2, 6, 7 or 8 are performed by means of this pointer.
The only remaining question is how to obtain the value A'(s, A'(i + 1, z)) in line 8.
Note that function A is monotone (cf. Lemma 2.2). Since during the computing
of row i + 1 the computed values A’(i + 1,z) are computed for increasing z, the
values A'(7, A’(4 1, z)) are values A'(¢,y) that are to be obtained for increasing y
too. Therefore during the "traversal” of row i + 1 in line 6-11 these values can be
obtained by ”simultaneously” traversing row i with variable y and an appropriate
pointer corresponding to y. Note that in this way each row is traversed at most two
times in the entire process (viz. "by” z and "by” y). If a row i is "finished” (lines 3
and 12), then the value a(i,n) (= ain) can be stored in node (i, —1) together with
a pointer to node (i, a(z,n)).

Finally, pointer rowacx is initialised. Note that pointer row: can be initialised to
point to node (min{io, dack + 1}, —1) during the above computations.

In the above way the Ackermann net for n, is computed. By Lemma 2.10 and
Lemma 2.7 it is easily seen that the Ackermann net contains O(logn) values and
that it is computed in O(log n) time. Therefore we have proved the following lemma.

Lemma 2.15 An Ackermann net for na. can be computed in O(log ngex) time.

12

Finally we consider augmenting an Ackermann net for increasing ngex. We only
consider values n,q such that ng = 2%k for some Tack-

Lemma 2.16 Let an Ackermann net be given for g = 2%sct. Then the net can be
augmented to a net for 2.nge = 2%+ in O(a(Naek, Nack)) time.

Proof. Suppose we have an Ackermann net for n,y = 2%. Now adapt the
Ackermann net as follows. First consider row 1, that is reachable by means of the
pointer row; pointing to node (1,-1). Note that zg4 = a(1,n4ek). Now replace the
value co in node (1, Zaek) by 2%¢* (= n,e) and append a new node (1, ZTack + 1) with
value oo to row 1. Moreover, adapt the relevant values and pointers in node (1, —1).

Then the rest of the rows are augmented as follows: if row i (2 £ ager) is not adapted,
then we are ready, otherwise compare the value a(i,ngcx) With A(z+1,a(i+1,n0ex) —
1) (both can be obtained in O(1) time b.m.o. the available pointers since we can
maintain a pointer to node (i,~1)): if a(i, ngat) = A(i+1,a(i + 1,nae) — 1) then
store the value n,cx (= A(%, a(i, n4ek)) in node (t+1,a(i + 1,n0a)) (cf. (1)) and
append a node with value oo to it. Then adapt the values and pointers accordingly
in node (i + 1, —1). Otherwise, nothing need to be done.

If row a(nack, nack)+1 is adapted too, and this row contains the new node (a(nack, Nack)+
1,4), then a new row a(Nack, Nack) + 2 is created containing nodes for -1 < z < 3,
where (a(nack, Rack) +2, 3) contains the value co. Afterwards increase the value Qack
with one and adapt the pointer row,q accordingly. After this procedure is finished,
adapt ngck := 2.1, and Tog 1= Toer + 1. Moreover, the pointer row: can easily be
adapted to point to node (min{io, aaex +1}, —1). It is easily seen that all the above
actions can be performed in O(a(ngq, Nack)) time. O

3 The Union-Find Structure UF(7)

In this section we present a collection of structures UF() (i > 1) that allow Union
and Find operations as described in Subsection 2.1. Let i > 1. A UF(:) structure is
a collection of rooted trees. The collection of trees is changed by Union operations.
For each set name s let the set of elements corresponding to name s be denoted by
set(s,1). Each set name is the root of a tree. The leaves of the tree with root s are
the elements in set(s,?) and have an equal distance < i to the root. The nodes of
the tree without the root can be split into layers of nodes that have equal distance
to the root. The layer that contains the elements of set(s,1) is called layer 7, the
other occurring layers are numbered consecutively in a decreasing order starting
from layer 1.

To each set name some parameters are associated and the corresponding tree satisfies
additional constraints w.r.t. these parameters, which will be given in the sequel.

13

Trees are represented as follows: for each node z the field father(z) contains a

pointer to its father if z is not a root and it contains the value nil otherwise.
Moreover, sons(z) is the list of the sons of z.

Structure UF(2) allows the operations UNION(s, t,i) and FIND(z) that satisfy the
specification given in Subsection 2.1. Function UNION(s,¢,:) will be given in the
sequel. Function FIND(z) is given in Figure 3. Obviously, FIND(z) outputs the
root of the tree in which node z is contained. From the above description of UF(z)

it follows that for any element z, FIND(z) outputs the name of the set in which z
is contained.

Figure 3: Procedure FIND(z) in UF(:) (i > 1).

1) procedure FIND(z); return < set name >;

2) if father(z) = nil — FIND :=z

3) [father(z) # nil — FIND := FIND(father(z))
4)

(
(
(
(4) fi

The structures UF(:) are defined inductively for ¢ > 1, starting from a base structure
UF(1) (that in fact is equivalent to a well-known simple Union-Find structure, which
can be found in [1]). The complex version will be given in Subsection 3.2, but first
we outline the structure of UF(1) in Subsection 3.1.

In the sequel we denote by "UF(i) elements” elements that are involved in the
Union-Find problem to be solved by the UF(:) structure. Moreover, sometimes we
will refer by "UF(2) structure” to the algorithms too.

3.1 The Union-Find structure UF(1)

Structure UF(1) is the structure that underlies the straightforward set-merging al-
gorithm. Recall that the set corresponding to set name s is denoted by set(s,1) and
that the nodes in set(s,1) are in layer 1. According to the above constraints, for
every element z father(z) contains a pointer to the name of the set in which it is
contained and for every set name s, sons(s) = set(s,1).

For each set node s we have a parameter weight(s,1) that contains the size of
set(s,1): weight(s,1) =| set(s,1) |.

If UF(1) is used to solve the Union Find problem, then the initialisation for some
(sub-)collection of elements into sets is straightforward (for any initial collection of
sets, but usually singleton sets).

14

The Union of two sets can now be performed by the algorithm UNION(s, t,1) given
in Figure 4.

Figure 4: The Union procedure in UF(1).

(1) procedure UNION(s,t,1); return < set name >;

(2) {pre: weight(s,1) > weight(t,1); otherwise interchange s and ¢}
(3) for all e € sons(t) — father(e) := s rof:

(4) weight(s,1) := weight(s,1) + weight(t, 1);

(5) sons(s) := sons(s) U sons(t);

(6) remove node ¢; return node s

The algorithm is based on changing the father pointers of the smallest of the two sets
that are involved in the Union. We state here that the generation of all e € sons(t)
that occurs in line 3 of the procedure, can be performed by enumerating the list
sons(t). Moreover, the joining of the two lists occurring in line 5 can be performed
in O(1) time (cf. Subsection 2.1).

3.2 The Union-Find Structure UF(3) for i > 1

Let 7 > 1. Structure UF(i) is a structure that satisfies the following conditions.
Recall that the set corresponding to set name s is denoted by set(s,?) and that
nodes in set(s,?) are in layer <.
For each set node s we have a parameter weight(s,:) that contains the size of
set(s,1): weight(s,i) =| set(s,) |. Moreover, we have a parameter lowindez(s,) €
N_; that satisfies

2.A(%, lowindez(s, 1)) < weight(s, i). (9)

Note that lowindez(s,) needs not to be the largest number that satisfies this
inequality, and that the above restriction on lowindez is equivalent to

lowindez(s,?) < a(s, l_weight(zs,i) + 1]) (10)

(The parameter lowindez is incremented from time to time by the Union algo-
rithms.)

Two cases are distinguished.

o If set(s,?) contains more than one element (i.e., weight(s,?) > 1), then set(s,)
is partitioned into clusters (subsets) of at least 2 elements. For each such

15

cluster C there is a unique so-called cluster node ¢ (not being an element in
set(s,1)); all nodes in cluster C have node c as their father and sons(c) = C.
In this description we denote the set of these cluster nodes by clusset(s, i).

A cluster node c € clusset(s,1) satisfies (besides | sons(c) |> 2)

| sons(c) |> 2.A(z, lowindez(s,1)). (11)

The subtree between s and clusset(s, i) is a tree of a UF(i — 1)-structure:

the nodes of clusset(s,) are the elements of the set named s in a UF(: — 1)
structure. Thus:

set(s,i — 1) = clusset(s,1).
Finally, clus(s,) contains a pointer to an arbitrary cluster node in clusset(s, 7).

o If set(s,?) consists of precisely one element e (i.e., weight(s,i) = 1) then
father(e) = s, sons(s) = {e} and clus(s,?) = nil.

(Note that in each of the above cases, the elements in a tree have the same distance
< 1 to the root, which easily follows by induction.)

By means of this recursive definition, the UF(z) structure consists of a collection of
trees, one for each set. In each tree different layers can be distinguished starting
from the elements at layer ¢ via clusters nodes that are "elements” on layer i — 1
etcetera, to some layer that consists of only one element or that is layer 1 (what
depends on the considered set, cf. Figure 5). Alternatively stated, UF(:) consists
of trees that have one leaf as the son of the root and of trees that are trees in some
UF(z — 1) structures if the leaves are removed.

Figure 5: Set representations by trees in UF(z) (z > 1).

set names

cluster nodes

elements

If UF(7) is used to solve the Union Find problem, then the initialisation for some
(sub-)collection of elements in singleton sets is as follows: for each element e with
set name s for the singleton set {e}, the following intitialisation is performed:

16

father(e) = s, sons(s) = {e}, weight(s,) = 1, lowindez(s,1) = —1 and clus(s,i) =
nil. In this way the set names and the elements satisfy the conditions of UF(7)
initially. (Note that afterwards, the insertion of an element in the collection of
elements can easily be performed in this way too.) If we want to initialise the
structure for some collection of elements into a collection of given, directly available
sets (not necesarily singleton sets) then this can be performed as follows: for each
set with set name s that contains more then one element, create a cluster node
¢, let the father pointers of all its elements point to ¢ and put them in the list
sons(c). Then make sons(s) = {c}, father(c) = s, clus(s,i) = c, weight(s,i) =
[the number of elements in the set] and clus(s,? — 1) = nil, weight(s,1 — 1) = 1.
Finally, lowindez(s,i) = lowindez(s,i — 1) = —1.

The Union of sets can now be performed by the algorithm UNION(s, t,7) given in
Figure 6. We do not consider the problem of how to obtain and store the values
weight, lowindez, and clus yet (note that all these values depend on both the set
name and i, the layer number). The set set(s,i) can be obtained by the function

generate(s, i) given in Figure 7. This function generates set set(s,z) and removes
all intermediate tree nodes between s and set(s, 7).

Procedure UNION(s, t,7) operates in the following way. W.lo.g. we assume that
lowindez(s,7) > lowindez(t,i). The procedure is based on changing the father
pointers of set(t,i) towards cluster node clus(s,7) if set(t,i) has a lower value
lowindez than set(s, i) (lines 5-10), otherwise, if the union of both sets has a size
that allows a larger lowindez than the actual (equal) values of the old sets then
the father pointers of both sets are changed towards an entire new cluster node
(lines 14-21), and otherwise a recurrent call is performed (lie 12-13).

We describe the procedure in more detail. First, both the weights of s and t are
adapted. (For, at this moment both s and ¢ can be the name of the resulting unioned
set.) If the levels of s and ¢ are distinct (line 5), then all elements of ¢ are put beneath
a cluster node c of s, and the necessary updates are performed (line 6-10, also cf.
Figure 8). Le., the elements of ¢ in this layer are generated, while all "intermediate”
nodes are removed (line 7), the father pointers of these elements are adapted, the list
sons(c) is augmented with these elements and finally ¢ itself is removed. Otherwise,
if the levels are equal (line 11), then two cases are possible. If the size of the union
becomes "large enough” (line 14), then all elements of the union are put beneath
a new cluster node ¢ while the necessary updates are performed (line 15-27, also
cf. Figure 9), i.e., the elements of both s and ¢ in this layer are generated in the
list sons(c) while all "intermediate” nodes are removed, their father pointers are
adapted to the new cluster node c, node ¢ is "put below” node s and the parameters
for layer ¢ and layer i — 1 are updated. Finally, set node ¢ is removed. Otherwise, if
the size of the union does not become "large enough” (line 12), there is a recursive
call to join the cluster nodes for layer ¢ of both sets (line 13). Then the above cases
appear on a lower layer (cf. Fig. 10).

17

Note that at the moment of the recursive call (line 13) all parameters at layer i
satisfy the UF(z) conditions for the ultimate joined set, whichever of the two set

names s or t will be its name. It is readily verified that the procedure maintains the
conditions of UF (7).

Figure 6: The Union procedure in UF() (i > 1).

(1) procedure UNION(s,t,i); return < set name >;

(2) {pre: lowindex(s, 1) > lowindex(t,i); otherwise interchange s and t}
(3) Is := lowindex(s, 1); It := lowindex(t, i);

(4) newweight := weight(s,1) := weight(,:) := weight(s,:) + weight(¢, 7);
(5) ifls> 1t

(6) — {Is> 0, hence clus(s,i) # nil}

(7) c := clus(s,); setT := generate(t,1);

(8) for all e € setT — father(e) := c rof;

(9) sons(c) := sons(c) U setT;

(10) remove node ¢; return node s

1) jls=n '

(12) — if newweight < 2.A(3,ls + 1)

(13) — UNION(s,t,i — 1)

(14) | newweight > 2.A(z,1s + 1)

(15) — create a new cluster node c;

(16) sons(c) := generate(s,1) U generate(t,1);

(17) for all e € sons(c) — father(e) := c rof;

(18) sons(s) := {c}; father(c) := s;

(19) lowindex(s, ¢) := lowindex(s,) + 1; clus(s, ¢) := ¢;
(20) lowindex(s,? — 1) := —1; weight(s,? — 1) := 1; clus(s,? — 1) := nil;
(21) remove node t; return node s

(22) fi fi

We want to state here that the value lowindez(s,) can also be defined as the largest
value that satisfies (9). In that case the corresponding UNION procedure is obtained
from the procedure give in Figure 6 by changing the guards of the if-statements: line
15-21 only gets the guard newweight > 2A(3,ls+1), lines 6-10 and 13 get the guard
newweight < 2A(?,ls + 1) while the distinction between lines 6-10 and 13 is made
by the guards Is > It and ls = It respectively. In that case the values lowindez need
to be computed in initialisations of sets that contain more than one element (which
can be performed without increasing the complexity).

18

Figure 7: Procedure generate(s, 1) in UF(:) (i > 1).

(1) function generate(s,7); return < set of nodes >;

(2) {generate(s,i) generates the nodes in set(s,i) and removes all intermediate }
(3) {tree nodes between s and set(s,:) }

(4) if i =1V weight(s,i) = 1 — generate := sons(s);
(5). [i > 1A weight(s,i) >1 — clusset := generate(s,7 — 1);

(6) generate := sons(clusset);
(7) dispose all nodes of clusset
(8) fi

Figure 9:

19

Figure 10:

3.3 Representations

First we consider the Ackermann values that are needed. Consider UF(z) for some
2 > 1. Suppose there are n elements in UF(7). Then for every occurring set name s
we have set(s,7) < n. Since the leaves of the trees of UF(:) are UF(s) elements, it
follows that every occurring set of UF(i’) elements inside the UF(:) structure (for #/
with 1 < ¢’ < ?) has at most n elements too. Consider procedure UNION(s, t,1') for
some ¢’ with 2 < ¢’ < 7. Since the parameter newweight in this procedure is the size
of a set of UF(¢') elements that is the result of a Union, it satisfies newweight < n.
By Figure 6 (cf. lines 3, 4, 12 and 14) and by the definition of lowindez (cf.
Section 3.2) it is easily seen that comparisons newweight < 2.A(#',1+ 1) only occur
if 2.A(¢',1) < newweight and hence only if 2.A(i',1) < n which yields I < a(#,n).
Therefore comparisons &";"'9-‘3 < A(?',z) are performed only for z and wﬁ
with =1 < z < a(?,n) and 0 < &";"@—‘ < n. By Lemma 2.14 an Ackermann table
for any ngc > n can be used for computing the comparisons.

We describe how to represent and how to obtain the information that is introduced in
the previous subsection. Again we describe the representation inductively. Consider
a UF(z) structure for some 7 > 1. Suppose there are n elements. For each set name
s there is a distinct record status,; for this layer :. Moreover, an Ackermann net
for some ngex with ngc > n is present (e.g., nger = n).

Record status,; contains the fields layer, weight, lowindez, clus, Ack, left Ack and
up. For : = 1, layer(status,;) = 1 and weight(status,;) = weight(s,1) and the
other fields are irrelevant. For ¢ > 1 the following holds.

o Field layer(status,;) = i, weight(status,;) = weight(s,1), lowindez(status, ;)
lowindez(s,) and clus(status,;) = clus(s,1).

o Field Ack(status,;) contains a pointer into the Ackermann net that points to
the node (min{i, asu + 1},1) where | = lowindez(s,1).

20

o Furthermore field le ft Ack(status,;) contains a pointer into the Ackermann
net that points to the node (min{i, g + 1}, -1)).

e Finally, field up(status, ;) contains a pointer to the record status, ;—, for s and
layer i — 1, provided that weight(s,1) > 1 (i.e., clusset(s,1) # 0).

tI‘hen, the Union procedures are adapted slightly in the following way. First of all,
ms.tead of UNION(s,¢,) we have UNION(status,, status;;,t). By means of the
pointer up(status,;) the recursive call in line 13 of Figure 6 can be performed.

The statement "remove (set) node ¢” occurring in lines 10 and 21 have to be ex-
tended with the removal of the related chain of status records. A new status record
status,i_ has to be created in line 20 if it did not exist already and otherwise all

status records status,; for j < i — 1 must be removed. (This can be done in O(1)
time per removal of a status node.)

Furthermore, when the value of lowindez(s,) is increased by one (in line 19), the
corresponding pointer Ack(status,;) is adapted accordingly (obviously, this can be
performed in O(1) time too). When lowindez(s,i — 1) is put to —1 (in line 20),
the corresponding node (min{i — 1, aaek + 1},—1) can be obtained by means of
the pointer le ft Ack(status, ;) that points to node (min{i, age + 1}, —1) and hence
the pointers Ack(status, ;) and le ft Ack(status,;_,) can be assigned in O(1) time.
(Note that we need the values g and i to distinguish whether the above two nodes
are equal or not.)

Now, the Ackermann values (lines 12 and 14) can be obtained by means of the point-
ers Ack(status, ;) into the Ackermann net and the successor pointers of Ackermann

nodes (with the convention that Ackermann values that are at least n are replaced
by the value oo).

As stated above, the call of a Union procedure in UF(%) is now performed by taking
the appropriate status node at layer i. If the UF(:) structure is applied within
some computing environment (i.e., it is not part of a UF(: + 1) structure), then
each set name s contains a pointer to its status record status,;. Moreover, some
Ackermann net for nga > n is taken (e.g., naex = n), where pointer rows: points to
node (min{i, agex +1}, —1). Note that by means of pointer row: the initialisation of
a UF(z) structure (for ¢ > 1) as described in Subsection 3.2 can easily be augmented
to initialize the pointers described above without increasing the total time order.

All the operations on status records as stated above (except for the removal of a
chain of status records) can be done in O(1) time each. Moreover, the removal of a
status record can be charged to its creation. Therefore, all additional actions w.r.t.
the status records that are performed in the way described above, do not increase
the time order of the algorithms. Moreover, since for a set name s there only exists
a status record for layer i’ if set(s,i’) # 0, and since layers do not intersect, the
status records do not increase the order of space used by the algorithms. We will

21

therefore not consider the status records in the complexity analysis in Section 4.

4 Complexity of UF(z)

The execution of a Find in a UF(7) structure (¢ > 1) takes at most O(z) time, since
the elements in UF(z) have distance at most i to the corresponding roots.

Corresponding to [1] all Unions on n elements (n > 1) in structure UF(1) take
at most co.n.logn time for some constant cp, and hence at most co.n.a(1,n) time.
We briefly recall the proof. Consider procedure UNION(s,t,1). The execution of
procedure UNION(s, ¢,1) takes at most co.|weight(t,1)| time (for some appropriate
constant cg), where set(t,1) is the smallest of the two sets to be joined. Now charge
the cost of such a Union to the nodes in set(t,1) by charging to each node at most co
time. A node can only be charged to if it becomes an element of a new set whose size
s at least twice the size of the old set it belonged to. Hence a node can be charged to

at most |logn| times. Therefore, all Unions take at most co.n.|logn| < co.n.a(1,n)
time together.

We now consider the complexity for all Unions in UF(z) with ¢ > 1. We perform the
analysis by means of induction on i.

Suppose UF(: — 1) takes at most c.k.a(i — 1,k) time for all Unions on k elements
(k > 1), where c is some arbitrary constant. We consider the cost of all Unions on n
elements (n > 1) by means of UF(¢). Therefore, consider procedure UNION(s, ¢,).
We divide this procedure into several parts.

1. The for-statements and the generate-statements (lines 7-8 and 16-17).

2. The recursive call UNION(s,t,z — 1) (line 13).

3. The removal of parts of the structures.

4. The rest of the procedure.

We compute the cost of each of the above parts for all executions of procedure
UNION(s, t,1) together.

4.1 The for-statements and the generate-statements

We consider the for-statements and the generate-statements (viz., lines 7-8 and 16-
17). Firstly, it is easily seen by induction on 7 that the generation of set(s,:) by
means of procedure call generate(s,) takes time that is bounded by ¢]. | set(s,?) |,
since the number of cluster nodes for layer 7 is at most half the number of elements

22

at layer i (cf. Subsection 3.2). Moreover, the execution of the for-statements (lines 8
and 17) takes time bounded by /. (the number of processed elements). Therefore,
we charge the cost of the above statements to the processed elements. Note that
in both cases the processed elements will be contained in a new set that has a
higher lowindez value than the old set (cf. line 5 and 19), and that an element
will never be contained in a set with a lower lowindez value. Therefore the number
of times that an element can be charged to is bounded by the number of different
lowindez values. Since there are at most n (> 1) elements in a set, there are by the
definition of lowindez (cf. (9) and (10)) at most a(s, [2421) + 2 < 3.a(i,n) different
values. Therefore, the total cost of the considered parts of the procedure is at most
c1.n.a(i,n) for some constant c;.

4.2 The recursive call UNION(s,t,7— 1)

The recursive calls UNION(s, t,i — 1) are performed on cluster nodes. Therefore we
first consider cluster nodes and the conditions for a recursive call UNION(s,t,i—1)

Observation 4.1 The operations on cluster nodes by procedure UNION(s,t,1) are:

1. the creation of a cluster node in a singleton set (viz. ¢ and clusset(s,1) in
lines 15 and 18)

2. the Union of sets of cluster nodes by UNION(s,t,i — 1) (viz. clusset(s,i) and
clusset(t,:) in line 13)

3. the removal of a complete set of cluster nodes (viz. clusset(t,?) in line 7 or
clusset(s,1) and clusset(t,i) in line 16).

Claim 4.2 A recursive call UNION(s,t,i — 1) inside UNION(s, t, t) is performed
only if

1 < lowindex(s, i) = lowindez(t,1) < a(i,n) A

weight(s,i) + weight(t,) < 2.A(7, lowindez(s,i) + 1).

Proof. It follows directly from Figure 6 that the recursive call is performed only if

lowindez(s, 1) = lowindez(t,1) A

weight(s, 1) + weight(t,1) < 2.A(1, lowindez(s,i) + 1). (12)

Since —1 <1 <1 implies that 2.maz{2.A(3,1),1} > 2.A(3,1 + 1), it follows by (12)
and (9) that lowindez(s,i) > 1. By n > weight(s,i) > 2.A(i, lowindez(s, 1)) it
follows that lowindez(s,?) < a(,n). O

For a cluster node ¢ € clusset(s, i) we denote by lowindez(c) the value lowindez(s, i).
It is easily seen that a Union does not change the value lowindez(c) for any cluster

23

node c that is not removed by it (for in that case the new set name that corresponds
to c has the same lowindez value as the old one). Therefore for any cluster node
¢ the value lowindez(c) is fixed (i.e., ¢ is a cluster node for sets with some fixed
lowindez only). We call a cluster node ¢ with lowindez(c) = | an I-cluster node.

Similarly, we say that a recursive call UNION(s, t,7 — 1) is an I-call or an /-Union if
I = lowindez(s,i) = lowindez(t,i). Obviously an I-call operates on I-cluster nodes

only and I-cluster nodes are only operated on by I-calls. We compute the cost of all
I-calls for fixed value .

Let I be a fixed number satisfying 1 < I < a(i,n). We consider the cost of all
recursive I-calls UNION(s,t,7 — 1). By Claim 4.2 and by Subsection 3.2 it follows
that in case of an I-call UNION(s,¢,i — 1) the size of the set clusset(s,i — 1) U
clusset(t,i — 1) is at most A(i,! + 1). Therefore the maximal size of any occurring
set of I-cluster nodes is A(i,! + 1). Now partition the total collection of all I-
cluster nodes involved in I-calls into collections that correspond to the maximal sets
that ever exist (which is possible because of Observation 4.1). Then the size of
such a maximal collection is at most A(i,1 + 1). For each such maximal collection
of k cluster nodes, the cost of all Unions on these nodes in UF(¢ — 1) is at most
c.k.a(i—1,k) < c.k. a(i—1, A(¢,1+1)). Hence, the total cost of all Unions in UF(i-1)
on I-cluster nodes is at most c.(number of I-cluster nodes). a(i — 1, A(,1+1)). Since
each I-cluster node has at least 2.A(%,) elements as its sons (cf. (11)), and since as
long as an element is contained in sets with lowindez value [it has the same cluster
node as its father (cf. Subsection 4.1), there are at most n/(2.4(3,1)) l-cluster nodes.
Therefore, the total cost for all I-Unions is at most

n
2.A(G,1)
1 n
254G,
1

< —ecn
- 2

C.

a(z - laA(ia I+ 1))

ca(i—1,A(i — 1, A(3,1)))

by using ¢ > 1, equation (1) and Lemma 2.4 respectively.

Since there are less then a(t, n) applicable values ! of lowindez to be considered (viz.
[with 1 < I < a(i,n)), this yields that the total time complexity of all UF(: — 1)-
Unions is at most 1c.n.a(i.n).

4.3 The removal of parts of structures
The removal of parts of structures can be performed in O(1) time per item that

must be removed. Therefore, we charge the cost of the removal of an item to its
creation. This increases the cost of some operations by constant time only.

24

4.4 The rest of the procedure

The execution of all statements together except those considered in subsections 4.1,

4.2 and 4.3, require at most c4 time per call of UNION(s,t,7). Since there are at
most n — 1 Unions, this takes altogether at most c4.n time.

4.5 The total complexity of Unions
Combining the results of subsections 4.1 to 4.4 yields that the total time is at most

. 1 .
ci.n.a(i,n) + Ec.n.a(z, n)+ cq4.n.

Note that this is at most c.n.a(i,n) if ¢ > maz{co,2.(c; + c4)}.

Since the constant ¢ was arbitrary and since ¢; and ¢; do not depend on ¢, we can

take ¢ = maz{co,2.(c +¢4)}. Then it follows by induction that UF(z) takes at most
c.n.a(i,n) time for all Unions together.

By means of induction we have established the following result .

Lemma 4.3 The total time that is needed for all Union operations in UF() for

a universe with n elements is O(n.a(i,n)), whereas each Find operation takes O(i)
time (121, n2>2).

By Lemma 2.15 the Ackermann net for n can be computed in O(logn) time and
takes O(log n) space. Moreover, it is readily verified that the initialisation of UF(z)
as described in Subsection 3.1 (for 7 = 1) and Subsection 3.2 (for i > 1) can be
performed in O(n) time. Finally, by induction to i it easily follows that the total
space complexity of UF(z) is O(n), since the elements at layer s > 1 are the leaves of
the trees UF(2) consists of and since all nodes in a tree except the root have at least
two sons (cf. Subsection 3.2). Therefore, we have established the following theorem.

Theorem 4.4 A UF(i) structure and the algorithms that solve the Union-Find prob-
lem can be implemented on a pointer machine such that the following holds. The
total time that is needed for all Union operations in a UF (i) structure for a universe
with n elements is O(n.a(t,n)) and the time needed for a Find operation is O(i),
whereas the initialisation can be performed in O(n) time and the entire structure
takes O(n) space (1 21, n > 2).

Corollary 4.5 Let i > 1. Then there ezists a structure and algorithms for the
Union-Find problem that can be implemented on a pointer machine such that for a
universe of n elements all Unions can be performed in O(n.a(i,n)) time and each
Find can be performed in O(1) time, while the structure uses O(n) space and can be
initialised in O(n) time.

25

5 An alternative for path compression

By applying UF(i) structures for appropriate values of i, we obtain a Union-Find
structure that has the same total complexity as the method using path compression,
but that has exchanges in the worst-case complexities for Union and Find operations.
This is expressed in the following theorems.

Theorem 5.1 There ezists a data structure and algorithms that solve the Union-
Find problem with the following properties: the total time needed for all Unions and
m Finds is O(n 4+ m.a(n,n)), while each Find takes O(a(n,n)) time, where n is the
total number of elements (n > 2). Moreover, the data structure and algorithms can
be implemented with this performance on a pointer machine.

Proof. First compute an Ackermann net for n. Then a(n,n) (= agek) can be
obtained from the net. Now use UF(a(n, n)). O

Theorem 5.2 There erists a data structure and algorithms that solve the Union-
Find problem with the following properties: the total time needed for all Unions and
m Finds is O(n + m.a(m,n)), while the f** Find takes O(a(f,n)) time, where n is
the total number of elements (n > 2). Moreover, the data structure and algorithms
can be implemented with this performance on a pointer machine.

Proof. We make use of UF(:) structures. All the set names that are present at
some time are contained in a list. Hence, if some set name is removed because of
a Union, then it must be removed from this list too. (This can be easily imple-
mented by providing additional pointer fields in set names to form a doubly linked
list.) Moreover, some additional variables are maintained, which will be introduced
henceforth. Initially, make a UF(i) structure with i = a(n,n). This is performed
like in the case of Theorem 5.1. At any moment, let f be the number of Finds per-
formed thus far. Each time that a(f,n) becomes one smaller than i (= aff — 1, 7))
rebuild the structure UF (i) to a UF(i — 1)-structure. The rebuilding is as follows.

If ¢+ = 1 then nothing need to be done since then we have for all future values
of f occurring in this situation: a(f,n) = 1. Otherwise, we only have to check
whether o(f,n) decreases by one after we have increased f. This can be inspected
by checking whether a(i — 1,n) < 4.[{] (cf. Lemma 2.7). The value a(i — 1,n) can
be obtained in O(1) time from the Ackermann node (min{i — 1, aae +1},—1) that
can be reached by means of pointer rowi pointing to (min{i, asex + 1}, ~1) and by
means of a net pointer (cf. Subsection 3.3). Hence, the comparison can be made in
O(1) time. (Note that the value 4.[£] can easily be maintained for increasing f by
means of comparisons and additions in O(1) time and O(1) space. In this way it is
not necessary to use divisions and to take entier values each time.)

’

26

If indeed a(— 1,n) < 4.[L] then the UF(i) structure is rebuilt to a UF(i — 1)
structure in the following way. First adapt pointer row: pointing to (min{z, agex +
1}, —1) to point to node (min{i — 1, agqy + 1}, —1) which can be done in O(1) time.
Moreover, for each set name s, dispose all status records status, jfor 1 <j<i—1
(which are at most n records, cf. Subsection 3.3). For each set name s enumerate
its elements e.g. in the way of procedure generate® (cf. Figure 11) that, contrary
to procedure generate, does not remove the intermediate nodes yet.

Figure 11: Procedure generate(s,) in UF(z) (z > 1).

(1) function generate*(s,i); return < list of nodes >;

(2) {generate(s,1) generates the elements in set(s,)}

(3) if i =1V weight(s,7) =1 —» generate := sons(s);

E4; [i>1Aweight(s,i) > 1 — generate := sons(generate(s,i — 1));
5) fi

If set(s,?) contains only one element then the only thing to do is to make a status
record status, -, with values weight(s, i—1) = 1, level(s,i—1) = —1, clus(s,i—1) =
nil and with corresponding pointer fields (the pointers into the Ackermann net can
be adapted by means of the "old” record status, ;).

If: —1 =1, adapt all father values of the elements to s, perform the original proce-
dure generate(s, i) to get rid of all "old” intermediate nodes between s and set(s,2)
and to initialise sons(s) to the list of these elements. Finally, make a status record
status,;-; with weight(s,i — 1) = [the number of elements in the set).

Otherwise (i.e., i — 1 > 1 and weight(s,i) > 1), make a new cluster node ¢, make
father(c) := s and adapt all father values of the elements to ¢. Then adapt sons(c)
to the list of these elements and perform the original procedure generate(s,i) to
get rid of all "old” intermediate nodes between s and set(s,?). Finally, adapt
sons(s) to {c} and adapt the status record status, ;_, as follows: weight(s,71—1) =
[the number of elements in the set], level(s,i—1) = —1, clus(s,i—1) = c and adapt
the corresponding pointer fields accordingly (the pointers into the Ackermann net
can be adapted by means of the "old” record status,;.) and make a status record
status, ;_» similar to the case above.

Finally, for all cases, adapt the pointer from node s that points to the record status, ;
such that it points to status,;.; and dispose record status, ;. Trivially, all this can
be done in O(n) time.

This rebuilding of the structure to a UF(i — 1) structure is now performed in the
following way. Until n next Finds have been passed or a next Union has to be
performed, perform O(1) time of the building of UF(: — 1) per Find instruction
and if a Union operation occurs before n next Finds have been performed, perform

27

the remainder of the building first during this Union operation and then perform
the usual Union operation on this new structure. It is easily seen that during the
rebuilding there always remains a tree path between an element and its set name,
which is of length at most i. Therefore, during the rebuilding, a Find operation can
be performed in O(i) = O(i — 1) time (since i — 1 > 1). Moreover, a Union is never
executed during a period of rebuilding.

We now show that a rebuilding is completed before a next one has to be started and
we consider the time complexities.

Let f; and f, be two consecutive values of f after which a rebuilding is started. From
Lemma 2.12 it follows that f, — f; > 2.n and hence that a rebuilding is completed
before a next one is started (cf. the conditions for starting a rebuilding). Hence, at
each moment the structure that is present is either UF(a(f,n)) or an ”intermediate”
structure between UF(a(f,n) + 1) and UF(a(f,n)) such that the root paths of the
elements are of length at most a(f,n)+1 (< 2.a(f, n)). Therefore, the time needed

for a Find operation is obviously O(a(f,n)) (Note that an "intermediate” structure
1s not used for Unions, but only for Find operations.)

We show that the time needed for performing all rebuildings and all Union and Find
operations together is O(n + m.a(m,n)).

Initially, we have the structure UF(i) with i = a(n,n). By Theorem 4.4 and
Lemma 2.7 it follows that all Unions in this structure take O(n) altogether.

Now consider the rebuildings of a UF(:) structure to a UF(i — 1) structure. Suppose
this is started because of the (f+1)** Find operation: let f be such that a(f+1,n) =
a(f,n) — 1. By Lemma 2.11 we have if i := a(f,n):

8.(f+1)>2na(i—1,n) A f2n>2. (13)

Now charge all cost for performing the rebuilding and for performing future Unions
in UF(i —1) to the previous [} f] Find operations. Then by Theorem 4.4 and (13) it
follows that each of these Finds is charged for O(1) time. By Lemma 2.12 it follows
that any Find operation can only be charged at most once. Therefore all Union and
(re-) building operations take O(n + m) time together.

Finally, consider the cost of all Find operations. We already showed that the ft
Find operation takes at most c.a(f,n) time for some appropriate constant c¢. Hence,
the total cost of these operations is bounded by

zm: c.a(f,n)

=1
= &Y amn)+e }Z:(a(f,n) - a(m,n))
=1 =1
a(l,n)
= cmamm)+e Y. (a—a(m,n).Hfla(fn) = o
aza(mmn)+1

28

a(1,n)
= cma(mn)+e. 3 |{fle(fin) > a}|
a=a(mn)+1

a(ln)-a(mn)-1

cm.a(m,n) + c. Z (%

IN

).m
< 3.cm.a(m,n)

where o(f,n) > a(m,n) = f<mand f <m = a(f,n) > a(m,n) are used (cf.
Corollary 2.8) and where Lemma 2.12 provides the first unequality. This concludes
the proof of the theorem. O

6 Increasing the number of elements

We now consider structures that, aside from the operations Union and Find, allow
the operation

e Insert(x): add a new element z to the universe, create the singleton set {z}
and output the name of this set.

In this way the collection of elements can be augmented. We call the problem
that deals with the above three operations the Union-Find-Augment Problem. Note
that in order to have the appropriate Ackermann values we have to augment the
Ackermann net from time to time (cf. Subsection 2.3).

Theorem 6.1 The UF(i) structure can be augmented to allow Insert operations,
such that it remains a data structure with algorithms that can be run on a pointer
machine and that solves the Union-Find problem. The total time that is needed
for all Union operations in a UF(i)-structure until a moment on which there are
n elements is O(n.a(i,n)) while the time needed for a Find operation is O(z), an
insertion can be performed in O(1) time and the entire structure takes O(n) space
(t 2 1, n > 2). The initialisation can be performed in O(nin;;) time, where ni; is
the number of elements at the initialisation.

Proof. It is easily seen that a UF(i) allows element insertions with the above
time bounds if the required Ackermann values are available and if there always is a
pointer available to the Ackermann node (min{i, agex+1}, —1) (viz., parameter row:
in Subsection 2.3.2). Therefore, the only difficulty is to augment the Ackermann net
properly from time to time. We do this as follows. Let n;,; > 1 be initial the
number of elements. Initially, make an Ackermann net for value ng = 2.2/108minic]
(This can easily be done by making such a net for value 2.%nit, and then by taking
for nack the value 22 which would have been stored in the node (1,a(1,n)) if it
was not replaced by oo.)

29

Now each time an element is inserted in a collection with n elements such that
2.n < ngexr < 2.(n + 1), the Ackermann net is to be augmented to a net for 2n,q.

However, the augmentation of the Ackermann net can give a new list for row
a(NackyNack) + 2. Hence if ¢ > o(Nack, Nack) + 1 then the pointers of the status
records of UF(z) that point into the Ackermann net for layers a(ngck, Rack) + 2 up
to 2 need to be adapted to point to the new list. This is done by means of a list of

all set names that are present at some time. Moreover, the variable rowi need to be
adapted.

By Lemma 2.16 it follows that adaptations of the Ackermann net can be performed
in O(a(nack,Nack)) = O(a(n,n)) time. Adaptations of the status records can be
performed in O(n) time, since obviously there are only O(n) status records in a
structure with n nodes (cf. Subsection 3.3) and since the relevant pointers have
to be redirected to one of only 5 new Ackermann nodes only. Until n next Finds
or Inserts have been passed or a next Union has to be performed, perform O(1)
time of these Ackermann calculations per Find instruction and if a Union operation
occurs before 1n next Finds or Inserts have been performed, perform the remainder
of the calculations first during this Union operation and then perform the usual
Union operation . Then it can easily be seen that the adaptations of the Ackermann
net are completed before new adaptations need to be performed (since before a
new adaptation, the number of nodes must be doubled) and before a next Union is
executed, and that the time bounds for the three operations Union, Find and Insert
do not change in order. Finally, in this way the Ackermann net always contains
all relevant values up to n (the number of nodes that are present), since always
Nack 2 n.

Remark: note that the adaptations of status records have to be performed as long
as ¢ > a(nNack,Nack) + 1 only. Of course, this will not too often be the case. On the
other hand, this can also be solved by creating an Ackermann net with ¢ rows in
the initialisation anyway, thus spending O(nni + ¢) time for initialisation and by
adapting rows 7 with 1 < j <7 only. 0O

Theorem 6.2 There ezists a structure that solves the Union-Find-Augment Prob-
lem tn total time O(n + m.a(m,n)), where n is the total number of elements and
m is the number of Finds. Moreover, the f** Find is performed in O(a(f,ny))
time, where n; is the number of elements at the time of the f** Find. An operation
Insert(z) is performed in O(1) time. The structure can be implemented with this
performance on a pointer machine.

Proof. We define a structure by using a UF(z) structure in which the operations
Union, Find and Insert are performed and by rebuilding (transforming) the UF(z)
structure to a UF(i’) structure (i’ # 7) from time to time. By Theorem 6.1 it follows
that a UF(z) structure allows Insert operations and that an Insert operation can be
performed in O(1) time. Like in Theorem 5.2 we maintain a list of actual set names

30

(that obviously allows an insert operation too). In this way we have a structure
with the operations Union, Find and Insert, together with additional computations,

the so-called general updates. (The rebuilding of UF(:) structures is a part of these
general updates.)

The following parameters are maintained with the following meaning at every mo-
ment during the entire sequence of operations. (In this description of the parameters,
the initialisation of the entire structure is considered to be the first general update.)
Let nja,e denote the number of elements at the start of the last general update. Let
foase denote the number of completed Finds performed up to the start of the last
general update. Let fi,,; denote the number of completed Finds performed since
the start of the last general update. Let n denote the number of elements that are
present. Let ap,,. be the value i that corresponds to the present structure UF(i) or
that corresponds to the structure UF(z) that is being build at that moment. The
parameters are changed as follows. Parameter fiast 1s increased by one at the end
of a Find operation and parameter n is increased by one at the end of an Insert
operation (note that an element is considered to be present after the insertion op-
eration for that element is completed), whereas all parameters except parameter n
are changed by a general update (according to the above description). Moreover,
the pointer row: into the Ackermann net (cf. Subsection 2.3.2) always points to
node (Cpagse, —1) in the Ackermann net (which is always present). We first describe
the strategy and prove Claim 6.3 and we show afterwards how the relevant values
a(p, g) can be obtained.

Initially, let n and nyg,. be equal to the number n,,;, of elements, and let fiase and
foase be zero. Build an Ackermann net for Nack = 2[10816n4a,] (cf. the proof of
Theorem 6.1) and build a UF(Qase) structure with agq,. = & foase, 4Tbase)-

Afterwards, perform the following strategy (that is related to the strategy presented
in Theorem 5.2). Each time that at the end of an operation Find or Insert (hence
Jjust after the regular update of the relevant parameters) the condition

(a(fbace + flaah 4n) < Qpage A flact 2 2fbane) Vn= 4nb¢ne (14)
holds, we perform a so called general update as follows.

1. Adapt fbace = fbace + flant’ flaat = 0, Npage ‘= Ny Qgld ‘= Qpgge and Qpage =
a(fbalev4n)'

2. (a) Augment the Ackermann net for n,g = 2% to an Ackermann net for
Mok = 2%ack such that 16nu,, < 1’y < 3204, (if necessary).

(b) If @base # Coia rebuild the present structure UF(auq) to a UF(apg,e)
structure and adapt pointer row: at the beginning of this rebuilding.

As stated above we do not consider how to compute value a(fyse,4n). The above
augmentation of the Ackermann net is performed once or twice in the way of The-
orem 2.16 and takes O(a(nack; Nack)) = O(Q(Nbages Nbase)) time. It will appear that

31

Qold — 1 < Qpage < Qoig + 2, which yields that pointer row: can be adapted in 0o(1)
time. The above rebuilding of UF(aod) to UF(Qpa,e) is performed in the way of
Theorem 5.2 and takes O(n,,.) time (by Theorem 6.1). (During the augmentation
and rebuilding new elements are inserted as new elements in UF(apase)-)

The general update is executed as follows.

1. The adaptation of the parameters is performed immediately at the end of
the Find or Insert operation in which condition (14) becomes true. These
adaptations will appear to take O(1) time.

2. The execution of the augmentation of the Ackermann net (a) and the execution
of the rebuilding of the structure (b) (henceforth just called augmentation and
rebuilding) is performed in the same way as in the case of Theorem 5.2, where
Insert operations are treated in the same way as Find operations: until J.n,.
next Finds or Inserts have been passed or a next Union has to be performed,
perform O(1) time of the augmentation or the rebuilding per Find or Insert
instruction and if a Union operation occurs before %.nba,, next Finds and
Inserts have been performed, perform the remainder of the rebuilding first

during this Union operation and then perform the usual Union operation on
this new structure.

The above extra O(1) time that is spent in Find or Insert operations does not
increase the worst-case time order of a these operations. Therefore we will ignore
this extra time for these two operations henceforth. Note that the execution of a
general update is distributed over at most 3Mbase Operations. Moreover, note that
if condition (14) becomes true then either an augmentation or a rebuilding needs to
be performed anyway. Finally, it is easily seen that always

Qbase = a(fbaae, 4nbaae) A Npgge S < 4npgee. (15)

Claim 6.3 If the strategy described above is followed, then at every moment

Qpase — 1 S a(fbtne + flaat, 471) S Qbase + 2.

Moreover, there are at least gnb,m Find operations or at least 3nyq,. Insert operations
after the start of a general update with ny,,. elements before a nezt one is started.
Therefore a general update is finished before a next one can be started.

Proof. Just after the execution of part 1 of a general update, the inequality stated
in the claim obviously holds (cf. (15)).

If at some moment of foase + fiast,4n) < af foase; 4Mpase) and hence by (15) o foase +
Jiast, 4nbase) < Q(foase; 4Mbase) While no general update is started, it follows by the

32

update condition (14) that fis,s < 2fiaee and hence Siast + foase < 3foase- On the
other hand, if a general update is going to be started then either o foase + flast,4n) =
(foase; 4Mbase) — 1 OF fiast = 2fsaee because fiast 1s increased one at a time and
because a is rebuilding started as soon as condition (14) is true. Concluding, we
have flaat+fbaae < 3fbane or a(fbale‘*'flaah 4”) = a(fbaoe, 4nbaac)—1- Now Lemma 2.12
gives in case of flaat + fbaae .<_ 3fb¢ne that a(fbaae + flaah 4nba:e) 2 a(fbaaea 4nbace) -1
and hence by (15) a(fbaae + flant, 4-") Z a(fbanea4-nbaae) -1

On the other hand, since n < 4n,,. we have Q(foase + flasts 4n) < Qpage + 2 Which is
seen as follows. If a(i,n) < zAi> 1Az >4 then a(,4n) < z + 2 and hence by
Lemma 2.10 and Lemma 2.6 a(i + 2,4n) < maz{j(z + 2),4} < maz{iz,4}. Now
let z = 4.[fossetSian] . Since by (15)

Anpase

|-fbase4':; flaat~| > [-fbaae + flaat-l

I—fbaae + flast-l
16n¢me

>1
— 4 4nbaae
it follows by the above observations that

a(z',n) < 4[%‘?&] = a(z + 2,4n) < 4|'fbaae4'1: flaat-l

and hence a(fbane + flalh4n) S Qpase + 2.

Consider the condition (14) again :

(a(fba'c + flaat, 4n) < Qpage N flaat 2 2fbase) Vn= 4nbaae-

By Corollary 2.8 and Lemma 2.11 it follows that (foase + fiast > 41 > 4npage A flas >
2fpase) V 1 = 4nyg,. and hence fiu,, > 2Nbase V 11 = 4npg,.. Hence, at least £ Nbase
Find or at least 3.nyq,e Insert operations must be performed after a general update
with ny,,. elements before a next one is started. Since a general update takes %nlme
operations at the most, these are finished before the next one is started. O

We discuss how to compute the relevant values a(p, ¢). The value & foase + fiast, 4-10)
used in a general update can be obtained in a way similar to that of Theorem 5.2
as follows.

First we consider how to compute condition (14) only. Note that by Claim 6.3 the
value o foase + fiast,4n) only needs to be available if at least 2np,,. Find operations
Or 2npq,e Insert operations have been performed since the last general update, i.e.,
Slast 2 2npage OF 11— Npage > 2Npgee. Therefore we augment condition (14) to

(a(fbaoe + flact, 477') < Qpage A flcut Z 2fbace A flan +n Z 3nb¢ne) Vn= 4nb¢ne- (16)

At the time that fiaee + 1 > 2npg,. holds, the last augmentation of the Ackermann
net for n,u with 16np5,e < nger < 32npq,e is completed, and hence the net fits for
value 4n (< 16npq4,¢). Moreover, the condition only uses whether o foase + fiast, 4n) <

33

Qbase- Therefore, it suffices to compare the value a(Qbase — 1,4n) with the fraction
4.[lastlarc] (cf. Lemma 2.7), and only if ape,, > 1.

The value a(Qpase — 1,4n) can be obtained as follows. Pointer rowi points to node
(ctbase — 1,—1). Therefore node P = (base — 1,a(Qbase — 1,M4ck)) are available in
O(1) time, together with value a(apg,e—1, Nack) (cf. Subsection 2.3.2). Now traverse
the list for row apg,e — 1 backwards starting from P until we have an Ackermann
node which has a predecessor with value smaller then 4n. If the number of nodes
passed in this way is z, then apparently a(Qpase — 1,4n) = a(Qbase — 1, gk) — Z (cf.
Figure 12).

Figure 12:

r&wn | P

\?-—\D—D—D—D— —_D__';Dinf
?—\D—D—D—D— —'E_:Dinf

Since we have that 4n < 16npape < Nack < 32nbgse < 321 it follows that z = 0(1)
and hence that the above manipulations take O(1) time. Hence, this comparison
can be performed in O(1) time. Finally note that since a(i,n) < n (,n > 1)
and since 4.[&“{%1&'-!] is only used to compare with a(i,n), we only need the
value min{4. fiﬂ-%ﬁﬂ-f—‘] ,4n}, which can be maintained by means of additions, sub-
tractions and comparisons only in O(1) time and O(1) space for increasing n and
f base f last-

On the other hand, if a(fase + fiast,4n) has to be computed in the case that n =
4Mpase, this can be performed similarly for rows apgse up to maz{apase+2, Ok } only,

since a(foase + fiaat,41) < Cpage + 2 (cf. Claim 6.3) and since by 4n < n,u we have

a(frase + fiastr4n) < ek = a(Nack,Nack). (Like above, the Ackermann net fits for
value 4n.) Therefore, this can be performed in O(1) time too.

Finally, concerning the initialisation of the entire system, value a(0,4n,0;:) can be
obtained during the initial construction of the Ackermann net in a similar way.

We show that this strategy yields the time bounds stated above.

By Claim 6.3, Equation (15) and the observation that at any time an augmentation
and a rebuilding can be performed in O(na,e) time, it follows that all augmentations

34

The total cost for all Unions performed after the start of the last (re-) building

of UF(Ciase) is at most c.n.a(Qpage, n) time and hence by (20) at most 8.c. frase+
16.c.npgee time. Therefore,

C(frases fiast> Npase)

C(foases fiast, Nbase) + 8.C. frase + 16.C.T0pgse

28.¢.0pase- foase + C.Qbase- fiast + 6.C.Nbage + 8.C. frase + 16.C.70a4e
28.c.(base + 1).(foase + fiast) + 22.C.Nbase

28.c.04,. - frase + 6.C.04,..

INA

IA A IA

By the above result and by the choice of ¢, at any moment the total cost of all
Unions and Finds is bounded by

C(foases fiasts Mbase) + €.11.a(Qbase, 1)

and hence by

28-C-aba:e-(fbau + flau) + 6-c-nb¢ue + C-n-a(abalea n)

which is
O(aba,e-(fbaoc + flaat) + n)

because of (20) and npgee < 7 < 4npg,e. Since an Insert operation takes O(1)
time and since the time needed for all augmentations and rebuildings is O(n + m),
the total cost at any moment is (by using nppe < n < 4Npase, Claim 6.3 and

a(fbaae + flaata4n) <2+ a(fba'e + flaat, n) S 3a(fbacc + flaatan) = 30(172, n))
O(n 4+ m.a(m,n))

where n is the number of elements at that moment and m is the number of Finds
performed up to that moment. This concludes the proof. O

7 Concluding Remarks

In this paper we have presented a collection of Union-Find structures, including
structures that have time complexity that are equal to the algorithms using path

compression, but that have a small worst-case time complexity for the Finds instead
of the Unions.

2
-7 % 65536 two’ . .
However, note that a(m,n) < 3 for n < 22 } wo S. Therefore in practice

there is no need to perform transformations of structures like those occurring in
Section 6: structure UF(3) suits for all practical situations. The time bound for the
Unions in UF(3) is ¢.n.a(3,n) < 4.c.n for such n, where c is not too large a constant

37

(cf. Section 4 for its definition). Moreover, a Find can be performed in < 3.c¢point
time, where Cpoint is the time needed to perform a pointer comparison and to access
a node by means of a pointer (which is small).

Of course, the same can be said for UF(2): all Unions on n elements take <
cn.a(2,n) < 4.n time for n < 21 = 65536 and take < 5.c.n time for very large

2
, 215 two’ ,
practical values n < 2’ } wo's which is slightly more than the time

needed in UF(3)), whereas a Find operation takes < 2Cpoint time.

Moreover, note that in all practical situations for UF(2) and UF(3) only the nontriv-
1al Ackermann values 16 and 65536 need to available (being A(2,3) and A(2,4) =
A(3,3)) respectively), so there is no need to compute Ackermann values (neither in
the initialisation nor in case new elements are inserted like in Section 6).

Therefore we conjecture that UF(2) and UF(3) are fast and simple structures for all
practical situations, with a constant time Find query.

= 265536 (

On the other hand, note that all arithmetic occurring in the algorithms can be
performed by using additions, subtractions and comparisons only. Furthermore, in
case arrays are used for representing elements, an Ackermann matrix can be used
instead of an Ackermann net. (In this case the array that contains these values
needs to be of size O(log n.logn) only.)

Finally we mention some direct applications for special cases of the Union-Find
problem. Firstly, if the number of Finds m is known in advance, then each Find can
be executed in O(a(m,n)) time by taking structure UF(a(m, n)), where a(m, n) can
be computed similar to the way described in the proof of Theorem 6.2. Secondly, the
Union-Find algorithm for the special case of the Union-Find problem on a Random
Access Machine that is presented in [3] (i.e., where the structure of the sequence of
Union applications is known in advance), can be altered to an algorithm with the
same overall time bound O(n + m) such that each Find operation takes O(1) time
in the worst case. This can be done by applying UF(2) instead of an algorithm with
path compaction.

8 Acknowledgements

I want to thank Jan van Leeuwen and Mark Overmars for very useful comments.

References

(1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley Publ. Comp., Reading, Massachusets, 1974.

38

[2] L. Banachowsky, A Complement to Tarjan’s Result about the Lower Bound on
the Complexity of the Set Union Problem, Inf. Process. Lett. 11 (1980), 59-65.

[3] H.N. Gabow and R.E. Tarjan, A Linear-Time Algorithm for a Special Case

of Disjoint Set Union, J. of Computer and System Sciences, no. 30, 1985, pp.
209-221.

[4] J.E. Hopcroft and J.D. Ullman, Set-Merging Algorithms, SIAM J. Comput. 2
(1973), 294-303.

[5] M.J. Lao, A New Data Structure for the Union-Find Problem, Inf. Process.
Lett. 9 (1979), 39-45.

[6] J.A. La Poutré, A Fast and Optimal Algorithm for the Split-Find Problem on
Pointer Machines, in preparation.

[7] J.A. La Poutré, Lower Bounds for the Union-Find and the Split-Find Problem
on Pointer Machines, in preparation.

[8] J.A.La Poutré, J. van Leeuwen and M.H. Overmars, Efficiently Maintaining 2-
and 3- (Edge-)Connected Components of Graphs, in preparation.

[9] K. Mehlhorn, S. Naher and H. Alt, A Lower Bound for the Complexity of
the Union-Split-Find Problem, SIAM J. Computing, vol. 17, no. 6 (1988), pp.
1093-1102.

[10] R.E. Tarjan, Efficiency of a Good but Not Linear Set Union Algorithm, J. ACM
22, No. 2, April 1975, pp 215-225.

[11] R.E. Tarjan, A Class of Algorithms which Require Nonlinear Time to Maintain
Disjoint Sets, J. Comput. Syst. Sci. 18 (1979), 110-127.

{12] R.E. Tarjan and J. van Leeuwen, Worst-Case Analysis of Set Union Algorithms,
J. ACM 31, No. 2, April 1984, pp. 245-281.

39

