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Abstract

Consider a tree T with a number of extra edges (the bridges) added. We
consider the notion of diameter, that is obtained by admitting only paths p
with the property that for every bridge b in path p, no edge that is on the
unique path (in T) between the endpoints of b is also in p or on the unique
path between the two endpoints of any other bridge in p. (Such a path is
called non-reversing.) We investigate the trade—off between the number of
added bridges and the resulting diameter. Upper and lower bounds of the
same order are obtained for all diameters of constant size, of size a(N)+ O(1)
or of size f(N) where f(N) grows faster than a(N). Some applications are
given.

1 The Problem

Let an undirected tree T = (V, E) be given. The diameter of this tree is to be
reduced by the addition of as few edges as possible, where a modified definition of
the distance is given below. Calling the set of additional edges (the bridges) B, let
E’ denote EU B and T" = (V, E'). Given a tree T and a diameter D, a set B is

*The work of this author was partially supported by the ESPRIT II Basic Research Actions
Program of the EC under contract no. 3075 (project ALCOM).

tThe work of this author was partially supported by the ESPRIT II Basic Research Actions
Program of the EC under contract no. 3075 (project ALCOM).

$The second and third author’s work was partially supported by the National Science and
Engineering Research Counsel of Canada.



called optimal if T' has diameter D and no set smaller than B realizes diameter D.
The elements of E are sometimes referred to as basic edges, the elements of B as
bridges, and all elements of E’ simply as edges.

For the modified definition of distance, a bridge (u,v) € B is said to contain the
basic edges of the unique path from u to v in T. A non-reversing path in T' is a
path (of edges in E') in which a basic edge is represented at most once, either by
being a basic link in the path or by being contained in one of the bridges of the path.
The distance between u and v (denoted d(u,v)) is the length of the shortest non-
reversing path between u and v, and the diameter of T’ is the maximum distance
between any two nodes.

As an example to the definitions, consider the tree in figure 1, with the bridge
b = (u,w). The bridge b contains the basic edges 3, 5, 6, and 7. The path b,9 from

Figure 1: Example tree.

u to t is non-reversing, but the path 5,7 from u to v is not because the edge 7 is
contained in b. In fact the shortest non-reversing path from u to v is 3,5,6, which is
of length 3. Note that d(u,w) =1 and d(w,v) = 1, and hence the distance function
as defined does not satisfy the triangle inequality.

This paper is organized as follows. In section 2 the case is considered where T
is a linear chain. In section 3 the results for chains are extended to the general case
that T is an arbitrary tree. In section 4 the results of the paper are summarized.
In section 5 the motivation of the problem is given and a generalization to non-tree
graphs is suggested.

2 Results for linear chains

The linear chain on N nodes is defined as the tree T = (V, E) where V = {i € N :
1<i< N}and E={(i,i +1):1 < i< N}. A non-reversing path in T in this
case visits nodes in either decreasing or increasing order, as a change in direction
violates the non-reversibility condition. As each decreasing path is the reverse of
an increasing path, we may well restrict ourselves to paths running in increasing
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direction and consider all edges as directed towards the higher of the incident nodes
(to “the right”). In the rest of this section let T' be a directed chain on N nodes.

2.1 Diameter 1

Let F;(N) be the size of the smallest set B of bridges such that the diameter of T"
is 1. There is only one such set and its size is easily computed.

Theorem 2.1 ([3]) Fi(N) = 3(N —1)(N - 2) = O(N?)
Proof. The diameter of T" is 1, hence E’ connects V completely, i.e., E' = {(¢,7) :

1 < i< j < N} and so the size of E' is JN(N — 1). Subtracting the N — 1 basic
edges, find |B| = {(N —1)(N -2). O

2.2 Diameter 2

Let F3(N) be the size of the smallest set B of bridges such that the diameter of T”
is at most 2. In this subsection it is proved that F5(N) = ©(Nlog N).

Theorem 2.2 ([3]) F2(N) < O(NlogN).

Proof. A set of bridges giving D = 2 is defined recursively. If N < 3 then D < 2
already and no bridges are added. Otherwise (see figure 2) let M be the “center”
node [%'I , connect all nodes (except M’s neighbors) to M and apply the construction

= ==
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Figure 2: Construction for diameter 2.

recursively to the “lower part” (consisting of nodes 1 through M —1) and the “higher
part” (consisting of nodes M + 1 through N) of the chain.

To show that the diameter is now at most 2, consider two nodes : and j, where
i<j. fi=Morj= M, an edge (i,j) exists by construction and d(i,j) = 1. If
i < M < j, the path (¢, M), (M, j) is non-reversing and d(z,j) = 2. Finally, if  and
j are on the same side of M, a non-reversing path exists because of the recursive
application of the construction.



To analyse the number of bridges, let f(/V) be the number of bridges used when
the construction is applied to a chain of N nodes, and note that

0 if N<3
f(N) = { F(IE1-1)+ (N -3)+ f(|¥]) otherwise.

The solution to this equation is f(N) = O(Nlog N), hence F5(N) < O(N log N).
a

To prove lower bounds it turns out to be easier to consider the size of E’ first,
rather than look at the size of B directly.

Theorem 2.3 F,(N) > Q(NlogN).

Proof. Let f(IN) denote the minimal size of any set E’ that gives a chain of N
nodes a diameter of at most 2, this is the size of B plus N — 1. For N < 3,
f(N)=N—1. Nowlet N > 3 and let such an E’ be given. Partition V in a “lower
block” {i : ¢ < 7N} and a “higher block” {i : i > 1N} (see figure 3). Call an edge

i Large edges
—EBH58 R0 e

Figure 3: Lower bound for diameter 2.

(2,7) in E’ smallif ¢ and j are in the same block and large otherwise. As two nodes
in the lower block have distance at most 2, and an non-reversing path between these
nodes lies entirely within the lower block, there are at least f(|1N]) small edges
in the lower block. Similarly, there are at least f([3N]) small edges in the higher
block.

As for the large edges, suppose there is an iy in the lower block such that there is
no large edge (7o, j), i.e., all edges incident to ig are small edges and lead to a node
k< %N . Now for every 7 > %N there is a path of length < 2 from i to j, hence
there exists an edge (k,j) for some k < ;N. It follows that all nodes in the lower
block are incident to a large edge or all nodes in the higher block are incident to a
large edge. So there are at least |1 V| large edges and thus

N-1 ifN<3
f(N)>{ FU5N]) + f(J3N]) + [3N] otherwise

and this equation solves to f(N) > Q(N log N). Subtracting the N — 1 basic edges
we find FR(N) > Q(Nlog N). O



The two theorems show that F; = ©(NlogN) as claimed and in the proof of
theorem 2.2 a construction is given that uses this number of bridges. The constants
hidden in the order-notation are 1 and -;- for the upper and lower bound, respectively.

2.3 Diameter 3

Let F3(N) be the size of the smallest set B of bridges such that the diameter of TV
is at most 3. In this subsection it is proved that F3(N) = ©(N loglog NV).

Theorem 2.4 F3(N) < O(NloglogN).

Proof. A set of bridges giving D < 3 is defined recursively. If N < 4 then D <3
already and no bridges are added. Otherwise, apply the following construction in
four steps (see figure 4). (0) Let W = [v/N| and designate the nodes W,2W,...

Recursion Recursion Recursion Recursion Recursion

Figure 4: Construction for diameter 3.

to be backbones of the construction. (1) Connect every node in V (including the
backbones) to the nearest backbone in each direction (if it exists). (2) Add a bridge
between every pair of backbones. (3) Apply the construction recursively on each of
the subchains in which the backbones cut the chain.

To show that the diameter is indeed at most 3, consider two nodes, 7 and j, ¢ < 7,
and both not a backbone. If i and j are in different subchains, let M; be the backbone
right of i and M, the backbone left of j. The path (i, M1), (M, M2), (M3, ) shows
that d(i,j) < 3. If My = M, the middle edge is omitted, and the case that i or j
is a backbone (or both) is left to the reader. If ¢ and j are in the same subchain,
a non-reversing path of length at most 3 exists because of the recursive application
of the construction on each of the subchains.

To compute the number of bridges used in the construction, note that (1) it takes
less than 2]V bridges to connect each node to the nearest backbones, (2) the number
of backbones is LW]'VIV"I'J < /N so it takes less than 1N bridges to connect them

completely, and (3) recursion is applied to [WNm—] < [V/N] subchains of length at
most [v/N] — 1. Hence, with f(N) the number of bridges used by this construction
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on a chain of N nodes, it follows that

0 ifN<L4
f(N) < { 21N + [VN]f([VN] —1) otherwise.

The solution to this equation is f(N) < O(N loglog N), and hence it follows that
F3(N) < O(Nloglog N). O

Theorem 2.5 F3(N) > Q(Nloglog N).

Proof. Let f(N) denote the minimal size of E' that gives diameter at most 3, again
this is the size of B plus N — 1. For N < 4, f(N) = N — 1, now let N > 4 and let
such an E’ be given. Partition V in LT&VI\-’TJ blocks of size at least [\/N ] and call an

edge (i,7) smallif i and j are in the same block, and large otherwise (see figure 5).

No large edge
Large edge incident to this node
P [ N N, N\

Small edge
Blue block Red block

Figure 5: Lower bound for diameter 3.

As two nodes within the same block have distance at most 3, and a non-reversing
path of this length lies entirely within the block, a block of size s contains at least
f(s) small edges. Hence the total number of small edges is at least LTVNMJ F(IVN)).

As for the large edges, call a block red if it contains a node that is not incident to
a large edge, and blue if each of its nodes is incident to at least one large edge. (Note
that these two cases are complimentary, i.e., each block is either red or blue.) Let
R be the number of red blocks and B the number of blue blocks. As the blue blocks
contain at least B[v/N] nodes, there are at least ;B [v/N] large edges incident to
a node in a blue block. Now let S; and S5 be two red blocks and let i; and i; be
nodes in S; and S, respectively, that are not incident to a large edge. There exists
a non-reversing path (i1, 7), (j, k), (k,2) from i, to 1, and from the choice of 7, and
i, it follows that j lies in S; and k in Sa. So (j, k) is a large edge between S; and
S,. Such an edge exists for every two red blocks S; and Sy, hence the number of
large edges incident to two nodes in red blocks is at least FR(R —1). Thus the
large edges sum up to at least 1B [vV'N]+1R(R—1), and under the restriction that
B+ R= I-[_\%VTJ’ this is Q(N) (viz., 2N + o(N)). Counting small and large edges

6



together, it follows that

N-1 if N<4
F(N) Z{ I-TVNFT'”( [VN]) + Q(N) otherwise

and this implies f(N) > Q(N loglog N). Subtracting the N —1 basic edges, we find
F3(N) > Q(Nloglog N). O

The two theorems show that F3(N) = ©(Nloglog N) as claimed and in the
proof of theorem 2.4 a construction is given that uses this number of bridges. The

constants hidden in the order-notation are 2} and  for the upper and lower bound,
respectively.

2.4 Diameter 4 and higher constants

Let Fi.(N) be the size of the smallest set B of bridges such that the diameter of T'
is at most k. In this subsection matching upper and lower bounds on Fi(N) are
proved (up to a constant factor). These bounds are superlinear, but so only by an

extremely slowly growing function. For all practical purposes the results may be
considered linear.

Theorem 2.6 F4(N) < O(Nlog* N).

Proof. A set of bridges giving D < 4 is defined recursively in a way similar to
the constructions in theorems 2.2 and 2.4. If N < 5 then D < 4 already and no
bridges are added. Otherwise, apply the following construction in four steps. (0) Let
W = [log N and designate the nodes W, 2W, ... to be backbones of the construction.
(1) Connect every node in V (including the backbones) to the nearest backbone in
each direction (if it exists). (2) Add a minimal number of bridges between the
backbones in such a way that between any pair of backbones there exists a n0n-
reversing path of length at most 2. (3) Apply the construction recursively on each
of the subchains in which the backbones cut the chain.

To show that the diameter is indeed at most 4, consider two nodes, ¢ and j,
i < j, and both not a backbone. If ¢ and j are in different subchains, let M, be the
backbone right of i and M, the backbone left of j. By step (2) of the construction
a non-reversing path of length at most 2 between M, and M; exists, and together
with the edges (¢, M;) and (M3, j) this gives a nOn-reversing path of length at most
4 from i to j. The case that i or j is a backbone (or both) is left to the reader. If
i and j are in the same subchain, a non-reversing path of length at most 4 exists
because of the recursive application of the construction on each of the subchains.

To compute the number of bridges used in the construction, let f(N) be the
number of bridges used and note that (0) there are b = L]WLVVT.I < % backbones,
(1) it takes less than 2N bridges to connect each node to the nearest backbones,
(2) it takes Fy(b) = O(blogb) < O(%Nlog i%ﬁ) < O(N) bridges to connect the
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backbones as described in step 2 by theorem 2.2, and (3) recursion is applied to
[Tﬁ%ﬂﬂ < [l—%v] subchains of length at most log N so this takes at most %ﬁ X
f(log N) bridges. Hence it follows that

0 ifN<5
f(N) < { 2N + O(N) + 1-‘%'f(logN) otherwise.

The solution to this equation is f(N) < O(Nlog*N), and hence Fy(N) <
O(Nlog™N). O

Theorem 2.7 Fy(N) > Q(Nlog®" N).

Proof. Let f(IN) denote the minimal size of E’ that gives diameter at most 4, again
this is the size of B plus N —1. For N <5, f(N) =N —1,now let N > 5 and let
such an E' be given. Partition V in [F(g—ArI-J blocks of size at least [log N| and call
an edge (i,7) small if i and j are in the same block, and large otherwise.

As two nodes within the same block have distance at most 4, and a non-
reversing path of this length lies entirely within the block, a block of size s con-
tains at least f(s) small edges. Hence the total number of small edges is at least
Ll | £(Tlog N1).

As for the large edges, call a block red if it contains a node that is not incident
to a large edge, and blue if each of its nodes is incident to at least one large edge.
Let R be the number of red blocks and B the number of blue blocks. Next a lower
bound on the number of large edges is shown both in R and in B. As the blue
blocks contain at least B[log N| nodes, there are at least 1Bllog N large edges
incident to a node in a blue block. For the bound in R, form R “purple” blocks
by extending each red block over the blue blocks to the right of it. Consider the
graph H = (V, Ey), where Vy is the set of purple blocks and an edge between two
block exists iff E’' contains an edge between nodes in these two blocks. It can now
be shown that H has a diameter of at most 2: For purple blocks S; and S, take
i, and i, in those blocks that are not incident to large edges. The existence of a
non-reversing path in 7" of length at most 4 implies the existence of a non-reversing
path of length at most 2 in H between S; and S;. From theorem 2.3 it follows that
Ejp contains at least Q(Rlog R) edges, and as each edge in Ey corresponds to at
least one large edge in E', there are at least ((Rlog R) large edges. Using that
B+R= Lm’!m], it follows that the number of large edges is at least Q(NV).

Counting small and large edges together, it follows that

N -1 fN<5H
f(N) _>_{ l]ﬁlg!NTJf(nogN])-i'Q(N) otherwise

and this implies f(N) > Q(Nlog® N). Subtracting the N —1 basic edges, we find
Fy(N) > Q(Nlog*N). O



The two theorems show that F4(N) = ©(N log* N) as claimed and in the proof of
theorem 2.6 a construction is given that uses this number of bridges. The constants
hidden in the order-notation are 3 and  for the upper and lower bound, respectively.

The techniques applied up till now suffice for the analysis of higher constant
diameters also. Observe that in theorems 2.2, 2.4, and 2.6 the constructions have
in common that a linear number of bridges is used in each level of the recursion. In
theorem 2.2 the recursion is on subchains of length 1N, hence the recursion depth
is log N and the number of bridges O(Nlog N). In theorem 2.4 the recursion is
on subchains of length v/, hence the recursion depth is loglog N and the number
of bridges O(N loglog N). In theorem 2.6 the recursion is on subchains of length
log N, hence the recursion depth is log* N and the number of bridges O(N log* N).

The constructions that are to follow in this subsection share this property, too.
Clearly, the recursion depth depends on the size of the subchains, which depends in
turn on the number of backbones. In the construction for diameter k the number
of backbones is chosen in such a way that they can be connected to have diameter
k — 2 using O(N) bridges, and thus a relation is established between Fj and Fi_;.
The construction used so far is optimal as shown by the following two theorems.

Theorem 2.8 Fi(N) < O(N[FrN—(-ﬁ—)]‘), where [g(N)]* denotes the number of times
k-2
g is iterated on N before the result is at most k + 1.

Proof. The following construction realizes the bound. I N < k+1 then D < k
already and no edges are added. Otherwise, use the following 4 steps. (0) Choose a
number b of backbones such that Fi_z(b) = N and place the backbones at regular
distance in the chain. (1) Connect every node to the nearest backbones in both
directions (if they exist). (2) Add Fi_2(b) bridges between the backbones so as to
connect them with a diameter of k¥ — 2. (3) Apply the construction recursively to
the subchains.

The proof that the diameter of the resulting graph is indeed k and the compu-
tation of the number of bridges is as in the previous constructions. Note that the
recursion is on subchains of length at most F,,:’]:_(N_) and stops as soon as this length

is at most k + 1. Hence the theorem follows. O
N ™
Theorem 2.9 Fi(N) > Q(N[f{__',_(l"_)] ).

Proof. Let f(IN) denote the minimal size of E' that gives diameter at most k, again
this is the sizeof Bplus N—1. For N<k+1, f(N)=N—1,nowlet N> k+1

and let such an E' be given. Partition V in b= LTN_/F_I‘Y‘TN_)TJ blocks of size at least
k=2

s = _‘—F'N(N) and call an edge (i,j) small if i and j are in the same block, and large
k=2
otherwise.
As two nodes within the same block have distance at most k, and a non-reversing
path of this length lies entirely within the block, a block of size s contains at least

f(s) small edges. Hence the total number of small edges is at least bf(s).
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As for the large edges, call a block red if it contains a node that is not incident
to a large edge, and blue if each of its nodes is incident to at least one large edge.
Let R be the number of red blocks and B the number of blue blocks. Next a lower
bound on the number of large edges is shown both in R and in B. As the blue blocks
contain at least Bs nodes, there are at least }Bs large edges incident to a node in
a blue block. For the bound in R, form R “purple” blocks by extending each red
block over the blue blocks to the right of it. Consider the graph H = (Vu, En),
where Vj is the set of purple blocks and an edge between two block exists if B/
contains an edge between nodes in these two blocks. It can now be shown that H
has a diameter of at most k — 2: For purple blocks S; and S, take 7; and 22 in those
blocks that are not incident to large edges. The existence of a non-reversing path
in T" of length at most k implies the existence of a path of length at most k — 2 in
H between S; and S,. Ey contains at least Fx—»(R) edges, and as each edge in Ey
corresponds to at least one large edge in E’, there are at least Fy._2(R) large edges.
Using that B + R = b, it follows that the number of large edges is at least (V).

Counting small and large edges together, it follows that

N-1 fN<Ek+1
J(N) > { bf(s) + Q(N) otherwise

and this implies the result stated in the theorem. O
The derived formula looks awkward but it turns out that Fj is essentially found by
adding a star to the superlinear part of Fi_,.

Theorem 2.10 Let Fi_3(N) = Nf(N) where f is nondecreasing. Then F(N) =
O(N[f(N)]*(N))-

Proof. From Fk-2(T(NW5) = ﬂ%f(ﬂ%) < N follows F,(N) > 7{1,7’5 Hence
s < (V) and [ 2] < (FVI). O

Thus Fy(N) = ©(NlogN), Fs(N) = ©(Nloglog N), Fi(N) = ©(Nlog" N),
Fy(N) = ©(Nlog* N), Fs(N) = ©(Nlog™ N), F7(N) = ©(Nlog™ N), Fs(N) =
©(N log*™* N), and so forth.

2.5 Diameter O(logN)

Let Fiog(N) be the size of the smallest set B of bridges such that the diameter of
T' is at most O(log N). In this subsection matching upper and lower bounds on
Fiog(N) are proved. First a linear and subsequently an O(F’s-v-ﬁ) upperbound are

proved, and then an Q(E-;!N) lower bound.
Theorem 2.11 A diameter of at most 2log N is realized with less than N bridges.
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Figure 6: Construction for diameter 2log N.

Proof. A set of bridges satisfying these bounds contains all bridges whose length
is a power of 2 (but > 1), and whose incident nodes are multiples of its length.
Formally, let B = {(s2',(s+1)2): 1> 1,5 > 1,(s+ 1)2! < N} (see figure 6). There
are less than %VT bridges of length 2! and hence the number of bridges is less than N
indeed. (An even lower bound of N —log N — 1 can be proved and this is sharp for
N a power of 2.)

To prove that the diameter of the resulting graph is indeed logarithmic, consider
a shortest non-reversing path between two nodes. First, this path does not contain
an edge that is immediately preceded and followed by a longer edge. This is because
one of its endpoints is not a multiple of a larger power of 2 than its own length.
Second, this path does not contain two edges of equal length, immidiately followed
or proceded by an edge of larger length. This is because in such a configuration the
first edge starts in a higher power of 2 than its own length and one bridge exists
that spans the two edges (violating the assumption that the path is a shortest path).
Third and finally, this path does not contain three consecutive edges of the same
length. This is because either the first two or the last two can be replaced by a
single bridge (again violating the assumption that the path is a shortest path). It
follows that in a shortest path the edge lengths stricktly increase to a maximum,
which is assumed at most twice, and then stricktly decrease. Hence the length of a

shortest path is at most twice the number of different edge lengths, which is 2log N
indeed. O

Theorem 2.12 A diameter of at most 4log N is realized with less than E%VN bridges.

Proof. The construction of theorem 2.11 is now applied to nodes (backbones) that
are interspaced log N apart. Let W = [log N +1 and let B = {(s2'W, (s +1)2'W) :
1 >0,(s+1)2W < N} (see figure 7). There are less than st bridges of length
2!'W so the total number of bridges is less than % < RZSLN.

As in theorem 2.11 it is shown that between any two backbones there is a non-
reversing path of length at most 2log(f5) < 2log N. For arbitrary nodes : and j
(1 < j),if ¢ and j lie between the same two backbones then there is a path of length
j —i < W between them, consisting of basic edges only. Otherwise, it takes at most
W — 1 steps to reach the nearest backbone to the right of ¢, at most 2log N steps
to reach the one to the left of j, and at most W — 1 to reach j from there. Hence
d(i,7) <4logN. O
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Figure 7: Construction for diameter 4log N.

This result is optimal as shown by the following theorem.
Theorem 2.13 It takes at least LN—Elj bridges to have diameter D.

Proof. As there is a non-reversing path from node D + 1 to N of length at most
D, there is a bridge with its left endpoint in the interval [iD +1...(: +1)D] for all
isuch that 0< i, (:+1)D+1<N. O

Corollary 2.14 Fig(N) = O(ﬁ’ﬁ).

2.6 A Linear Bridge-Diameter Product

For any diameter the product of the number of bridges and the diameter is at least
linear in N as is shown by theorem 2.13. This bound is sharp for a logarithmic
diameter as shown in theorem 2.12. In subsections 2.1 through 2.4 however it was
shown that a linear product is not realized for any constant diameter (that is, a
constant diameter cannot be realized with a linear number of bridges). The following
results state that if a linear product is realizable for the diameter being some function

f(NN), then it is also realizable for a function g(N) if g(N) = Q(f(N)). (f and g are
nondecreasing functions.)

Theorem 2.15 If F5(N) bridges suffice to realize a diameter of f(N), then 5(%—) +
Ff(alym) bridges suffice to realize a diameter of 29(N) + f(a%-j)
Proof. The construction to show this bound is a generalization of the construction

in the proof of theorem 2.12. Designate each g(N )** node to be a backbone. Connect
each backbone with a bridge to the next one (using HIIXVS bridges) and build bridges

between the backbones so that a non-reversing path of length at most f (RI}—IV-;) exists
between any two backbones (using F f(;gw) bridges). The number of bridges is now
;{}’—v; + F f(;(%j) and the length of a shortest non-reversing path between any two
nodes is at most g(IN) (to get to the nearest backbone) plus f (3(%5) (to get to the

other backbone) plus g(N) (to get to the destination node), and that is as indicated.
O

Theorem 2.16 If F;(N) = O(s8%) then Fo(N) = O(5y) for g(N) = Q(f()).
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Proof. Use the previous result, remarking that 2g(N) + f(ﬁl'}%) = O(g(N)) and
ot + FrGtiny) = Oltmy)- O

The natural question arises what is the smallest function for which a linear product
is possible. It turns out that a linear product is possible when the diameter is
log N, log* N, log*™* N, or, in general, a log with any number of stars. Call these
functions Milky Way functions (because of all the stars) and write M for the Milky

Way function with k stars. The following theorem establishes that there is a linear
product for Milky Way functions.

Theorem 2.17 Fo(u,) = ©(373my)-

Proof. The lower bound follows from theorem 2.13. To show the upper bound,
recall that Forsz(N) = O(N x Mi(N)). Apply theorem 2.15 to show that
Fng(N)+2k+2(N) - m’%ﬁj + O(m:vm X Mk(ﬁm)) = O(N). Apply the same the-

orem again to show that Fapg(nysaks2(V) = ﬁgm + O(XEI(VW;) = O(MTI(VN—;) O

As a result (use theorem 2.16) a linear bridge-diameter product is realizable for any
function f that dominates any Milky Way function.

2.7 A linear number of bridges

There is a (very small) gap between the constants (considered in subsections 2.1
through 2.4) and the Milky Way functions (considered in subsection 2.6). The
former need a superlinear number of bridges, while the latter need only a sublinear
number of bridges. The natural question arises what diameter can be realized with
a linear number of bridges. This subsection addresses this question briefly.

It turns out that the M, differ only a constant factor from the row inverses of
the Ackermann fuction as defined by LaPoutré [1]. It is shown in [1] that these
functions satisfy Ma(v)+oa)(INV) = O(1), where a is the function commonly known
as the inverse Ackermann function. Using these results it follows that a diameter
of a(N)+)(1) is realizable with a linear number of bridges.

The lower bound proofs in subsection 2.4 can be modified such that the constant
hidden in the big-Q notation is really a constant, that is, does not shrink when D
grows. Using these results it follows that a linear number of bridges is necessary to
obtain a diameter of a(N) + O(1).

Theorem 2.18 Fy(nvy+oa)(N) = O(N).

Thus it follows also that a diameter of a(N) + O(1) is the best one can do with a
linear number of edges. Interestingly, by applying theorem 2.15 in a way similar to
the proof of theorem 2.17 it follows that a diameter of a multiple of this function
can be realized using a sublinear number of bridges (namely, O(E‘(NWS))

Theorem 2.19 For all € > 0, Futeav)(N) = @(C—J(Vm)

13



3

Results for the general case

In the sequel let T be a general tree (rather than a linear chain). As the chain
(considered in section 2) is a special case of the tree, the lower bounds proved
in section 2 are valid for the general case, too. The emphasis in this section will
therefore be on proving upper bounds. More specifically, it is shown that the bounds
obtained for constant diameters are valid also for the tree case.

The constructions by which the results are obtained are similar to those used for
the chain case. For clearity the general skeleton is repeated here.

0.

1.

Choose an integer b and a subset of size b of the nodes to be backbones.

Connect every node to the nearest backbones. (This is done only for non-
backbone nodes in the constructions in this section.)

Connect the backbones with bridges such that the diameter of the “backbone
subnetwork” is 2 less than the required diameter.

Apply the construction recursively on the subtrees in which the backbones cut
the tree.

This approach, so successfull in the chain case, faces problems in the general case.
Some of the problems are highlighted here to serve as an overview of the material
presented in this section.

a. Is it possible to choose b backbones in a tree in such a way that they cut the

tree in pieces of size O(—’Z—)? An affirmative answer to this question is necessary
in order to bound the recursion depth in the same fashion as in subsection 2.4.

A (non-backbone) node may (in step 1) be connected to more than 2 (or
another constant number of ) backbones. Is the number of bridges used in step
1 still linear? It turns out that it is, provided that the answer to the previous
question is affirmative.

In step 2 an “implicit recursion” is applied because the problem is solved for a
smaller diameter. However it is not clear how the backbones form themselves
a tree. (Recall that the backbones in a chain form a chain themselves.) This
problem is solved by allowing some network nodes that are not backbones
themselves, to serve as “super backbones”.

As in section 2, let F(N) denote the minimal number of bridges that is necessary
to give a tree on N nodes a diameter of at most k. The structure of this section
ressembles the structure of section 2. The depth of the graph-theoretical results
needed in the constructions increases as one goes from diameter 1 to 2, 3, and 4.
This is why we chose to devote a separate subsection to each of these diameters.
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3.1 Diameter 1

The results are here completely the same as for chains, as only the complete graph
has diameter 1 and a path of length 1 is always non-reversing.

Theorem 3.1 Fy(N) = (N - 1)(N - 2) = ©(N?)

Proof. The diameter of T" is 1, hence E’ connects V completely, i.e., E' = {{i,J} :
i,j € V} and so the size of E’ is N(N — 1). Subtracting the N — 1 basic edges,
find |B| = }(N —1)(N -2). O

3.2 Diameter 2

This subsection employs the first of a series of non-trivial “cut-lemmas” on trees,
stating that backbones can be found as required for a recursive division of the
problem. For a node v € V, the subtrees of v are the trees that remain when v and

its incident edges are removed from T. Ty denotes the subtree of v that contains
v’s neighbor u and t,, denotes its size.

Lemma 3.2 There is a node c € V such that every subtree of ¢ has size at most
N
5N

Proof. Let m, be the largest size of a subtree of v and choose ¢ to be a node that
minimizes m.. It will be shown that m. < IN.

Let u be a neighbor of ¢ such that t, = mc. By the choice of ¢, m, > m¢ so u
has a neighbor v such that ¢,, > tcu. Let in the following x range over the neighbors
of u other than c. As tey = 1 4+ Tz tuz, tur < tcu and it follows that v = ¢. Thus
tue > teu and, as tye + tey = N, tey < 3N follows. O

Theorem 3.3 ([3]) Fz(N) <O(NlogN).

Proof. The claimed number is realized with the following construction. If the
diameter of T is at most 2 already, no bridges are added. Otherwise, choose M to
be a node such that all subtrees of M have size at most 3 N. (This choice is possible
by lemma 3.2.) Connect all nodes to M. Apply the construction recursively to every
subtree of M.

To show that the diameter of the resulting graph is at most 2, let ¢ and j be
nodes in V. If i = M or j = M, an edge (i, ) exists by construction. If ¢ and j are
in different subtrees of M, edges (¢, M) and (M, j) exist and the path (¢, M), (M, j)
is non-reversing. If 7 and j are in the same subtree a non-reversing path of length
at most 2 exists because of the recursive application of the construction.

To analyse the number of bridges used in the construction, note that a linear
number of bridges is used in each level of recursion (because there is at most one
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bridge from each node to M) and the recursion has depth less than log N. Hence
less than N log N bridges are used. O

The constant hidden in the order-notation is 1. The result is asymptotically optimal
by theorem 2.3.

3.3 Diameter 3

This section requires some more complex graph theoretic results. The idea of the
construction to follow is to use v/N backbones and apply the construction recursively
to subtrees of size 2. Hence a result is necessary that an appropriate choice of
the backbones is possible. Also it is necessary to establish that all nodes may be
connected to the surrounding backbones using a linear number of bridges.

Some notations are introduced first. Given a selected set of backbones (sometines
called cutpoints), the subtrees are defined to be the trees that remain after removal of
the backbones and their adjacent edges. The borders of a subtree are the backbones
that were connected to this subtree prior to the removal.

Lemma 3.4 For a tree T and an integer K < N, there is a node c such that

1. at most one subtree of ¢ has size > K, and
2. the subtrees of c whose size is < K contain at least K — 1 nodes together.

Proof. Call a subtree heavy if its size is > K and light if its size is < K. Consider
the following two cases:

1. There are nodes that have two (or more) heavy subtrees. The set D
of such nodes is connected: let d; and dz be in D and e on the path between
dy and d;. The two subtrees of e, containing d, and d3, respectively, are heavy
and hence e is in D. Hence D is connected. As D is a connected subgraph
of a tree, D is a tree itself, let d be a leaf of D. d has two or more heavy
subtrees, but has at most one neighbor that has two or more heavy subtrees.
It follows that d has a neighbor ¢ such that Ta. is heavy and c has at most one
heavy subtree. As T4 contains another heavy subtree of d it is heavy, hence
all the other subtrees of ¢ are light (by the choice of ¢). As Ty is heavy, these
subtrees of ¢ have a total weight of at least K — 1, hence ¢ has the required
properties.

9. All nodes have at most one heavy subtree. Let ¢ be the node for which
the sum of the sizes of the light subtrees is maximal. It remains to show that
this sum is at least K — 1. If all subtrees of c are light the sum is N — 1.
Otherwise, let d be the (only) neighbor of c for which T is heavy. The sum
of the sizes of light subtrees of ¢ is now t4 — 1. By the choice of ¢, the sum
of the sizes of the light subtrees of d is at most t4. — 1 also, hence Ty is not
light. It follows that tse —1 > K — 1.

16



As these two cases are complimentary, the proof is complete. O

Lemma 3.5 b cutpoints can be chosen in such a way that all the subtrees have size .
at most [Hﬂl-] .

Proof. Use induction on b. If b= 0 there are no cutpoints and the result is true. If

b>0,let K = [%1 and choose a node c as in lemma 3.4. ¢ has at most one heavy

subtree of size < N —1 — (K —1) = N — K. Use the induction hypothesis to show

that in this subtree b — 1 cutpoints can be chosen so as to cut it in subtrees of size
N-K

at most [W] S K O

For the following result, assume a tree is given with b cutpoints in such a way
that all subtrees have size at most [£5].

Lemma 3.6 All nodes other than the cutpoints can be connected with all borders of
their subtree using at most 2N bridges. '

Proof. To count the bridges, choose one arbitrary cutpoint r as the root of the tree.
Note that every bridge is incident to exactly one cutpoint. Call a bridge upstream if
the cutpoint of that bridge is closer to r, and downstream if the cutpoint is further
away from r than the non-cutpoint endpoint of the bridge (see figure 8). Each

—— Treeedge ~ -------- Upstream bridge — Downstream bridge

Figure 8: Upstream and downstream bridges.

non-cutpoint node is incident to at most one upstream bridge so there are at most
N — b upstream bridges. The downstream bridges are counted per cutpoint. Each
cutpoint (other than r) is incident only to one downstream bridge from each node
in the subtree in the direction of the root (see figure 8). Hence there are at most
(b- 1)[%1 < N + b downstream bridges, and the total number of bridges is less
than 2N. O

Theorem 3.7 F3(N) < O(Nloglog N).

17



Proof. A recursive construction is given that uses the claimed number of bridges.
If the diameter is at most 3 already, no bridges are added. Otherwise, set b = VN,
(0) select b backbones in such a way that the subtrees have size at most v/N (such
a choice is possible by lemma 3.5), and (1) connect every non-backbone with all
borders of its subtree. (2) Connect the backbones completely (i.e., add a bridge
between every pair of backbones) and (3) apply the construction recursively to each
of the subtrees.

To prove that the diameter of the resulting graph is at most 3, let < and j be two
nodes from V. If i and j are in the same subtree, a non-reversing path of length at
most 3 between them exists because of the recursive application of the construction.
Otherwise, let M; be the first backbone on the path in T from ¢ to j and M, the
last backbone on this path. (If i or j is a backbone, choose M; =i or M; =j.) The
path (i, My), (M, M3), (Ma, j) exists and is non-reversing.

To analyse the number of bridges used in the construction, use lemma 3.6 to show
that a linear number of bridges is used in step (1) of the construction. 30(b—1) < N
bridges are used in step (2), and the recursion depth is less than loglog N because

recursion is on subtrees of size v/N. Hence less than O(N loglog N) bridges are
used. O '

The constant hidden in the order—notation 1s 2% as in the case of linear chains. The
result is asymptotically optimal by theorem 2.5.

3.4 Diameter 4 and higher constants

This subsection gives a solution for trees for any constant non-reversing diameter.
The number of bridges used is the same as in the constructions for linear chains and
hence (see subsection 2.4) they are asymptotically optimal. In the introduction of
this section it was noted that the backbones of a tree do not form a tree themselves.
To illustrate this, consider a subtree with borders a,b,¢,..., see figure 9. A non-

Complete
connection
not using
internal

Figure 9: The Backbones do not form a tree.
reversing path from a to b does not run through ¢ (because the edge (c,c’) would

be represented twice). So node c cannot be used as a “super backbone” to divide
the set of borders. However, connecting each pair of borders directly by a bridge
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results in a graph that is not a tree, so that the result for smaller diameters cannot
be applied. Moreover, the number of bridges would be too high. The solution
to connect the backbones is to chose a “higher level” backbone from the nodes in
the subtree (where necessary). There a cutpoint can be found to divide the set of
backbones appropriately.

It is thus necessary to express the different status of backbones and subtree nodes
in the construction of the “interbackbone” subnetwork. The latter may be used
in the construction but only the former need be connected through non-reversing
paths. This leads to the formulation of the Restricted Bridge Problem.

For this problem let T = (V, E) be a tree whose nodes are colored either black or
white. It is required to add bridges in such a way that in E' a non-reversing path
exists between any pair of black nodes. Bridges may however be incident to white
nodes also. The restricted diameter of T is the largest distance between any two
black nodes. Recall that Fi(N) is the number of bridges that is necessary to give a
tree on N nodes a diameter of at most k. Define G¢(NN) to be the number of bridges
necessary to give a colored tree with N black nodes a restricted diameter of at most

k.
Lemma 3.8 Fi(N) < Gx(N).

Proof. Assume all the nodes of T are black. O

To prove bounds on Gi(N) it is necessary to have “colored” versions of lem-
mas 3.5 and 3.6. In the sequel let T be a colored tree with N black nodes.

Lemma 3.9 For K < N there is a node c such that
1. at most one subtree of c contains more than K black nodes, and

2. the subtrees of ¢ that contain at most K black nodes, together with c itself,
contain at least K black nodes.

Proof. Call a subtree heavy if it contains more than K black nodes and light
otherwise. The proof is now as for lemma 3.4. O

Lemma 3.10 b cutpoints can be chosen in a colored tree in such a way that every
subtree contains at most [b%] black nodes.

Proof. As for lemma 3.5. O

Lemma 3.11 Assume cutpoints as in lemma 3.10 are given. All black nodes that
are not a cutpoint can be connected with all borders of their subtrees using at most

2N + b bridges.
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Proof. As for lemma 3.6. Now there are at most N upstream bridges and at most
N + b downstream bridges. O

In the constructions to follow b < N always and so the number of bridges is at most

3N. It is now easily established that the Gj are the same functions as those found
in section 2.4.

Theorem 3.12 The following bounds hold for Gx. Gi(N) < O(N?), G2(N) £
O(Nlog N), and Gi(N) < O(N[a-_-lNij]*) for k > 3. (Here [g(N)]* denotes the
k=2

number of times g is iterated on N before the result is at most 1. )

Proof. For the claim about G;(NN), recall that only a complete connection of the
black nodes realizes a restricted diameter of 1.

For the claim about Ga(N) use the following construction. If N < 1 then the
restricted diameter is at most 2 already and no bridges are added. Otherwise, (0)
let M be a node such that every subtree of M contains at most %N black nodes.
(1) Connect all the black nodes to M. (2) Apply the construction recursively to the
subtrees of M. The proof of correctness of this construction as well as the analysis
of the number of bridges is as in the proof of theorem 3.3.

For k > 3 use the following construction. If N < 1 then the restricted diameter
is at most k already and no bridges are added. Otherwise, (0) take b such that
Gi_2(b) = N and choose b cutpoints in such a way that every subtree contains at
most [%ﬂ black nodes. (This is possible according to lemma 3.10). (1) Connect
every black node with all the borders of its subtree. (2) Add bridges between the
backbones so that a non-reversing path of length at most k — 2 exists between any
two of them. (3) Apply the construction recursively to each of the subtrees.

To show that the restricted diameter of the resulting graph is at most k indeed, let
i and j be black nodes in V. If i and j are in the same subtree, a non-reversing path
of length at most k exists because of the recursive application of the construction.
Otherwise, let M; be the first backbone on the (unique) path from i to jin T and
M, the last backbone on this path. By construction bridges (i, M;) and (M, 7)
exist, as well as a non-reversing path of length at most k — 2 between M; and M,.
The concatenation of the two bridges and the non-reversing path is a non-reversing
path of length at most k between ¢ and j.

To analyse the number of bridges used, note that at most 3N bridges are used
in step (1) (lemma 3.11), and at most G—2(b) = N bridges are used in step (2).
Hence a linear number of bridges is used in every level of the recursion. Recursion
is on subtrees of size bounded by [lﬁ-’-l—] =S EfIIZ(—Ni’ hence the recursion depth is at

most [F%]‘ The result claimed in the theorem follows. O
k—2

For a convenient representation of the functions Gi, see theorem 2.10 and the
remarks following it. It has now been shown that the complexity of the problem for
trees is asymptotically the same as for linear chains. The actual values may be a
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Diameter for the chain remarks
1 O(N?%) for trees also
2 O(NlogN) for trees also
3 O(NloglogN) | for trees also
4 O(Nlog™ N) for trees also
5 O(Nlog* N) for trees also
6 ©(Nlog™ N) for trees also
7 O(Nlog™ N) for trees also
8 O(Nlog*™* N) | for trees also
etc. etc.
a(N) +0(1) O(N)
(1 +€)a(N) e(ﬁNm)
O(f(N)) O(7m) F(N) = Q(a(N))
N-1 0

Figure 10: Optimal number of bridges for various diameters.

little bit higher, as some more bridges may be used in step (1) of the recursion, and
recursion stops when the sizes of subtrees is reduced to 1 rather than k + 1.

4 Summary of results

The results obtained in the previous two sections are summarized in figure 10. The
order-optimal number of needed bridges are given for the linear chain for diameters
of constant size, of size a(N) 4+ O(1), and of size O(f(N)) where f(NN) grows faster
than a(N). This leaves only few questions open. Most interesting is probably the
question to determine the exact constant factors involved. Less interesting perhaps
is what happens if we require a diameter of size f(N ), where limy_,o = 00, but
f(N) grows slower than a(N). '

5 Applications of the problem

5.1 Subsequence composition

Given are sets S; through Sy and functions g, through gn-1 where g; is a function
from S; to Siy1. Let Gij (i < j) denote the function from S; to S; defined by the
composition of g; through g;—;. Compositions of functions can be computed at unit
cost and functions as well as compositions can be stored at unit cost. It is required
that the g; are stored in such a way that the G;; can be retrieved efficiently.
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The results for the linear chain (section 2) are helpfull here to decide what
information to store. Let a bridge (i,j) in a solution correspond to function G;;
that is precomputed and stored. The number of bridges corresponds to the space
complexity of the resulting data structure. The diameter of the resulting graph
corresponds to the time complexity of a query.

A special case of this problem is matrix subsequence product, where S; is 24
and g; is a d; X d;}y matrix.

5.2 Database queries, generalisation to graphs

Let a set V of domains be given and a set E of binary relations between these
domains. A relation defines a function in each direction, but these two functions
are not each others inverse. (In general the functions have no inverse.) Given two
domains z,y € V and a path p of relations in E between z and y, a unique relation
G, from z to y is defined (viz., by the composition of the relations on the path).
It is required to store relations and their compositions in such a way that the G,
can be retrieved efficiently. As in section 5.1 solutions to the problem are helpfull
to organize the data structure. In the case that G is a tree, there is exactly one
path between any two nodes, hence p is uniquely determined by z and y. The non-
reversibility condition is necessary because the result of a relation composed with
its reversed relation is in general not the identity relation. The problem for trees
was addressed in this paper. The problem was suggested in [2] and some results
(theorems 2.1 and 3.3) are found in (3}.

The general graph problem leads to the following generalisation of the problem.
Given is a graph G = (V, E). It is required to find a set B of (simple) paths in G (the
bridges) in such a way that any arbitrary (simple) path in G is the concatenation
of as few paths as possible from B. We did not study the general problem.

5.3 Sparse matrices

Graphs can be represented by a boolean adjacency matrix M with M[:,j5] =1
if (¢,7) € E and 0 otherwise. Directed chains correspond with upper triangular
matrices with 1’s just above the main diagonal. The results in section 2 can be
reformulated to say that if the k*h power of an N x N upper triangular matrix M
has all 1’s above the diagonal, then M has at least Fi(N) 1’s above the first super
diagonal. (The first super diagonal is the diagonal above the main diagonal. Allits
entries are 1 for a chain because it represents edges from i to i +1.)

A matrix is called sparse if many of its entries are zero’s and often these matrices
are stored using schemes that suppress the zero’s and only store non-zero’s. When
such a scheme is used it is interesting to know how sparse the result of a matrix
operation, like a multiplication, is. The statement for boolean matrices implies that
the kth power of an upper triangular matrix can be completely filled (have no zero’s
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above the diagonal) only if it has at least Fi(N) non-zero entries above the first
super diagonal.
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Trade—Offs in Non—Reversing Diameter

1

Let an undirected tree T = (V,E) be given. The diameter of this tree is to be
reduced by the addition of as few edges as possible, where a modified definition of
the distance is given below. Calling the set of additional edges (the bridges) B, let
E' denote EU B and T' = (V, E'). Given a tree T and a diameter D, a set B is
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Abstract

Consider a tree T' with a number of extra edges (the bridges) added. We
consider the notion of diameter, that is obtained by admitting only paths p
with the property that for every bridge b in path p, no edge that is on the
unique path (in T') between the endpoints of b is also in p or on the unique
path between the two endpoints of any other bridge in p. (Such a path is
called non-reversing.) We investigate the trade—off between the number of
added bridges and the resulting diameter. Upper and lower bounds of the
same order are obtained for all diameters of constant size, of size a( N )+ O(1)
or of size f(N) where f(N) grows faster than a(N). Some applications are
given.

The Problem

*The work of this author was partially supported by the ESPRIT II Basic Research Actions

Program of the EC under contract no. 3075 (project ALCOM).

tThe work of this author was partially supported by the ESPRIT II Basic Research Actions

Program of the EC under contract no. 3075 (project ALCOM).

tThe second and third author’s work was partially supported by the National Science and

Engineering Research Counsel of Canada.



called optimal if T' has diameter D and no set smaller than B realizes diameter D.
The elements of E are sometimes referred to as basic edges, the elements of B as
bridges, and all elements of E' simply as edges.

For the modified definition of distance, a bridge (u,v) € B is said to contain the
basic edges of the unique path from u to v in T. A non-reversing path in T" is a
path (of edges in E') in which a basic edge is represented at most once, either by
being a basic link in the path or by being contained in one of the bridges of the path.
The distance between u and v (denoted d(u,v)) is the length of the shortest non-
reversing path between u and v, and the diameter of T’ is the maximum distance
between any two nodes.

As an example to the definitions, consider the tree in figure 1, with the bridge
b = (u,w). The bridge b contains the basic edges 3, 5, 6, and 7. The path b,9 from

Figure 1: Example tree.

u to ¢ is non-reversing, but the path b,7 from u to v is not because the edge 7 is
contained in b. In fact the shortest non-reversing path from u to v is 3,5,6, which is
of length 3. Note that d(u,w) = 1 and d(w,v) = 1, and hence the distance function
as defined does not satisfy the triangle inequality.

This paper is organized as follows. In section 2 the case is considered where T
is a linear chain. In section 3 the results for chains are extended to the general case
that T is an arbitrary tree. In section 4 the results of the paper are summarized.
In section 5 the motivation of the problem is given and a generalization to non-tree
graphs is suggested.

2 Results for linear chains

The linear chain on N nodes is defined as the tree T = (V, E) where V = {i € N :
1<t¢< N}and E={(i,7+4+1):1<i< N}. A non-reversing path in 7" in this
case visits nodes in either decreasing or increasing order, as a change in direction
violates the non-reversibility condition. As each decreasing path is the reverse of
an increasing path, we may well restrict ourselves to paths running in increasing
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direction and consider all edges as directed towards the higher of the incident nodes
(to “the right”). In the rest of this section let T' be a directed chain on N nodes.

2.1 Diameter 1

Let Fi(N) be the size of the smallest set B of bridges such that the diameter of T"
is 1. There is only one such set and its size is easily computed.

Theorem 2.1 ([3]) Fi(N)=3(N —1)(N —2) = ©(N?)
Proof. The diameter of T" is 1, hence E’ connects V completely, i.e., E' = {(¢,5) :

1 <i < j < N} and so the size of E' is JN(N — 1). Subtracting the N — 1 basic
edges, find |B| = 3(N -1)(N-2). O

2.2 Diameter 2

Let F3(N) be the size of the smallest set B of bridges such that the diameter of T"
is at most 2. In this subsection it is proved that F5(N) = ©(N log N).

Theorem 2.2 ([3]) F2(N) < O(NlogN).

Proof. A set of bridges giving D = 2 is defined recursively. If N < 3 then D < 2
already and no bridges are added. Otherwise (see figure 2) let M be the “center”
node [%‘I, connect all nodes (except M’s neighbors) to M and apply the construction

Lo s aataaouy

RECURSION M RECURSION

Figure 2: Construction for diameter 2.

recursively to the “lower part” (consisting of nodes 1 through M —1) and the “higher
part” (consisting of nodes M + 1 through N) of the chain.

To show that the diameter is now at most 2, consider two nodes ¢ and j, where
t<j. fi=Morj= M, an edge (i,) exists by construction and d(z,5) = 1. If
t < M < j, the path (i, M), (M, j) is non—reversing and d(¢,7) = 2. Finally, if 7 and
J are on the same side of M, a non-reversing path exists because of the recursive
application of the construction.



To analyse the number of bridges, let f(N) be the number of bridges used when
the construction is applied to a chain of N nodes, and note that

0 fN<3
f(N) ={ f([_lzl] _1)+(N_3)+f(|_l,}_|) otherwise.

The solution to this equation is f(IN) = O(N log N), hence Fz(N) < O(NlogN).
a

To prove lower bounds it turns out to be easier to consider the size of E' first,
rather than look at the size of B directly.

Theorem 2.3 F3(N) > Q(Nlog N).

Proof. Let f(N) denote the minimal size of any set E’ that gives a chain of N
nodes a diameter of at most 2, this is the size of B plus N —1. For N < 3,
f(N) =N —1. Now let N > 3 and let such an E’ be given. Partition V in a “lower
block” {z i < 1N} and a “higher block” {i:7 > 1N } (see figure 3). Call an edge

g e Large edges

Small edges

Figure 3: Lower bound for diameter 2.

(1,7) in E' small if ¢ and j are in the same block and large otherwise. As two nodes
in the lower block have distance at most 2, and an non-reversing path between these
nodes lies entirely within the lower block, there are at least f(|3/N|) small edges
in the lower block. Similarly, there are at least f([3N]) small edges in the higher
block.

As for the large edges, suppose there is an ig in the lower block such that there is
no large edge (i, j), i.e., all edges incident to i are small edges and lead to a node
k < iIN. Now for every j > 3N there is a path of length < 2 from i to j, hence
there exists an edge (k,j) for some k < 2N. It follows that all nodes in the lower
block are incident to a large edge or all nodes in the higher block are incident to a
large edge. So there are at least |3 N| large edges and thus

N — ifN<3
f(N)?-{ f(l_;NJ)_;.f([ N1) + [3N] otherwise

and this equation solves to f(N) > (N log N). Subtracting the N — 1 basic edges
we find F5(N) > Q(Nlog N). O



The two theorems show that F; = ©(Nlog N) as claimed and in the proof of
theorem 2.2 a construction is given that uses this number of bridges. The constants
hidden in the order-notation are 1 and % for the upper and lower bound, respectively.

2.3 Diameter 3

Let F3(N) be the size of the smallest set B of bridges such that the diameter of T"
is at most 3. In this subsection it is proved that F3(N) = ©(N loglog N).

Theorem 2.4 F3(N) < O(N loglog N).
Proof. A set of bridges giving D < 3 is defined recursively. If N < 4 then D <3

already and no bridges are added. Otherwise, apply the following construction in
four steps (see figure 4). (0) Let W = [v/N| and designate the nodes W,2W,...

Recursion Recursion Recursion Recursion Recursion

Figure 4: Construction for diameter 3.

to be backbones of the construction. (1) Connect every node in V (including the
backbones) to the nearest backbone in each direction (if it exists). (2) Add a bridge
between every pair of backbones. (3) Apply the construction recursively on each of
the subchains in which the backbones cut the chain.

To show that the diameter is indeed at most 3, consider two nodes, ¢ and j, ¢ < 7,
and both not a backbone. If i and j are in different subchains, let M; be the backbone
right of ¢ and M; the backbone left of j. The path (i, M1), (M1, M), (M;,j) shows
that d(z,7) < 3. If M; = M, the middle edge is omitted, and the case that 7 or j
is a backbone (or both) is left to the reader. If i and j are in the same subchain,
a non-reversing path of length at most 3 exists because of the recursive application
of the construction on each of the subchains.

To compute the number of bridges used in the construction, note that (1) it takes
less than 2N bridges to connect each node to the nearest backbones, (2) the number
of backbones is I-TVNNTJ < /N so it takes less than %N bridges to connect them

completely, and (3) recursion is applied to [[VNIV']] < [V/N] subchains of length at
most [v/N] — 1. Hence, with f(N) the number of bridges used by this construction
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on a chain of N nodes, it follows that

0 if N<4
f(N) < { 2-%N+ [\/N’lf(l’\/fv_] — 1) otherwise.

The solution to this equation is f(N) < O(N loglog N), and hence it follows that
F3(N) < O(Nloglog N). O

Theorem 2.5 F3(N) > Q(Nloglog N).

Proof. Let f(N) denote the minimal size of E' that gives diameter at most 3, again
this is the size of B plus N — 1. For N <4, f(N) =N —1,now let N > 4 and let
such an E' be given. Partition V in Lfévm_-l blocks of size at least [\/J_\f | and call an

edge (i,7) small if i and j are in the same block, and large otherwise (see figure 5).

No large edge
Large edge \,8( incident to this node
@ 5463 QOO0 0000

Blue block Red block

Small edge

Figure 5: Lower bound for diameter 3.

As two nodes within the same block have distance at most 3, and a non-reversing
path of this length lies entirely within the block, a block of size s contains at least
f(s) small edges. Hence the total number of small edges is at least I-[VNTVTJ f([VN)).

As for the large edges, call a block red if it contains a node that is not incident to
a large edge, and blue if each of its nodes is incident to at least one large edge. (Note
that these two cases are complimentary, i.e., each block is either red or blue.) Let
R be the number of red blocks and B the number of blue blocks. As the blue blocks
contain at least B[\/ﬁ ] nodes, there are at least %B [\/N] large edges incident to
a node in a blue block. Now let S; and S; be two red blocks and let ¢; and i, be
nodes in S; and S,, respectively, that are not incident to a large edge. There exists
a non-reversing path (i1, ), (j, k), (k, i2) from 4, to i; and from the choice of i; and
iz it follows that j lies in $; and k in Sz. So (J, k) is a large edge between S and
S;. Such an edge exists for every two red blocks S and S,, hence the number of
large edges incident to two nodes in red blocks is at least ZR(R —1). Thus the
large edges sum up to at least ;B [v/N]+1R(R-1), and under the restriction that
B+R-= |_T7ij, this is Q(N) (viz., N + o(N)). Counting small and large edges
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together, it follows that

N-1 if N<4
f(N) Z{ LF}Vme([\/]\—ﬂ) + Q(N) otherwise

and this implies f(N) > Q(N loglog N). Subtracting the N —1 basic edges, we find
F3(N) > Q(Nloglog N). O

The two theorems show that F3(N) = ©(Nloglog N) as claimed and in the
proof of theorem 2.4 a construction is given that uses this number of bridges. The
constants hidden in the order-notation are 2} and 2 for the upper and lower bound,
respectively.

2.4 Diameter 4 and higher constants

Let Fi(N) be the size of the smallest set B of bridges such that the diameter of T"
is at most k. In this subsection matching upper and lower bounds on Fi(N) are
proved (up to a constant factor). These bounds are superlinear, but so only by an

extremely slowly growing function. For all practical purposes the results may be
considered linear.

Theorem 2.6 Fy(N) < O(Nlog" N).

Proof. A set of bridges giving D < 4 is defined recursively in a way similar to
the constructions in theorems 2.2 and 2.4. If N < 5 then D < 4 already and no
bridges are added. Otherwise, apply the following construction in four steps. (0) Let
W = [log N| and designate the nodes W, 2W, . .. to be backbones of the construction.
(1) Connect every node in V' (including the backbones) to the nearest backbone in
each direction (if it exists). (2) Add a minimal number of bridges between the
backbones in such a way that between any pair of backbones there exists a nOn-
reversing path of length at most 2. (3) Apply the construction recursively on each
of the subchains in which the backbones cut the chain.

To show that the diameter is indeed at most 4, consider two nodes, i and j,
i < j, and both not a backbone. If ¢ and j are in different subchains, let M; be the
backbone right of i and M, the backbone left of j. By step (2) of the construction
a non-reversing path of length at most 2 between M, and M, exists, and together
with the edges (i, M;) and (M, ) this gives a nOn-reversing path of length at most
4 from i to j. The case that i or j is a backbone (or both) is left to the reader. If
i and j are in the same subchain, a non-reversing path of length at most 4 exists
because of the recursive application of the construction on each of the subchains.

To compute the number of bridges used in the construction, let f(IN) be the
number of bridges used and note that (0) there are b= Ln;%’m_] < 1?5]!1'\7 backbones,
(1) it takes less than 2N bridges to connect each node to the nearest backbones,
(2) it takes F3(b) = O(blogd) < O(B%vlog %:—N) < O(N) bridges to connect the
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backbones as described in step 2 by theorem 2.2, and (3) recursion is applied to
[m%] < rlo%rﬁ] subchains of length at most log NV so this takes at most fo%’-ﬁ X
f(log N) bridges. Hence it follows that

0 EN<5
f(N) < { 2N + O(N) + %ﬁ’f(logN) otherwise.

The solution to this equation is f(N) < O(Nlog*N), and hence Fy(N) <
O(Nlog*N). O

Theorem 2.7 Fy(N) > Q(Nlog* N).

Proof. Let f(N) denote the minimal size of E’ that gives diameter at most 4, again
this is the size of B plus N —1. For N <5, f(N)=N —1,nowlet N >5 and let
such an E' be given. Partition V in LFBI:WTJ blocks of size at least [log N and call
an edge (i,7) smallif i and j are in the same block, and large otherwise.

As two nodes within the same block have distance at most 4, and a non-
reversing path of this length lies entirely within the block, a block of size s con-
tains at least f(s) small edges. Hence the total number of small edges is at least
L1ty £ (Tlog N1).

As for the large edges, call a block red if it contains a node that is not incident
to a large edge, and blue if each of its nodes is incident to at least one large edge.
Let R be the number of red blocks and B the number of blue blocks. Next a lower
bound on the number of large edges is shown both in R and in B. As the blue
blocks contain at least B[log N nodes, there are at least ;B[log N| large edges
incident to a node in a blue block. For the bound in R, form R “purple” blocks
by extending each red block over the blue blocks to the right of it. Consider the
graph H = (Vy, Ey), where Vy is the set of purple blocks and an edge between two
block exists iff E' contains an edge between nodes in these two blocks. It can now
be shown that H has a diameter of at most 2: For purple blocks S; and S;, take
i, and i, in those blocks that are not incident to large edges. The existence of a
non-reversing path in T” of length at most 4 implies the existence of a non-reversing
path of length at most 2 in H between S5, and S,. From theorem 2.3 it follows that
Ejy contains at least Q(Rlog R) edges, and as each edge in Ey corresponds to at
least one large edge in E', there are at least 2(Rlog R) large edges. Using that
B+R= I-]TEEIWTJ , it follows that the number of large edges is at least Q(N).

Counting small and large edges together, it follows that

N-—-1 ifNL5H
f(N) Z{ l.TE%VTJf(nOgN]) + Q(N) otherwise

and this implies f(N) > (N log* N). Subtracting the N —1 basic edges, we find
Fy(N)>Q(Nlog*N). O



The two theorems show that F4(N) = ©(N log* N) as claimed and in the proof of
theorem 2.6 a construction is given that uses this number of bridges. The constants
hidden in the order-notation are 3 and % for the upper and lower bound, respectively.

The techniques applied up till now suffice for the analysis of higher constant
diameters also. Observe that in theorems 2.2, 2.4, and 2.6 the constructions have
in common that a linear number of bridges is used in each level of the recursion. In
theorem 2.2 the recursion is on subchains of length 3N, hence the recursion depth
is log N and the number of bridges O(Nlog N). In theorem 2.4 the recursion is
on subchains of length /N, hence the recursion depth is loglog N and the number
of bridges O(N loglog N). In theorem 2.6 the recursion is on subchains of length
log N, hence the recursion depth is log* N and the number of bridges O(N log™ N).

The constructions that are to follow in this subsection share this property, too.
Clearly, the recursion depth depends on the size of the subchains, which depends in
turn on the number of backbones. In the construction for diameter k the number
of backbones is chosen in such a way that they can be connected to have diameter
k — 2 using O(N) bridges, and thus a relation is established between F. and Fi_,.
The construction used so far is optimal as shown by the following two theorems.

Theorem 2.8 Fi(N) < O(N[F,N(—N—)]*), where [g(N)]* denotes the number of times
k=2
g is iterated on N before the result is at most k+1.

Proof. The following construction realizes the bound. IN<k+1then D <k
already and no edges are added. Otherwise, use the following 4 steps. (0) Choose a
number b of backbones such that Fx_;(b) = N and place the backbones at regular
distance in the chain. (1) Connect every node to the nearest backbones in both
directions (if they exist). (2) Add Fi_5(b) bridges between the backbones so as to
connect them with a diameter of k — 2. (3) Apply the construction recursively to
the subchains.

The proof that the diameter of the resulting graph is indeed k and the compu-
tation of the number of bridges is as in the previous constructions. Note that the
recursion is on subchains of length at most F,;—'{,l(F) and stops as soon as this length

is at most k + 1. Hence the theorem follows. O
Theorem 2.9 Fi(N) > Q(N[—=w1%)-
Fk__g(N)

Proof. Let f(IN) denote the minimal size of E’ that gives diameter at most k, again

this is the size of B plus N — 1. For N <k +1, f(N) =N-—-1,nowlet N>k+1

and let such an E’ be given. Partition V in b= LUV—/FI:V‘—(N_)]J blocks of size at least
k-2

s = ‘ﬁi—'_‘%z_v_) and call an edge (i,7) small if i and j are in the same block, and large
otherwise.
As two nodes within the same block have distance at most k, and a non-reversing

path of this length lies entirely within the block, a block of size s contains at least
F(s) small edges. Hence the total number of small edges is at least bf(s).
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As for the large edges, call a block red if it contains a node that is not incident
to a large edge, and blue if each of its nodes is incident to at least one large edge.
Let R be the number of red blocks and B the number of blue blocks. Next a lower
bound on the number of large edges is shown both in R and in B. As the blue blocks
contain at least Bs nodes, there are at least 3Bs large edges incident to a node in
a blue block. For the bound in R, form R “purple” blocks by extending each red
block over the blue blocks to the right of it. Consider the graph H = (Va, En),
where Vi is the set of purple blocks and an edge between two block exists iff E/
contains an edge between nodes in these two blocks. It can now be shown that H
has a diameter of at most k —2: For purple blocks S; and S;, take 4, and ¢ in those
blocks that are not incident to large edges. The existence of a non-reversing path
in T of length at most k implies the existence of a path of length at most £ — 2 in
H between S; and S;. Ey contains at least Fx_2(R) edges, and as each edge in Ey
corresponds to at least one large edge in E', there are at least Fi_z(R) large edges.
Using that B + R = b, it follows that the number of large edges is at least Q(N).

Counting small and large edges together, it follows that

N-1 fN<k+1
f(N) 2 { bf(s) + Q(N) otherwise

and this implies the result stated in the theorem. O
The derived formula looks awkward but it turns out that Fj is essentially found by

adding a star to the superlinear part of Fi_».

Theorem 2.10 Let Fi_a(N) = Nf(N) where f is nondecreasing. Then Fi(N) =
O(N[f(N)I*(N))-

Proof. From Fk_z(}‘("vﬁj) = ﬂ%f(ﬂ%) < N follows F',(N) > -f-(ij Hence
Ao < F(N) and (o] < [FNFQY. O

Thus Fy(N) = ©(NlogN), F3(N) = ©(Nloglog N), Fy(N) = O(Nlog™ N),
F5(N) = ©(Nlog® N), Fg(N) = ©(Nlog™ N), F(N) = O(Nlog** N), Fg(N) =
O(Nlog*™* N), and so forth.

2.5 Diameter O(log N)

Let Flog(IN) be the size of the smallest set B of bridges such that the diameter of
T’ is at most O(log N). In this subsection matching upper and lower bounds on
Fiog(N) are proved. First a linear and subsequently an O(l—(gﬁ) upperbound are

proved, and then an Q(TSIEVN) lower bound.
Theorem 2.11 A diameter of at most 2log N is realized with less than N bridges.
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Figure 6: Construction for diameter 2log V.

Proof. A set of bridges satisfying these bounds contains all bridges whose length
is a power of 2 (but > 1), and whose incident nodes are multiples of its length.
Formally, let B = {(s2!,(s+1)2"):1>1,s > 1,(s+1)2' < N} (see figure 6). There
are less than %Vr bridges of length 2! and hence the number of bridges is less than N
indeed. (An even lower bound of N —log N —1 can be proved and this is sharp for
N a power of 2.)

To prove that the diameter of the resulting graph is indeed logarithmic, consider
a shortest non—reversing path between two nodes. First, this path does not contain
an edge that is immediately preceded and followed by a longer edge. This is because
one of its endpoints is not a multiple of a larger power of 2 than its own length.
Second, this path does not contain two edges of equal length, immidiately followed
or proceded by an edge of larger length. This is because in such a configuration the
first edge starts in a higher power of 2 than its own length and one bridge exists
that spans the two edges (violating the assumption that the path is a shortest path).
Third and finally, this path does not contain three consecutive edges of the same
length. This is because either the first two or the last two can be replaced by a
single bridge (again violating the assumption that the path is a shortest path). It
follows that in a shortest path the edge lengths stricktly increase to a maximum,
which is assumed at most twice, and then stricktly decrease. Hence the length of a

shortest path is at most twice the number of different edge lengths, which is 2log N
indeed. O

Theorem 2.12 A diameter of at most 4log N is realized with less than i;"glN bridges.

Proof. The construction of theorem 2.11 is now applied to nodes (backbones) that
are interspaced log N apart. Let W = [log N1 +1 and let B = {(s2'W, (s +1)2'W) :
1> 0,(s+1)2'W < N} (see figure 7). There are less than stv> bridges of length
2!'W so the total number of bridges is less than -2% < lféVN.

As in theorem 2.11 it is shown that between any two backbones there is a non-
reversing path of length at most 2log(%) < 2log N. For arbitrary nodes ¢ and j
(¢ < j), if 1 and j lie between the same two backbones then there is a path of length
j —i < W between them, consisting of basic edges only. Otherwise, it takes at most
W — 1 steps to reach the nearest backbone to the right of z, at most 2log N steps
to reach the one to the left of j, and at most W — 1 to reach j from there. Hence

d(,7) <4logN. O
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Figure 7: Construction for diameter 4log N.

This result is optimal as shown by the following theorem.
Theorem 2.13 It takes at least | X52| bridges to have diameter D.

Proof. As there is a non-reversing path from node D + 1 to N of length at most
D, there is a bridge with its left endpoint in the interval [f{D+1...(i+1)D] for all
isuchthat 0<i, (:+1)D+1<N. O

Corollary 2.14 Fiog(N) = O(gly)-

2.6 A Linear Bridge-Diameter Product

For any diameter the product of the number of bridges and the diameter is at least
linear in N as is shown by theorem 2.13. This bound is sharp for a logarithmic
diameter as shown in theorem 2.12. In subsections 2.1 through 2.4 however it was
shown that a linear product is not realized for any constant diameter (that is, a
constant diameter cannot be realized with a linear number of bridges). The following
results state that if a linear product is realizable for the diameter being some function
f(N), then it is also realizable for a function g(N) if g(N) = Q(f(N)). (f and g are
nondecreasing functions.)

Theorem 2.15 If Fy(N) bridges suffice to realize a diameter of f(N), then 9(le +
Ff(;(%) bridges suffice to realize a diameter of 29(N) + f(a%).

Proof. The construction to show this bound is a generalization of the construction
in the proof of theorem 2.12. Designate each g(N )** node to be a backbone. Connect
each backbone with a bridge to the next one (using a% bridges) and build bridges

between the backbones so that a non-reversing path of length at most f (a%-;) exists
between any two backbones (using F f(a%) bridges). The number of bridges is now
H% + F. j(a%j) and the length of a shortest non-reversing path between any two
nodes is at most g(V) (to get to the nearest backbone) plus f (Rj}’v—j) (to get to the

other backbone) plus g(N) (to get to the destination node), and that is as indicated.
a

Theorem 2.16 If F5(N) = O(8y) then Fog(N) = O(5{iy) for g(V) = UF(N)).
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Proof. Use the previous result, remarking that 2g(N) + f(a%) = O(g(N)) and
S+ i) = Ol ©

The natural question arises what is the smallest function for which a linear product
is possible. It turns out that a linear product is possible when the diameter is
log N, log* N, log** N, or, in general, a log with any number of stars. Call these
functions Milky Way functions (because of all the stars) and write M; for the Milky

Way function with k stars. The following theorem establishes that there is a linear
product for Milky Way functions.

Theorem 2.17 Fo(p,) = G)(-M—:(Vm)

Proof. The lower bound follows from theorem 2.13. To show the upper bound,
recall that Foryo(N) = O(N x Mi(N)). Apply theorem 2.15 to show that
FormyNy+ar42(N) = ﬁﬁ; + O(V:TVWT X Mk(ﬁm)) = O(N). Apply the same the-
orem again to show that Fypg(ny42x42(N) = m]—}’-m + O(T'IZAZ]_I\TS) = O(XMNWS) O

As a result (use theorem 2.16) a linear bridge-diameter product is realizable for any
function f that dominates any Milky Way function.

2.7 A linear number of bridges

There is a (very small) gap between the constants (considered in subsections 2.1
through 2.4) and the Milky Way functions (considered in subsection 2.6). The
former need a superlinear number of bridges, while the latter need only a sublinear
number of bridges. The natural question arises what diameter can be realized with
a linear number of bridges. This subsection addresses this question briefly.

It turns out that the Mj differ only a constant factor from the row inverses of
the Ackermann fuction as defined by LaPoutré [1]. It is shown in [1] that these
functions satisfy My (v)+o(1)(N) = O(1), where a is the function commonly known
as the inverse Ackermann function. Using these results it follows that a diameter
of a(N)+)(1) is realizable with a linear number of bridges.

The lower bound proofs in subsection 2.4 can be modified such that the constant
hidden in the big-Q notation is really a constant, that is, does not shrink when D
grows. Using these results it follows that a linear number of bridges is necessary to
obtain a diameter of a(N) + O(1).

Theorem 2.18 Fa(N)+O(1)(N) = O(N).

Thus it follows also that a diameter of a(NN) + O(1) is the best one can do with a
linear number of edges. Interestingly, by applying theorem 2.15 in a way similar to
the proof of theorem 2.17 it follows that a diameter of a multiple of this function
can be realized using a sublinear number of bridges (namely, O(;{—’—j))

Theorem 2.19 For all € > 0, F11qv)(N) = G(T-I(VWT)
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3

Results for the general case

In the sequel let T be a general tree (rather than a linear chain). As the chain
(considered in section 2) is a special case of the tree, the lower bounds proved
in section 2 are valid for the general case, too. The emphasis in this section will
therefore be on proving upper bounds. More specifically, it is shown that the bounds
obtained for constant diameters are valid also for the tree case.

The constructions by which the results are obtained are similar to those used for
the chain case. For clearity the general skeleton is repeated here.

0.

1.

This

Choose an integer b and a subset of size b of the nodes to be backbones.

Connect every node to the nearest backbones. (This is done only for non-
backbone nodes in the constructions in this section.)

. Connect the backbones with bridges such that the diameter of the “backbone

subnetwork” is 2 less than the required diameter.

. Apply the construction recursively on the subtrees in which the backbones cut

the tree.

approach, so successfull in the chain case, faces problems in the general case.

Some of the problems are highlighted here to serve as an overview of the material
presented in this section.

a.

Is it possible to choose b backbones in a tree in such a way that they cut the
tree in pieces of size O(%)? An affirmative answer to this question is necessary
in order to bound the recursion depth in the same fashion as in subsection 2.4.

. A (non-backbone) node may (in step 1) be connected to more than 2 (or

another constant number of) backbones. Is the number of bridges used in step
1 still linear? It turns out that it is, provided that the answer to the previous
question is affirmative.

. In step 2 an “implicit recursion” is applied because the problem is solved for a

smaller diameter. However it is not clear how the backbones form themselves
a tree. (Recall that the backbones in a chain form a chain themselves.) This
problem is solved by allowing some network nodes that are not backbones
themselves, to serve as “super backbones”.

As in section 2, let Fi(NN) denote the minimal number of bridges that is necessary
to give a tree on N nodes a diameter of at most k. The structure of this section
ressembles the structure of section 2. The depth of the graph-theoretical results
needed in the constructions increases as one goes from diameter 1 to 2, 3, and 4.
This is why we chose to devote a separate subsection to each of these diameters.
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3.1 Diameter 1

The results are here completely the same as for chains, as only the complete graph
has diameter 1 and a path of length 1 is always non-reversing.

Theorem 3.1 Fy(N) = (N — 1)(N — 2) = ©(NV?)

Proof. The diameter of T" is 1, hence E’ connects V completely, i.e., E' = {{¢,j} :
i,j € V} and so the size of E' is {N(N — 1). Subtracting the N — 1 basic edges,
find |B| = 3}(N -1)}(N -2). O

3.2 Diameter 2

This subsection employs the first of a series of non-trivial “cut-lemmas” on trees,
stating that backbones can be found as required for a recursive division of the
problem. For a node v € V, the subtrees of v are the trees that remain when v and

its incident edges are removed from T. T,, denotes the subtree of v that contains
v’s neighbor u and ¢,, denotes its size.

Lemma 3.2 There is a node c € V such that every subtree of ¢ has size at most

IN.

Proof. Let m, be the largest size of a subtree of v and choose ¢ to be a node that
minimizes m.. It will be shown that m. < IN.

Let u be a neighbor of ¢ such that t., = m.. By the choice of ¢, my > m. so u
has a neighbor v such that t,, > t.,. Let in the following z range over the neighbors
of u other than c. As to = 1 4 ¥, tuz, tuzr < tou and it follows that v = ¢. Thus
tuc > tey and, as tyc + tew = N, oy < 1N follows. O

Theorem 3.3 ([3]) F3(N) < O(NlogN).

Proof. The claimed number is realized with the following construction. If the
diameter of T is at most 2 already, no bridges are added. Otherwise, choose M to
be a node such that all subtrees of M have size at most $N. (This choice is possible
by lemma 3.2.) Connect all nodes to M. Apply the construction recursively to every
subtree of M.

To show that the diameter of the resulting graph is at most 2, let ¢ and j be
nodes in V. If i = M or j = M, an edge (%, j) exists by construction. If ¢ and j are
in different subtrees of M, edges (¢, M) and (M, j) exist and the path (i, M), (M, j)
is non-reversing. If i and j are in the same subtree a non-reversing path of length
at most 2 exists because of the recursive application of the construction.

To analyse the number of bridges used in the construction, note that a linear
number of bridges is used in each level of recursion (because there is at most one
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bridge from each node to M) and the recursion has depth less than log N. Hence
less than N log N bridges are used. O

The constant hidden in the order-notation is 1. The result is asymptotically optimal
by theorem 2.3.

3.3 Diameter 3

This section requires some more complex graph theoretic results. The idea of the
construction to follow is to use v/N backbones and apply the construction recursively
to subtrees of size %. Hence a result is necessary that an appropriate choice of
the backbones is possible. Also it is necessary to establish that all nodes may be
connected to the surrounding backbones using a linear number of bridges.

Some notations are introduced first. Given a selected set of backbones (sometines
called cutpoints), the subtrees are defined to be the trees that remain after removal of
the backbones and their adjacent edges. The borders of a subtree are the backbones
that were connected to this subtree prior to the removal.

Lemma 3.4 For a tree T and an integer K < N, there is a node ¢ such that

1. at most one subtree of ¢ has size > K, and
2. the subtrees of ¢ whose size is < K contain at least K — 1 nodes together.

Proof. Call a subtree heavy if its size is > K and light if its size is < K. Consider
the following two cases:

1. There are nodes that have two (or more) heavy subtrees. The set D
of such nodes is connected: let d; and d; be in D and e on the path between
d; and d,. The two subtrees of e, containing dy and d,, respectively, are heavy
and hence e is in D. Hence D is connected. As D is a connected subgraph
of a tree, D is a tree itself, let d be a leaf of D. d has two or more heavy
subtrees, but has at most one neighbor that has two or more heavy subtrees.
It follows that d has a neighbor ¢ such that Ty, is heavy and ¢ has at most one
heavy subtree. As T4 contains another heavy subtree of d it is heavy, hence
all the other subtrees of ¢ are light (by the choice of ¢). As Ty is heavy, these
subtrees of ¢ have a total weight of at least K — 1, hence ¢ has the required
properties.

2. All nodes have at most one heavy subtree. Let ¢ be the node for which
the sum of the sizes of the light subtrees is maximal. It remains to show that
this sum is at least K — 1. If all subtrees of ¢ are light the sum is N — 1.
Otherwise, let d be the (only) neighbor of ¢ for which T4 is heavy. The sum
of the sizes of light subtrees of ¢ is now t4. — 1. By the choice of ¢, the sum
of the sizes of the light subtrees of d is at most t4. — 1 also, hence Ty, is not
light. It follows that 5. — 1 > K — 1.
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As these two cases are complimentary, the proof is complete. O

Lemma 3.5 b cutpoints can be chosen in such a way that all the subtrees have size .
at most f%’]

Proof. Use induction on b. If b = 0 there are no cutpoints and the result is true. If
b>0,let K = [%1 and choose a node c as in lemma 3.4. ¢ has at most one heavy
subtree of size < N — 1 — (K —1) = N — K. Use the induction hypothesis to show
that in this subtree b — 1 cutpoints can be chosen so as to cut it in subtrees of size
at most [(%'YI_%] <K O

For the following result, assume a tree is given with b cutpoints in such a way
that all subtrees have size at most rB]IVT] .

Lemma 3.6 All nodes other than the cutpoints can be connected with all borders of
their subtree using at most 2N bridges.

Proof. To count the bridges, choose one arbitrary cutpoint r as the root of the tree.
Note that every bridge is incident to exactly one cutpoint. Call a bridge upstream if
the cutpoint of that bridge is closer to r, and downstream if the cutpoint is further
away from r than the non-cutpoint endpoint of the bridge (see figure 8). Each

—— Treeedge  -------- Upstream bridge — Downstream bridge

Figure 8: Upstream and downstream bridges.

non-cutpoint node is incident to at most one upstream bridge so there are at most
N — b upstream bridges. The downstream bridges are counted per cutpoint. Each
cutpoint (other than r) is incident only to one downstream bridge from each node
in the subtree in the direction of the root (see figure 8). Hence there are at most

(b= 1)[&5] < N + b downstream bridges, and the total number of bridges is less
than 2N. O

Theorem 3.7 F3(N) < O(Nloglog N).
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Proof. A recursive construction is given that uses the claimed number of bridges.
If the diameter is at most 3 already, no bridges are added. Otherwise, set b = VN,
(0) select b backbones in such a way that the subtrees have size at most VN (such
a choice is possible by lemma 3.5), and (1) connect every non-backbone with all
borders of its subtree. (2) Connect the backbones completely (i.e., add a bridge
between every pair of backbones) and (3) apply the construction recursively to each
of the subtrees.

To prove that the diameter of the resulting graph is at most 3, let ¢ and j be two
nodes from V. If i and j are in the same subtree, a non-reversing path of length at
most 3 between them exists because of the recursive application of the construction.
Otherwise, let M; be the first backbone on the path in T from ¢ to j and M, the
last backbone on this path. (If i or j is a backbone, choose M; =i or My = j.) The
path (i, My), (M1, M;),(M;, j) exists and is non-reversing.

To analyse the number of bridges used in the construction, use lemma 3.6 to show
that a linear number of bridges is used in step (1) of the construction. 3b(b—1) < 3N
bridges are used in step (2), and the recursion depth is less than loglog N because

recursion is on subtrees of size v/N. Hence less than O(N loglog N) bridges are
used. O

The constant hidden in the order-notation is 2% as in the case of linear chains. The
result is asymptotically optimal by theorem 2.5.

3.4 Diameter 4 and higher constants

This subsection gives a solution for trees for any constant non-reversing diameter.
The number of bridges used is the same as in the constructions for linear chains and
hence (see subsection 2.4) they are asymptotically optimal. In the introduction of
this section it was noted that the backbones of a tree do not form a tree themselves.
To illustrate this, consider a subtree with borders a,b,¢c,.. ., see figure 9. A non-

Complete
connection
not using
internal
nodes.

Figure 9: The Backbones do not form a tree.

reversing path from a to b does not run through c (because the edge (c,¢’) would
be represented twice). So node ¢ cannot be used as a “super backbone” to divide
the set of borders. However, connecting each pair of borders directly by a bridge
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results in a graph that is not a tree, so that the result for smaller diameters cannot
be applied. Moreover, the number of bridges would be too high. The solution
to connect the backbones is to chose a “higher level” backbone from the nodes in
the subtree (where necessary). There a cutpoint can be found to divide the set of
backbones appropriately.

It is thus necessary to express the different status of backbones and subtree nodes
in the construction of the “interbackbone” subnetwork. The latter may be used
in the construction but only the former need be connected through non-reversing
paths. This leads to the formulation of the Restricted Bridge Problem.

For this problem let T = (V, E) be a tree whose nodes are colored either black or
white. It is required to add bridges in such a way that in E' a non-reversing path
exists between any pair of black nodes. Bridges may however be incident to white
nodes also. The restricted diameter of T is the largest distance between any two
black nodes. Recall that Fx(N) is the number of bridges that is necessary to give a
tree on N nodes a diameter of at most k. Define Gi¢(N) to be the number of bridges
necessary to give a colored tree with N black nodes a restricted diameter of at most

k.
Lemma 3.8 Fi(N) < Gi(N).

Proof. Assume all the nodes of T are black. O

To prove bounds on G(N) it is necessary to have “colored” versions of lem-
mas 3.5 and 3.6. In the sequel let T be a colored tree with N black nodes.

Lemma 3.9 For K < N there is a node ¢ such that
1. at most one subtree of ¢ contains more than K black nodes, and

2. the subtrees of ¢ that contain at most K black nodes, together with c itself,
contain at least K black nodes.

Proof. Call a subtree heavy if it contains more than K black nodes and light
otherwise. The proof is now as for lemma 3.4. O

Lemma 3.10 b cutpoints can be chosen in a colored tree in such a way that every
subtree contains at most [-,;I_%l—] black nodes.

Proof. As for lemma 3.5. 0O

Lemma 3.11 Assume cutpoints as in lemma 38.10 are given. All black nodes that

are not a cutpoint can be connected with all borders of their subtrees using at most
2N + b bridges.
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Proof. As for lemma 3.6. Now there are at most N upstream bridges and at most
N + b downstream bridges. O

In the constructions to follow b < N always and so the number of bridges is at most

3N. Tt is now easily established that the Gi are the same functions as those found
in section 2.4.

Theorem 3.12 The following bounds hold for Gi. Gi(N) < O(N?), G3(N) £
O(Nlog N), and Gi(N) < O(N[ZF-TN(T)]*) for k > 3. (Here [g(N)]* denotes the
k—2

number of times g is iterated on N before the result is at most 1. )

Proof. For the claim about Gy(IN), recall that only a complete connection of the
black nodes realizes a restricted diameter of 1.

For the claim about G,(N) use the following construction. If N <1 then the
restricted diameter is at most 2 already and no bridges are added. Otherwise, (0)
let M be a node such that every subtree of M contains at most 3N black nodes.
(1) Connect all the black nodes to M. (2) Apply the construction recursively to the
subtrees of M. The proof of correctness of this construction as well as the analysis
of the number of bridges is as in the proof of theorem 3.3.

For k > 3 use the following construction. If N <1 then the restricted diameter
is at most k already and no bridges are added. Otherwise, (0) take b such that
Gr_2(b) = N and choose b cutpoints in such a way that every subtree contains at
most [bi_:—l-] black nodes. (This is possible according to lemma 3.10). (1) Connect
every black node with all the borders of its subtree. (2) Add bridges between the
backbones so that a non-reversing path of length at most k — 2 exists between any
two of them. (3) Apply the construction recursively to each of the subtrees.

To show that the restricted diameter of the resulting graph is at most k indeed, let
i and j be black nodes in V. If i and j are in the same subtree, a non-reversing path
of length at most k exists because of the recursive application of the construction.
Otherwise, let M; be the first backbone on the (unique) path from ¢ to 7 in T and
M, the last backbone on this path. By construction bridges (3, M) and (My,j)
exist, as well as a non-reversing path of length at most k — 2 between M; and M,.
The concatenation of the two bridges and the non-reversing path is a non-reversing
path of length at most k between ¢ and j.

To analyse the number of bridges used, note that at most 3N bridges are used
in step (1) (lemma 3.11), and at most Gx—2(b) = N bridges are used in step (2).
Hence a linear number of bridges is used in every level of the recursion. Recursion
is on subtrees of size bounded by [ZI—IT] ~ -é?h—:—(ﬁ), hence the recursion depth is at

most [-G—;_EJ-Z(T)]* The result claimed in the theorem follows. O

For a convenient representation of the functions G, see theorem 2.10 and the
remarks following it. It has now been shown that the complexity of the problem for
trees is asymptotically the same as for linear chains. The actual values may be a
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Diameter for the chain remarks
1 O(N?) for trees also
2 ©(NlogN) for trees also
3 ©(Nloglog N) | for trees also
4 O(Nlog* N) for trees also
5 ©(Nlog* N) for trees also
6 O(Nlog™ N) for trees also
7 O(Nlog™ N) for trees also
8 ©(Nlog*™* N) | for trees also
etc. etc.
a(N) + 0(1) O(N)
(1+ €)a(N) 9(;;’)(%5)
O(f(N)) Oy | fF(V) = Q((N))
N -1 0

Figure 10: Optimal number of bridges for various diameters.

little bit higher, as some more bridges may be used in step (1) of the recursion, and
recursion stops when the sizes of subtrees is reduced to 1 rather than k + 1.

4 Summary of results

The results obtained in the previous two sections are summarized in figure 10. The
order-optimal number of needed bridges are given for the linear chain for diameters
of constant size, of size a(N) + O(1), and of size O(f(N)) where f(V) grows faster
than o(N). This leaves only few questions open. Most interesting is probably the
question to determine the exact constant factors involved. Less interesting perhaps
is what happens if we require a diameter of size f(N), where imy . = o0, but
f(N) grows slower than o(N).

5 Applications of the problem

5.1 Subsequence composition

Given are sets S; through Sy and functions ¢ through gn-1 where g; is a function
from S; to Siy1. Let Gi; (i < j) denote the function from S; to S; defined by the
composition of g; through g;_;. Compositions of functions can be computed at unit
cost and functions as well as compositions can be stored at unit cost. It is required
that the g; are stored in such a way that the G;; can be retrieved efficiently.
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The results for the linear chain (section 2) are helpfull here to decide what
information to store. Let a bridge (¢,j) in a solution correspond to function Gj;
that is precomputed and stored. The number of bridges corresponds to the space
complexity of the resulting data structure. The diameter of the resulting graph
corresponds to the time complexity of a query.

A special case of this problem is matrix subsequence product, where S; is 74
and g; is a d; X diyy matrix.

5.2 Database queries, generalisation to graphs

Let a set V of domains be given and a set E of binary relations between these
domains. A relation defines a function in each direction, but these two functions
are not each others inverse. (In general the functions have no inverse.) Given two
domains z,y € V and a path p of relations in E between z and y, a unique relation
G, from z to y is defined (viz., by the composition of the relations on the path).
It is required to store relations and their compositions in such a way that the G,
can be retrieved efficiently. As in section 5.1 solutions to the problem are helpfull
to organize the data structure. In the case that G is a tree, there is exactly one
path between any two nodes, hence p is uniquely determined by z and y. The non~
reversibility condition is necessary because the result of a relation composed with
its reversed relation is in general not the identity relation. The problem for trees
was addressed in this paper. The problem was suggested in [2] and some results
(theorems 2.1 and 3.3) are found in {3}.

The general graph problem leads to the following generalisation of the problem.
Given is a graph G = (V, E). It is required to find a set B of (simple) paths in G (the
bridges) in such a way that any arbitrary (simple) path in G is the concatenation
of as few paths as possible from B. We did not study the general problem.

5.3 Sparse matrices

Graphs can be represented by a boolean adjacency matrix M with M [1,7] = 1
if (¢,j) € E and 0 otherwise. Directed chains correspond with upper triangular
matrices with 1’s just above the main diagonal. The results in section 2 can be
reformulated to say that if the k*® power of an N x N upper triangular matrix M
has all 1’s above the diagonal, then M has at least Fi(N) 1’s above the first super
diagonal. (The first super diagonal is the diagonal above the main diagonal. All its
entries are 1 for a chain because it represents edges from i to i + 1.)

A matrix is called sparse if many of its entries are zero’s and often these matrices
are stored using schemes that suppress the zero’s and only store non-zero’s. When
such a scheme is used it is interesting to know how sparse the result of a matrix
operation, like a multiplication, is. The statement for boolean matrices implies that
the k** power of an upper triangular matrix can be completely filled (have no zero’s
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above the diagonal) only if it has at least Fi(IN) non-zero entries above the first
super diagonal.
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