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Abstract

A well-known result of Tarjan (cf. [15]) states that for all n and m > n
there exists a sequence of n — 1 Union and m Find operations that needs at
least Q(m.a(m,n)) execution steps on a pointer machine that satisfies the
separation condition. In [1, 16] the bound was extended to Q(n + n.a(m,n))
for all m and n. In this paper we prove that this bound holds on a general
pointer machine without the separation condition and we prove that the same
bound holds for the Split-Find problem as well.

1 Introduction

Let U be a universe of n elements. Suppose U is partitioned into a collection of
(named) singleton sets and suppose we want to be able to perform the following
operations:

* Union(4,B): join the sets A and B (destroying sets A and B), and relate a
set name to the resulting set

¢ Find(z): return the name of the set in which element z is contained.

The occurring set names must satisfy the condition that, at every moment, the
names of the existing sets are distinct. The problem of efficiently implementing
Union-Find programs is widely known as the ”Disjoint Set Union problem” or the
”Union-Find problem”.

*This research was partially supported by the ESPRIT II Basic Research Actions Program of
the EC under contract No. 3075 (project ALCOM).
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Several algorithms for the Union-Find problem have been developed. In 1975 (cf.
[14]) Tarjan considered the well-known set union algorithm that uses path compres-
sion. He proved that the worst-case time bound for this algorithm is O(m.a(m,n))
for n — 1 unions and m > n finds, where « is the inverse Ackermann function. The
algorithm can be run on a pointer machine (i.e., a machine model of which the mem-
ory consists of records, each containing a bounded number of pointers 8,9, 13, 15]).
There are several known Union-Find algorithms that run on pointer machines in
the above time and that use a form of path compaction [16]. In (10] a new algo-
rithm without path compaction is presented that runs on a pointer machine and
that has a worst-case time bound of O(a(f,n)) for the ft* Find, within the bound
of O(n + m.a(m,n)) for m Finds on n elements as a whole.

In 1979 (cf. [15]) Tarjan proved a lower bound on the time complexity of executions
of the Union-Find problem on a pointer machine that satisfy the separation condition
(which is defined below): such a program of n — 1 Unions and m Finds takes at least
Q(m.a(m, n)) time, if m > n. In[1, 16] the bound was extended to Qn+m.a(m,n))
time for all n and m. The proof of the bound relies heavily on the separation
condition (cf. [15]):

At any time during the computation, the contents of the memory can
be partitioned into collections of records such that each collection cor-
responds to a currently existing set, and no record in one collection
contains a pointer to a record in another collection.

As shown in [12], the separation condition can imply a loss of efficiency (cf. e.g.
Table 1). Hence, the lower bound of [15] is not general enough for pointer machines.
(Moreover, not all known Union-Find algorithms that can be run on a pointer ma-
chine satisfy the separation condition: the algorithm in [10] does not satisfy the
separation condition since a list of all records with set names needs to be used.
However, since the list is not used for Finds, the model in [15] can be liberalized
such that the algorithm implies a modified algorithm with the same time bound
that does satisfy the conditions.)

In this paper we prove a Q(n + m.a(m,n)) lower bound for the Union-Find problem
on a general pointer machine (without the separation condition). A consequence of
the lower bound is that the Union-Find algorithms given in (10, 14, 16] are optimal
for pointer machines.

The related problem is the Split-Find problem. Let U be a totally ordered universe
of n elements. Suppose U is partitioned into a collection of (named) singleton sets
and suppose we want to be able to perform the following operations:

o Split(z): split the set in which z is contained into two sets, one set consisting
of all elements in the set > z and the other set consisting of the remainder;
relate a set name to each of these new sets



e Find(z): return the name of the set in which element z is contained.

The occurring set names must satisfy the condition that, at every moment, the
names of the existing sets are distinct.

In [7] an algorithm for the Split-Find problem was presented that runs in O(n +
m.log" n) time on a pointer machine (and that satisfies the separation condition).
In [5, 11] algorithms for the Split-Find problem are presented that run in O(n +
m.a(m,n)) time on a pointer machine. Until now no lower bound was found for the
Split-Find problem on a pointer machine.

We prove a {}(n + m.a(m,n)) lower bound for the Split-Find problem on general
pointer machines too. A consequence of the lower bound is that the Split-Find
algorithms given in [5, 11] are optimal for pointer machines.

Our proofs use inductive structures that are related to the inductive structures used
in [5, 10, 11]. The lower bounds are proved for all possible sequences of Unions
(c.q. Splits) that are in some class of "balanced” sequences of Unions (c.q. Splits)
and that may be known in advance: each such sequence can be intermixed with
appropriate Finds that yield the lower bound. Some consequences are that the
special cases of the Union-Find problem that can be solved in linear time on a RAM
(cf. [6]) (viz., where the structure of the (arbitrary) Union sequence is known in
advance) do not have a linear solution on a pointer machine, and that although

the Split-Find problem can be solved in linear time on a RAM (cf: [6]), this is not
possible on a pointer machine.

Table 1: Complexity on Pointer Machines

Problem! General model Separation condition
UNION-FIND

worst case/instruction | O(log log n) [3]2 | ©( lol:ﬁ%) 2]
amortized O(n + m.a(m,n)) new | O(n +m.a(m,n)) [15]
SPLIT-FIND

worst case/instruction | ©(loglogn) [12] | ©(logn) [12]
amortized O(n + m.a(m,n)) new | O(n + m.a(m,n)) new

Recently, in [4] a lower bound was proved for the Union-Find problem on the Cell
Probe Machine with word size log n, where n is the size of the universe. Our result
does not use any restrictions on the word size, but is only based on properties of
addressing by means of pointers instead. Some previous other lower bounds for
the Union-Find and the Split-Find problem on pointer machines were given for the

15 is the number of elements and m is the number of Finds
%for special cases of the Union-Find problem



worst-case time of the Union-Find problem on a pointer machine with the separation
condition [2] and the worst-case time of the Split-Find problem [12]. Table 1 gives
an overview of the existing and new results for lower bounds on pointer machines.
As remarked in [12], it appears that the separation condition can imply a loss in
efficiency (like e.g. in the worst-case Split-Find bounds).

As remarked by Tarjan in [15], for each individual Union-Find problem on n elements
there exists a dedicated pointer machine that solves the problem in linear time. (Viz.,
take a pointer machine with at most n pointers per node and link each element to
a central node and link the central node to each set name.) Therefore, it is not
possible to have a non-trivial general lower bound for all pointer machines with
a varying number of pointers per node. (Note that this observation holds for all
related problems too, including worst-case problems.) Tarjan conjectured that for
an individual pointer machine the a-bound should hold. In this paper we prove that
this bounds holds indeed, and moreover we show that there is a uniform constant d
that holds for all pointer machines, such that a lower bound of d.(n + a(m, n)) steps
holds for all m and asymptotically for n. This implies that there is no ”asymptotic
speed up” for the Union-Find problem if we increase the maximal number of pointers
per node in a pointer machine. Note that this is the strongest result that is possible.
The same observations can be made w.r.t. the Split-Find problem.

The paper is organized as follows. In Section 2 pointer machines and the Ackermann
function are considered. In Section 3 we define some notions w.r.t. Unions and we
introduce machines for which we prove lower bounds in Section 4. In Section 5 the
actual lower bounds for the Union-Find problem are proved. In Section 6 the lower
bounds for the Split-Find problem are proved.

2 Preliminaries

2.1 Pointer machine model

The computational model we use is a liberal version of the pointer machine as
described in [15]. (Also cf. [8, 9, 13].) A pointer machine consists of a collection
of nodes. A pointer is the specification of some node (namely of the node pointed
to). Each node contains c fields that each may contain one pointer or the value nil
(¢ 2 1). The instructions that a pointer machine can execute are of the following
types:

e the creation of a new node with nil in all its fields,

e a change of the contents of a field of a node.



We call a pointer machine with c fields per node a c-pointer machine. A program is
a sequence of instructions to be executed by a pointer machine. (The instructions
given above are more liberal than those in [15] since we do not restrict the way of
addressing yet. The special way of addressing will be condensed in the definition
of the cost of the operation Find. Furthermore, we do not consider an output
instruction explicitly.)

A pointer machine can be regarded as a dynamic directed graph when a pointer to
node y in a field of some node z is represented by an edge (z,y). A path from node
z to node y is a sequence of nodes such that each node contains a pointer to its
successor in the sequence and the first and last node of the sequence are z and y
respectively. The length of a path is the number of nodes in it, not counting its first
node. The distance from z to y is the minimal length of any path from z to y.

The Union-Find problem on a pointer machine can be formulated as follows (also cf.
[15] or [12, 14, 16]). Let U be a collection of nodes, called elements. Suppose U is
partitioned into a collection of sets and suppose to each set a (possibly new) unique
node is related, called “set name”. This partition is called the initial partition. (For
the regular Union-Find problem the sets in the partition are singleton sets; however,
for convenience in our analysis, we allow other partitions too.) The problem is to
carry out a sequence of the following operations:

e Union(A4,B): join the sets A and B (destroying the old sets A and B) and
relate a set name to the resulting set

e Find(z): return the name of the current set in which element z is contained.

The occurring set names must satisfy the condition that, at every moment, the
names of the existing sets are distinct. Moreover, the operations are carried out
semi on-line: i.e., each operation must be completed before the next operation is
known, while the subsequence of Unions may be known in advance.

An ezecution of a sequence of Union and Find operations on a pointer machine con-
sists of a (so-called initial) contents of the pointer machine together with a sequence

of programs that carries out the Union-Find problem according to the following
rules:

1. initially, before the first operation is carried out, the contents of the pointer
machine, called the initial contents, reflects the initial partition of the universe:
i.e., for each element there exists a path to the (unique) name of the set in
which it is contained

2. each Union is carried out by executing a Union program, which halts having
modified the contents of the pointer machine to reflect the Union (where some
node is indicated as the name of the resulting set) and hence to reflect the
new partition of the universe



3. each Find is carried out by executing a Find program, which halts having
identified the name of the set containing the considered element while the
pointer machine still reflects the (unchanged) partition of the universe

4. for each Union or Find operation in the sequence, the corresponding program
is not executed until the program of its predecessor operation has halted.

The cost of an execution of a sequence of Union and Find operations is the cost of
the Union and Find operations, which are defined as follows:

e the cost of a Union is the number of pointer addings: i.e., changes in fields
that change the contents of that field into some pointer (hence, not nil).

e the cost of Find(z) is the length of the shortest path from z to its set name at
the start of the Find together with the number of pointer addings performed
during the Find.

Then the number of (pointer machine) steps performed during the execution of a
Union-Find problem certainly is at least the cost of that execution, with a minimum
of one step per operation. (We will use the notion of steps only in some final
theorems.) Note that in our complexity measure (viz, cost and number of steps) we
do not account for any change of the contents of a field to nil.

2.2 The Ackermann function

The Ackermann function A is defined as follows. For ¢,z > 0 function A is given by

A(0,z) = 2z forz >0
A(2,0) = 1 fori>1 (1)
A(i,z) = A(F-1,A@,z—1)) fore>1, z2>1.

The row inverse a of A and the functional inverse a of A are defined by

a(i,n) = min{z > 0|A(:,z) > n} (:>0,n>0) (2)
a(m,n) = min{i > 1{A(i,4[m/n]) 2 n} (m>0,n>1) 3)

Here we take [0] = 1. (Note that a(0,n) = a(n,n).) The above two definitions
correspond to those given in [5, 10, 11]. It is easily shown that the differences with
the definitions given in [14, 15, 16] are bounded by some additive constants (except
for a(0,n) and a(1,n)). We quote some results from [10].

It is easily seen that A(i,1) = 2, A(3,2) =4, A(i +1,3) = A(i,4) and A(s +1,4) =
A(z, A(z,4)) for : > 0.



Lemma 2.1

A(, ') 2 A(i,z) (¢ 21, ' > )
a(z,n) < a(v,n) (z24, n’ 2 n)
a(m’,n') < a(m,n) (m'>m, n'<n)
Lemma 2.2
a(z, A(z, z)) = z (>0, z>0)
a(i,AG+1,z+1)) = A(+1,z) (20, z>0)

a(i,n) a(t,a(t—1,n))+1 (121, n>2)
Proof. By (1) we have a(i, A(t + 1,z + 1)) = a(3, A(3,A(i + 1,2))) = A(i + 1, z).
Moreover, since n > 2 implies a(i,n) > 1 and by (2), (1) and 7 > 1 we find

a(i,n) =

= man{j 2 1|A(3,j) 2 n}
min{j > 1|A(i - 1, A(i,j — 1)) 2 n}
min{j > 1JA(i,j — 1) 2 a(i — 1,n)}
min{j’ > 01A(i,7) > a(i — 1,n)} +1
a(t,a(t —1,n)) + 1.

il

O
Lemma 2.3 Let AO(i,y) := y and ACtI(4,y) := A(i, A®)(i,y)) for i,z,y > 0.
Then A(i,z) = A@(i—1,1) fori>1, > 0.
Let aO®(i,n) := n and a¥*V(i,n) := a(i,a¥(i,n)) for i,5 > 0, n > 1. Then
a(i,n) = min{j|la¥)(i — 1,n) = 1} fori,n > 1.

By Lemma 2.3 it follows that for every i, A(i 4+ 1,z) is the result of = recurrent
applications of function A(z,.). Hence we have

A(0,z) = 2z
A(l,z) = 2°

22"2 } T two’s
A2,z) = 2

2 22}2}1 tWo two's
2 22" } - two’s

22% }2 two’s

A(3,z) = 2 _:
z braces



On the other hand we have for n > 1:

a(0,n) = [31

a(l,n) = [logn] = min{j|[5] =1}
a(2,n) = log*n min{jl[log(’_) n] =1}
a(3,n) = min{j|log*” n = 1}

where as usual, the superscript (j) denotes the function obtained by j consecutive
applications.

By means of the row inverse of the Ackermann function we can express the functional
inverse a as follows.

Lemma 2.4 a(m,n) = min{t > 1|a(i,n) < 4.[m/n]}.

We state some lemma’s that we will need in the sequel. The proofs can be skipped
at first reading. The lemma’s use the following:

n2>3A12>1=a(i,n)> A+ 1,a(i + 1,n) — 2). (4)

This follows by using Lemma 2.2 that gives a(i + 1,a(i,n)) = a(¢ +1,n) — 1 and by
using (2).

Lemma 2.5 For n and ¢ such that a(n,n) > a(c,c) + 1 the following holds for i
with1 < i < a(n,n) — 3:

a(i,n) > 8.12".i.(c+ 1) .(2a(i + 1,n) + c + 1).
Proof. Let n and c satisfy a(n,n) > a(c,c) + 2. (Hence a(n,n) > 3.)
Claim 2.6 c+1 < a(i,n) fori with1 <: < a(n,n) — 2.

Proof. By (3) we have A(a(n,n) — 1,4) < n and A(a(c,c),4) > c. By using
a(n,n) — 2 > a(ec,¢) it follows that

n > A(a(n,n) — 1,4) = A(a(n,n) — 2, A(a(n,n) — 2,4))) > A(a(n,n) — 2,¢).

Hence by (2) we obtain ¢ < a(a(n,n)—2,n). By Lemma 2.1 it follows that ¢ < a(i, n)
for ¢ with 1 <4 < a(n,n) — 2. This proves the claim. a

Claim 2.7 A(i+ 1,2 —2) > 212" 4.2° forz > 6 and i > 1.

Proof. We prove the claim by induction to ¢ and z. Firstly, Fori =1 and z = 6
we have A(2,4) = A(1,A(1,4)) = 2'6 > 2.122.1.6. For i > 1 and z = 6 we have by
induction

A(i +1,4) = A3, A(i, 4)) > 2464 > 2213.(-1)6"7 5 9 19i+1 ; 6
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Finally, for ¢ > 1 and z > 6 we have by induction
A(i+1,0 —2) = A6, A(i + 1,z — 3)) > 24(+12=3) > 9212Hia-1) > 9 193 5 &,

This proves the claim. O

Let i be such that 1 < ¢ < a(n,n) — 3. Note that i + 2 < a(n,n) — 1 implies
a(i+2,n) > 5 and n > 3. By applying (4) for ¢ + 1 we obtain

a(i +1,n) > A+ 2,a(i + 2,n) — 2) > A(i + 2,5 —2) > A(3,3) 2 6
Hence, Equation (4) and Claim 2.7 give that
a(i,n) > 2.12%414.(a(i + 1,n))" = 8.12°.4.(a(i + 1,n))"Y(2a(é + 1,n) + a(i + 1,n)).
By Claim 2.6 the inequality of Lemma 2.5 follm.avs. O

Lemma 2.8 Letn >0, 1 <i < a(n,n)—2. Then a(i +1,n) < ﬂ:{r)

Proof. Since i+2 < a(n,n) we have a(i+1,n) > 5 and n > 3. Claim 2.7 gives that
A(i+1,z—2) > .z for z > 6 and i > 1. Moreover, A(i+1,5—2) = A(1,4) 2 1.5 by
Claim 2.7 or by A(1,4) = 16. Applying this in (4) yields the required result. O

3 Turn sequences and GU(%,c,p) machines

In this section and in the following section we only consider the Union operation
and a related operation. Consider a universe V. Let US be a sequence of Unions on
V starting from partition P and resulting in partition P’. We represent each Union
by the pair (A, B) of the two sets A and B that are joined by it. Henceforth we
use the thus obtained sequence ((Ax, Bi))x to denote the Union sequence US. US
is called to be complete if P consists of singleton sets and P’ = {V}.

Suppose universe V has 2% elements (for some integer z). Let P be a partition
of V into sets of size 2¢ (for some integer a). A Union Turn or 0-Turn T with
initial partition P is a collection of pairs (A, B) of sets A,B € P such that each
set in partition P occurs exactly once in the collection of pairs. (The Union Turn
actually denotes the joining of the paired sets.) Partition P’ = {AU B|(4,B) € T}
is called the result partition of T (consisting of sets of size 2°+!). A 0-Turn sequence
TS = (T;); is a sequence of 0-Turns T; such that the result partition of any 0-Turn
is the initial partition of the following 0-Turn (if any).

Now consider some subuniverse U C V and some a, 0 < a < i, with |U| >
(1 — a).]V|. Consider a 0-Turn T on V. Then the restriction of T to U is given
by Tlv = {(AnU,BnU)|(A,B) € T}. We call T|ly an o-Turn or just a Turn.
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The initial partition of T'|y consists of all non-empty sets occurring in the Turn and
the result partition is the collection {4 U B|(A,B) € Ty A AU B # 0}. We call
the sets in such a partition of U to have a-size 2° if the sets in the corresponding
partition of V have size 2%. (Note that the actual universe V 2 U does not need to
be known explicitly: a follows directly and uniquely from the partition of U, since
by 0 < a < ; the partition consists of sets of size < 2¢ of which at least one must
have size > 291} The sequence (T;|y); is called an a-Turn Sequence on universe
U. The initial partition of the sequence is the initial partition of its first Turn and
the result partition of the sequence is the result partition of its last Turn. Note
that both the universe U, the initial partition and the final partition are completely
determined by the o-Turn sequence. A 0-Turn sequence is complete if the initial
partition consists of singleton sets and the result partition consists of one set.

The operation a-Turn T is given by: for each pair (4,B) € T (A # @V B # 0), join
the sets A and B (while destroying these sets if both A and B are not empty) and
relate some set name to the resulting set AU B. (Note that if e.g. A # 0 = B then

set A remains unchanged, but it may get a new name.) The names of the resulting
sets need to be distinct.

We now consider the actual erecutions of sequences as described above. An ezecution
of a Union sequence US is defined as an execution of a sequence of Union and Find
operations (as defined in Subsection 2.1) consisting of the Union sequence US only,
where the non-occurrence of the Find operations may be known in advance (and
hence because of the semi on-line condition, the entire Union sequence may be known
in advance). An ezecution of an a-Turn Sequence on a pointer machine consists of
a (so-called initial) contents of the pointer machine together with a sequence of
executions of a-Turn operations according to the following rules:

1. initially, before the first operation is carried out, the contents of the pointer
machine (called the initial contents) reflects the initial partition of the universe:
i.e., to each nonempty set some (unique) set name is related and for each
element there exists a path to the name of the set in which it is contained

2. each a-Turn is carried out by executing a program, which halts having modified
the contents of the pointer machine to reflect the a-Turn and hence to reflect
the new partition of the universe

3. for each operation in the sequence, the corresponding program is not executed
until the program of its predecessor operation has halted

The above executions are called UF(%, c)-ezecutions if the executions are performed
on a c-pointer machine and if initially (i.e., when the pointer machine reflects the
initial partition) and at the end of each operation (i.e., when the pointer machine

reflects the partition resulting from the operation) each element has distance at most
1 to its set name.

10



Let T'S be a 0-Turn sequence. Then a Union sequence obtained from T'S by replacing
each Turn by a subsequence of its pairs is called an implementation of T'S. A
Union sequence is called balanced if it is an implementation of a complete 0-Turn
sequence. A Union sequence on a universe U of n elements is called sub-balanced if
it is a complete Union sequence on U that consists of a balanced Union sequence on
some subuniverse V C U with |V| > 1n that is intermixed with additional Unions.
Obviously, for any universe there exists a sub-balanced Union sequence on it.

Lemma 3.1 Let T'S be a complete 0-Turn sequence. Let US be a Union sequence
that is an implementation of TS. Let E be a UF(i,c)-ezecution of US. Then there
exists a UF(i,c)-ezecution of T'S with cost that is at most the cost of E.

Proof. The UF(i,c)-execution E is a valid execution of T'S if all instructions in E
for the Unions corresponding to one Turn are executed consecutively as one program.

O

Definition 3.2 Leti > 1 and 1 < ¢ < p. A GU(i,c,p) machine G (Generic Union
machine) is a pointer machine that is used for the execution of an a-Turn sequence
and for which the following constraints and modifications hold:

1. at any moment the collection of nodes in G is partitioned into i + 1 disjoint

sets, called layers. The layers are numbered from 0 to i. Every node remains
in the same layer.

2. at any moment set names are in layer 0 and elements are in layer 1.
3. nodes in layer i have p fields and all other nodes have c fields.

4. a field of a node in layer j (0 < j < i) contains either the value nil or a pointer
to a node in layer j —1 (if j 2 1).

Lemma 3.3 Let TS be a 0-Turn sequence on a universe U of n elements (n is a
power of two). Let E be a UF(i,c)-ezecution of TS and let C be the cost of E.
Then there ezists an ezecution EE of TS on a GU(i,c+1,c+1)-machine GG such
that initially in GG, when GG reflects the initial partition of T'S, there are at most
2.(c4 1)'.n fields that contain a pointer, and such that EE has cost that is at most
2.i.(c+1)"1-C ifi > 2 and at most C ifi =1.

Proof. Let G be a c-pointer machine G on which execution E is performed. Let
the ¢ fields of a node be numbered from 1 to c. We first derive an execution EE'
on a GU(i,c 4+ 1,¢ + 1) machine GG’ from E. Every node z in G has for each j
(0 < j <1) a (fixed) representative node z; in layer j of GG’ and each node in GG’
is a representative of one node in G. Let the fields of a node in GG’ be numbered

from 0 to ¢. Then execution EE’ is obtained from E by maintaining the following
relations:

11



e for each node z in G the representative z; in GG’ with 1 < j < ¢ contains a
pointer to the representative z;_; in its 0t* field;

e if in G node z contains a pointer to node y (1 < a < c) in its a** field, then in
GG’ node z; (1 < j < i) contains a pointer to y;—; in its ath field,

e all other fields in GG’ contain nil

The elements in GG' are the representatives e; of the elements e in G (i.e., these
nodes e and e; are identified with each other). The set names in GG’ are the
representatives T, of nodes r that occur as set names in GG'.

We describe how to obtain an execution EE on GG. Each node z’ in GG' has
at most one representative node z in GG and conversely, each node in GG is the
representative of precisely one node in GG'. Moreover, node z in GG is in the same
layer as its original z’ in GG'. Then execution EFE is obtained from EE’ by the
following rules:

e the initial contents of GG consists of those nodes = for which node z’ in the
initial contents of GG’ is reachable from some element in GG'.

e at the end of each operation GG contains all nodes z that either existed in GG
at the start of that operation or of which the (possibly just created) original

z' in GG’ is reachable from some element in GG’ at the end of that operation
in EE'.

e initially and at the end of each operation the contents of the fields satisfy:
if in GG the ath field of node z’' contains a pointer to node y’, then in GG
node z (if present) contains a pointer to node y if y exists and its contains ni!
otherwise.

Note that a node in GG’ can only become reachable from some element in GG’ if
some pointer adding occurs in a field in G. Moreover, a node in layer j: 0 < j <1
of GG’ has at most T} (c+1)"* < 2.(c+1)"' =1 < 2(c+1)*"% — 1 nodes outside
layer 0 of GG’ that are reachable from it. Finally, each field in G corresponds to at
most 1 fields in GG. Therefore it follows that any pointer adding in G can certainly
be performed within a factor 1.((c+1).(2.(c+1)""2 = 1)) + 1 < 2.i.(c+ 1) of cost
if i > 2. (For, any node that becomes reachable has ¢ + 1 fields that may contain
a pointer (at a cost of 1 per pointer) except for the nodes in layer 0 that contain
nil in their fields only (having cost 0).) For i = 1 we obtain factor 1, since no node
outside layer 0 can become reachable from an element during the execution of T'S.

Finally it is easily seen that initially in GG there are at most 2.(c + 1)'.n fields that
do not contain nil (and even (¢ + 1).n for : = 1). O
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4 Lower bounds on GU(3,c,p) machines

In this section we will prove lower bounds for GU(%, ¢, p) machines.

Lemma 4.1 Let G be a GU(1,c,p) machine. Let TS be an a-Turn sequence for
some a, 0 < a < %, and let n be the number of elements. Suppose the initial
partition consists of sets of a-size 2% and the result partition consists of sets of
a-size 29, Let ¢y — qo > 4p. Let E be an execution of TS on G. Then at least
+.n.(q1 — o) pointer addings occur in E.

Proof. Let U be the universe of elements of T'S. By the definition of o-Turn, there
exists a universe V D U and a (original) 0-Turn sequence TSO on V such that
TS = TSO|y. Let integer v be given by |V| = 2°.

Consider an execution EE of TSO on G. For each 0-Turn T in TSO we define
a so-called matching sequence in the following way: the matching sequence for T
contains all the pairs (e, s) of elements e and set names s such that s is the set name
for e at the end of the Turn. Now consider the sequence obtained by concatenating
the matching sequences of the 0-Turns in the right order. Then it obviously consists
of (g — qo).2" pairs. For some node s that occurs as a set name in the sequence,
consider the last time that s is the name of some set in the sequence. Let this set
be set A. Suppose A has 2% elements. Since at the end of a 0-Turn the set names of
distinct sets must be different, it follows that for all 0-Turns preceding to the 0-Turn
yielding sets of size 2° at most one set per 0-Turn has s as its set name. Therefore,
at most 1 +2 + 22 + ...+ 2%~ = 2¢ — 1 different elements have had s as their set
name before set A occurred. These elements may be elements of A. Therefore at
least half the number of pairs of elements and set names occurring in the matching
sequence are distinct. Hence the number of distinct pairs is at least 1.(q1 — 9)-2".

Hence, any execution of T'SO contains at least

‘;'-(fh ~ qo0).2" (5)

different pairs in its matching sequence.

Now consider execution E of T'S. Note that E can be augmented to be an execution
of T'SO by performing at most (g1 — go).(2* —n) pointer addings in elements of V\U
during the Turns, yielding at most that many pairs in the matching sequence. By
(5) this gives that there must be at least 1.(q1 — go).(2n — 2°) different pairs in the
matching sequence of the E.

Note that each pair (z, s) in the matching sequence corresponds to a pointer to set
name s in some field of node z. Since initially every element in G has at most p
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pointers, it follows that the total amount of pointer addings is at least

1 v
5(2" —2°)(q1 — qo) — n.p

1
> 5(2n -1 a.n)(ql ~ go) — n.p
1 4
2 5(2" - (ga +1).n)(q1 — ¢o) — n-p
1 2
= (5 - -3—a).n.(q1 —go) — n.p
1 2
2 (Z - 50)-n-(ql - qo)
1

> —.n. - .
< 1o n (‘h QO)
byusingOSaS%a.nd4qu1—qo. O

Corollary 4.2 Let G be a GU(1,¢,p) machine. Let TS be a complete 0-Turn se-
quence on n elements (n is a power of two). Suppose 4p < a(1,n). Let E be an
execution of T'S on G. Then at least 35.n.a(1,n) pointer addings occur in E.

We introduce some notions. An execution of an a-Turn sequence T'S on a GU(4, ¢, p)
machine is called conservative if the execution of each Turn contains a minimal
number of changes of contents of fields: the omission of one field change in the Turn
would yield that at the end of the Turn there would be no path from some element
to its (new) set name. As a consequence, changes of the contents of fields from a
pointer to nil do not occur in a conservative execution: all field changes are pointer

addings.

Obviously, for each execution E of an a-Turn sequence T'S on a GU(3, c, p)-machine
G there exists a conservative execution E' of T'S on G with cost not exceeding the
cost of E and that starts with the same initial contents of G. This is seen as follows:

e the initial contents for E’ equals that for E
e all creations of nodes performed by E are also performed by E’

e the program for a Turn in E’ may change the contents of a field to the contents
of that field at the end of the program for that Turn in E.

e during each Turn only a minimal number of changes of the contents of fields
is performed by E': i.e., the omission of one change would yield that some
element would not have a path to its (new) set name after the Turn in G'.

Obviously, E’ is conservative and the cost of E' does not exceed the cost of E.
Therefore it suffices to consider conservative executions only.

We need the following claim.
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Claim 4.3 Let G be a GU(i,c,p) machine. Let TS be an a-Turn sequence. Suppose
the initial partition of TS consists of sets of a-size 2°. Let E be a conservative
execution of TS on G. Suppose that in the initial contents of G for E at most F
fields contain the same pointer. Then at the moment in E that G reflects a partition
that consists of sets of a-size 2b, at most F42.6712b fields contain the same pointer.

Proof. The bound trivially holds and for a = b. Moreover, no fields contain pointers
to elements since elements are in layer ;. Now consider nodes that are not elements.
Suppose the bound holds for some b with b > a. Then initially (if b = a) or after
the execution of the Turn that yields sets of a-size 2° (if b > a) at most F + ¢'=128+1
fields contain the same pointer in G. Consider G at the end of the execution of the
(next) Turn yielding sets of o-size 2°*!. Colour all fields with new pointers arisen
from this Turn red. For any node z outside layer i there are at most ¢'~! set names
that are reachable from node z, say that the collection of these set names is S(z).
Moreover, since the Turn sequence is executed conservatively, for every red field with
a pointer to z there exists some element e for which all paths from e to its (unique)
set name in S(z) use that red field. (Consequently, for distinct red fields with a
pointer to z such elements are distinct.) Since the sets arising from the Turn have
size at most 20+1, there are at most 25+ - ¢! red fields with a pointer to z. Hence,
at most F + ¢i=1(28+1 4 2641) < F 4 ¢*~12%+2 fields contain a pointer to z. O

Lemma 4.4 Let G be a GU(i,c,p) machine for some i > 1. Let TS be an a-Turn
sequence T'S for some a, 0 < a < 270+1), and let n be the number of elements.
Suppose the initial partition of T'S consists of sets of a-size A(i,qo) and the resulting
partition of T'S consists of sets of a-size A(i,q1). Let E be an ezecution of TS on G,
where in the initial contents of G at most A(i,qo+1) fields contain the same pointer.
Finally, let ¢~ -p < A(3,q0), go = 4 and g1 — go 2> 4. Then at least 127 .n.(q1 — o)
pointer addings occur in E.

Proof. We prove the lemma for by induction. Let ¢ > 2. Suppose that the lemma
holds for z — 1 if 1 — 1 > 2. We prove that the lemma holds for 2.

W.lo.g. E is conservative. Let U be the universe of the elements in T'S. There exists
a universe V with |V| = 2° and a 0-Turn sequence T'SO such that TSOly = TS
and n > (1 — a)2°. We split T'S into consecutive subsequences T'S*"¢, TSP and
TS, (0< k< |_9-‘-'—'—q39—"—lj — 1) such that T'S = TSP"°, (T Sk)k, T SP°* and for each k,
the initial partition of T'Sy consists of sets of a-size A(¢,go + 3k + 1) and the result
partition consists of sets of a-size A(%,qo + 3k + 4). (The subsequence T SPo*t may
be empty.) Let TSO be split into subsequences T'SOP"®, TSOr?t and T'SO; such
that TSOk|ly = T'Sk. (Obviously T'Sy is an a-Turn sequence that is the restriction
of TSSO, to U.)

Consider execution E. Let Ci be the contents of G at the start of the execution of
TS,. Then Cj represents the partition in sets of a-size A(%,qo + 3k + 1). Since E
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is conservative, it follows by Claim 4.3 that in Cj the number of fields that contain
the same pointer is at most

A(i,go+1)+2-¢1- At q0 + 3k +1) (6)
< A(G,q0+ 3k +1) - (14 2A(, q)) (7)
< (A(i,qo+ 3k + 1)) (8)
< A(i,qo+3k+2) (9)

since initially in G at most A(i,go + 1) fields contain the same pointer and since
¢l < ci—lp < A(za qO)’ t1>2and g >4

By Claim 4.5 (given below) it follows that at least ;53—rn pointer addings occur in
E for the execution of T'S;. Hence, by ¢1 — go > 4 at least

@1—¢go—1 1 91— 4o 1
() > . > —.(q1 — q)-
P =—GE=" 2 6 2@ wn

pointer addings occur during execution E of T'S.

We are left to prove Claim 4.5.

Claim 4.5 Let 0 < k < |2=%=2| — 1. Let A be ezecution of T'Sk on G. Suppose
that initially (when the partition in sets of a-size A(i,qo + 3k +1) is reflected) at
most A(3,qo+ 3k +1))? < A(4, go + 3k +2) fields contain the same pointer. Then A

contains at least 2—1-;—,-:1-11 pointer addings.

Proof. W.lo.g. A is conservative. (Note that every change in a field of an element
is a pointer adding now.) Suppose A contains less than sTp=i" pointer addings. Let
U’ be the collection of elements of which the contents of the fields are not changed.
Then U’ satisfies

1 1 1
[ A ! —— — —— v o__ — / v
n= U 2 (1= sramIn 2 (- gy (1= 5ap) 2" = (1 - )2 (10)
for some o with 0 < o < 2~%. Let T'S} be given by T'S; = TSOk|v. Then T'Sj is
an o/-Turn sequence on universe U’.

We construct an execution A’ of TS} on a GU(: — 1, ¢, cp) machine G’ by means of
execution A of T'S as follows.

For each node y at layer i — 1 or i of G, we denote by pi(y) the contents of the kth
field of y. (Note that 1 < k < cfor layeri —1and 1 < k < p for layer ¢.) For
each node y at layer i — 1 of G’, we denote by p;(y) the contents of the kth field of

y (1 < k < ¢p). Then execution A’ is obtained from A by maintaining the following
relations.

e the contents of G' is identical to the contents of G with respect to layers 0 to

i —2: i.e., the collection of nodes in these layers are identical and the fields of
these nodes contain pointers to the same nodes (if any)
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e layer i — 1 of G’ consists of the elements of U’ only; these elements have cp
pointer fields

e for an element e € U’ in G', the contents of its fields p}(e) in G’ (1 < h < cp)
are given by pj;_yy.4k(€) = pe(m(e)) 1 <1< p, 1 < k < ¢), which is nal if
pi(e) = nil (and which is the contents of the k** field of the node pointed at
by pi(e) otherwise).

Since in G the fields of elements e € U’ are not changed during execution 4, it is
easily seen that at any time there is a path from an element ¢’ € U’ to its set name
s in G iff there is a path from e to s in G'. Therefore A’ is an execution on G’ of
the o’-Turn sequence T'S; on U’.

By the condition given in the claim we have that initially in G (when G reflect the
initial partition in sets of a-size A(i,go + 3k + 1)) at most (A(i,qo + 3k +1))* <
A(i, go + 3k + 2) fields contain the same pointer. Since the contents of the fields of
the elements in U’ are not changed by A in G, this gives that execution A’ on G'
contains at most

A(i,go+3k+2) P (11)
pointer addings if P is the number of pointer addings performed in A. Moreover, it
follows that initially at most

(A, go + 3k +1)* (12)
fields in G’ contain the same pointer.

We show that the number of pointer addings in A’ is at least %.12‘(‘“1).n.A(i, go+
3k + 2).

Let z and y be given by & = A(i, go + 3k) and y = A(3, go + 3k + 3). Hence, by (1)
and 1 > 2

A(i—1,z) = A(i,@o+3k+1) (13)
A(i—1,y) = A(i,q+3k+4). (14)

Note that by go > 4 and i > 2 we have

z = A, qo+3k) 2 g0 2 4 (15)
y—z = A(i,q+3k+3)— A(i,q0+3k) > A(s, g0+ 3k +2) > 4. (16)

Now we have that A’ is an execution of the o/-Turn sequence T'S; on the GU(: —
1,c,cp) machine G’ with 0 < o' < 2=, and that the initial partition of T'S}, consists of
sets of o/-size A(i —1,z) and the result partition consists of sets of o/-size A(i—1,y).
We show that for i —1 = 1 and ¢ — 1 > 2 the additional constraints for using
Lemma 4.1 or the induction hypothesis on A’ are satisfied.
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e i —1 > 2. Then by (12) we have that initially in G’ at most
(A(i, g0+ 3k +1))* = (A — 1L,2))* < A(i - 1,z +1) (17)

fields contain the same pointer by using (13) and A(i — 1,z +1) = A(¢ —
2,A(i — 1,z)) > A(L,A(i — 1,z)) = 246-12) > (A(i — 1,7))* where the last
inequality follows with A(i — 1,z) > = > A(4,q0) > A(3,4) > 100 (by (15)
and i —12>2).

Note that since 1 < ¢=1 . p < A(3,q0) < A(2 — 1,z) holds (viz. the conditions
of Lemma 4.4) we have
1<% (ep) < A(L—1,2) (18)
and that by (16) and (15) we have
y—cz 24Nz 24 (19)
By (17), (18) and (19), the induction hypothesis for ¢ — 1 yields that there

occur at least

; 1
—(i=1) 7 _ - .
12 n(y—z) 2 5o n.A(2, g0+ 3k +2)
pointer addings in A’ by using (10) and (16).
e i —1 = 1. Unequality (16) and the conditions in Lemma 4.4 give y — = 2
A(i,qo + 3k +2) > 4.A(4,90) > 4 - cp. Hence
y—z > 4cp (20)
By (20) and Lemma 4.1 it follows that there occur at least

1, 11 .
—n.(y—z)2 —=.-.n
3" (y—z)2 13 2nA(z,qo+3k+2)

pointer addings in A’ by using (16).

By the above case analysis it follows that at least }.127¢=").n.A(3, g0 + 3k + 2)
pointer addings occur in A’. By (11) it follows that there are at least L12-G-D.p
pointer addings in A. Contradiction with the assumption that there are less than
1.12-6G-1).p pointer addings. This proves Claim 4.5. ]

This concludes the proof of Lemma 4.4. a
Lemma 4.4 yields the following result.

Corollary 4.6 Let G be a GU(i,c,c) machine for somei > 1. LetTS be a complete
0-Turn sequence and let n be the number of elements. Suppose ¢ < A(, |La(i,n)| —
1) and a(i,n) > 10. Let E be an ezecution of T'S on G, where initially in G at most

¢! fields contain the same pointer. Then at least %.12“.n.a(i,n) pointer addings
occur in E.
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Proof. W.l.o.g. E is conservative. Let go = |3.a(,n)| —1and g1 = a(i,n)—1. Then
at the moment that that G reflects the partition with sets of a-size A(i,qo) =: 2, it
follows by Claim 4.3 that in G at most

1 4 125 < A(S, go).(1 + 2.A(5, 90)) < A(5, 90 + 1)

fields contain the same pointer (by using i > 1 and go > 4). By Lemma 4.4 it follows
that at least 1.127%.n.a(é,n) pointer addings occur in the part of execution E that
corresponds to the subsequence of T'S with the initial partition consisting of sets of

size A(3,qo) and resulting partition consisting of sets of size A(3, q1). Thus the cost
of E is at least 3.127".n.a(i,n). O

5 The general lower bound for the Union-Find
problem

Claim 5.1 Leti > 1, ¢ > 1. Let E be a UF(i,c)-ezecution of a complete 0-Turn
sequence T'S on n elements (n is a power of two).

Then E costs at least W n.a(i,n) — (c + 1).n pointer addings if 1 > 2,

a(i,n) > 10 and A(i,|3a(i,n)] — 1) = (c + 1), and it costs at least 35.n.a(1,n)
pointer addings if i = 1 and a(z,n) > 4(c+1).

Proof. Let C be the cost of E. From Lemma 3.3 it follows that there exists an
execution E' of T'S on a GU (i, c+1, c+1) machine G with cost at most 2.i.(c+1)*.C
if i > 1 and with cost at most C if i = 1, while initially at most 2.(c+ 1)'.n fields in
G contain a pointer.

e Fori = 1 Corollary 4.2 gives that the cost of execution E’ is at least 35.n.a(1,n).
Hence, C > .n.a(1,n).

e For i > 1 we change execution E’ into execution E” as follows. Consider the
initial contents of G for E. Colour a minimal collection of fields red such that
for each element in G there is a path to its set name using pointers in red fields
only: i.e., if some red field would not be red, then there would be some element
that would not have a path to its set name via red fields only any more. Colour
all other fields that contain a pointer blue. Now the (new) initial contents of
G for E" equals that for E’ except that all fields that are not red contain nul.
Furthermore, execution E” consists of first adding all pointers in blue fields
(at the beginning of the execution of the first operation) followed by E’.

Hence, the cost of E” is at most 2.i.(c + 1)~*.C + 2.(c + 1)'.n. Moreover,
initially in G at most (c+1)'~? fields contain the same pointer, since every set
consists of one element and since the number of red fields is minimal (also cf.
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the proof of Claim 4.3). By Corollary 4.6 it follows that the cost of E” is at
least .127%.n.a(i,n), what establishes the result for C.

This concludes the proof of Claim 5.1. a

Lemma 5.2 Leti > 1, c>1 and n > 1. Let n and c satisfy a(n,n) > a(c,c) + 1.
Let US be a sub-balanced Union sequence on a universe of n elements. Then any
UF(i, c)-ezecution of US with 1 < i < a(n,n) — 3 costs at least n.a(i + 1,n) pointer
addings.

Proof. Consider a UF(i,c)-execution E of US. Let E have cost C. Since US is
sub- balanced US consists of a balanced Union sequence US’ on a subuniverse of
2" > 1in elements that is intermixed with additional Unions. We modify execution
E mto execution E' for US’ as follows. For each Union Un in US’ let Pre(Un)
be the longest subsequence of US that ends with Un and that does not contain
Unions of US' except for Un. Then a program for a Union Un in US’ consists of
the sequence of instructions in E for the Unions in Pre(Un). In this way we obtain
execution E' that obviously is a UF(, ¢)-execution of T'S’ with cost at most C.

Let TS’ be the 0-Turn sequence of which US’ is an implementation. Then by
Lemma 3.1 there exists a UF(z, c)-execution E” of TS’ with cost at most C. We
show that the cost of E” is at least n.a(i + 1,n). First we show that E” satisfies the
conditions of Claim 5.1. Note that by Lemma 2.5 we have

a(i,n) > 8.12.i.(c+ 1) .(2a(i + 1,n) + ¢+ 1). (21)
e For i =1 we have by (21) 4(c+1) +1 < 8.122.(24(2,n) + c+1) < a(l,n) and
hence by n' > in we have a(1,n') > a(1,n) —1 > 4(c +1).
o If i > 2 then we have (by n’ > }n and by (21))

A, L—;-a(z',n') 1-1) > AG, L—;-a(i,n) |-2)
> A(,4120.(c+ 1)1 (2a(i + 1,n) + ¢+ 1) — 2) > A(i, (¢ + 1)) > (¢ + 1)’
and a(i,n') > La(i,n) > 4127 4. (c+ 1) .(2a(i + 1,n) + c + 1) 2 10.
Hence by Claim 5.1 the cost of E” is at least

1
" '.a(1,n)
if i =1 and at least
1
4.123.(c+ 1)1
if 1 > 1. By using a(¢,n') > }a(i,n), ' > }n and (21) this is at least n.a(i + 1,n).
This concludes the proof of Lemma 5.2. O

n'a(i,n’) — (c+1).n
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Theorem 5.3 There ezists a constant d > 0 such that:

For any c-pointer machine, for any integer f and for any sub-balanced
Union sequence on a universe of n elements there ezists a Union-Find
problem consisting of the Union sequence intermized with f Find opera-
tions whose ezecution by the c-pointer machine has a cost that is at least

d.f.a(f,n) if a(n,n) > alc,c) + 1.

Proof. Let n and c satisfy the constraints given above. Consider some sub-balanced
Union sequence US on n elements. Let

i=maz{jufsl‘i(1-?i"—)msjSa(n,n)—21vj=1}. (22)

We construct a Union-Find problem that contains US as the subsequence of Unions
and that costs at least f.i and we show that i > }.a(f,n). We distinguish two cases.

e i = 1. Then at any moment after the first Union, at least one element cannot
equal its set name and hence any f Finds performed on such elements cost at
least f together.

e i > 1. We construct a Union-Find problem semi on-line, starting from the
(known) sequence US of Union operations and intermix it with Finds. If at
some moment when some partition is reflected (i.e., initially or at the end of
some operation) there is an element that has distance > i to its set name, and
if less than f Finds have been performed thus far, then perform a Find on that
element. Otherwise perform the next Union or stop if a next Union does not
exist. Let E be the execution of the Unions and Finds obtained in this way.

We distinguish 2 cases.

— At least f Finds have been performed. Then obviously these Finds have
cost at least > f.i.

— Less than f Finds have been performed. We change E into an execution
E' of Union sequence US as follows. The initial contents of the pointer
machine for execution E' is the contents for E at the beginning of the
first Union. All Finds occurring before the first Union are ignored w.r.t.
E'. (These Finds are condensed in the new initial contents of the pointer
machine.) Furthermore, each execution of a Find (not occurring before
the first Union) is appended to the execution of its previous Union. Then
obviously the number of pointer addings in E’ is at most that in E.
Because less than f Finds have been performed, it follows that initially
and at the end of the (thus extended) execution of each Union all elements
have distance < i to their set names. Therefore, E' is a UF(i — 1,¢)-
execution of US with 1 < i —1 < a(n,n) — 3. By Lemma 5.2 it follows
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that at least n.a(é,n) pointer addings occur in E'. Hence the cost of E
is at least n.a(i,n).

Hence in both cases the cost is at least min{f.i,n.a(i,n)}. By i > 1 and (22)
we have f - i < n.a(i,n). Hence the cost of E is at least f.i.

We show that ¢ > L.a(f,n). We distinguish three cases.

¢ 1 <i < a(n,n)—2. Then by (22) '—'l(.a'—_-"ll;"l < f. Then we certainly have by
Lemma 2.8 n.a(i + 2,n) < f. By Lemma 2.4 it follows that i +2 > o(f, n)
and hence by i > 1 it follows that: i > 1.2 +2) 2 3.a(f,n).

e i = a(n,n) — 2 (and hence a(n,n) > 3). From a(f,n) < a(n,n) it follows
that i = a(n,n) — 2 > L.a(n,n) > }.o(f,n).

¢ i =1> a(n,n) —2. Hence a(n,n) < 2. From a(f,n) < a(n,n) it follows that
i =12 1a(n,n) > 1a(f,n).

Combining the above cases gives that i > }.a(f,n).
By combining the above results it follows that the cost is at least 3fa(f,n). O

Theorem 5.3 implies that even if all Unions are known in advance, the worst case
time bound is still (f.a(f,n)) for all sub-balanced Union sequences on a pointer
machine that are intermixed with f appropriate Finds. Hence the linear bound
proved in [6] for Union-Find problems in which the structure of the (arbitrary)
Union sequence is known in advance and that is implemented on a RAM, does not
extend to a pointer machine.

Finally, since each operation takes at least one step on a pointer machine, we obtain
the following theorem.

Theorem 5.4 There exists a constant d > 0 such that:

For any c-pointer machine and for any n and f with a(n,n) >
a(c,¢)+ 1 there is a Union-Find problem on n elements with a sequence
of n — 1 Union and f Find operations whose ezecution by the c-pointer
machine requires at least d.(n + f.a(f,n)) steps.

Corollary 5.5 For any pointer machine there ezists a constant d > 0 such that for
anyn > 1 and f > 0 there is a Union-Find problem on n elements with a sequence of
n —1 Union and f Find operations whose execution by the pointer machine requires
at least d.(n + f.a( f,n)) steps.
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6 A general lower bound for the Split-Find prob-
lem

We first describe the Split-Find problem on a pointer machine. Let U be a linearly
ordered collection of nodes, called elements. Suppose U is partitioned into a collec-
tion of sets and suppose a (possibly new) unique node is related to each set, called
set name. (For the regular Split-Find problem the partition consists of one set only.)
We want to be able to perform the following operations:

e Split(A, B): split the set AUB with A< B (i.e,z<yforallz€ A,y € B)
and A # 0 # B into the two new sets A and B (destroying the old set AU B)
and relate set names to the resulting sets

e Find(z): return the name of the current set in which element z is contained.

The occurring set names must satisfy the condition that, at every moment, the
names of the existing sets are distinct. Moreover, the operations are carried out
semi on-line: i.e., each operation must be completed before the next operation is
known, while the subsequence of Splits may be known in advance. The definition and
rules for pointer machine executions that solve the Split-Find problem are similar
to that for the Union-Find problem as given in Subsection 2.1.

We use the results of Section 4 to obtain a lower bound for the Split-Find problem.
Like in Section 3 we define a Split sequence as a sequence of pairs ((Ag, Bx))x, where
a pair (Ag, Bi) represents a Split operation Split(Ax, Bx). We define a sub-balanced
Split sequence as a reversed sub-balanced Union sequence. Then obviously, there
exists a sub-balanced Split sequence on every universe. (Note that we can also
define Split Turns and sub-balanced Split sequences independent of Union Turns
and Union sequences.) A UF(i, c)-execution of a Split sequence is defined similar as
for a Union sequence. We prove the equivalent of Lemma 5.2.

Lemma 6.1 Leti > 1, c>1 and n > 1. Let n and c satisfy a(n,n) > afc,c) + 1.
Let S be a sub-balanced Split sequence on a universe of n elements. Then any
UF (i, c)-ezecution of S with 1 < i < a(n,n) — 3 costs at least n.a(i + 1,n) pointer
addings.

Proof. Consider a UF(i, c)-execution E of Split sequence S and let C be the num-
ber of pointer addings in it. Let G be the pointer machine on which E is executed.
Modify the execution such that no changes in fields from a pointer to nil are per-
formed and such that no creation of nodes occur in E (which can easily be obtained
by assuming that nodes that are created during F exist in the initial contents of G
already, where they contain nil in their fields at that moment). Obviously the thus
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modified execution E is still an execution of S and it contains exactly C' changes of
field contents.

Let S-1 be the reverse sequence of S. Then S~ is a sub-balanced Union sequence
on universe U. We construct an execution E’ of S~ by means of execution E of S as
follows. The initial contents of G for E' equals the final contents of G after execution
E (i.e., the contents of G at the moment that the program of the last operation in
S halts). Then E’ is obtained by maintaining the following relations with as few
pointer addings as possible. At the end of an execution of a Union in S~1, pointer
machine G has the same contents as at the beginning of the corresponding Split in
S. Then apparently, a change of the contents of a field by E’ during the execution of
a Union occurs only if there is a change of the contents of that field by E during the
corresponding Split in S. Hence, E' contains at most C changes of field contents.

Since at the beginning or at the end of every Union in § -1 the contents of the pointer
machine is identical to that at the end or at the beginning of the corresponding Split
in S, it follows that E' is a UF(4, c)-execution of Union sequence S -1, Lemma 5.2
yields that C > n.a(i + 1,n). O

Completely similar to the proof of Theorem 5.3 we can prove the following theorem.

Theorem 6.2 There ezists a constant d > 0 such that:

For any c-pointer machine, for any integer f and for any sub-balanced
Split sequence on a universe of n elements there ezists a Split-Find prob-
lem consisting of the Split sequence intermized with f Find operations
whose ezecution by the c-pointer machine has a cost that is at least

d.f.a(f,n) if a(n,n) > a(c,c) + 1.

Theorem 6.2 implies that even if all Splits are known in advance, the worst-case time
bound on a pointer machine is still (f.a(f,n)) for all sub-balanced Split sequences
that are intermixed with appropriate Finds. Hence the linear bound proved in 6]
for Split-Find problems on a RAM does not extend to a pointer machine, even if
the sequence of Splits is known in advance.

Like for the Union-Find problem we obtain the following theorems.
Theorem 6.3 There exists a constant d > 0 such that:

For any c-pointer machine and for any n and f with a(n,n) >
a(c,c) + 1 there is a Split-Find problem on n elements with a sequence
of n — 1 Split and f Find operations whose ezecution by the c-pointer
machine requires at least d.(n + f.a(f,n)) steps.
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Corollary 6.4 For any pointer machine there ezists a constant d > 0 such that for
anyn > 1 and f > 0 there is a Split-Find problem on n elements with a sequence of
n — 1 Split and f Find operations whose ezecution by the pointer machine requires
at least d.(n + f.a(f,n)) steps.

Finally, we make some remarks about the separation condition for the Split-Find
problem. In case the separation condition holds, the lower bound of Theorem 6.3
becomes valid for a uniform d for all n independent of c. (However, in this case we
need to include all changes of contents of fields in our ultimate complexity measure,
i.e., including changes to nil.) This matches with the result in [15] for the Union-
Find problem with the separation condition. We will not present the proof here.

7 Final Remarks

We want to remark that even if during a Union or a Split the new set name is not
assigned to the resulting set immediately, but is assigned to it at some later time
before or during the first Find that is performed on an element of that set, we still
can prove Theorems 5.4 and 6.3 respectively. We will not present the proof here.
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