COMPLEXITY OF PATH FORMING
GAMES

Hans L. Bodlaender

RUU-CS-89-29
December 1989

Utrecht University

s K 8
o2 o -
; < Department of Computer Science
2
7 Yy Padualaan 14, P.0. Box 80.089,

>
m o> 3508 TB Utrecht, The Netherlands,
Tel. : ... 4+ 31-30- 531454

COMPLEXITY OF PATH FORMING
GAMES

Hans L. Bodlaender

Technical Report RUU-CS-89-29
December 1989

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

COMPLEXITY OF PATH FORMING
GAMES*

Hans L. Bodlaender
Department of Computer Science, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

For a number of two player games where players alternately choose the next
vertex of a simple or elementary path in a graph, we consider the problem to
determine whether for a given game instance there is a winning strategy for the
first player. We show several of these problems to be PSPACE-complete. In
some special cases, we obtain polynomial time algorithms, based upon graph
rewriting or an intricate form of dynamic programming, e.g. we show GEN-
ERALIZED GEOGRAPHY and some other PSPACE-complete problems to
be linear time solvable on graphs with constant bounded treewidth.

1 Introduction.

Games are not only a popular pastime, but they can also serve as a model for several
different phenomena, e.g.

o conflicts between parties with different interests (e.g. different companies that
operate on the same market).

o fault-tolerance. Here the erroneous behavior of a system is modeled by assum-
ing that the system uses an intelligent strategy to prevent us from reaching
our goal. If we are able to deal with this type of error, we are also able to deal
with all weaker types of errors.

e worst-case complexity of algorithms. See e.g. [31].

e complexity theory. For instance, the definition of the alternating Turing ma-
chine (which is one of the standard models for parallel computation) can be
stated in terms of a game. (See [24].)

*This research was partially supported by the ESPRIT II Basic Research Actions Program of
the EC under contract no. 3075 (project ALCOM).

1

In this paper we restrict ourselves to games with 2 players that have full infor-
mation. We concentrate on the question: given a certain game, how hard is it to
determine whether there is a winning strategy for the first (or second) player. With
the notion of “game”, we usually mean a class of actual games (instances), where
each game (instance) is distinguished from others in the class only by its starting
position and playing area, but uses the same type of moves. With the complexity
of a game (class), we denote the complexity of the following problem: given a game
(instance) from this class, does player 1 have a winning strategy in this game (in-
stance)? Throughout this paper we use the name of a game to denote this problem
for that game.

For several problems of this type, PSPACE-completeness and EXPTIME-
completeness results have been obtained, as well as for well-known and often played
games, like chess, go, and checkers [20, 22, 29], as well as for more abstract games
(1, 14, 18, 21, 33, 36, 38]. For an overview, see e.g. [23, 24].

In this paper we consider several abstract games on graphs, that have “forming
paths in a graph” as a common theme. We consider two already previously studied
games, both known under the name GENERALIZED GEOGRAPHY, and several
new games: TRON (a generalization of a popular video-game, based upon the Walt-
Disney movie of the same name), the HAMILTONIAN CIRCUIT CONSTRUC-
TION GAME, the HAMILTONIAN PATH CONSTRUCTION GAME, the SIMPLE
PATH CONSTRUCTION GAME, the ELEMENTARY PATH CONSTRUCTION
GAME, and variants, where the starting vertices are not specified.

For most of these games we prove the corresponding decision-problem to be
PSPACE-complete (under logarithmic space reductions). For a few of these cases
we have also a PSPACE-completeness result for the variant with undirected graphs.
These results are presented in Section 3.

A huge amount of research has been done on the complexity of NP-complete
graph problems, when restricted to special classes of graphs (see e.g. [25]). Very
little however is known on the complexity of PSPACE-complete graph problems,
when restricted to special classes of graphs. In this paper we give some interesting
results in this area. We use as main techniques: graph rewriting and an intricate
form of dynamic programming. Among others, we show that (VERTEX) GEN-
ERALIZED GEOGRAPHY and some other PSPACE-complete problems are linear
time solvable on graphs with bounded treewidth. This is the first known example
of a PSPACE-complete problem, solvable in polynomial time when restricted to
graphs with bounded treewidth, where previously only such results were known for
problems, known to be NP-complete or NP-hard [4, 6, 9, 16, 17, 26, 37, 39]. These
results are presented in Section 4. Some final comments are made in Section 5.

2 Definitions.

In this section we give most definitions that are needed in this paper. In Section
2.1 we give the definitions of graph-theoretic notions; in Section 2.2 we give the
definitions of the considered games, and of a PSPACE-complete logic problem, used
in our PSPACE-completeness proofs.

2.1 Graph-theoretic definitions.

A path in a graph G = (V, E) is called simple, if no vertex appears more than
once on the path. It is called elementary, if no edge e € F is used more than once
by the path. The subgraph of G = (V, E), induced by W C V, is denoted by
GW] = (W,{(v,w) € E | v,w € W}).

Next we give the definitions of two special classes of graphs: the cacti, and the
graphs with treewidth < k.

Definition.

An undirected graph G = (V, E) is a cactus (graph), if and only if every edge e € E
belongs to at most one simple cycle in G.

In other words, a graph G = (V,E) is a cactus, if and only if each connected
component of G either is a single edge or a cycle without chords.

Definition.

Let G = (V, E) be a directed or undirected graph. A tree-decomposition of G is a
pair ({X; |1 € I}, T = (I, F)), with {X; | i € I'} a family of subsets of V, and T a
tree, such that

° UX,- =V.
iel

e Vvw)e E:Tiel:ve X;AweEX,.
e Vi, 5,k € 1:if j is on the path from ¢ to k in T, then X; N X C X;.

The treewidth of a tree-decomposition ({X; |1 € I}, T = (I, F)) is max;¢;| Xi| — 1.
The treewidth of G is the minimum treewidth over all possible tree-decompositions
of G.

The problem to determine the treewidth of a graph is NP-complete [3]. However, for
fixed k, one can determine in O(n?) time whether the treewidth of a given graph is
< k, and if so, find a tree-decomposition with treewidth < k [11, 32]. An algorithm,
using O(n*+?) time, but with a much better constant factor can be found in [3]. A
very recent approach, which may lead to more practical O(n?) algorithms can be
found in [19).

Several well-studied classes of graphs have the property that there is a constant
upper bound for the treewidth of graphs in the class. For instance, cacti and series-
parallel graphs have treewidth < 2, Halin graphs have treewidth 3, almost-trees
with parameter k have treewidth < k + 1, k-outerplanar graphs have treewidth
< 3k — 1. Also, if there is a fixed upper bound on the bandwidth, cutwidth, search
number, vertex separation number of graphs in a class, or if the graphs in the class
are interval graphs or chordal graphs with a fixed upper bound on the maximum
clique size, then there is also a fixed upper bound on the treewidth of the graphs in
the class. (See [8, 13, 37, 39].)

There are several equivalent characterizations of the class of graphs with
treewidth < k. For instance, a graph is a partial k-tree, if and only if its treewidth
is at most k. (See [2, 37]). Note also that each class of graphs that can be defined
recursively in terms of rules of compositions with the method of Bern, Lawler and
Wong [7] has a constant upper bound on the treewidth of the graphs in the class.

So, a polynomial algorithm for a certain problem for graphs with bounded

treewidth directly implies polynomial algorithms for that problem for a large number
of other classes of graphs.

2.2 Definitions of games and logical problems.

In this section we give definitions of some logical problems, used in our PSPACE-
completeness proofs, and of the games we consider in this paper. First we give the
definition of a well-known logical problem.

QUANTIFIED 3-SATISFIABILITY

Instance: Set U = {uj,uz,...,u,} of variables, well-formed quanti-
fied Boolean formula F = (Q1u1)(Q2u2)...(Qnus)E, where E is a
boolean expression in conjunctive normal form with three literals per
clause, and each Q; is either V or 3.

Question: Is F true?

QUANTIFIED 3-SATISFIABILITY is PSPACE-complete. One may also assume
that the quantifiers alternate, i.e., that Q; =V, if ¢ is even, and Q; = 3, if 7 is odd,
or that Q; = 3, if ¢ is even, and Q; =V, is 7 is odd. (See [23, 35]).

Next we introduce several games on graphs. We start with two slightly different
games, which are both known under the name GENERALIZED GEOGRAPHY. To
distinguish the variants, we call them VERTEX GENERALIZED GEOGRAPHY
and EDGE GENERALIZED GEOGRAPHY. Both games are played on a directed
graph G = (V, E), given with a starting vertex s. In the VERTEX GENERALIZED
GEOGRAPHY game, players alternately choose a vertex. The first chosen vertex
must be s, and each subsequently chosen vertex must have an incoming edge with
the last chosen vertex as its other endpoint. Players may not choose a vertex that
has been chosen before. The first player that is unable to move loses the game.

In the EDGE GENERALIZED GEOGRAPHY game, players alternate choosing an
edge that has not been chosen before, starting with an edge that has its tail at the
vertex that was the head of the previous chosen edge. Again, the first player unable
to move loses the game.

Thus, in VERTEX GENERALIZED GEOGRAPHY, players alternately choose
the next vertex of a simple path in G, and in EDGE GENERALIZED GEOGRA-
PHY, players alternately choose the next edge of an elementary path.

Both games are PSPACE-complete. EDGE GENERALIZED GEOGRAPHY
was proven to be PSPACE-complete by Schaefer in [36]. In [29] it was proved
that VERTEX GENERALIZED GEOGRAPHY is PSPACE-complete for planar,
bipartite graphs, that have no vertices with in- or out-degree exceeding 2 or with
degree exceeding 3.

In this paper we consider also the following variants of these games:

e SIMPLE PATH CONSTRUCTION GAME. This game is played as VERTEX
GENERALIZED GEOGRAPHY, but with the following difference: the in-
stance also contains an integer k < |V|. Player 1 wins, if and only if the game
ends with a path, containing at least k vertices.

e ELEMENTARY PATH CONSTRUCTION GAME. This game is played as
EDGE GENERALIZED GEOGRAPHY, but now the instance contains an
integer k < |E|, and player 1 wins, if and only if the game ends with a path,
containing at least k edges.

o HAMILTONIAN PATH CONSTRUCTION GAME is the special case of SIM-
PLE PATH CONSTRUCTION GAME with k = |V|. In other words, player

1 wins, if and only if the game ends when all vertices have been visited.

e HAMILTONIAN CIRCUIT CONSTRUCTION GAME. This is similar to the
HAMILTONIAN PATH CONSTRUCTION GAME, but now player 1 wins, if
and only if the game ends when all vertices have been visited and there is an
edge from the last visited vertex to the first visited vertex.

e Variants without specified starting vertez. These are similar to the original
games, but now player 1 is free to choose whatever vertex or edge he/she
wants as starting vertex.

We also consider a game, that we call TRON. An instance of TRON consists of a
directed graph G = (V, E), with two specified starting vertices s;,s; € V. Players
must alternately choose a vertex, that has not been chosen before, and that must
have an incoming edge with the last chosen vertex by that player as its other end-
point. The first vertex, chosen by player 1 must be s;, and the first vertex, chosen
by player 2 must be s;. The first player that is unable to move loses the game.

In other words, two disjoint simple paths are formed, one by player 1 and one
by player 2. A variant where the starting vertices s; and s; are not specified (i.e.,

5

players are free to choose their first vertex), is also considered. This game TRON
can be seen as a generalization of a popular video game, based upon a Walt Disney
movie of the same name. In this video game, the game is basically played “in real
time” on a large complete grid graph.

In this paper, we will also consider variants, where the games are played on
undirected graphs.

There is a close connection between VERTEX and EDGE GENERALIZED GE-
OGRAPHY and games with rules, forbidding positions on moves to appear more
than once. A game can be modeled by a directed graph, where the vertices corre-
spond to positions in the game. Edges correspond to possible moves from a position.
(For most games, this graph has a very large size.) If it is forbidden to move to a
position that has appeared already earlier in the game, then this corresponds to the
condition that the players alternately choose a vertex on a simple path; a rule that

forbids the same move from the same position corresponds to an elementary path.
(Compare [34]).

3 PSPACE-completeness results.

In this section we give a number of new PSPACE-completeness results. We establish
PSPACE-completeness for the following games/problems:

e VERTEX GENERALIZED GEOGRAPHY without specified starting vertex

e HAMILTONIAN PATH CONSTRUCTION GAME with and without specified
starting vertex

e HAMILTONIAN CIRCUIT CONSTRUCTION GAME with and without

specified starting vertex

e TRON with and without starting vertices

e SIMPLE PATH CONSTRUCTION GAME with and without specified starting

vertices for directed and for undirected graphs

o ELEMENTARY PATH CONSTRUCTION GAME with and without specified
starting vertex for directed and for undirected graphs

In each of our proofs, either we use a transformation from QUANTIFIED 3-
SATISFIABILITY similar to the proof for (VERTEX or EDGE) GENERALIZED
GEOGRAPHY in [29, 36], or a transformation from a closely related game.

Theorem 3.1
VERTEX GENERALIZED GEOGRAPHY without specified starting vertex is
PSPACE-complete.

Proof.

Clearly the problem is in PSPACE. To prove PSPACE-hardness, we use a transfor-
mation from the standard VERTEX GENERALIZED GEOGRAPHY problem (i.e.,
with specified starting vertex).

Let an instance G = (V, E), s € V of VERTEX GENERALIZED GEOGRAPHY
be given. We may suppose that the indegree of s is 0 (it is never possible to traverse
an edge to the starting vertex, so these edges may as well be deleted from G).

Now let G’ = (V’, E') be defined as follows: (see Figure 3.1).

Vi=v U {0,1,,1,} U
{v*|veV and v # s}
{(v,v*) |v €V and v # s}
{(v*,v) |v € V and v # s}
{(v*,1,) | v € V and v # s}
{(v*,13) | v € V and v # s}
{(laa 3)7 (lba s)) (Oa la)’ (01 lb), (10’ 0)7 (lb, 0)}
As the construction of G’ can be carried out in logarithmic work space, the the-
orem follows with help of the following claim. a

E'=E

cCcccc

Figure 3.1

Claim 3.2

There is a winning strategy for player 1 on G for VERTEX GENERALIZED GEOG-
RAPHY with starting vertex s, if and only if there is a winning strategy for player

7

1 on G’ for VERTEX GENERALIZED GEOGRAPHY without specified starting

vertex.

Proof.

Suppose player 1 has a winning strategy for VERTEX GENERALIZED GEOG-
RAPHY with starting vertex s on G. Then he can use the following strategy for
VERTEX GENERALIZED GEOGRAPHY without specified starting vertex on G”:
start in 0. Player 2 will move to 1, or 1,. Move to s. Now, as long as player 2 moves
to vertices in V/, also move to vertices in V', using the original strategy for VERTEX
GENERALIZED GEOGRAPHY with starting vertex s on G. After a number of
moves, player 2 will be unable to move to a vertex in V. So player 2 will move
eventually to a vertex v*. Now player 1 moves to the unused vertex in {1,,1;} and
wins the game.

Suppose player 2 has a winning strategy for VERTEX GENERALIZED GEOG-
RAPHY with starting vertex s on G. Player 2 now also has a winning strategy for
VERTEX GENERALIZED GEOGRAPHY without specified starting vertex on G’.
We consider a number of cases.

CASE 1. If player 1 starts at 0, then player 2 wins, using a strategy, similar to
the argument above.

CASE 2. Suppose player 1 starts at 1, or 1,. W.l.o.g. suppose player 1 starts at
15. Player 2 moves to s. Player 1 must move to a v € V, v # s. Player 2 moves to
v*. Player 1 must move to 1,. Player 2 moves to 0 and wins.

CASE 3. Suppose player 1 starts at v € V, v # s. Then player 2 moves to v*.
Player 1 must move to 1, or 1;. Player 2 moves to 0. Player 1 must move to the
unused vertex in {15,15}. Player 2 moves to s. Player 1 must move to a vertex
v € V, v # s. Player 2 moves to v* and wins the game.

CASE 4. Player 1 starts at a vertex v*, v € V. Player 2 moves to v. Player 1
must move to a vertex w € V. w # s, because indegree(s)=0. Player 2 moves to wt.
Player 1 must move to 1, or 1;. Player 2 moves to 0. Player 1 must move to the
free vertex in {1,,1,}. Player 2 moves to s. Player 1 must move to a vertexz € V,
z # v,z # w. (If £ does not exist, player 1 loses directly). Now player 2 moves to
zt and wins the game.

CASE 5. Player 1 starts at vertex s. Player 2 now follows the strategy for
VERTEX GENERALIZED GEOGRAPHY with starting vertex s on G, as long as
player 1 moves to vertices v € V. Eventually, player 1 must move to a vertex vt.
Now player 2 moves to 1,, player 1 to 0, and player 2 wins by moving to 1;. 0O

Corollary 3.3
VERTEX GENERALIZED GEOGRAPHY without specified starting vertex is
PSPACE-complete for graphs with thickness < 2.

Proof.
VERTEX GENERALIZED GEOGRAPHY with specified starting vertex is

8

PSPACE-complete for planar graphs [29]. If the construction in the proof of Theo-
rem 3.1 is applied to a planar graph, one obtains a graph with thickness < 2. 0O

Theorem 3.4

HAMILTONIAN PATH CONSTRUCTION GAME with specified starting vertex is
PSPACE-complete.

Proof.

Clearly the problem is solvable in polynomial space. To prove PSPACE-hardness,
we use a transformation from QUANTIFIED 3-SATISFIABILITY. Let an instance
of this problem be given. W.l.o.g., we may suppose it is of the form

F= 3$1V$23$3 e V.'EnFo,

with Fy a boolean expression in conjunctive normal form. Let C = {c;,...,¢cn} be
the set of clauses in Fy. W.l.o.g. we may suppose that m > 4.
Let G = (V, E) be the directed graph, defined by

V={s,t}U{z; |1<i<n} U{E |1<i<n} U{r,m)} U{c|1<i<m)

E= {(S,ml),(s,x_l),(t,:l:l),(t,'ri:‘f),(:c,.,rl),(m,.,rz)} U {(C,’,t) | 1<:< m} U
{(rie)) |1=1,2,1<j<m}u
{(C;,Cj) | t1#75,1<4,5 < m} U
{(zi,zip) |1 <t <m} U{(zi,Tiz7) |1 <i<m} U
{@2in) [1<i<m} U {75, 7i71) [1 Si<m} U
{(c,1) | 1 is a literal, appearing in clause c}

(See Figure 3.2).

Claim 3.5

There is a winning strategy for player 1 in the HAMILTONIAN CIRCUIT CON-
STRUCTION GAME on G with starting vertex s, if and only if F is false.

Proof.

Suppose F is false. We give a winning strategy for player 1. Player 2 will choose
z; or Ty, then player 1 chooses z; or T2, etc. Call vertices which are chosen (before
the negation is chosen) false. As F is false, player 1 can choose the z;’s (i even) in
such a way, that whatever strategy player 2 will use, there will be at least one clause
with only false variables, say clause c;,. Now, after from each pair z;,7; one has
been visited, player 2 will visit r or r,. Then player 1 goes to ¢;,. Player 2 must
go either to £, or to another ¢;. In the latter case, player 1 moves to {. Now from ¢
all vertices z;, Z; that have not yet been visited will be visited, then the vertex in
{r1,r2} that has not yet been visited, and then all unvisited vertices ¢;. So player 1
wins the game, as all vertices will eventually be visited.

9

for every literal, appearing in
&= a clause, there is an edge from
the clause to the literal

clique

Figure 3.2

10

Suppose F is true. Now player 2 can force that at the first moment a vertex c;,
is visited, each clause contains at least one literal, corresponding to a vertex that is
not already visited. Player 1 has moved to ¢;,, and then player 2 moves to such a
vertex z; or T;. Now all yet unvisited vertices z;, T; with j > 7 are visited, then the
remaining vertex in {r;,r;}, and then a player moves to a vertex c;. If player 2 now
may move, he moves to ¢. If player 1 now may move, and moves to another c;, then
player 2 moves from this ¢; to t. Now the game will stop before all vertices c; have
been visited. (At most 3 ¢;’s are visited and m > 4.) So player 2 wins the game. O

As the construction of G can be done in logarithmic working space, the theorem
follows. a

Theorem 3.6

HAMILTONIAN CIRCUIT CONSTRUCTION GAME with specified starting ver-
tex is PSPACE-complete.

Proof.
Use the construction of Theorem 3.4, but add an edge from each ¢; to s. m)

Theorem 3.7

HAMILTONIAN PATH CONSTRUCTION GAME without spemﬁed starting ver-
tex is PSPACE-complete.

Proof.
Look at the proof of Theorem 3.4. Note that player 1 must start in s, because
indegree(s) = 0. O

Theorem 3.8

HAMILTONIAN CIRCUIT CONSTRUCTION GAME without specified starting
vertex is PSPACE-complete.

Proof.

Use the construction of Theorem 3.6 (i.e., with an edge from each ¢; to s). If player
1 starts at s or ¢, then the game is as with specified starting vertex s. If player 1
does not start at s or ¢, then player 2 can win if m > 5: he always moves to s or ¢

when possible. At least one vertex ¢; now will be unvisited at the end of the game.
O

Corollary 3.9

SIMPLE PATH CONSTRUCTION GAME with or without specified starting vertex
is PSPACE-complete.

11

Theorem 3.10

SIMPLE PATH CONSTRUCTION GAME with specified starting vertex is
PSPACE-complete for undirected graphs.

Proof.

Clearly, the problem is in PSPACE. We use again a transformation of QUANTIFIED
3-SATISFIABILITY to prove PSPACE-hardness. Let an instance of Q-3-SAT:

F= Bml‘v’mﬁma e V.'EnFo

be given; Fy is a boolean formula in conjunctive normal form. Let C = {c;, ..., ¢m}

be the set of clauses in Fy. Assume that Vz;:3c€ C: z; € ¢;dc € C%; € C. Let
G = (V, E) be the following graph:

V= {vi|1<i<n}u
{zi|1<i<n} U{m|1<i<n}u
{yil1<i<n} U{g;|1<i<n}u
fwi]1<i<n} u{z|1<i<n}u
{al1<i<m} u{rju
{din [1<i<m,1<j<3,1<k< K}

E= {(vi,x.'),(v,',f.‘),(:z;'-, yi)’(fiayi)’(yi’wi)’(thi) | 1<:1<n,: Odd} U
{(vi,), (vi, 72), (Wis i), (Fir i), (@i, wi), (wi,wi) | 1 < i< m, 4 even} U
{(wi,2z) |1 <i<n}u
{(zi,vit1) |1 <i<n}u
{(zm,ci) |1 <i<m}u
{(ciydij)) |1<i<m,1<j<3}U
{(dije, dijken)) | 1 S6<m, 1<5<3,1<k<K}U
{(dij1,1) | 1is the j’th literal, appearing in clause ¢;}

where K = 5n + 8. (See Figure 3.3). The starting vertex is v;.

Claim 3.11
F is true, if and only if player 1 can force a path with length > K.

Proof.
Note that the resulting path will have length > K, if and only if a “long branch”
dijidija . . . dijk is used. (Every other path in G has length < K.) Next note that
players that must move from a vertex w; must move to z; or lose the game: if player
1 must move from w;, then ¢ is even. If he moves to z; or Z;, then player 2 moves
to y, or §,, and the game ends with a path, shorter than K. If player 2 must move
from w; then ¢ is odd. If he moves to y; or ¥;, then player 1 moves to z; or T;; player
2 then must move to a vertex d;j;, and then player 1 moves to d;;; and forces a path
with length > K.

The proof proceeds with arguments, which are similar to arguments used before.
Let a used z; or F; correspond with true. Player 1 tries to have in each clause a

12

Figure 3.3

13

d m3(K-1)

m3K

literal I, with the corresponding vertex [is visited when the path reaches z,. He
succeeds if and only if the formula is true. Player 2 must move from z,. He will
move, if possible to a unsatisfied clause, i.e., each literal in the clause is unvisited.
Player 1 will move to a vertex d;j;. If the corresponding literal in the clause is
true (visited), then player 2 must move to d;j, and the resulting path has length

2> K. Otherwise, player 2 can move to that literal-vertex, and the resulting path
has length < K. O

We have obtained a log-space transformation from QUANTIFIED 3-SATISFIA-
BILITY to SIMPLE PATH CONSTRUCTION GAME for undirected graphs. Hence
the latter is PSPACE-complete. O

Theorem 3.12

SIMPLE PATH CONSTRUCTION GAME without specified starting vertex is
PSPACE-complete for undirected graphs.

Proof.

To prove PSPACE-hardness, we use a transformation from the case with specified
starting vertex. Let an instance G = (V,E), s € V, K € N* of the latter problem
be given. Let G' = (V’, E') be defined as follows (see Figure 3.4).

Vi= V U {rn|1<i<2-|V|+2}
U {a|1<i<K+2} u{y}
E'= E U {(riris1) |1 <1 <2|V]}
U {(gg+1) |1Si<K+1})
U {(T2IV|+29 8)7 (r2IV|+1’ QI)’ (r2|V|v y)}
Claim 3.13

Player 1 can force a path with length > K +2|V|+2 on G’ with no specified starting
vertex, if and only if player 1 can force a path with length > K on G with starting
vertex s.

Proof.
“«<": Player 1 starts at r;. When player 2 must move eventually from ryy 41, he
can go to ¢; (in which case the resulting path has the required length), or go to

T2|vi+2- In the latter case, player 1 now can use the strategy for the game on G with
starting vertex s.

“=". We consider several cases for the start of player 1 on G'.

CASE 1. Player 1 starts at a vertex ¢;. Then he will lose: either the path ends at
grc+2 (with length < K + 2), or a player moves to rajyj41. If player 1 moves from
T2ivi+1 t0 rapv|, the player 2 moves to y and wins. If any player moves from ToV|+1

14

S—— O_O_O

Tk k41 k42

Figure 3.4

15

to rjvj+2, the resulting path will have length < K + 4 + |V|.

CASE 2. Player 1 starts at a vertex r;, 1 # 1. If 1 is odd, player 2 will eventually
move to ¢y, if 7 is even, then player 2 will eventually move to y. In both cases, the
resulting path has length < K + 2|V/|.

CASE 3. Player 1 starts at y. No matter what strategy is used by either player,
the resulting path will have length < 2{V|+ 1.

CASE 4. Player 1 starts at a vertex v € V. After at most |V| moves, a player will
move to r3)v|42, or the resulting path has length < |V|. Player 2 uses the strategy
to move to ¢, or y if possible. The resulting path will have length < |V|+2+ K +2.
CASE 5. Player 1 starts at ¢,. If player 2 moves from ryy|4+1 to ¢1, then player 1
succeeds. If player 2 moves from rovj41 t0 rovi42, then player 1 succeeds exactly if
he can force a path with length K in G with starting vertex s. O

Again this transformation can be done in logarithmic working space. O

Theorem 3.14

ELEMENTARY PATH CONSTRUCTION GAME (with specified starting vertex)
is PSPACE-complete.

Proof.

The proof is similar to the proof of Theorem 3.10. A variable z; with 7 odd is
replaced by the construction of Figure 3.5.a., and a variable with 7 even will be
replaced by the construction of Figure 3.5.b. In the “first pass”, players will move
from a; to d; and from d; to a;;,. Player 2 will never take a “side-branch”, because
then he loses the game. Player 1 will never move from d; to z; or Z;, because then
player 2 will move, such that the game stops after 8 or 9 movesin a;. An unvisited z;
corresponds to true. Player 1 can move to a vertex on a branch before an unvisited
z;, if and only if the formula is true. If z; is visited, then player 2 moves from the
.vertex on the branch to z;, and the game stops. Otherwise, player 1 can move such
that he can go from ¢; to the branch with length K, attached to ¢;, We omit the
details. O

Theorem 3.15

ELEMENTARY PATH CONSTRUCTION GAME without specified starting vertex
is PSPACE-complete.

Proof.
This follows with a construction, similar to the construction of the proof of Theorem
3.12. 0

Theorem 3.16
TRON with specified starting vertices is PSPACE-complete.

16

Figure 3.5

17

Proof.

Clearly TRON is solvable in polynomial space. (Use backtracking and note that
there are at most n moves in any game.)
To prove PSPACE-hardness, we use a transformation from QUANTIFIED 3-

SATISFIABILITY. Let an instance of Q-3-SAT be given. We may assume that this
instance is of the form

F = 3X1VX23X3VX4 e EIX,._IVX,.FO,

where Fp is in conjunctive normal form with 3 literals per clause. Let C' =
{c1,...,¢m} be the set of clauses in Fy. Now define G = (V, E) by:

V={ 81,32,T,t}U
{zi|1<i<n}u{zm|1<i<n}u
{wll1<i<n}u
{z]l1<i<m}u
{c|1<i<m)

{ (31’31)7(317-‘771)’(32’y1)a(ymzl),(a’mr)’(fn"")} U

{ (zi,4i01) | 1< <n} U{(Fi,pi1) |1 <i<n}u

{ (i) | 1<d<n} U{(,Tin) |1 Si<n} U

{ (z,-,z.-+1)|13i<m} U{('r,c,-)|1§i<m}U

{ (C,‘,Cj) I"’?é']’l <1, Sm} U

{ (&) | lof form z; or 7;, 1 <i < m, I appears in clause c;}

In Figure 3.6 we give a graphical representation of G.

Claim 3.17

F is true, if and only if there is a winning strategy for player 1, on G with starting
vertices sy, 3.

Proof.

Suppose that F is true. Note that first player 1 decides whether to take z; or 7,
then player 2 decides whether to take z; or Z;, etc. As F is true, player 1 can move
in such a way, that when player 1 has moved to z; and player 2 has moved to r, then
for each clause ¢ € C, there is at least one vertex, corresponding to a literal ! € c,
that is not yet visited. (Moving to a variable corresponds to making that variable
false.) Now player 1 will move to z,. Then player 2 moves to a ¢;. If player 2 moves
to a vertex z;, Z; or to t, before player 1 moves from z,, to a vertex ¢;, then he loses.
When player 1 moves to a vertex c;,, then each vertex ¢; has been visited (m — 1 of
these by player 2, and 1 by player 1). Now player 2 must move to a z;, z; or to t. If
player 2 moves to a vertex # ¢, then player 1 moves to ¢t and wins. If player 2 moves
to ¢, then note that there is at least one literal I € ¢;, with vertex I not yet visited.
So player 1 can move to that vertex and wins.

18

edges from ‘clause vertices’
to literals, that appear in the
clause

Figure 3.6

19

Now suppose that F is false. Player 2 now can make sure that when player 1 is
on z; and player 2 is on r, then there is at least one clause ¢ € C with all vertices,
corresponding to literals in ¢, have been visited. Let this clause be ¢i,- Then, while
player 1 is visiting all vertices on the path z; — 23 — ... — zn, player 2 visits all
¢; with i # io. Then player 1 must move to c;,. Player 2 moves to t. As all vertices,

corresponding to literals in ¢;, have been visited, player 1 cannot move and loses the
game. 0

As the construction of G can be done with logarithmic working space, it follows that
TRON with specified starting vertices is PSPACE-complete. O

Theorem 3.18
TRON without specified starting vertices is PSPACE-complete.

Proof.
We modify the construction of the proof of Theorem 3.16 a little. We add vertices
{s1, 83, t1,. .. sts+2n+2m} and edges (s1,81), (s3,32), (s1,83), (t,81), (s1,t1), (ti, tiy1)

(1 <i<4+2n+2m). (See Figure 3.7.)

Figure 3.7

Note that the longest simple path in the resulting graph has length 6 4+ 2n + 2m:
start in s7, go to s3, sz, via yi’s, zo’s and T;’s to r, visit m — 1 ¢;’s, go to ¢, s;, via

20

yi's, z;'s and T;’s to 2z, go to 2., to the last ¢;, and to a literal € ¢; that is not
visited (one can always do this).

Now: if player 1 does not start at s}, he loses the game: player 2 starts at
si. If player 1 started at a vertex t;, then player 2 will walk the simple path
with length 6 + 2n + 2m and wins the game. If player 1 started at a vertex not

in {t1,...,t542n+2m}, then player 2 will visit all ¢;’s. Player 1 can make at most
5 + 2n + 2m moves, and hence player 2 wins the game.

Suppose player 1 starts at s;. Then player 2 must start at s3. Suppose he does
not. With a strategy, similar to the previous argument, player 1 can now win the
game.

Now suppose player 1 starts at s}, and player 2 starts at s%. If player 1 moves
from sj to t;, he loses: player 2 can walk a simple path with length 5 + 2n + 2m,
and hence can make the last move in the game.

So player 1 must start at s}, then player 2 starts at s%, then player 1 moves to s;,

then player 2 moves to s;. Now the situation is identical to the game with specified
starting vertices s;, s3. a

We end this section with a small comment on the standard VERTEX and EDGE
GENERALIZED GEOGRAPHY GAMES. Clearly, when we restrict ourselves to
acyclic graphs, then the problems are easy to resolve in O(n + ¢) time. However,
the proof in [29, 36] for the PSPACE-completeness of VERTEX or EDGE GEN-
ERALIZED GEOGRAPHY can easily be modified, such that we have PSPACE-

completeness for the problems on graphs, obtained by adding one edge to an acyclic
graph.

4 Polynomial time algorithms for path-forming
games on special classes of graphs.

In this section we give polynomial time algorithms for several of the considered
games on special classes of graphs. In Section 4.1 we give linear algorithms for
some of the games on graphs with bounded treewidth, based upon an intricate
characterization of subgraphs, and dynamic programming. In Section 4.2 we show
how graph rewriting can be employed to solve some problems on cacti.

4.1 Linear time algorithms for some games on graphs with
bounded treewidth.

In this section we show how VERTEX GENERALIZED GEOGRAPHY, HAMIL-
TONIAN PATH CONSTRUCTION GAME and HAMILTONIAN CIRCUIT CON-
STRUCTION GAME can be solved in linear time on graphs with a fixed upper-

21

bound k on the treewidth. We first consider VERTEX GENERALIZED GEOGRA-
PHY.

Let in the remainder of this section k be a constant. We will assume that input
graphs G = (V, E) are given with a tree-decomposition ({X; | i € I}, T = (I, F))
of G with treewidth < k. If not, then such a tree-decomposition can be found (if it
exists) in O(n**?) time with dynamic programming [3] or in O(n?) time with graph
minor theory and self-reduction [11]. For k = 1,2, 3, the tree-decomposition can be
found in linear time [5, 30].

It is not difficult to see that one may assume that the tree T in the tree-
decomposition is binary (e.g. use the transformation used in [10]). In the remain-
der we assume that we have a tree-decomposition ({X; | i € I}, T = (I, F)) of
G = (V, E) with treewidth < k, and T a binary tree. We also suppose that there
exists an 39 € I with X;, = {s}. (Take an arbitrary : € I with s € X;. Add a
branch (%,40) to T with X;, = {s}. A correct tree-decomposition results. Now apply
the technique to make T a binary tree.) 4o is taken as root of T

We now give an inductive definition of charac(X,W), for X,W C V. The
resulting algorithm will compute for all ¢ € I : charac(X;,Y;), where Y; = {v € X; | j
a descendant of i} — X;. From charac(X;,,Y;,) = charac({s},V — {s}) the answer
to the problem can be determined quickly. charac(X, W) is defined with induction
to | X|.

For sets X, define C(X) to be the set of all possible values of charac(X, W) over
all graphs G = (V,E), X, W CV, XNnW =0.

If X = 0, then charac(X, W) is the empty string, i.e., for X = 0 : C(X) = {e},
e the empty string.

If |X| =1, then charac(X, W) is a boolean € {true,false}, that denotes whether
there is a winning strategy for player 2 for VERTEX GENERALIZED GEOGRA-
PHY, played on G[X U W], the subgraph of G induced by X U W, with starting
vertex the unique vertex z € X.

Now suppose | X| > 2. We first must introduce some other notions. Let z € X.
Consider the following type of variant of VERTEX GENERALIZED GEOGRA-
PHY: the game ends when a player moves to a vertex y € X, or when a player can-
not make a move. In the former case, let W’ C W be the set of verticesin W not yet
visited, and consider charac(X — {z,y},W’) € C(X — {z,y}). Let P(X, W, z,y) be
the set of all pairs (p,c) with p € {1,2} denoting a player, and ¢ € C(X — {z,y}),
such that there is a possible play by players 1 and 2 in the above type of game,
starting at x, where player p moves to y, and ¢ = charac(X — {z,y}, W’) with W’
the set of vertices in W that are not visited in the game. Let P(X,W,z) be the
set of all triples (p,c,y) with y € X — {z} and (p,c) € P(X,W,z,y). For each
R C P(X,W,z) we now consider the game VCC(X,W,z, R). This is the variant
of VERTEX GENERALIZED GEOGRAPHY described above, with the following
properties: player 1 starts with moving from z to a vertex in W U X. The game
ends when a player cannot make a move from a vertex in W — then this player
loses the game — or when a player j moves to a vertex y € X, with W’ is the set of

22

vertices in W that are not visited. In this case, player 1 wins the game, if and only
if (j, charac(X — {z,y}, W'),y) € R.

We can now describe charac(X, W) for |X| < 2. charac(X, W) is a pair (fi, f2),
where

* f1 maps each pair (z, R) with R C Uyex—({(p,¢,¥) | p € {1,2}, c€ C(X —
{z,y})} to a boolean, that is true, if and only if R C P(X,w,z) and there is
a winning strategy for player 1 in the game VCC(X, W, z, R).

¢ f2 maps each z € X to charac(X — {z}).

(The case with |X| = 1 can be seen as a special case of the above definition. Here
P(X,W,z) =0, so f, must only state whether there is a winning strategy for player
lin VCC({z}, W, z,0), which equals charac({z}, W). f, maps z to the empty string
and can be omitted.)

As an example, consider the graph G = (W U X, E), shown in Figure 4.1. X =
{371, T2, :113}, W= {a7 b'; <, da ¢, f}

Figure 4.1

Here P(W, X, z1,z2) = {(1, true), (2, false)}, because (z1,q,b,d,c, z,) is a play,
where player 1 moves to z;, and the resulting graph (with vertices d, f,e,z3)
gives a winning strategy for player 2, and (z,a,b,c, ;) is a play where player 2
moves to z2, and the resulting graphs gives a winning strategy for player 1. Sim-
ilarly, P(W, X, z1,23) = {(1,true),(2,false)}. So P(W,X,z:) = {(1,true,),
(2,false, z2), (1, true, z3), (2, false, z3)}. For each subset R of P(W, X, z,) we can con-
sider the game VCC(X, W, z, R). Consider R = {(1, true, z,), (2, false, z3)}. Player
1 will win the game VCC(X,W,z,R): player 2 must move from b. If he moves to
d, player 1 moves to ¢, and the game ends with situation (2,false, z;). Otherwise,
player 1 moves from ¢ to z; and the game ends with situation (1, true, z;). As these
are in R, player 1 wins. So f; in charac(X, W) has: fi(z1, R) = true. In total, f; can

23

be specified with 3 - 2° bits here. f, contains the information charac(X — {z,}, W),
charac(X — {z;}, W) and charac(X — {z3}, W).

Note that if | X| is bounded by some constant ¢, then the number of bits, needed
to denote charac(X, W) is also bounded by some constant ¢/, |W| may be arbitrary
large. (If Si denotes this number for |X| = k, then S < k-20-DSk—2 4 k. G, _;. So
the constant factor grows very fast with k.)

Forie€I,letY; = {v € X; | j is a descendant of ¢ in T} — X;. Our algorithm is
based upon computing charac(X;,Y;) for all s € I.

Lemma 4.1

Let i € I be a leaf of T. Then ¥; = 0, and charac(X;,Y;) can be computed in O(1)
time.

Proof.
Clearly Y; = 0. Note that | X;| < k+1 = O(1). O

Lemma 4.2

There is a winning strategy for player 1 for VERTEX GENERALIZED GEOGRA-
PHY, if and only if charac(X;,,Y;,) = false.

Proof.

charac(X;,,Y;,) = charac({s},V — {s}) denotes whether there is a winning strategy
for player 2 for VERTEX GENERALIZED GEOGRAPHY, played on G[{s} U(V —
{s})] = G with starting vertex s. m|

Lemma 4.3

Let : € I be an internal node of T, and let j; and j; be the two children of :. Let
charac(Xj,,Y;), charac(Xj,,Y},) be given. Then charac(X;,Y;) can be computed in
O(1) time.

Proof.
Let z € X;. For all R C P(X,,Y,z), we can model all possible plays of the game
VCC(X,,Y;, z,R) by a rooted tree, as follows.

Nodes are of two types. One type of nodes is labeled with a 6-tupple (v, p, Z;, 2,
C, 62), where v € X,‘ U le U ij, pPE {1,2}, c € Uyng1 C(Y), c € UYQij C(Y)
This node represents the situation in the game, where player p must move from
vertex v, and ¢; = charac(Z;, W;), Z, is the set of unvisited vertices in X;, (but
if v € Xj,, then v € Z,), and W; is the set of unvisited vertices in Yj,; ¢z, Z; are
defined in the same way with X,, Y;,. The other type of nodes is labeled with a
pair (@, R'), such that: the father of the node is labeled with (v, p, Z;, Z3, ¢1, ¢3),
and v € Z,, R C P(Z4, W,,z), and there is a winning strategy for player 1 in the

24

game VCC(Za, Wy, v, R) for W, with charac(Z,,W,) = C. This corresponds to
the situation that player p “decides to play the game VCC(Zq, Wa,v, R') ™.

The root of the tree is labeled with (z, 1, X, Xj,, charac(Xj,Y;),
charac(X},,Y;,)).- A node labeled with (v, p, Zi, Zs, &1, ¢2) with v € X; — {z}
has no children, (because the game VCC(X,,Y;, a, R) ends when such a vertex is
reached). A node, labeled with (v, p, Z;, Z,, ¢1, ¢;) with v ¢ X; — {z} has children:

1. Forall w € Z; U Z; U (X; — {2z} — X}, — X;,) (i.e., all unvisited vertices in
X; U Xj, UXj;) with (v,w) € E, we take a childnode, labeled with (w, 3 — p,
Zy, Z3, ¢, &), where Z! = Z; — {v}, Z} = Z, — {v} (as v is now a vertex that
has been visited). If v € Z;, then ¢| = charac(Z; — {v}, W) for some W; with
¢1 = charac(Z;, W;). Note that ¢| directly can be determined from ¢;. (We
do not need W;). If v ¢ Z;, then ¢| = ¢;. Similarly ¢} can be determined.

2. If v € Z,, then for every R’ with ¢; = (f1, f2) and fi(v, R') = true, i.e., where
there is a winning strategy in VCC(Z;, W, v, R') for W with charac(Z;, W) =
C1, there is a child-node, labeled with (1, R').

3. If v € Z,, we take in the same way nodes, now labeled with (2, R').

Next we consider nodes labeled with (o, R'). We suppose oo = 1. The case o = 2
is similar. (1, R’) has a child-node for every (p,c,y) € R', labeled with (y, ', Z,
Zs, ¢, ¢3), where p'; Zy, Z,, c; are determined as follows. Let the father of the
node, labeled with (1, R') be labeled with (v, p", Z{, Z;, ¢}, ¢;). Then if p = 1,
then p’ = 3 — p”, and if p = 2, then p’ = p”. (Player p” acts as player 1 in a game
vcce(...,v, RY). (p,c,y) is a possible ending of this game, where player p in this game
moves to y. If p = 1, then this is player p”, so player 3 — p” must make a move from
y, otherwise player p” must move from y.) Z; = Z] — {v}, Z; = Z; — {v}. (v is the
only vertex in X; U X, U X;, that is visited during the “subgame” VCC(...,v, R').)
¢z = charac(Z,,Y;,). (This is because no vertex in Yj, can be visited, when we start
in X;, go to vertices in Yj,, and stop when we reach a vertex in X; — this follows
from the definition of tree-decomposition.)

This finishes the description of the tree. It represents in an abstract way all
possible plays of the game VCC(X;,Y;, z, R). When verticesin Yj, or Yj, are visited,
this is represented by considering “subgames” VCC(Z, W, v, R'). When the game is
on a vertex v € X;UXj;, UXj,, the state is denoted by a 6-tupple, giving basically: the
vertex from which must be moved, the player that must move, the sets of unvisited
vertices, and the “characteristics” of the subgraphs in Yj,, Y}, consisting of unvisited
vertices.

We now show how to compute whether there is a winning strategy for player 1
in VCC(X,,Y;, z, R) for R C P(X,W,w). For each tree-node we determine whether
it is “winning for player 1”. There are a large number of different cases.

1. A node, labeled with (v, p, Z1, Z3, ¢1, ¢2) is a leaf of T', and v ¢ X;. Then
this state is losing for player p: either he cannot make a move at all, or if he

25

moves to a vertex € Yj UY},, he will lose the game before the game reaches
a vertex in Xj; U Xj,. (Note that VCC(...,v, R) is lost here for all R, so also
for R including all endings at a vertex in Y; UY},).

2. For nodes, that are a leaf of T, and are labeled with (v, p, Z1, Zs, c1, c2)
with v € X, the characteristic of the resulting graph is uniquely determined
by c1, c2 (and the structure of X;, Xj, , X;, and edges between these, and «
and v). It is an element of C(X — {z,v}). It can be determined with the
same procedure as described here. The recursion depth will be O(k), which is
constant. (Using some tabulation of previous obtained results will help here to
reduce the constant factor considerably). Suppose the resulting characteristic
is ¢. Then the node corresponds to a state, that is winning for player p, if

and only if (v,p,c) € R. (Player p moves to v and the characteristic of the
resulting graph is c.)

3. Consider a leaf-node, labeled with (o, R). Because the node is a leaf, R = 0.
Let the father of the node be labeled with (v, p, Z;, Z2, c1, ¢2). The node
is winning for player p, because player p has a strategy that wins the game
before any player moves to Z; U Z,.

4. An internal node, labeled with (v, p, Zi, Z,, ¢1, ¢2) is winning for player p, if
and only if at least one child of the node is winning for player p.

5. An internal node, labeled with (a, R'), with its father labeled with (v, p, Z;,
Z,, c1, ¢z) is winning for player 3 — p, if and only if at least one child of the
node is winning for player p. (Player p decides to play a certain subgame
vCC(...,v,R). Player 3 — p can choose the actual outcome (p',c,y) of this
subgame.)

In this way one can determine whether the root of the tree is winning for player
1, i.e., whether there is a winning strategy for player 1 in VCC(X,,Y;, z, R).

All information, needed for charac(X;,Y;) can be determined in this way. As
only charac(Xj,), charac(X},), and the structure of X;, Xj,, X;, and edges between
these vertices are consulted, the procedure uses constant time. 0O

Theorem 4.4
For every constant k¥ > 1: VERTEX GENERALIZED GEOGRAPHY (with speci-

fied starting vertex) can be solved in O(n) time for graphs G = (V, E) with treewidth
< k, that are given together with a tree-decomposition with treewidth < k.

Proof.
Compute for every ¢ € I charac(X;,Y;). This is done by starting at leaf nodes
(Lemma 4.1); and then repeatedly computing charac(X;,Y;) when this has been

26

computed for both children of i (Lemma 4.3). When charac(X;,,Y;,) has been de-
termined, the answer of the problem can be given (Lemma 4.2). As per node : € I
only constant time is used, this takes in total O(]I]) = O(n) time. a

Note that the constant factor in the algorithm grows very fast with k. Basically,
adding 2 to k gives one level of exponentiation in the constant factor extra. Thus
our algorithm will only be practical for very small values of k, probably only for
k =1,2,3 and with some extra optimizations perhaps for k = 4 and 5.

It is possible to modify the algorithm in order to obtain similar results for related
games.

Theorem 4.5
For every constant £ > 1: VERTEX GENERALIZED GEOGRAPHY without spec-

ified starting vertex can be solved in O(n) time for graphs G = (V, E) with treewidth
< k, that are given together with a tree-decomposition with treewidth < k.

Proof.

VERTEX GENERALIZED GEOGRAPHY without starting vertex on G = (V, E)
is equivalent to VERTEX GENERALIZED GEOGRAPHY on G’ = (VU {vt,vt+},
Eu{(vt,vt)} U {(v**,w) | w € V}) with starting vertex v*. It is easy to make
a tree-decomposition of G’ with treewidth < k+ 1, given a tree-decomposition of G
with treewidth < k. a

Theorem 4.6

For every constant ¥ > 1: HAMILTONIAN CIRCUIT CONSTRUCTION GAME
and HAMILTONIAN PATH CONSTRUCTION GAME can be solved in O(n) time
for graphs G = (V, E) with treewidth < k, that are given together with a tree-
decomposition with treewidth < k.

Proof.
This is done with a method, similar to VERTEX GENERALIZED GEOGRAPHY.

Basically, one must change the charac-functions a little, and incorporate in functions
charac(X;, W;) whether W; = 0. We omit the details. m|

It is not clear whether the other problems, that are considered on this paper can
be solved in polynomial time on graphs with bounded treewidth. For the SIMPLE
(ELEMENTARY) PATH CONSTRUCTION GAME, it seems that incorporating
the length of the paths in the characteristics will give rise to characteristics of non-
polynomial size. For EDGE GENERALIZED GEOGRAPHY, the size of the char-
acteristics in our type of scheme becomes exponential, because a vertex v can be
visited O(degree(v)) times, which can be linear. This problem disappears, when we
assume a fixed upper bound on the degree of the vertices. We use the following
lemma.

27

Lemma 4.7

Let G = (V, E) be a graph with treewidth < k¥ and maximum vertex degree < d.
Then the treewidth of the edge graph of G is at most (k + 1)d — 1.

Proof.

Consider a tree-decomposition ({X; | 1 € I}, T = (I,F)) of G with treewidth
< k. TakeY; = {(v,w) € E | v € X; Vw € X;}. For every pair of edges (v,w),
(w,z) € E note that 3i : (v,w), (w,z) € Y;, namely take ¢ € I with w € X;. Also
note that the set of nodes : € I with (v,w) € Y; is the union of the subtree of
T{ielI|ve€ X} andthesubtreeof T {i € I |w € X;}. As I : v,w € X,
these subtrees are not disjoint, hence their union is a connected subtree of T. It
follows that ({Y; | i € I}, T = (I, F)) is a tree-decomposition of the edge-graph of
G. Clearly Vie I : |Y;| < d-|X;| £ (k+1)d. m]

Theorem 4.8

For every constant k£ > 1, d > 1 : EDGE GENERALIZED GEOGRAPHY can be
solved in O(n) time for graphs G = (V, E) with treewidth < k and maximum vertex
degree < d, that are given together with a tree-decomposition with treewidth < k.

Proof.

EDGE GENERALIZED GEOGRAPHY on G with starting vertex v is equivalent
to VERTEX GENERALIZED GEOGRAPHY on the edge graph of G, with starting
vertex one of the < d vertices that correspond to an edge with head v. Now use
Lemma 4.7 and Theorem 4.4. O

Clearly, Theorem 4.6 and 4.8 hold also for the case without specified starting vertex.
We now consider an application to QUANTIFIED SATISFIABILITY.

Definition.

Let F = Q171Q222 - - - Quzn E be a well-formed quantified boolean expression, where
each Q; is either “Vv” or “J”, and F is a boolean expression in conjunctive normal
form. The graph Gp is defined as follows: Gr = ({21, :*,2Zn}, EF) with Ef =
{(ziyzis1) | 1 £ 72 < n} U {(zi,z;) | there exists a clause ¢ in expression E, that
contains a literal z; or 7;, and that contains a literal z; or 77}.

Corollary 4.9

One can decide in O(n) time whether a formula F' of the form described above, is
true, when the treewidth of G is bounded by a constant k, and E is given with a
tree-decomposition of G with treewidth < k.

Proof.

Look to the transformation from QUANTIFIED 3-SATISFIABILITY to VERTEX
GENERALIZED GEOGRAPHY, given in [29]. It is not hard to see that if Gr has

28

treewidth < k, then the treewidth of the graph, resulting from this transformation
has treewidth < O(k), and that the corresponding tree-decomposition can be con-

structed from the tree-decomposition of Gr in O(n) time. Then apply Theorem 4.4.
O

In all cases, if the required tree-decomposition is not given, it can be found (if it
exists) in O(n?) time [11, 32]. It is also possible to find parallel algorithms that use
polylogarithmic time for the considered problems on graphs with bounded treewidth.

Theorem 4.10
For every constant k > 1: VERTEX GENERALIZED GEOGRAPHY, EDGE GEN-
ERALIZED GEOGRAPHY restricted to graphs with maximum degree > d (d con-

stant), HAMILTONIAN CIRCUIT CONSTRUCTION GAME, HAMILTONIAN
PATH CONSTRUCTION GAME, when restricted to graphs with treewidth < k
belong to the class NC.

Proof.

This follows directly from the algorithms and the fact that a suitable tree-
decomposition with T a tree of logarithmic depth can be found in polylogarithmic
time on a (CRCW or EREW) PRAM [12]. m|

A similar type of result holds for QUANTIFIED SATISFIABILITY. Lengauer in-
troduced a method for hierarchical descriptions of graphs. With this method it is

possible to specify graphs that have a size, exponential in the size of the specification.
(See e.g. [27, 28].)

Theorem 4.11

For each constant ¥ > 1: VERTEX GENERALIZED GEOGRAPHY, HAMIL-
TONIAN PATH CONSTRUCTION GAME and HAMILTONIAN CIRCUIT CON-
STRUCTION GAME for hierarchical graphs, where each cell contains at most k
vertices, can be solved in time, linear in the size of the graphs.

Proof.

Use a method, similar to the method for graphs with bounded treewidth. For each
cell G; we compute charac(V;, X;), where V; are the vertices in cell G;, and X; is the
set of all other vertices in the expansion of G;. We omit the details. O

4.2 EDGE GENERALIZED GEOGRAPHY on cacti

In this section we give a linear time algorithm for EDGE GENERALIZED GEOG-
RAPHY on cacti, based upon graph rewriting. The resulting algorithm is easier
and more practical than the algorithm for EDGE GENERALIZED GEOGRAPHY
on graphs with bounded treewidth and degree. Also we do not need to restrict the

29

degree of the graphs here, but on the other hand, the class of cacti is much more
limited than that of the graphs with treewidth < 2.

We will use the following notations: (G, s) denotes the game (instance), where
the EDGE GENERALIZED GEOGRAPHY game is played on the graph G with
starting vertex s. In the undirected graphs we deal with, we allow self-loops, and
multiple edges. Write (G,s) = (H,t) if and only if there is a winning strategy for
player 1 in (G, s) & there is a winning strategy for player 1 in (H,1)).

Lemma 4.12

Let G = (V, E) be an undirected graph. Let s,v € V, degree(v) = 1, (v,w) € E,
w # s. Let G—{v, w} denote the graph (V—{v,w}, E—{(z,y) € E | z = vVz = w}).
Then (G, s) = (G — {v,w},s).

Proof.

Suppose player j € {1,2} has a winning strategy in (G — {v,w},s). Then he has a
winning strategy in (G, s) : as long as player 3 — j does not move to w, make the
same moves as in (G — {v,w},s). When player 3 — j moves to w, then move to v
and win the game. Now the lemma follows. O

Lemma 4.13

Let G = (V, E) be an undirected graph. Let (v,w) € E; degree(v) = degree(w) = 2;
and s ¢ {v,w}. Let = be the neighbor of v # w, and let y be the neighbor of w # v.
Let G' = (V - {'U, w}a E- {(:B, ’U), (v’w), (w, y)} U {(:E, y)}) Then (G7 s) = (G,’ S)'

Proof.

TR T
./ v/
v w

y
Figure 4.2

The construction is shown in Figure 4.2. The game on both graphs is similar,
as e.g. moving from z to y in G’ corresponds in moving from z to v, then the other
player will move to w, and then the player moves to y. a

Lemma 4.14

Let G = (V,E) be a directed graph. Let v € V; degree(v) = 2; and suppose
both edges adjacent to v have the same other endpoint w. Suppose v # s. Let
G — {v} = G[V — {v}]. Then (G, s) = (G — {v},s).

30

Proof.

The construction is shown in Figure 4.3. If there exists a winning strategy in (G —
{v}, s) for player j € {1,2}, then there exists one in (G, s): move as in (G — {v}, s),
except when player 3 — j moves to v, then move back to w. a

Figure 4.3

Lemma 4.15
Let G = (V, E) be an undirected graph. Let v € V be adjacent to two self-loops ¢; =
(v,v) and ez = (v,v) (&1 # e2). Then (G, s) = (G, s) with G' = (V, E — {e1, e2}).

Proof.

Similar as before. When player 3 — j moves over e; or e, then player j moves over
the other edge in {e;, e;}. (See Figure 4.4 for the construction.) 0
Figure 4.4

Lemma 4.16

Let G = (V, E) be an undirected graph. Let v € V; suppose v is adjacent to exactly
3 edges, where exactly one of these is a self-loop; and suppose v # s. Let G — {v}
be as above. Then (G, s) = (G — {v}, s).

31

Proof.

Suppose there is a winning strategy for player j € {1,2} in (G — {v}, s). Then there
is a winning strategy for player j in (G,). As long as player 3 — j does not move to
v, player j moves as in (G — {v}, s). Suppose player 3 — j moves to v. Let e; be the
selfloop (v,v), and let e; be the other unused edge, adjacent to v. (See Figure 4.5.)
Moving over edge e; is either a winning or a losing move, regardless what player
makes the move. So if it is a winning move, player j moves over e, and if it is a
losing move, then player j moves over e;, and player 3 — j must move over e; and

loses the game. (See Figure 4.6 for the construction.) O
oY
3 c,
‘1
Figure 4.5

Figure 4.6

Lemma 4.17
Let G = (V, E) be an undirected graph. Let v € V; suppose v is adjacent to exactly

2 edges, one of which is a self-loop. Let (v,w) € E, v # w be the other edge.
Suppose v # s. Then (G, s) = (G — {v}, s).

Proof.

Similar as before. Player j plays in G as in G — {v}, but when player 3 — j moves
to v from w, then player j moves over the self-loop and wins the game. (See Figure
4.7 for the construction.) a

32

Figure 4.7

Lemma 4.18

After applying the rules of Lemma 4.12 — 4.17 as often as possible, starting with
(G,s) with G a connected cactus, a game (H,s) will result, with H = ({s},0);
H = ({s},{(s,8)}) or H = ({s,v},{(s,v)}) for some v.

Proof.

(See Figure 4.8 for the possibilities for H.) Each application of a Lemma 4.12 -
4.17 will result in another, smaller cactus. Note that the biconnected components
of G form a tree. Every leaf-node in this tree that corresponds to a single edge or a
cycle with even length will disappear with Lemma 4.12, 4.13 and 4.14. Every leaf-
node corresponding to a cycle with odd length will reduce to a self-loop. Suppose
no application of a Lemma 4.12 - 4.16 is possible. The resulting graph H cannot
have more than one biconnected component. Suppose not. Look at a biconnected
component that is a leaf in the tree of biconnected components if we do not look
to self-loops. If it is a cycle, and some vertices (# the unique vertex, adjacent to
other biconnected components) have self-loops, then Lemma 4.15 or 4.16 can be
applied. If it is a cycle without such self-loops, it can be reduced to nothing or a
self-loop. If it is a single edge, then Lemma 4.12, 4.15 or 4.17 can be applied. With
a similar argument, H cannot have a single biconnected component with three or
more vertices. So H has at most 2 vertices. Simple case analysis gives the theorem.

a

Theorem 4.19
EDGE GENERALIZED GEOGRAPHY can be solved in O(n) time on cacti.

Proof.

First we remark that we may restrict ourselves to connected graphs. Cacti have
O(n) edges. It remains to show that by proper choice of data-structures, we can
dynamically determine where one of the Lemmas 4.12 — 4.17 can be applied, in

33

Figure 4.8

O(1) amortized time per operation. Hereto, each vertex has a counter, denoting its
degree, and a boolean, denoting whether it has a self-loop. (We may assume, by
Lemma 4.15 that each vertex has 0 or 1 adjacent self-loops.) In a queue Q we put
each vertex, where one of the rules 4.12 - 4.14, 4.16, 4.17 can be applied. Repeatedly,
a vertex is taken from @); if the vertex has not been deleted already by an earlier
operation, the operation corresponding to v is applied; for each removed edge its still
existing endpoints have their degree updated, and are possibly put in @, and some
other checks are made (depending on the particular operation), possibly resulting
in the setting of a “self-loop boolean”, or putting one or more vertices in Q. We
omit the easy, but tedious details. Finally, if the resulting graph H = ({s},), then
player 2 has a winning strategy, otherwise player 1 has a winning strategy. O

It is possible to prove other lemmas, of a similar flavor as Lemmas 4.12 - 4.17. With
similar techniques one can show:

Theorem 4.20

EDGE GENERALIZED GEOGRAPHY can be solved in O(n) times for di-
rected graphs G = (V| E), with the property that the undirected graph G' =
(V,{(v,w) | (v,w) € EV (w,v) € E}) is a cactus.

Also, similar algorithms can be designed for the VERTEX GENERALIZED GE-
OGRAPHY game on cacti.

5 Final comments.

This research leaves several directions for further research. On one hand, there
are still several interesting variants, that have not yet been shown to be PSPACE-
complete, like EDGE GENERALIZED GEOGRAPHY without specified starting
vertex, and most of the games, considered in this paper, on undirected graphs. We
discuss one of these games later in this section. On the other hand, much work can
still be done on the complexity of the problems, when restricted to special classes of
graphs. It is surprising to contrast the little amount of work done on special cases
of PSPACE-complete problems with the huge amount of work done on special cases
of NP-complete (graph) problems. (See e.g. [23, 25]). Although results for special

34

cases of PSPACE-complete problems usually will be harder to obtain than similar
results for NP-complete problems, there are many interesting problems in this area,
that are worth being studied.

We now consider VERTEX GENERALIZED GEOGRAPHY on undirected
graphs. A possible PSPACE-hardness proof for this problem could use a trans-
formation from VERTEX GENERALIZED GEOGRAPHY in the following way:
each edge (v, w) is replaced by a graph Gow = (V, E) with two specified vertices
s,t € V. sisidentified with v, ¢ is identified with w. s and ¢ have degree 1 in Gow.
(See Figure 5.1.)

Figure 5.1

Consider the following variant of VERTEX GENERALIZED GEOGRAPHY.
The game has starting vertex s (t). A player that moves to ¢ (s) does not win the
game, but scores “a kind of” draw. Use the following scoring values. A player that
cannot move from a vertex # t(s) scores 0, its opponent 1. The player that moves
to t scores 1/3, its opponent 2/3.

Suppose Gow, s, t fulfill the following two requirements:

1. There is a strategy for player 1 in the game with starting vertex t and “draw-
ing” vertex s, that guarantees player 1 to score 1 point.

2. There is a strategy for player 1 in the game with starting vertex s and “draw-
ing” vertex t, that guarantees player 1 to score 1/3 point, but there is no
strategy for player 1 that guarantees to score 2/3 or 1 point.

We call such a graph Gow a “one way” graph.
Lemma 5.1

Suppose there exists an (undirected) one way graph. Then VERTEX GENERAL-
IZED GEOGRAPHY is PSPACE-complete for undirected graphs.

35

Proof.

Clearly the problem is in PSPACE. To prove PSPACE-hardness under the assump-
tion that an undirected one way graph Gow exists we transform from the directed
case. Let an instance G = (V, E), so of VERTEX GENERALIZED GEOGRAPHY
for directed graphs been given. Replace each edge (v,w) by a copy of Gow, iden-
tifying v with s and w with ¢. Now note the following: 1. When (v,w) € E, then
a player that moves from w to a vertex in the copy of Gow, corresponding to edge
(v, w) will lose the game. 2. When (v,w) € E and player ; moves from v to a vertex
in the copy of Gow, corresponding to (v, w), then for both players there is a strategy
that will result in the situation that player 3 —: must move from w. This means that
the undirected one way graph Gow functions in the same way as a directed edge.
Hence, there is a winning strategy for player 1 in the obtained undirected graph, if
and only if there is one in G, sp. As the transformation can be done in logarithmic
working space, the theorem follows. O

Hence, a very interesting open problem is the following.
Question: Does there exist an undirected one way graph?

Despite several investigations (including automatically testing a large number of
randomly generated undirected graphs) we were unable to find an undirected one
way graph, and unable to disprove its existence. A similar approach could also be
tried for the EDGE GENERALIZED GEOGRAPHY problem on undirected graphs.
This seems a harder problem (consider the proof of Theorem 4.8).

We close with mentioning without proof some other special cases of the problems
considered in this paper:

e VERTEX GENERALIZED GEOGRAPHY, EDGE GENERALIZED GEOG-
RAPHY, SIMPLE PATH CONSTRUCTION GAME and ELEMENTARY
PATH CONSTRUCTION GAME are solvable in O(n + €) time on acyclic
graphs, but become PSPACE-complete if restricted to graphs, obtained by
adding one edge to an acyclic graph.

o All games, that are considered in this paper, except for TRON without speci-
fied starting vertices, are linear time solvable on (undirected graphs that are)
trees. Recently, an O(n+/n) algorithm for TRON without specified starting
vertices was obtained together with Kloks [15].

o SIMPLE PATH CONSTRUCTION GAME is solvable in O(n) time on cacti.

e ELEMENTARY PATH CONSTRUCTION GAME is solvable in O(n3+2%/2n)
time for cacti with maximum vertex degree d.

Acknowledgement

Marinus Veldhorst proposed the game, called TRON in this paper.

36

References

[1] A. Adachi, S. Iwata, and T. Kasai. Some combinatorial game problems require
Q(n*) time. J. ACM, 31:361-376, 1984.

[2] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability — A survey. BIT, 25:2-23, 1985.

(3] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277-284, 1987.

[4] S. Arnborg, J. Lagergren, and D. Seese. Problems easy for tree-decomposable
graphs (extended abstract). In Proc. 15 th ICALP, pages 38-51. Springer Ver-
lag, Lect. Notes in Comp. Sc. 317, 1988. To appear in J. of Algorithms.

[5] S. Arnborg and A. Proskurowski. Characterization and recognition of partial
3-trees. SIAM J. Alg. Disc. Meth., 7:305-314, 1986.

[6] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Disc. Appl. Math., 23:11-24, 1989.

[7] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear time computation of optimal
subgraphs of decomposable graphs. J. Algorithms, 8:216-235, 1987.

(8] H. L. Bodlaender. Classes of graphs with bounded treewidth. Technical Report
RUU-CS-86-22, Dept. of Computer Science, Utrecht University, Utrecht, 1986.

[9] H. L. Bodlaender. Dynamic programming algorithms on graphs with bounded
tree-width. Technical report, Lab. for Computer Science, M.I.T., 1987. Ext.
abstract in proceedings ICALP 88.

(10] H. L. Bodlaender. Polynomial algorithms for Chromatic Index and Graph
Isomorphism on partial k-trees. Technical Report RUU-CS-87-17, Dept. of
Computer Science, Utrecht University, 1987.

[11] H. L. Bodlaender. Improved self-reduction algorithms for graphs with bounded
treewidth. Technical Report RUU-CS-88-29, Dept. of Computer Science,
Utrecht University, 1988. To appear in: Proc. Workshop on Graph Theoretic
Concepts in Comp. Sc. 89.

[12] H. L. Bodlaender. NC-algorithms for graphs with small treewidth. In J. van
Leeuwen, editor, Proc. Workshop on Graph-Theoretic Concepts in Computer
Science WG’88, pages 1-10. Springer Verlag, Lecture Notes in Computer Sci-
ence vol. 344, 1988.

[13] H. L. Bodlaender. Planar graphs with bounded treewidth. Technical Report
RUU-CS-88-14, Dept. of Computer Science, Utrecht University, Utrecht, 1988.

37

[14] H. L. Bodlaender. On the complexity of some coloring games. Tech. Rep.
RUU-CS-89-27, Department of Computer Science, University of Utrecht, 1989.

[15] H. L. Bodlaender and T. Kloks. Deciding the TRON-game on trees in o(n./n)
time. Unpublished manuscript, 1990.

[16] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear
algorithms from predicate calculus descriptions of problems on recursive con-
structed graph families. Manuscript, 1988.

[17] B. Courcelle. A representation of graphs by algebraic expressions and its use
for graph rewriting systems. In Proc. 8rd Int. Workshop on Graph Grammars,

pages 112-132. Springer Verlag Lecture Notes in Computer Science vol. 291,
1987.

(18] S. Even and R. Tarjan. A combinatorial problem which is complete in polyno-
mial space. J. ACM, 23:710-719, 1976.

[19] M. R. Fellows and K. Abrahamson. Cutset-regularity beats well-quasi-ordering
for bounded treewidth. Manuscript, 1989.

[20] A. Fraenkel, M. Garey, D. Johnson, T. Schaefer, and Y. Yesha. The complexity
of checkers on an n X n board — preliminary version. In Proc. 19th Annual
Symp. on Foundations of Computer Science, pages 55-64, 1978.

[21] A.Fraenkel and E. Goldschmidt. Pspace-hardness of some combinatorial games.
J. Combinatorial Theory ser. A, 46:21-38, 1987.

[22] A. Fraenkel and D. Lichtenstein. Computing a perfect strategy for n by n chess

requires time exponential in n. J. Combinatorial Theory ser. A, 31:199-214,
1981.

[23] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[24] D. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms,
4:397-411, 1983.

[25] D.S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms,
6:434-451, 1985.

[26] C. Lautemann. Efficient algorithms on context-free graph languages. In Proc.
15°’th ICALP, pages 362-378. Springer Verlag, Lect. Notes in Comp. Sc. 317,
1988.

[27] T. Lengauer. Efficient algorithms for finding minimum spanning forests in
hierarchically defined graphs. J. Algorithms, 8:260-284, 1987.

38

[28] T. Lengauer and E. Wanke. Efficient solutions of connectivity problems on
hierarchically defined graphs. SIAM J. Comput., 17:1063-1080, 1988.

[29] D. Lichtenstein and M. Sipser. Go is polynomial-space hard. J. ACM, 27:393-
401, 1980.

[30] J. Matousék and R. Thomas. Algorithms finding tree-decompositions of graphs.
Unpublished paper, 1988.

[31] K. Mehlhorn, S. Naher, and M. Rauch. On the complexity of a game related to
the dictionary problem. In Proceedings 30th Annual Symposium on Foundations
of Computer Science, pages 546-548, 1989.

[32] N. Robertson and P. Seymour. Graph minors. XIII. The disjoint paths problem.
Manuscript, 1986.

[33] J. Robson. N by N Checkers is exptime complete. SIAM J. Comput., 13:252-
267, 1984.

[34] J. Robson. Alternation with restrictions on looping. Information and Control,
67:2-11, 1985.

[35] T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th Symp.
on Theory of Computation, pages 216-226, 1978.

[36] T. J. Schaefer. On the complexity of some two-person perfect-information
games. J. Comp. Syst. Sc., 16:185-225, 1978.

[37] P. Scheffler. Die Baumweite von Graphen als ein Mag fir die Kompliziertheit
algorithmischer Probleme. PhD thesis, Akademie der Wissenschaften der DDR,
Berlin, 1989.

[38] L. J. Stockmeyer and A. K. Chandra. Provably difficult combinatorial games.
SIAM J. Comput., 8:151-174, 1979.

[39] T. Wimer. Linear algorithms on k-terminal graphs. PhD thesis, Dept. of Com-
puter Science, Clemson University, 1987.

39

