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Abstract

In this paper we consider the following game: players must alter-
nately color the lowest numbered uncolored vertex of a given graph G =
({1,2,---,n}, E) with a color, taken from a given set C, such that never two
adjacent vertices are colored with the same color. In one variant, the first
player which is unable to move, loses the game. In another variant, player 1
wins the game if and only if the game ends with all vertices colored. We show
that for both variants, the problem to determine whether there is a winning
strategy for player 1 is PSPACE-complete for any C with |C| > 3, but the
problems are solvable in O(n + ea(e,n)), and O(n + €) time, respectively,
if |C| = 2. We also give polynomial time algorithms for the problems with
certain restrictions on the graphs and orderings of the vertices. We give some
partial results for the versions, where no order for coloring the vertices is
specified.

1 Introduction.

Games can be used to model situations where different parties have conflicting in-
terests, or to model the “worst type of erroneous behavior of a system”. In the
latter case, we assume that an erroneous system is malicious and uses an intelligent
strategy to try to prevent us from reaching our goal. If we are able to deal with this
type of behavior, we are also able to deal with all weaker types of errors.

In this paper we concentrate on the question: given a certain game, how hard is
it to determine whether there is a winning strategy for the first (or second) player.
We will further only discuss 2-player games, where players have perfect information.

With the notion of “game”, we usually mean a class of actual games (instances),
where each game (instance) is distinguished from others in the class ony by its

*This research was partially supported by the ESPRIT II Basic Research Actions Program of
the EC under contract no. 3075 (project ALCOM).
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starting position and playing area, but uses the same type of moves. With the
complexity of a game (class), we denote the complexity of the following problem:
given a game (instance) from this class, does player 1 have a winning strategy in
this game (instance)?

Several generalizations of well-known games, like chess, go, and checkers have
been shown to be PSPACE-complete or EXPTIME-complete (5, 7, 11]. Also,
PSPACE-completeness and EXPTIME-completeness results have been established
for several more abstract games [1, 4, 6, 12, 14, 15]. For an overview, see e.g. [8, 9].

In this paper we consider the following game: given are an undirected graph
G = (V, E), a linear ordering of G (that is: a bijection f:V-={1,---/|V|]}) and
a finite set of colors C. Players 1 and 2 must alternately color the first uncolored
vertex, i.e., player 1 starts with coloring vertex f71(1), then player 2 colors vertex
f~1(2), player 1 continues with coloring f ~1(3), etc. When coloring a vertex v, the
player must assign a color from C to v that has not already been assigned to a
neighbor of v. In one variant of the game, the first player that is unable to move
(either because no uncolored vertices are left, or because the vertex that must be
colored has for each ¢ € C a neighbor that is already colored with c) loses the game.
We call this game the SEQUENTIAL COLORING GAME. In another variant of the
game, player 1 wins, if and only if all vertices are colored at the end of the game.
We call this variant the SEQUENTIAL COLORING CONSTRUCTION GAME.

One could also consider the following variants of the games: each vertex is owned
by a player (i.e., we have a function owner : V — {1,2}). In the i’th move,
the player that owns vertex f~(i) must color this vertex. In this variant of the
SEQUENTIAL COLORING GAME, we must specify which player wins if all vertices
are colored. It is not hard to see that these variants have the same complexity as the
original games (e.g., add an isolated vertex between each two successive vertices that
are owned by the same player). NP-hardness of these games can be proved easily
(by transformation from CHROMATIC NUMBER). Hence, SEQUENTIAL COLORING
GAME and SEQUENTIAL COLORING CONSTRUCTION GAME are also NP-hard.

However, a stronger result can be proved. In section 2 we show that both types
of games are PSPACE-complete, for any fixed set of colors C with IC| > 3.

In sections 3 and 4 we look at special cases of the problems. In section 3 we
consider the case that there are only 2 colors, and derive O(n+ea(e,n)) and O(n+e)
time algorithms, respectively. (o is the inverse Ackermann-function.) In section 4 we
give polynomial algorithms for the problems with certain restrictions on the graphs
and linear orderings. In section 5 we give some partial results for versions, where
no order is specified in which the vertices must be colored.

Throughout this paper we use the name of a game to denote the problem to
determine whether there is a winning strategy for player 1 in a given instance of the
game. In this paper, we use the notion of PSPACE-completeness under transforma-
tions that use logarithmic work space (log-space reductions).



2 PSPACE-completeness of SEQUENTIAL COLOR-

ING GAME and SEQUENTIAL CoLORING CON-
STRUCTION GAME

In this section we show that the problems, to decide whether there is a winning strat-
egy for player 1 in instances of SEQUENTIAL COLORING GAME and SEQUENTIAL
COLORING CONSTRUCTION GAME, are PSPACE-complete. We use a transforma-
tion from QUANTIFIED 3-SATISFIABILITY. This is the following, restricted version
of QUANTIFIED BOOLEAN FORMULAS:

QUANTIFIED 3-SATISFIABILITY

Instance: Set X = {x;,-,z,} of variables, well-formed quantified

Boolean formula F = (Q121)(Q222) - - - (Qnz,) Fo, where Fp is a Boolean expression
in conjunctive normal form with three literals per clause, and each

Qi is either V or 3.

Question: Is F true ?

In [13] Schaefer proved that this problem is PSPACE-complete, but becomes solv-
able in polynomial when the problem is restricted to two literals per clause. It

is not hard to see, that instances may also be restricted to instances of the form
3z,Vz,3z3- - -Vz, Fp.

Theorem 2.1
SEQUENTIAL COLORING GAME with 3 colors is PSPACE-complete.

Proof.
It is easy to see that the problem is solvable in polynomial space, e.g. by using
backtracking.

To show PSPACE-hardness, we use a transformation from QUANTIFIED 3-
SATISFIABILITY.

Let a formula F = 3z,Vz,323--- 3z,_,Vz,F, be given, where Fp is a boolean
€XPression over I --- Ty in conjunctive normal form with 3 literals per clause. Let
C = {c1, - -,cm} be the set of clauses in Fy. We write I; € ¢, if literal I; appears in
the j’th clause of Fp.

We transform F' as follows: Let G = (V, E) be the graph, defined by

V= { true, fa'lse’ X’xlaflaz%f%”"zn,fna €1,C2y" " 1Cm>d1,""dm’e}
E = { (true, false), (true, X), (false, X) } U

{ (X,z)|1<i<n} U{(X,2) |1<i<n}u

{ (:v,-,?E;)IlSiSn}U

{ (l’ci) I le C.',le {xa"',xmfla"',—fn}’l <i < m} U

{ (ciye) | 1 £i< n} U{(false,e),(X,e)} U

{ (false, ¢;) | 1 <4 < m}



Let f be the linear ordering of G, given by
f(true)=1, f(false)=2,  f(z)=3,

flzi)= i+3 (1<i<n)
f@)= i+n+3 (1<£i<n)
fld)= 2i+2n4+2 (1<i<m)
fle) = 2t +2n+3 (1<i<m)
fle) = 2m+2n+4

We now claim: there is a winning strategy for player 2, in the game, played on G
with ordering f with 3 colors, if and only if F is true.

First note that true, false and X must be colored with different colors. We call
the color, given to true “true”, the color given to false “false”, and the color given
to X “X”. Note that variables z;, Z; must be colored with true or false.

Suppose F is true. Then player 2 can color the vertices z; (i odd) in such a way,
that each clause ¢; € C contains a variable z; that is colored true or a variable T;
with z; colored false, no matter what strategy player 1 uses to color the vertices
z; with z even. Note that each vertex z; is colored true, if z; is colored false, and
vice versa. Hence, player 2 can make sure that each clause ¢; € C has at least one
variable colored true. Now, player 1 must color all vertices ¢; with X , as they are
adjacent to false, and to a vertex, colored true. So player 2 can color e with true,
and wins the game, as player 1 cannot move, because no vertices are left.

Suppose F is false. Player 1 now can make sure, that at least one clause ; only
contains vertices that are colored false. So player 2 can color ¢; with true, and player
1 loses the game because he cannot color e. This ends the proof of our claim.

Finally notice that the transformation F — (G, f) can be carried out in loga-
rithmic work space. O

With an almost identical proof one can show:

Theorem 2.2

SEQUENTIAL COLORING CONSTRUCTION GAME with 3 colors is PSPACE-
complete.

With similar proofs, one can show that the PSPACE-completeness results also hold
for any fixed number of colors > 3. One can also restrict the graphs to graphs with
bounded degree.

Theorem 2.3

SEQUENTIAL COLORING GAME and SEQUENTIAL COLORING CONSTRUCTION
GAME with 3 colors, are PSPACE-complete when restricted to graphs with maxi-
mum vertex degree < 5.



Proof.
We indicate how to modify the construction in the proof of theorem 2.1.

e is replaced by m vertices €;,- - -, e,,. Between each pair ¢;, €i+1, We put a new
isolated vertex f;, such that player 2 must color all vertices e;. Each e; is made
adjacent to false, X and ¢;. If player 1 can color a vertex ¢; with true, then player
2 loses the game, as he cannot color e;, otherwise he wins the game.

Next we observe that QUANTIFIED 3-SATISFIABILITY is PSPACE-complete, also
if we require that no literal appears in more than 3 clauses (use a similar transfor-
mation as is used for 3SAT.) This means that each z;,7;,¢; has degree at most
4.

Note that there are at most 2n +3m edges to {true,false, X}. We replace { true,
false, X} by 3(2n + 3m) vertices true;,false;, X;(1 < ¢ < 2n + 3m), with edges
(true;, false;), (true;, X;),( false;, X;), (false;,trueiy), (Xi, trueiyq),(X;, falseiy;).
Take f(true;) = 3 —2 ; f(false;)) = 3i —1 ; f(X;) = 3i. Al edges (j,v),
J € {true,false,X} F v are replaced by an edge (jiyv), such that each j; (j € {
true, false, X'}) has at most one adjacent edge of this type. Now each Ji has degree
< 5. Note that all vertices true; must be colored with the same color, and likewise
for all false;, and all X;.

As in theorem 2.1 one now can show that the game on the resulting graph and
ordering has a winning strategy for player 2, if and only if the formula F is true.

Finally notice that the transformation still can be carried out in logarithmic work
space. O

3 SEQUENTIAL COLORING GAME and SEQUENTIAL
COLORING CONSTRUCTION GAME with 2 colors.

In this section we show that SEQUENTIAL COLORING CONSTRUCTION GAME and
SEQUENTIAL COLORING GAME can be solved in linear, or almost linear time, when
we restrict ourselves to instances with only 2 colors.

We first introduce some terminology. To ease presentation, we assume V =
{1,2,--.,n}, and f(i) = i. The owner of a vertex i is the player that must color
the vertex, i.e. owner(i) = 1 < ¢ is odd. A vertex i € V that has only edges to
vertices with a larger number are called sources. Notice that the only moments
when a player can make a decision is when he colors a source-vertex: when they
must color a non-source vertex, then they either lose, or have exactly one possible
color available to color the vertex. For a color ¢ € C, denote the other color in C
with €. A predecessor of a vertex j is a vertex 1 with i < j and (¢,7) € E. The
problem for SEQUENTIAL COLORING CONSTRUCTION GAME with 2 colors is easy
to resolve.



Theorem 3.1

SEQUENTIAL COLORING CONSTRUCTION GAME with 2 colors is solvable in O(n+e)
time.

Proof.

We claim that player 2 can win the game, if and only if G is not bipartite, or player
2 owns a source vertex that is not the first vertex of a connected component of G.
Clearly, this property can be tested in O(n + e) time.

If G is not bipartite, then player 2 will always win the game. Suppose G is
bipartite. If player 2 owns a source vertex v that is not the first vertex of a connected
component, then he can color this vertex such that no coloring of G with 2 colors
exists that extends the coloring so far. (Player 2 looks to a vertex w, in the same
component as v with w < v. If the distance from v to w is even, then player 2 colors
v with a different color from the color of w, otherwise he colors v with the same
color as w.) So, in this case, player 2 wins the game.

If G is bipartite, and player 1 owns all source vertices, that are not the first ver-
tex in a connected component, then he wins by using the following strategy: when
coloring such a source vertex, find the smallest w < v that belongs to the same
component. If the distance from v to w is even, then color v with the same color as
w, otherwise give it a different color. By induction, all vertices with even distance
to w get the same color as w and all vertices with odd distance to w get a different
color. Eventually, all vertices will be colored and player 1 wins the game. O

Next we discuss an algorithm for SEQUENTIAL COLORING GAME with 2 colors. We
first give the algorithm, and then discuss its correctness and running time.

In the algorithm we keep a collection of sets of vertices C. Each set has associated
with it a “buddy” (which is another set in C), a number “first” (which is the first
vertex in the set or its buddy), and an “owner” (which is the owner of “first”).

We use the following algorithm.

C := 0; game-end:= false; i := o
while not (game-end) and i < n
do  begini:=i+1;
" Let S C C be the collection of sets, which contain predecessors of 1.
if S =0 (ie., i is a source)
then begin add set a; = {i} to C;
T add set bi=10to C;
buddy(a;) := b;; buddy(b;) := a;;
first(a;) := i; first(b;) := 1;
owner(a;) := owner(z); owner(};) := owner(s)
end
else if |S] = 1
then begin suppose S = {s};



add 7 to the set buddy(s)
end
elseif ds € S
then begin player owner(i) loses the game;
game-end := true
end
else if 35, € §: s, € S : first(s;) > first(s;) and
owner ;) 7 owner(z)
then begin player owner(z) loses the game;
game-end:= true,
end
else Take s; € S with Vs, € S : first(s;) > first(s;)
for all s; € §: 55 # 5
do begin Union (s,, s2);
Union (buddy(s,), buddy(ss));
add ¢ to the set buddy(s,)

end
end

if not(game-end) then player 1 loses the game, if and only if n is even.

Here Union is a procedure that adds the vertices of the second set to the first set,
and removes then the second set from C.

To analyze this algorithm, let C; be the collection C of sets after the i’th iteration
of the main loop, e.g., Co = 0,C; = ({1},0). Let G; be the subgraph of G, induced
by {1,---,i},ie. Gi = ({1,---,i}, {(v,w) € E | 1 < v,w < j}).

Note the following: ¢; forms a partition of {1,---,i}. For all s € C;) :
buddy(buddy(s)) = s. For each connected component of G;, there are two sets
s, buddy(s), that contain all vertices of the connected component. For every edge
(v,w) in Gi, there are two sets s, buddy(s), with v € s, w € buddy(s). Hence, as
long as game-end is false, G; is bipartite. Each of these properties can be proved
with induction on 7.

Lemma 3.2
The algorithm outputs the correct player that has a winning strategy.

Proof.

Suppose the algorithm outputs that player p loses the game, in the i’th iteration of
the main loop. (Take ¢ = n+ 1, if the output is given after the main loop, i.e., when
game-end stayed false.) Let ¢ be the other player. We give a winning strategy for
player ¢ such that the game ends with at most ¢ — 1 colored vertices.

Call a move ¢-wrong, if a player colors a vertex v € s € C;_; with a color ¢, such
that

(i) 3w € s, which has been colored with color ¢,
,or



(i) 3w € buddy(s), which has been colored with color c.

A move is i-good, if it is not i-wrong. Let S; be the set S, computed at the i-th
iteration.

As long as player p makes only i-good moves, player g uses the following strategy:
he makes only i-good moves, obeying the following: if 3s; € S; : s, € S; : first(sz) >
first(s1), and owner(sz) # owner (i), then he considers fixed s;, s, with this property.
Clearly, player ¢ owns first(s;. When player g must color first(sz), then

o if (first(s)) € s; & first(s;) € s;), then color first(s;) with a different color as
first(s;).

e otherwise color first(s;) with the same color as first(s,).

Suppose player p also makes only i-good moves. Then it follows that for each s € S;:
all vertices in s are colored with the same color, which is different from the color of
the vertices in buddy(s).

Now player p cannot color é: if 3s € S with buddy(s) € S, then ¢ must be
colored differently from a vertex in s, and from a vertex in buddy(s), but these will
have different colors. If 3s; € §: 3s; € S : first(sy) > first(s;) and owner(s;), then
player g has colored first(s;) in such a way, that the predecessor of i in s, is colored
differently from the predecessor of i in s;. In both cases p loses the game.

Next we suppose player p makes at least one i-wrong move. This will only have
the effect that player p loses at an earlier move. Let the first 1-wrong move of player
p be at move j. j must be a source. Look at the smallest i/, where in the 7’th
iteration a set s’ with j € s’ U buddy(s) is added (by Union (s”,s)) to a set s”
with first(s”) < first(s’) (#/ exists and ¢ < i, because {7} € C; and {j} C s with
first(s) < j for some s € C;_,).

If both player 1 and 2 make only i-good moves, then player p will lose when
he must color #. Notice that i-good moves are also #-good. It follows that if
v,w € s € C;_;, then v and w are colored with the same color. Because the test ¢
dsy € §: 3s; € S :first(s,) > first(sy) and owner(sz) # owner(#')” is false, player p
must own ¢'. 2’ cannot be colored, because its predecessor in s’ is colored differently
from its predecessor in s”.

Player ¢ makes i-good moves until player p makes an #-wrong move. Then let
i" be the largest i" such that all moves up to that point are i"-good. With an
argument as above, it follows that if both players make only i"-good moves, then
player p loses on or before move i". If player p makes an i -wrong move, then repeat
the construction with :” instead of ¢/, etc.

It follows that the resulting strategy gives player ¢ the victory in the game. 0O

Theorem 3.3
SEQUENTIAL COLORING GAME with 2 colors is solvable in O(n + ea(e,n)) time.



Proof.

We can implement the algorithm using the well-known Union-Find data structure
of Tarjan ([16]). Our algorithm requires at most n Unions and e Finds. 0O

4 Special classes of graphs and linear orderings.

In this section we consider two special classes of graphs and corresponding linear

orderings. In both cases we give polynomial time algorithms for the coloring prob-
lems.

Definition.
A linear ordering f: V — {1,---,|V|} of a graph G = (V, E) is said to have vertex
separation number K, if K = 13‘12‘?‘(4'{” eV | f(v) £iAI(v,w) € E: f(w) > i}

The problem to determine a linear ordering with minimum vertex separation number

is NP-complete, but becomes solvable in polynomial time if k is bounded by a
constant (see e.g. [3, 10]). - '

Theorem 4.1

SEQUENTIAL COLORING GAME and SEQUENTIAL COLORING CONSTRUCTION
GAME are solvable in O(n) time, when restricted to graphs, that are given with
a linear ordering with vertex separation number bounded by a constant K.

Proof.

First note that if |C| > K + 1, then a vertex can always be colored, when the game
is played on a graph given with a linear ordering with vertex separation number
at most K, as each vertex has at most K predecessors. So, in the remainder we
suppose that |C| < K.

We first consider SEQUENTIAL COLORING GAME. A state (of a game, played
on G with linear ordering f and set of colors C) is a function ¢ : {1,---,i} — C,
such that Vv, w:1 < f(v), f(w) <i: (v,w) € E = ¢(v) # c(w). Consider a game-
instance of SEQUENTIAL COLORING GAME with vertex separation number < K.
The set of all possible states (of a game, played on this instance) is denoted by X.
We now make a directed acyclic graph H = (X, F), with F = {(¢,¢) | ¢,¢ € X and
Fic:{1,--,5} 5 C, ¢ {1,--,i+1} =2 C, V5,1 < j <i:cj) =)}, ie., we
have an edge from a state to each state that is reached after one move. We assume
that there is an edge from 0:9 — C to each c: {1} — C.

A state ¢ € X with outdegree 0 is called a losing state (because a player, that
must move from c loses the game, because no move is possible). A state with
outdegree > 1 is a winning state, if there is an edge to a losing state, and it is a
losing state, if all outgoing edges lead to winning states. Player 1 wins the game, if
and only if the start-state 0: @ — C is a winning state. So the problem remains to
determine whether 0: § — C is a winning state.
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Hereto we define an equivalence relation = on states: a state c: {1,---,i1} = C
is equivalent with state ¢’ : {1,---,i'} - C (¢ = ¢), if and only if i = ' and for all
v € V with f(v) <iand I(v,w) € E: f(w) > i: ¢(v) = (v).

Claim 4.1.1
If c = ¢, then c is a winning state, if and only if ¢ is a winning state.

Proof.

This follows by induction, starting at states with outdegree 0. If ¢ = ¢’ and c has
outdegree 0, then ¢’ also has outdegree 0: suppose c: {1,---,i} — C with i < |V|
has outdegree 0. Then {c(v) | f(v) < ¢, (v,f~*(: + 1)) € E} = C. But then also
{d(w) | f(v) <4, (v,f7Yi+1)) € E} = C. So starting with ¢,i + 1 cannot be
colored, hence outdegree ¢ is 0.

If ¢ = ¢ and ¢ has an edge to a losing state ¢”, then ¢ has also an edge to a
losing state. Let c: {1,---,i} — C. Now take ¢": {1,---,i+ 1} — C as follows:
"(j)=c(j)for 1 <j<i,and ¢"(i+1) = "(i+1). Now ¢,¢”) € F and ¢’ = ¢”,
hence, by induction, ¢ is a losing state. O

It can be seen easily that equivalence classes of states can be characterized by pairs
(¢,€), with & a function {v | f(v) <iAJw: (v,w) € EA f(w) > i} — C. We now
can define a directed graph H on the equivalence classes with edges from class (i, &)
to class (i+1,¢),if 3c € (,&) : 3¢ € {i+1,¢) with (¢,c) € F. This directed acyclic
graph has at most n - |C|* = O(n) vertices, and each vertex in H has outdegree
< K (different outgoing edges correspond to different colors for f~!(: + 1), and
IC| £ K). A class is losing, if and only if it has outdegree 0, or has only outgoing
edges to winning classes. It is now not hard to find a linear time algorithm that
builds H, and determines for each class (vertex in H) whether it is losing or winning.
(Start computing for each class (n, &) whether it is losing or winning, then classes
(n —1,8), (n —2,é) etc.) In this way we determine whether the class containing
0:0 — C is winning, and hence whether there is a winning strategy for player 1 in
linear time.

We can use a similar argument, with some small modifications for the SEQUENTIAL
COLORING CONSTRUCTION GAME. We only must change the notions of “winning”
and “losing”. A state c: {1,---,i} — C is “winning for player 17, if and only if
t = n or ¢ has an edge to a state, winning for player 1 and owner(: + 1) = 1 or all
outgoing edges from c go to states, winning for player 1 and owner(: + 1) = 2. (If
¢t = n, then player 1 has won the game. If i < n, and owner(: + 1) = 1, then player
1 will move to a state that is winning. Player 2 can only move from states, winning
for player 1 to other states, winning for player 1. If he can move from a state ¢
to a state, losing for player 1, then c is also losing for player 1). One can now use
arguments and an algorithm, similar to the case of SEQUENTIAL COLORING GAME,
to obtain also a linear time algorithm for SEQUENTIAL COLORING CONSTRUCTION

10



GAME on graphs, given with a linear ordering with vertex separation number < K.
O

Definition.

A linear ordering f : V — {1,---,|V|} of a graph G = (V, E) is said to have
bandwidth K, if K = max{|f(v) — f(w)| | (v,w) € E}. It is said to have cutwidth
K,if K = max|{(u,v) € B | f(u) < < fu)}].

Corollary 4.2
SEQUENTIAL COLORING GAME and SEQUENTIAL COLORING CONSTRUCTION

GAME can be solved in O(n) time for graphs with a linear ordering with band-
width < K or cutwidth < K, for constants K.

Proof.

If the bandwidth or cutwidth of a linear ordering is bounded by a constant, then
the vertex separation number of the linear ordering is also bounded by a constant
(this can easily be proved, similar to results in [2]). m|

We now consider linear orderings, that are obtained by reversing a linear ordering
with small vertex separation number.

Definition.

Alinear ordering f : V — {1,2,---,|V|} of G = (V, E) is said to have reversed vertez
separation number K, if the linear ordering f® of G, defined by fR(v) = |V|+1—f(v)
has vertex separation number K.

Theorem 4.3

SEQUENTIAL COLORING GAME and SEQUENTIAL COLORING CONSTRUCTION
GAME can be solved in polynomial time on graphs with a linear ordering with
reversed vertex separation number bounded by a constant K.

Proof.

We use a method, similar to the method in the proof of theorem 4.1, but define
equivalence classes of states in a different, slightly more complex way. Note that we
cannot limit the number of colors to K in this case.

Use the same concept of states as in the proof of theorem 4.1. Let = be an
equivalence relation of states, defined by ¢ : {1,---,i} — C is equivalent to ¢ :
{1,---,¥} > C(c=()ifand only if : = ¢ and for all j > i : {¢(v) | f(v) <
1A (v, f71(5)) € E} = {c(v) | f(v) S iA(v,f7)(5)) € E}.

Claim 4.3.1
If ¢ = ¢, then c is a winning state, if and only if ¢ is a winning state.

11



We omit the proof of this claim. (Use induction, starting at states with outdegree
0.)

Let S; = {v | f(v) > iA3j < i: (f'(j),v) € E}. Assuming that f has
reversed vertex separation number < K, it follows that Vi,1 < i < n : |S:| < K.
We can characterize each equivalence class of the relation = by a pair (i, z), with =
a function z : S§; — P(C). = denotes the “sets of forbidden colors”, i.e. if the class
containing c is characterized by (i, z), then for all w € S; : z(w) = {c(v) | f(v) < ¢
and (v,w) € E}. Note that this set is empty for w # S;.

To get a polynomial number of equivalence classes, we must introduce a second
equivalence notion. Write (i,z) ~ (¢',y), if and only if i = ¢/ and there exists a
bijection ¢ : C — C, such that for all v € S; : p(z(vv)) = y(v), i.e., y can be
obtained from z by renaming the colors. It is easy to see that if (i, z) ~ (&, ¥), then
each state in (2, z) is winning, if and only if each state in (#/,y) is winning.

We can characterize ~-equivalence classes by pairs (i, A), with A a function
A :P(S;) — {0,1,---,|C|}, as follows: if (i,z) belongs to the class, characterized
by (i', A), then ¢ = ¢/, and for all S C S; : A(S) equals the number of colors ¢, that
belong to each set z(v) for v € S, and to no set z(v) for v € S; — §. It is not hard
to show that this is indeed a correct characterization of ~-equivalence classes.

As there are at most (|C|+1)** functions A : P(S;) — {0,1,---, |C]}, it follows
that the total number of ~-equivalence classes is polynomial. So we can make a
directed acyclic graph with ~-equivalence classes as vertices and then compute in
time, linear to the number of ~-equivalence classes, which ~-equivalence classes
correspond to winning states, and which correspond to losing states. There is a
winning strategy for player 1, if the class (0,0 — {0,1,---,|C|}) corresponds to a
(set of) winning states. m]

5 Final remarks and related games.

There are several interesting open problems, concerning the complexity of SEQUEN-
TIAL COLORING (CONSTRUCTION) GAME for special classes of inputs. For in-
stance, what is the complexity of the problems, when G is required to be a tree?

Interesting variants arise when players are not required to color the vertices in
a pre-specified order. In the COLORING GAME and COLORING CONSTRUCTION
GAME, a move consists of choosing a vertex v and a color ¢, that has not been
chosen already before for a neighbor of v. In the COLORING GAME, the first player
that is unable to move loses the game. In the COLORING CONSTRUCTION GAME,
player 1 wins if and only if the game ends with all vertices colored. (A game instance
for these games now consists of an undirected graph and a set of colors.)

Theorem 5.1 [14]
COLORING GAME with 1 color is PSPACE-complete.
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For the proof, see [14] for the game KAYLES.

Theorem 5.2
COLORING GAME with 2 colors is PSPACE-complete.

Proof.

Of course, the problem is in PSPACE. To prove PSPACE-hardness, we transform
from the 1-color case.

Let G = (V, E) be an undirected graph. Let G’ = (V", E') be defined as follows:
V={vilveV,i=1vi=2}U{z}; E = {(vi,n) | v € V} U {(vi,w;) | (v,w) €
E, 1,5 € {1,2}} U{(vi,z) | v €V, i € {1,2}}. Now there is a winning strategy for
player 1 for the 1-color game, played on G, if and only if there is a winning strategy
for player 2 for the 2-color game on G'. First note that player 1 must start coloring
z : if not then player 2 can win by answering each move of player 1: if player 1 colors
v; with color j, then player 2 colors vs—; with color 7. After = has been colored, the
game will be similar to the 1-color game on G : if a vertex v; is colored, then neither
V3, NOT any vertex w; with w adjacent to v in G’ can be colored. 0O

The complexity of COLORING GAME with any fixed number > 3 of colors is open.
Also, the complexity of COLORING CONSTRUCTION GAME is an interesting open
problem.

Define the chromatic game number of a graph to be the smallest integer k, such

that there is a winning strategy for player 1 in the COLORING CONSTRUCTION
GAME with k colors.

Clearly, the game-chromatic number of a graph is at least its chromatic number
and at most its maximum vertex degree plus 1.

Theorem 5.3
For every tree T: the game-chromatic number of T is at most 5.

Proof.

Player 1 considers T as a rooted tree. Let V; be the set of vertices with even distance
to the root, let V; be the set of vertices with odd distance to the root. Player 1

uses the following winning strategy for the COLORING CONSTRUCTION GAME with
colors {1,2,3,4,5} on T :

e if no vertex is colored, then color the root with color 1.

o if the father v of the last vertex w that has been colored by player 2 is not yet
colored, and the father of v is not colored, then player 1 colors v

— with color 1, if v € V; and color(w) # 1
— with color 2, if v € V; and color(w) =1
— with color 3, if v € V] and color(w) # 3

13
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— with color 4, if v € V; and color(w) = 3

o if the father v of the last vertex w that has been colored by player 2, is not yet
colored, and the father of v is colored, then player 1 colors v with an arbitrary
possible color.

o if the father of the last vertex w that has been colored by player 2, has been
colored, then v choses an arbitrary vertex whose father has been colored, and
gives it an arbitrary possible color.

We claim that this strategy always gives a possible, allowed move for player 1.
It is important to note that with this strategy, after each move of v; : Vv € V : if v
is colored and the father of v is not colored, then v € V; = v is colored with color 1
or color 2, and v € V; = v is colored with color 3 or color 4. With this observation,
correctness easily follows. O

It is presently open whether there are trees with game-chromatic number 5. How-
ever, we can show the following:

Theorem 5.4
There exists a tree T, with game-chromatic number > 4.

Proof.
Use the graph G, given in figure 1.

We give a strategy for player 2 to avoid a coloring with 3 colors.

In its first move, player 2 colors a vertex with distance 3 to the vertex player 1
colored in its first move, with the same color. Let this color be ¢. Note that G now
has a subgraph of the type, shown in figure 2.

We consider 2 cases:

Case 1: Player 1 colors 2 or 3 in its second move. He must use a color # c. W.lo.g.
suppose is colored with ¢’. Then player 2 colors 7 with the color # ¢, ¢, and wins
the game, as 3 cannot be colored.

14



Figure 2

Case 2: Player 1 colors a vertex v # 2,3 in its second move. W.lo.g. suppose
v € {5,6} and v is not adjacent to 5,6. Let ¢’ be the color that player 1 used for v.
Now player 2 colors 5 with ¢, if ¢ # ¢, and with a color # ¢, if ¢ = ¢/. We consider
3 sub-cases.

Case 2a: Player 1 colors 2 or 3 in its third move. Player 2 now wins the game as
in case 1.

Case 2b: Player 1 colors 6 or a neighbor of 6. Then player 2 colors 3 with a color
# ¢, and # the color of 5, and wins, because 2 cannot be colored.

Case 2c: Player 1 colors a vertex v # 2,3,6, or a neighbor of 6. Then player 2
colors 6 with a color # ¢ and wins the game, because 3 cannot be colored. a

It is an interesting open problem whether a result, similar to theorem 5.3 holds for
planar graphs. This problem can be seen as “a game variant” to the famous 4-color
theorem. '

Conjecture

There exists a constant c, such that for all planar graphs G, the game-chromatic
number of G is at most c.

In case the conjecture is true, what is the smallest ¢ with this property?

Several other types of coloring games can be and have been proposed. (See e.g.
[14] for the game SNORT ON GRAPHS and a PSPACE-completeness proof for this
game.)
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