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Abstract

Semi-unification is a generalization of both unification and matching with applications
in proof theory, term rewriting systems, polymorphic type inference, and natural language
processing. It is the problem of solving a set of term inequalities M; < Ny,..., Mi < Ng,
where < is interpreted as the subsumption preordering on (first-order) terms. Whereas
the general problem has recently been shown to be undecidable, several special cases are
decidable.

Kfoury, Tiuryn, and Urzyczyn proved that left-linear semi-unification (LLSU) is decid-
able by giving an exponential time decision procedure. We improve their result as follows.

1. We present a generic polynomial-time algorithm L1 for LLSU, which shows that LLSU
isin P.

2. We show that L1 can be implemented in time O(n®) by using a fast dynamic transitive
closure algorithm.

3. We prove that LLSU is P-complete under log-space reductions, thus giving evidence
that there are no fast (NC-class) parallel algorithms for LLSU.

As a corollary of the proof of P-completeness we obtain that LLSU with only 2 term in-
equalities is already P-complete.

We conjecture that L1 can be implemented in time O(n?), which is the best that is
possible for the solution method described by L1. The basic question as to whether another
solution method may admit even faster algorithms is open. We conjecture also that LLSU
with 1 inequality is also P-complete.

1 Introduction

Semi-unification is a generalization of both unification and matching with applications in proof
theory [Pud88], term rewriting systems [Pur87, KMNS89], polymorphic type inference [Hen88b,
KTU89a, Lei89b), and natural language processing [DR89]. Because of its fundamental nature
it may be expected to find even more applications.

Whereas general semi-unification was long believed to be decidable, Kfoury, Tiuryn and
Urzyczyn recently gave an elegant reduction of the boundedness problem for deterministic Turing
Machines to semi-unification [KTU89b]. By adapting a proof for a similar problem attributed to



Hooper [Hoo65] they showed that boundedness is undecidable, which implies the undecidability
of semi-unification.

Several special cases of semi-unification have been shown to be decidable: uniform semi-
unification (solving a single term inequality) [Hen88b, Pud88, KMNS89], semi-unification over
two variables [Lei89a), and left-linear semi-unification [KTU89a]. Pudlak showed that general
semi-unification can be effectively reduced to semi-unification over two inequalities [Pud88]; thus
bounding the number of inequalities by a number greater than one does not simplify the problem.
In drastic contrast, Kapur, Musser, Narendran and Stillman gave a polynomial time procedure
for uniform semi-unifiability (single inequality) [KMNS89).

In this article we investigate the special case of lefi-linear semi-unification (LLSU). This
problem was first addressed by Kfoury, Tiuryn, and Urzyczyn [KTU89a]. They were able to
show that left-linear semi-unification is decidable, and a closer look at their decision procedure
reveals that left-linear semi-unification is in DEXPTIME. We improve this result by showing
that left-linear semi-unification is polynomial time decidable. The present a generic algorithm,
Algorithm L1, for LLSU that is implementable in polynomial time. An implementation based
on a fast dynamic transitive closure algorithm [LPvL87, Yel88] (with only edge additions) yields
an O(n3) time LLSU procedure where n is the size of the given (left-linear) semi-unification
problem. Dynamic transitive closure seems too general and powerful a method for LLSU, and
we conjecture that L1 can be improved to run in time O(n2). This is best possible for any
method based on L1 since as many as n? edges are added to an initially sparse graph on n nodes
in L1. The question as to whether there is a linear-time algorithm for lefi-linear semi-unification
or, in fact, any algorithm asymptotically faster than O(n?) is left open.

We also show that, even though left-linearity is a very strong condition on input instances, it
still is not strong enough to admit fast (NC-class) paralle! algorithms unless NC = P. Specifically,
we show that LLSU is P-complete under log-space reductions by adapting a well-known proof of
Dwork, Kanellakis, and Mitchell for showing the P-completeness of unification [DKM84].

The outline of the rest of the paper is as follows. In section 2 we define general and left-
linear semi-unification, and we present a general semi-unification algorithm, algorithm A [Hen89].
Observing the behavior of algorithm A on left-linear problem instances yields the critical insight
that permits “speeding up” A to run in polynomial time. The result is Algorithm L1. In section 3
we present our polynomial time algorithm L1 for LLSU over the alphabet .A;, which consists of a
single binary function symbol, and show that a dynamic transitive closure based implementation
has time complexity O(n3). In section 4 we show that left-linear semi-unification is P-complete.
We conclude with some final remarks and open problems in section 5.

2 General semi-unification

In this section we present definition and properties of semi-unification and an (semi-)algorithm,
Algorithm A, for solving general semi-unification problem instances. Most of this is a rehash
from a previous paper [Hen89], but it is very instructive in giving insight into the correctness of
our polynomial time algorithm for LLSU.

2.1 Definition and properties of semi-unification

A ranked alphabet A = (F,a) is a finite set F of function symbols together with an arity function
a that maps every element in F to a natural number (including zero). A function symbol with
arity 0 is also called a constanf. The set of variables V is a denumerable infinite set disjoint
from F. The terms over A and V is the set T(A, V) consisting of all strings generated by the
grammar



M =z|c|f(M,..., M)
N e’
ktimes

where f is a function symbol from A with arity k > 0, ¢ is a constant, and z is any variable
from V. Two terms M and N are equal, written as M = N, if and only if they are identical as
strings.

A substitution o is a mapping from V to T(A, V) that is the identity on all but a finite subset
of V. The set of variables on which o is not the identity is the domain of o. Every substitution
0:V — T(A,V) can be naturally extended to o : T(A, V) — T(A, V) by defining

o(f(My,...,My)) = f(o(My),...,0(My)).

A term M subsumes N (or N matches M), written M < N, if there is a substitution p such
that p(M) = N. If N matches M then there is exactly one such p as required in the above
definition whose domain is contained in the set of variables occurring in M. We call it the
quotient substitution of M and N and denote it by N/M.

Given a set of pairs of terms S = {(My, V1), ...,(My, Ni)} a substitution o is a semi-unifier
of S if o(M;) < 6(N1),...,0(Mi) < o(Ni). S is semi-unifiable if it has a semi-unifier. Semi-
unifiability is reminiscent of both unification (because of & being applied to both the left- and
right-hand components of S) and matching (because the resultant right-hand sides have to match
their corresponding right-hand sides), but it is in fact much more general than both, evidenced
by the recent undecidability result for semi-unifiability.

In the context of semi-unification we shall call a set of pairs of terms a system of inequalities
and write it also

?
M < M
?
M, < N
?
M, < N

The question mark over the inequality symbol is to indicate that these are not valid inequalities,
but are supposed to be solved; that is, a substitution is to be found that makes them valid.

As shown in [Hen88a), every semi-unifiable system of inequalities has a most general semi-
unifier if the notion of generality on substitutions is properly defined.

Example:

Let A; be a ranked alphabet with only one function symbol f, which has arity 2; V =
{z1,22,...,2;,...}.

Consider the semi-unifiable system of inequalities Sg:

f(f(z1,72),23)

T4

T4

f(z3’ f(z21 35))

Possible semi-unifiers are og = {z3 — f(z¢,27),24 — f(f(zs,29), f(210,211))} and 0y =
{z3— f(z2,22), 24 — f(f(z2,22), f(z2,22)), 25 — 22} (00 is a most general semi-unifier of Sp)
since, after substituting og, respectively o1, in Sp, we get the valid inequalities

f(f(z1,22), f(zs,27)) < f(f(zs,%9), f(x10,211))
F(f(zs,29), f(Z10,211)) < f(f(zs,27), f(22,25)),

?
<
?
<



respectively

f(f(l‘l,:tz),f(zz,zz)) < f(f(1?2,z2),f($2,22))
F(f(z2,22), f(z2,22)) < f(f(22,22), f(22,22)).

The quotient substitutions for these inequalities are p} = {z; + z3,z3 = z9,z6 ++ 10,27 —

z11} and p} = {zs — z¢,To — ZT7,Z10 + T2,Z11 > Ts}, respectively p} = {z; — z,} and
2

=1}

End of example

2.2 Algorithm A

Algorithm A is a general (semi-)algorithm for computing the most general semi-unifier of a
system of inequalities. Even though it is bound not to terminate for some non-semi-unifiable
inputs it catches many non-semi-unifiable systems of inequalities due to an ertended occurs check,
which is a generalization of the conventional occurs check in unification algorithms.

The algorithm operates on a graph-theoretic representation of systems of inequalities, both
to achieve practically acceptable performance and to aid in the analysis of some combinatorial

properties. Since intermediate steps of the algorithm can introduce equations M Z N between
terms, not just inequalities, the representation, called an arrow graph, in fact encodes systems
of equations and inequalities. Because a formal description of arrow graphs is notoriously cum-
bersome, we give a brief, but hopefully clear, informal definition below.

A term graph is an acyclic graph that represents sets of terms over a given alphabet A = (F, a)
and set of variables V. It consists of a set of nodes, N, a subset of which is labeled with function
symbols from F, and the rest of which is labeled with variables from V. If f is a function symbol
with arity k, k > 0, every node n labeled with f has exactly k ordered children; i.e., there are
k directed term edges originating in n and labeled with the numbers 1 through k. The variable
labeled nodes have no children, and for every variable z there is at most one node labeled with
z. The nodes together with the tree edges form a normal directed graph, and if it is acyclic,
then we say the term graph is acyclic.

Every node in an acyclic term graph can be interpreted as a term; for example, if n is a node
labeled with function symbol f, and its children are n;,...,n; (in this order) representing terms
My, ..., M}, then n represents the term f(M,, ..., Mi). Note that for every set of terms there is
an easily constructed, but generally non-unique term graph such that every term is represented
in it.

Example:

The term graph in Figure 1 represents the terms f(f(z1,z2),z3),z4 and f(z3, f(z2,25))
occurring in the system of inequalities Sy (see previous example).

End of example

A term graph can represent all the terms occurring in a system of equations and inequalities.
An arrow graph is a term graph with two additional kinds of edges: Equivalence edges encode
equations, and arrows encode inequalities.

Equivalence edges are represent an equivalence relation on the nodes of the arrow graph.
They can be thought of as undirected edges, This is the notion we shall adopt, but we shall
always assume that for every (undirected) path from node n; to node ny via equivalence edges
(only) there is also an equivalence edge directly between n; and ny. If there is an equivalence
edge between n; and ny we write n; ~ nj.

Arrows are directed edges labeled by natural numbers, which indicate to which inequality in
a given system of equations and inequalities an arrow corresponds. We call the labels of arrows

-  } . - . . .
colors, and we write ny — ns if there is an i-colored arrow pointing from n; to ns.



Figure 1: A term graph representation of a set of terms

To summarize, an arrow graph is a term graph with additional edges: undirected equivalence
edges and directed arrows. Note that an arrow graph has three different kinds of edges: term
edges, equivalence edges, and arrows.

An arrow graph representation of a system of inequalities S,

M, ; N
M, ; N
My < N
is a term graph G with (not necessarily distinct) nodes my, ..., mg,n1,...,n; representing the

terms in S, and arrows from m; (representing M;) to n; (representing N;) for 1 < i < k that
have pairwise distinct labels. There are no equivalence edges. (In other formulations systems
of equations and inequalities are input instances for semi-unification, in which case equivalence
edges are used to represent equations in the arrow graph representation.)

Example:

An arrow graph representation of system of inequalities Sp is in Figure 2. Term edges are
shown in straight, bold lines; arrows in curved, thin lines. There are no equivalence edges.

End of example

Algorithm A operates on arrow graphs. It repeatedly rewrites the arrow graph representation
of a system of inequalities S by nondeterministically “applying” some closure rules until no rule
can be applied any more. At that point it indicates whether S is semi-unifiable and, if so, outputs
a most general semi-unifier of S. The algorithm is described in detail in Figure 3 for alphabet
As!, and the closure rules are also depicted graphically in Figure 4.

Example:

1 A3 is the alphabet consisting of a single binary function symbol f. Semi-unifiability over any alphabet is
log-space reducible to semi-unifiability over A3 [Hen89). This reduction does not, however, preserve left-linearity.



Figure 2: An arrow graph representation of a system of inequalities

The effect of Algorithm A on the arrow representation of the system of inequalities Sp is
shown in Figures 5 and 6. In the initial arrow graph representation (see Figure 2) only rule 4b
in Algorithm A (see Figure 3) is applicable. The arrow graph after after its application is shown
in Figure 5. Immediately afterwards rule 3a can be applied to add an arrow (colored with 1)
pointing to the new f-labeled node, and application of rule 2 adds 1-colored arrows pointing to
the new variable-labeled nodes, at which point rule 4b is applicable again. The algorithm finally
terminates with the arrow graph shown in Figure 6. Since this final arrow graph is not O the
given system of inequalities is semi-unifiable, and a most general semi-unifier can be read off from
the final arrow graph: {z3 — f(z9, z12), 24 — f(f(zs,z11), f(Z10,Z13))}, which is equivalent to
o9 modulo renaming of variables. '

End of example

2.3 Left-linear semi-unification

A term is linear if every variable has at most one occurrence in it. For example, f(z;,z2) is
linear (assuming z; # z2), but f(z;, ;) is not. A system of inequalities S is lefi-linear if every
left-hand side term in S is linear. Left-linear semi-unification is the problem of computing most
general semi-unifiers of left-linear systems of inequalities, and lefi-linear semi-unifiability (LLSU)

is the problem of deciding whether a given left-linear system of inequalities is semi-unifiable.
Example:

Recall the system of inequalities Sp,

f(f(zlx 32)’ 33)

Ta

T4

f(zs, f(z2,z5)).

The left-hand sides are the terms f(f(z1, z2), z3) and z4. Since they are linear, Sy is an instance
of left-linear semi-unification (over alphabet A3).

?
<
.
<



Let G be an arrow graph. Apply the following rules (depicted also in Figure 4)
until convergence:

1. If there exist nodes m and n labeled with f and with children m;, m;
and n;, ny, respectively, such that m ~ n then add m; ~ n; and ms ~
na.

2. If there exist nodes m and n labeled with f and with children m;, mq
and ny,n2, respectively, such that m = n then add arrows m; = n,
and mg > na.

3. If there exist nodes m;, ms, n;, and ny such that
(&) m~ny,m 4, m, and n, 4 ny then add my ~ ng;

(b) my~mny;, m 4, mgy and mg ~ ns then add an arrow n, LR na.
4. (a) (Extended occurs check) If there is a path consisting of arrows of
any color (arrow path) from n; to nz and n, is a proper descendant
of ny, then reduce to the improper arrow graph 0.%
(b) If the extended occurs check is not applicable and there exist nodes
m and n such that m is labeled with f and has children m;, ms,
n is labeled with a variable, and n ~ n” implies that n” is vari-

able labeled, and there is an arrow m 2, n then create new nodes
n’,n},n5 and label n’ with f, label n} and n) with new variables

z' and z”, respectively; make n,n, the children of n’; and add
n~n'

%Node n' is a descendant of node n if it there is a path from n to n’ consisting of term edges (traversed
in forward direction) and equivalence edges (traversed in any direction); n’ is a proper descendant if there
is a path with at least one term edge.

Figure 3: Algorithm A
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Figure 4: Closure rules



Figure 6: A final arrow graph

9



(4b)

If the extended occurs check is not applicable and there exist nodes m and n
such that m is labeled with f and has children m;, ms, n is labeled with a
variflble, and n ~ n’ implies that n’ is variable labeled, and there is an arrow
m — n then create new nodes n, n, and change the label of n to be f, label

n} and n), with new variables z’ and z”, respectively; and make n},n% the
children of n.

Figure 7: Modified rule for expanding arrow graph

End of example

For reasons that will become clear below we can modify rule 4b in an almost trivial fashion.
If rule 4b is applicable because there is an arrow from an f-labeled node m to a variable labeled
node n, it prescribes that a new f-labeled node n’ with new variable labeled children n}, n} and
an equivalence edge n ~ n’ be added to the arrow graph. The modified rule 4b is as follows.
Instead of adding three new nodes n’, n{, n% and an equivalence edge n ~ n’ we add only two new
nodes, n{, n5 (labeled with new variables), change the label of n from a variable to f, and make
nf,n} the children of n. (The old label of n is remembered in some auxiliary data structure.
This information is only needed for reading off the most general semi-unifier from a final arrow
graph, but not for the execution of Algorithm A itself.) This modification is given in detail in
Figure 7. Henceforth, we shall assume that Algorithm A uses the modified rule 4b.

The correctness of Algorithm A is proved in great detail in [Hen89), and it is a minor issue
to verify that the modified version of rule 4b preserves correctness.

Example:

The final arrow graph after executing modified Algorithm A on the arrow graph represen-
tation of system Sp of Figure 2 is shown in Figure 8. Note that the arrow graph contains no
equivalence edges, and only rules 2 and 4b of Algorithm A were applied.

End of example

Let us consider an arrow graph representation of a left-linear system of inequalities S and
one of its nodes m that represents a left-hand side. Since S is left-linear the subgraph rooted at
m is a tree; that is, there is one and only one path consisting of term edges from m to any of the
nodes reachable from m via term edges. Executing Algorithm A on the arrow graph of Figure 2
we see that at no point rule 3a, the only rule that could possibly introduce the first equivalence
edge, is applicable. This is not just a peculiar property of the specific example, but holds for
every (arrow representation of a) left-linear system of inequalities.

An ezecution (of Algorithm A) is a sequence of arrow graphs (Go, ..., Gj, . ..) in which every
component is derived from its predecessor by application of one of the closure rules of Algorithm
A (see Figure 3 or Figure 4).

Theorem 1 Let (Go,...,Gi,...) be an ezecution of Algorithm A. If Go is an arrow graph rep-
resentation of a lefi-linear system of inequalities, then Giy is derived from G; by rule 2 or rule

4

Proof:

For (Gy,...,Gi,...) we can prove by induction on i that the following properties hold for
every G; # O:

1. Every node has at most one outarrow of any given color.

2. The subgraph rooted at any node with an outarrow (of any color) is a tree

10



Figure 8: A final arrow graph produced by modified Algorithm A

This implies the theorem since it guarantees that neither rule 3 nor rule 1 is applicable to any
of the G;’s.

End of proof

This theorem yields the critical insight for speeding up Algorithm A for the special case of
solving left-linear semi-unification problems. We will give very informal considerations below
that will lead us, directly from the observation of theorem 1, to the polynomial time LLSU-
algorithm L1 below. L1 is presented in and its correctness is proved in the following section.

A quite immediate simplification of Algorithm A is that, for left-linear semi-unification, rules
3 and 1 are not needed. But further simplifications are possible. Note that the color maintained
with every arrow is only needed as a criterion for applying rule 3. For example, if a node n has
two outarrows with equal color to distinct nodes n’ and n” an equivalence edge n’ ~ n’” has to
be added, but if the two arrows have different colors no such equivalence edge has to be added.
Because, by theorem 1, the first case can never happen for left-linear systems of inequalities, we
can dispense with the coloring information on arrows altogether.

But without color information we may also maintain the arrows transitively closed; that is,
we can maintain an arrow from n; to n (all arrows are uncolored now) with every arrow path
from n; to ny. This is not an advantage by itself, but it does away with the need to apply
rule 4b at all, if we adopt a modified extended occurs check rule (rule 4a). Basically, the only
relevant effect of rule 4b on left-linear arrow graph representations is to create establish arrow
paths between the children of f-labeled nodes that are in turn connected with an arrow path.
This can be achieved directly, without adding new nodes, by maintaining the transitive closure
of the arrows as indicated above or by generalizing rule 2 to apply arrow paths instead of only
individual arrows. If there is an arrow path from a function symbol labeled node n; to another
function symbol labeled node n; in the original algorithm, our strategy of maintaining an arrow

11



Figure 9: A final arrow with “shortcutting”

for every arrow path guarantees that there is also an arrow from n; to n,, and applying rule
2, which propagates arrows downwards to the children of n; and n», will guarantee that there
is an arrow from any child of n; to the corresponding child of n;. We call the “contraction” of
arrow paths to single arrows shoricutiing since repeated copying with rule 4b is not necessary
any more — it is “shortcut”.

Example:

Consider again the system of inequalities Sp. The algorithm outlined informally above will
simply propagate an arrow path between two f-labeled nodes to single arrows between their
corresponding children with rule 2. Instead of the arrow graph of Figure 8 the we obtain the
final arrow graph in Figure 9.

End of example

This leads to a polynomial time algorithm as can be easily seen from the fact that it is not
necessary any more to add new nodes and all computational steps — maintaining the transitive
closure and applying rule 2 — can be performed in polynomial time.

3 A polynomial time LLSU algorithm

In this section we present a polynomial time algorithm, Algorithm L1, for solving left-linear
systems of inequalities over alphabet A,. In fact, the algorithm can be used to compute a most
general semi-unifier, but we shall leave this aspect unexplored at this point. We show that L1
can be made to run in time O(n3) by adapting the fast dynamic transitive closure algorithm of
La Poutré and van Leeuwen [LPvL87].

A reduced arrow graph is an arrow graph without equivalence edges and with only one color
on arrows, which is consequently completely redundant and may be left off. We write n — n
for an uncolored arrow from n to n’. A reduced arrow graph representation of a system of
inequalities is simply an arrow graph representation with the colors on arrows left off.

Our first algorithm, Algorithm L1, is described in Figure 10. Roughly, it starts with a reduced

12



algorithm L1(A: reduced arrow graph)
while there exist nodes m;,n; and ms,ns in A and number 7 such that
n; is the i-th child of m; and n, is the i-th child of m,,
my, mg are f-labeled (have the same function symbol label),
there is an arrow path from m; to m,,
and there is no arrow from n; to ns
do
add an arrow (arrow path) from n; to ny to A
end while;
if there is a cycle in A consisting arrows traversed in forward direction
and term edges traversed in backward direction (i.e., from child to parent)
then  signal non-semi-unifiability
else signal semi-unifiability
end if;

Figure 10: Algorithm L1

arrow graph representation of a given system of inequalities, in which the colors of arrows are
ignored. It then looks for arrow paths between f-labeled nodes and adds (uncolored) arrows
between their corresponding children until this entails no more changes to the reduced arrow
graph. In the final stage, the resultant reduced arrow graph is checked whether it contains a cycle
that is made up of arrows — traversed in forward direction — and term edges — traversed from
child to parent — and contains at least one term edge. If there is such a cycle we say the final
arrow graph fails the acyclicily test and the algorithm signals non-semi-unifiability; otherwise,
the final arrow graph passes the acyclicity test, and the algorithm signals semi-unifiability.

We first establish the correctness of L1 and then show that it can be implemented in polyno-
mial time. To address correctness we need to recall some results on the structure of terms with
respect to subsumption [Hue80].

Term subsumption is a preordering. The equivalence relation canonically induced by < is
defined by M 2 N & M < NA N < M. We write [M] for the =-equivalence class of term M;
T(A,V)/« for the set of equivalence classes of all terms over A and V; and < for the partial
order on T(A, V)/« induced by the preorder <.

Theorem 2 (T%/w,<) is a complete lattice.

Proof: See [Hue80]. End of proof

In particular, every set of terms M has a least upper bound \/ M w.r.t. the subsumption
preordering < that is unique modulo 2. The equivalence relation 2 is also sometimes informally
referred to as “renaming of variables”. Note that every finite set of terms has a least upper
bound whose variables are disjoint from the variables occurring in any fixed finite set.

Theorem 3 Let A be a reduced arrow graph representing a lefl-linear system of inequalities S.
If A signals non-semi-unifiability then S is not semi-unifiable. If A signals semi-unifiability then
S 1is is semi-unifiable.

Proof:
We shall show that if L1 fails the acyclicity test then S has no semi-unifier, and if L1 passes the

acyclicity test then it has a semi-unifier. In fact the most-general semi-unifier can be extracted
from the final, acyclic reduced arrow graph.

13



1. (L1 fails the acyclicity test)

Assume S has a semi-unifier ¢. Then every node n in the final arrow graph represents a
unique term T'(n) with respect to o according to the following rule.

Ty(n) = { f(To(n1),To(n2)) if nis f-labeled with children ny,n,
? o(z if n is labeled with variable z
We shall write | M| for the size of M, measured in terms of the number of function symbol
occurrences and variable occurrences in M. If ¢ is a semi-unifier of S, then it is easy
to see that the final reduced arrow graph must satisfy the following relations. If n — n’
then |To(n)| < |To(n')|, and if n is a child of n’ then |T,(n)| < |Ty(n’)|. But if the final

reduced arrow graph contains a cycle with at least one term edge then there is a node n
with |T,(n)| < |T,(n)|, which is impossible. Consequently, S does not have a semi-unifier.

2. (L1 passes the acyclicity test)

If L1 passes the acyclicity test, the final reduced arrow graph A’ is acyclic in the sense that
all cycles consist of arrows only. We define a term interpretation T for every node in A’ as
follows. Consider the strong components C),...,Ci of A’ in topological order. For every
node n in a strong component C; we associate a term T(n).

Let T(n) be defined for all nodes in components Cy, ..., Ci_;. Consider the predecessors
n,...,n; of node n in component C; where, for all j € {1,...,k}, n; € Cjs for some
J' <i, and n is labeled with variable z. If k = 0 then T(n) = z. Otherwise, define the
preliminary term interpretation Tpyerim(n) = V{T'(n1),...,T(ni)}. If n is f-labeled with
children n;, ny we define Tpreiim(n) = f(T(n1), T(n3)).

Now, if C; consists of the nodes n,n’,...,n(), let

T= V{Tpreh'm(n); Tprelim(n')) sy Tprelim(n(l))};

and let T”,...,T(") be =-equivalent to T with pairwise disjoint variables. Finally, define
T(n)=T,T(n)=T,...,T(nM) =TV,

Note that T is not uniquely defined, but, most importantly, it has the property that for
every pair of variable labeled nodes n,n’ the sets of variables in T'(n), T(n') are disjoint.2

Define substitution o = J{z +— T(n) : nis labeled with variable z}. By construction of
T we have that for every arrow n — n’ in A/, where n’ is variable labeled, there is a
substitution p such that p(T'(n)) = T(n’); in particular, we can take p = T(n')/T(n). By
induction on the term structure in A’ it follows that this holds also for an f-labeled node
n’. Since it holds, in particular, for all arrows in the original arrow graph A this shows
that o is a semi-unifier. Some more analysis shows that it is a most general semi-unifier.

End of proof
Theorem 4 Algorithm L1 is implementable in polynomial time.

Proof:

Algorithm L1 can add at most n? new arrows to an arrow graph of size n, and the applica-
bility of a single arrow addition step takes time at most O(n3) (with a naive transitive closure
algorithm). Finally, the acyclicity testing step can be performed in time O(n?).

End of proof

2We assume that every least upper bound of a finite set of terms defined above has variables disjoint from all
variables occurring in all previously defined term interpretations.
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Corollary 1 Lefi-linear semi-unifiability is in P.

In the following theorem we show that adapting a fast dynamic transitive closure algorithm
can be used to implement Algorithm L1 in time O(n3).

Theorem 5 There is a dynamic transitive closure based implementation of Algorithm L1 that
runs in O(n3) time for a lefi-linear system of inequalities of size n.

Proof: (Sketch)

Since there can be as many as O(n?) additions of arrows in Algorithm A, a naive implemen-
tation that maintains the transitive closure of all arrows in O(n?) with respect to a single edge
addition takes a total of O(n*) time. The algorithms of La Poutré/Van Leeuwen [LPvL87] and
Yellin [Yel88], however, have accumulative cost of O(n3) and can be modified to permit finding
a pair of f-labeled nodes n,n’ whose children are not yet connected via arrows as a by-product
of maintaining the transitive closure of the arrow graph. Consequently the total cost of the
while-loop is O(n3). The final acyclicity test can be implemented in time O(n?) with a fast
maximal strong components algorithm.

We give a sketch, due to Han La Poutré, of a modified dynamic transitive closure implementa-
tion that permits fast execution of the Boolean test in the while-loop of Algorithm L1 (see Figure
10) as part of updates after edge additions. Basically, we work with 5 copies, V, Vi¢, Vs, Vip, Vep,
of the original nodes in the arrow graph A. Initially, we add edges as follows.

e If n; is a left child of n in A then we add an edge from the copy of n; in Vi, to the copy of
n in V and an edge from the copy of n in V to the copy of n; in Vj,.

o If n, is a right child of n in A then we add an edge from the copy of n, in V;. to the copy
of n in V and an edge from the copy of n in V' to the copy of n, in V;,.

o If there is an arrow n — n’ then we add an edge from the copy of n in V to the copy of n’
in V.

Let us call the resulting directed graph G. We maintain the transitive closure of G in a bit
matrix (of size O(n?)). The while-loop in Algorithm L1 is executed as follows. Let S be the
workset of pairs of nodes n, n’ where n is a node in V;, and n’ in Vi (or n in V;, and n’ in V;.)
and n reaches n’ in G. These pairs represent the candidates for which an arrow has to be added.
While there is a pair (n,n’) in S, we delete it from S and, if there is no edge between the copies
of n and n’ in V (!) we add it, calculate the transitive closure of G, and update S accordingly;
i.e., if a new node n’ in Vi, (V;.) becomes reachable from a node n in Vi, (V;,), we add the pair
(n,n') to S.

This sketch shows that finding update candidates can be performed as part of a dynamic
transitive closure algorithm without additional asymptotic cost. Consequently, using the fast
dynamic transitive closure algorithm for edge additions of La Poutré and van Leeuwen [LPvL87]
yields'an O(n3) implementation of Algorithm L1.

End of proof

Since the arrow additions are predetermined by Algorithm L1 itself, we believe that there is
an O(n?) implementation of L1 based on a dynamic depth-first search algorithm. Since there
can be as many as O(n?) arrows added by L1, this would be the best that is possible for L1. Of
course, other algorithms with even better asymptotic bounds are conceivable. We leave this as
an open problem.
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Figure 11: A monotone circuit

4 P-completeness of left-linear semi-unifiability

The existence of a polynomial time sequential algorithm raises the question as to whether there
are fast (NC-class) parallel algorithms for left-linear semi-unification. We shall show that, unless
NC = P, this is not the case by giving a log-space reduction from the circuit value problem for
monotone circuits to LLSU, which establishes P-completeness of LLSU under log-space reduc-
tions.

A monotone circuitis a directed acyclic graph C = (V, E) whose nodes, called gates, are of
five different kinds:

—

input gates with no inedge and 1 outedge;

2. and-gates with 2 inedges and 1 outedge;

3. or-gates with 2 inedges and 1 outedge;

4. fan-out gates with 1 inedge and 2 outedges;

5. a single output gate with 1 inedge and no outedge.

Furthermore, all gates are reachable from the input gate, and the output gate is reachable from
all gates.

Example:

An example of a monotone circuit implementing the Boolean function y = ((z1 V z2) V (z2 A
z3)) A (z3 V z4) is shown in Figure 11. The circles represent fan-out gates.

End of example

Every assignment a of truth values to the input gates of C can be extended uniquely to a
truth value assignment @ to all gates of C by defining

1. if n is an input gate, then a(n) = a(n);
2. if n is an and-gate with predecessors n/,n”, then a(n) = a(n’) A a(n");

3. if n is an or-gate with predecessors n',n”, then a(n) = a(n') v a(n");
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4. if n is a fan-out gate with predecessor n’ then @(n) = a(n’);
5. if n is the output gate with predecessor n' then a(n) = a(n’).

The monotone circuit value problem (MCVP) is the problem of deciding, given monotone
circuit C and assignment a to the input gates of C, whether @(n) = true for the output gate n.

Theorem 6 LLSU is P-complete under log-space reductions.

Proof:

We give a log-space reduction of MCVP to LLSU by adapting a proof of Dwork, Kanellakis,
and Mitchell for P-completeness of unification. MCVP is known to be P-complete [Gol77].
Together with the existence of a polynomial time algorithm (see previous section) for LLSU this
implies the theorem.

First we describe how we represent a circuit C by a term graph A. Then the assignment
a is encoded by adding arrows to A to make it an arrow graph. The thus constructed A will
be a reduced arrow graph representation of a left-linear system of inequalities. It is easy to
construct the actual system of inequalities instead of its reduced arrow graph representation,
but for expositional purposes it is easier to describe the construction of A.

For every kind of gate we describe a term graph “gadget” for that gate. Every one of these
gadgets is actually a term graph with a pair of designated nodes for every in- and outedge of

the encoded gate. These gadgets are then “glued” together at their input and output node pairs
with some arrows to represent C. Additional arrows encode a.

1. An input gadget consists of two variable labeled nodes n, n’. It has no input node pair, and
its only pair of output nodes is (n,n’).

2. An and-gadget consists of three nodes n,n’, n”. The two pairs (n,n’), (n’,n”) are its input
node pairs, and (n,n") is its output node pair.

3. An or-gadget consists of two variable labeled nodes n,n’. The two identical pairs (n,n’)
and (n,n’) are its input node pairs, and (n,n’) is also its output node pair.

4. A fan-out gadget consists of six nodes n,ni, ng, n',n{,n,, where n;,n, are the variable
labeled children of n and nf,n} are the variable labeled children of n’ (i.e., n and n’ are
f-labeled). The input pair is (n, n') and the output pairs are (ny,n}), (n2, nb).

5. The output gate is represented by three nodes n, n’, n"”, where n’, n’’ are the variable labeled
children of n, and (n, n’) is the designated input pair of the gadget. (It has no output pair.)

For a given combinational circuit C we use one of the gadgets above for every gate and
connect the input and output node pairs with arrows whenever two gates are connected via an
edge. Specifically, if there is an edge from gate g to gate ¢’ in C, the edge corresponds to an
output pair in the gadget for g and an input pair in the gadget for g’. Let (n,n’) be this output
pair in the gadget for g and (m, m’) the corresponding input pair in the gadget for ¢’. We add
the arrows m — n and n’ — m. Finally, for every input gate g that is set to true by a we add
an arrow n — n’ between the output pair (n,n’) in the gadget representing g.

If we associate with every arrow in the thus constructed arrow graph A a distinct color
then A is an arrow graph representation of a left-linear system of inequalities (that we can
construct from A in logarithmic space). It is easy to check that after applying Algorithm L1 to
A (ignoring the colors) the resultant arrow graph A’ has an arrow path from n to its child n’ in
the output gadget of A’ if and only if the value true is assigned to the output gate of C under
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Figure 12: An arrow graph encoding of a monotone circuit

a. Consequently A’ fails the acyclicity test if and only if @ assigns true to the output gate in C.
Since the construction of A can be implemented in logarithmic space, this proves the theorem.
End of proof

Example:

An arrow graph encoding of the circuit of Figure 11 is shown in Figure 12.

End of example .

Let kLLSU be the problem of left-linear semi-unification with exactly k term inequalities.
The proof of the previous theorem can be strengthened to yield the following result.

Corollary 2 2LLSU is P-complete.

Proof:

Consider the step in the proof of Theorem 6 where a distinct color is associated with every
arrow in the arrow graph A constructed from a monotone circuit C and assignment a. We can
make do by using only two colors; in fact, only when connecting the input pairs of an or-gate
g we use two distinct colors for the two outarrows from node n in the input pair (n,n’) in the
or-gadget. For all other arrows we can use the same color. The resulting arrow graph has two
colors and represents a left-linear system of 2 inequalities that can be constructed in logarithmic
space from the arrow graph.

End of proof

This implies, of course, that kLLSU is P-complete for all ¥ > 2. We conjecture that 1LLSU
is also P-complete.
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5 Concluding remarks and open problems

Kfoury, Tiuryn and Urzyczyn showed that left-linear semi-unifiability (LLSU) is decidable. Their
proof is essentially an exponential-time decision procedure and thus their result shows that LLSU
is in DEXPTIME.

In this paper we have given a tight structural upper and lower bound for LLSU by proving
that it is P-complete. We have shown that a dynamic transitive closure based implementation
of a generic algorithm yields an O(n3) time decision procedure for LLSU.

Several issues and open problems remain:

e We conjecture there is an O(n?) time algorithm based on our generic Algorithm L1.

o Weconjecture that 1LLSU (left-linear semi-unifiability with only 1 inequality) is P-complete
(we proved completeness for k inequalities for k > 1).

e Possible applications of LLSU to proof theory remain to be explored (suggested by Hans
LeiB).

e Several generalizations are not directly addressed, but do not pose any major difficulties.
By adding a unification-like postprocessing phase to algorithm L1 it is possible to generalize
algorithm L1 to arbitrary alphabets (instead of only ;). A dynamic transitive closure
based implementation still takes only O(n®) time. Furthermore, it is possible to extract a
most general semi-unifier from the output of Algorithm L1. In particular, size and algebraic
properties of most general semi-unifiers of left-linear systems of inequalities appear to follow
immediately from the correctness of L1.
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Abstract

Semi-unification is a generalization of both unification and matching with applications
in proof theory, term rewriting systems, polymorphic type inference, and natural language
processing. It is the problem of solving a set of term inequalities M, < Niy..., My < N,
where < is interpreted as the subsumption preordering on (first-order) terms. Whereas
the general problem has recently been shown to be undecidable, several special cases are
decidable.

Kfoury, Tiuryn, and Urzyczyn proved that left-linear semi-unification (LLSU) is decid-
able by giving an exponential time decision procedure. We improve their result as follows.

1. We present a generic polynomial-time algorithm L1 for LLSU, which shows that LLSU
isin P,

2. We show that L1 can be implemented in time O(n®) by using a fast dynamic transitive
closure algorithm.

3. We prove that LLSU is P-complete under log-space reductions, thus giving evidence
that there are no fast (NC-class) parallel algorithms for LLSU.

As a corollary of the proof of P-completeness we obtain that LLSU with only 2 term in-
equalities is already P-complete.

We conjecture that L1 can be implemented in time O(n?), which is the best that is
possible for the solution method described by L1. The basic question as to whether another
solution method may admit even faster algorithms is open. We conjecture also that LLSU
with 1 inequality is also P-complete.

1 Introduction

Semi-unification is a generalization of both unification and matching with applications in proof
theory [Pud88], term rewriting systems [Pur87, KMNS89], polymorphic type inference [Hen88b,
KTU89a, Lei89b], and natural language processing [DR89]. Because of its fundamental nature
it may be expected to find even more applications.

Whereas general semi-unification was long believed to be decidable, Kfoury, Tiuryn and
Urzyczyn recently gave an elegant reduction of the boundedness problem for deterministic Turing
Machines to semi-unification [KTU89b]. By adapting a proof for a similar problem attributed to



Hooper [Hoo65) they showed that boundedness is undecidable, which implies the undecidability
of semi-unification.

Several special cases of semi-unification have been shown to be decidable: uniform semi-
unification (solving a single term inequality) [Hen88b, Pud8s, KMNS89], semi-unification over
two variables [Lei89a], and left-linear semi-unification [KTU89a). Pudlak showed that general
semi-unification can be effectively reduced to semi-unification over two inequalities [Pud88]; thus
bounding the number of inequalities by a number greater than one does not simplify the problem.
In drastic contrast, Kapur, Musser, Narendran and Stillman gave a polynomial time procedure
for uniform semi-unifiability (single inequality) [KMNS89)].

In this article we investigate the special case of lefi-linear semi-unification (LLSU). This
problem was first addressed by Kfoury, Tiuryn, and Urzyczyn [KTU89a]. They were able to
show that left-linear semi-unification is decidable, and a closer look at their decision procedure
reveals that left-linear semi-unification is in DEXPTIME. We improve this result by showing
that left-linear semi-unification is polynomial time decidable. The present a generic algorithm,
Algorithm L1, for LLSU that is implementable in polynomial time. An implementation based
on a fast dynamic transitive closure algorithm [LPvL87, Yel88] (with only edge additions) yields
an O(n®) time LLSU procedure where n is the size of the given (left-linear) semi-unification
problem. Dynamic transitive closure seems too general and powerful a method for LLSU, and
we conjecture that L1 can be improved to run in time O(n?). This is best possible for any
method based on L1 since as many as n? edges are added to an initially sparse graph on n nodes
in L1. The question as to whether there is a linear-time algorithm for left-linear semi-unification
or, in fact, any algorithm asymptotically faster than O(n?) is left open.

We also show that, even though left-linearity is a very strong condition on input instances, it
still is not strong enough to admit fast (NC-class) parallel algorithms unless NC = P. Specifically,
we show that LLSU is P-complete under log-space reductions by adapting a well-known proof of
Dwork, Kanellakis, and Mitchell for showing the P-completeness of unification [DKM84).

The outline of the rest of the paper is as follows. In section 2 we define general and left-
linear semi-unification, and we present a general semi-unification algorithm, algorithm A [Hen89].
Observing the behavior of algorithm A on left-linear problem instances yields the critical insight
that permits “speeding up” A to run in polynomial time. The result is Algorithm L1. In section 3
we present our polynomial time algorithm L1 for LLSU over the alphabet .A,, which consists of a
single binary function symbol, and show that a dynamic transitive closure based implementation
has time complexity O(n3). In section 4 we show that left-linear semi-unification is P-complete.
We conclude with some final remarks and open problems in section 5.

2 General semi-unification

In this section we present definition and properties of semi-unification and an (semi-)algorithm,
Algorithm A, for solving general semi-unification problem instances. Most of this is a rehash
from a previous paper [Hen89], but it is very instructive in giving insight into the correctness of
our polynomial time algorithm for LLSU.

2.1 Definition and properties of semi-unification

A ranked alphabet A = (F, a) is a finite set F of function symbols together with an arity function
a that maps every element in F to a natural number (including zero). A function symbol with
arity 0 is also called a constant. The set of variables V is a denumerable infinite set disjoint
from F. The terms over A and V is the set T(A, V) consisting of all strings generated by the
grammar



M :=z|c|f(M,..., M)

ktimes

where f is a function symbol from A with arity k > 0, ¢ is a constant, and z is any variable
from V. Two terms M and N are equal, written as M = N, if and only if they are identical as
strings.

A substitution o is a mapping from V to T((A, V) that is the identity on all but a finite subset
of V. The set of variables on which o is not the identity is the domain of o. Every substitution
0:V — T(A,V) can be naturally extended to o : T(A, V) — T(A, V) by defining

O'(f(Ml, ceny Mk)) = f(O'(Ml), ceny U(Mk)).

A term M subsumes N (or N matches M), written M < N, if there is a substitution p such
that p(M) = N. If N matches M then there is exactly one such p as required in the above
definition whose domain is contained in the set of variables occurring in M. We call it the
quotient substitution of M and N and denote it by N/M.

Given a set of pairs of terms S = {(M;, N1),...,(Mz, Ni)} a substitution o is a semi-unifier
of S if o(M1) < a(N1),...,0(Mi) < o(Ni). S is semi-unifiable if it has a semi-unifier. Semi-
unifiability is reminiscent of both unification (because of & being applied to both the left- and
right-hand components of S) and matching (because the resultant right-hand sides have to match
their corresponding right-hand sides), but it is in fact much more general than both, evidenced
by the recent undecidability result for semi-unifiability.

In the context of semi-unification we shall call a set of pairs of terms a system of inequalities
and write it also

M < M
?

M, < N

M < N

The question mark over the inequality symbol is to indicate that these are not valid inequalities,
but are supposed to be solved; that is, a substitution is to be found that makes them valid.

As shown in [Hen88a], every semi-unifiable system of inequalities has a most general semi-
unifier if the notion of generality on substitutions is properly defined.

Example:

Let A; be a ranked alphabet with only one function symbol f, which has arity 2; V =
{21,22, ceny &gy }

Consider the semi-unifiable system of inequalities Sy:

f(f(zl ) .’L'z), 33)

T4

T4

f(z3, f(z2, zs))

Possible semi-unifiers are g9 = {z3 — f(z¢,27),24 — F(f(zs, 29), f(z10,211))} and oy =
{z3 — f(z2,22), 24 = f(f(x2,22), f(22,22)), 25 = 23} (00 is a most general semi-unifier of So)
since, after substituting oo, respectively o1, in Sy, we get the valid inequalities

f(f(z1,22), f(z6,27)) < f(f(xs,20), f(Z10,711))
f(f(zs,29), f(z10,211)) < f(f(z6,27), f(z2, 25)),

?
<
?
<

w



respectively

f(f(z1,22), f(z2,23)) < f(f(z2,22), f(z2,22))
f(f(z2,22), f(z2,22)) < f(f(22,22), f(z2, z2)).

The quotient substitutions for these inequalities are pd = {z1 ¥ 25,23 ¥ Ty, 26 Z10,T7 —
z11} and p§ = {2s — Z6,z9 — T7,Z10 > Z3,211 > 23}, respectively pt = {z1 — z3} and
i ={}-

End of example

2.2 Algorithm A

Algorithm A is a general (semi-)algorithm for computing the most general semi-unifier of a
system of inequalities. Even though it is bound not to terminate for some non-semi-unifiable
inputs it catches many non-semi-unifiable systems of inequalities due to an ertended occurs check,
which is a generalization of the conventional occurs check in unification algorithms.

The algorithm operates on a graph-theoretic representation of systems of inequalities, both
to achieve practically acceptable performance and to aid in the analysis of some combinatorial

properties. Since intermediate steps of the algorithm can introduce equations M 2 N between
terms, not just inequalities, the representation, called an arrow graph, in fact encodes systems
of equations and inequalities. Because a formal description of arrow graphs is notoriously cum-
bersome, we give a brief, but hopefully clear, informal definition below.

A term graphis an acyclic graph that represents sets of terms over a given alphabet A = (F,a)
and set of variables V. It consists of a set of nodes, N, a subset of which is labeled with function
symbols from F', and the rest of which is labeled with variables from V. If f is a function symbol
with arity k, k > 0, every node n labeled with f has exactly k ordered children; i.e., there are
k directed term edges originating in n and labeled with the numbers 1 through k. The variable
labeled nodes have no children, and for every variable z there is at most one node labeled with
z. The nodes together with the tree edges form a normal directed graph, and if it is acyclic,
then we say the term graph is acyclic.

Every node in an acyclic term graph can be interpreted as a term; for example, if n is a node
labeled with function symbol f, and its children are ny,...,n; (in this order) representing terms
M, ..., My, then n represents the term f(Mj, ..., M;). Note that for every set of terms there is
an easily constructed, but generally non-unique term graph such that every term is represented
in it.

Example:

The term graph in Figure 1 represents the terms f( f(z1,%2),23), 24 and f(z3, f(z2,zs5))
occurring in the system of inequalities Sy (see previous example).

End of example

A term graph can represent all the terms occurring in a system of equations and inequalities.
An arrow graph is a term graph with two additional kinds of edges: Equivalence edges encode
equations, and arrows encode inequalities.

Equivalence edges are represent an equivalence relation on the nodes of the arrow graph.
They can be thought of as undirected edges, This is the notion we shall adopt, but we shall
always assume that for every (undirected) path from node n; to node n, via equivalence edges
(only) there is also an equivalence edge directly between n, and nj. If there is an equivalence
edge between n; and ny we write n; ~ nj.

Arrows are directed edges labeled by natural numbers, which indicate to which inequality in
a given system of equations and inequalities an arrow corresponds. We call the labels of arrows

- E . . . . .
colors, and we write ny — ng if there is an i-colored arrow pointing from n; to nj.



Figure 1: A term graph representation of a set of terms

To summarize, an arrow graph is a term graph with additional edges: undirected equivalence
edges and directed arrows. Note that an arrow graph has three different kinds of edges: term
edges, equivalence edges, and arrows.

An arrow graph representation of a system of inequalities S,

M, é N
M, ; N,
Mg < M,
is a term graph G with (not necessarily distinct) nodes m;,...,mg,ny,...,n; representing the

terms in S, and arrows from m; (representing M;) to n; (representing N;) for 1 < i < k that
have pairwise distinct labels. There are no equivalence edges. (In other formulations systems
of equations and inequalities are input instances for semi-unification, in which case equivalence
edges are used to represent equations in the arrow graph representation.)

Example:

An arrow graph representation of system of inequalities Sy is in Figure 2. Term edges are
shown in straight, bold lines; arrows in curved, thin lines. There are no equivalence edges.

End of example

Algorithm A operates on arrow graphs. It repeatedly rewrites the arrow graph representation
of a system of inequalities S by nondeterministically “applying” some closure rules until no rule
can be applied any more. At that point it indicates whether S is semi-unifiable and, if so, outputs
a most general semi-unifier of S. The algorithm is described in detail in Figure 3 for alphabet
Az!, and the closure rules are also depicted graphically in Figure 4.

Example:

143 is the alphabet consisting of a single binary function symbol f. Semi-unifiability over any alphabet is
log-space reducible to semi-unifiability over A [Hen89]. This reduction does not, however, preserve left-linearity.



Figure 2: An arrow graph representation of a system of inequalities

The effect of Algorithm A on the arrow representation of the system of inequalities S is
shown in Figures 5 and 6. In the initial arrow graph representation (see Figure 2) only rule 4b
in Algorithm A (see Figure 3) is applicable. The arrow graph after after its application is shown
in Figure 5. Immediately afterwards rule 3a can be applied to add an arrow (colored with 1)
pointing to the new f-labeled node, and application of rule 2 adds 1-colored arrows pointing to
the new variable-labeled nodes, at which point rule 4b is applicable again. The algorithm finally
terminates with the arrow graph shown in Figure 6. Since this final arrow graph is not 0 the
given system of inequalities is semi-unifiable, and a most general semi-unifier can be read off from
the final arrow graph: {23 — f(z9,212), 24 = f(f(2s,211), f(210, z13))}, which is equivalent to
oo modulo renaming of variables.

End of example

2.3 Left-linear semi-unification

A term is linear if every variable has at most one occurrence in it. For example, f(z1,z2) is
linear (assuming z; # z3), but f(z1,,) is not. A system of inequalities S is left-linear if every
left-hand side term in S is linear. Lefi-linear semi-unification is the problem of computing most
general semi-unifiers of left-linear systems of inequalities, and left-linear semi-unifiability (LLSU)

is the problem of deciding whether a given left-linear system of inequalities is semi-unifiable.
Example:

Recall the system of inequalities Sp,

T4

f(z3, f(z2, z5)).

The left-hand sides are the terms f(f(z1,z2),z3) and z4. Since they are linear, S, is an instance
of left-linear semi-unification (over alphabet A,).

f(f(z1,22), z3)

T4

IA= IA-



Let G be an arrow graph. Apply the following rules (depicted also in Figure 4)
until convergence:

1. If there exist nodes m and n labeled with f and with children m,,m,
and nj, na, respectively, such that m ~ n then add m; ~ n; and my ~

No.

2. If there exist nodes m and n labeled with f and with children m;, m,
and ny,ns, respectively, such that m = n then add arrows m; = n;
and my > nj.

3. If there exist nodes m;, mg, n;, and n, such that
(a) my ~ny,m 5, mz and n; 3, ny then add m; ~ ny;

(b) my ~ny, my 5, mgy and m3 ~ ny then add an arrow ny LR na.
4. (a) (Extended occurs check) If there is a path consisting of arrows of
any color (arrow path) from n; to n; and n; is a proper descendant
of n;, then reduce to the improper arrow graph 0.4
(b) If the extended occurs check is not applicable and there exist nodes
m and n such that m is labeled with f and has children m;, m,,
n is labeled with a variable, and n ~ n” implies that n” is vari-
able labeled, and there is an arrow m — n then create new nodes
n’,n{,n% and label n’ with f, label n{ and n!, with new variables

z’ and z', respectively; make n),n} the children of n’; and add
ne~n

“Node n' is a descendant of node n if it there is a path from n to n’ consisting of term edges (traversed
in forward direction) and equivalence edges (traversed in any direction); n' is a proper descendant if there
is a path with at least one term edge.

Figure 3: Algorithm A
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Figure 4: Closure rules






(4b)

If the extended occurs check is not applicable and there exist nodes m and n
such that m is labeled with f and has children m;, my, n is labeled with a
varip.ble, and n ~ n’ implies that n’ is variable labeled, and there is an arrow
m = n then create new nodes n}, ny and change the label of n to be f, label

n} and n) with new variables z’ and z", respectively; and make n},n} the
children of n.

Figure 7: Modified rule for expanding arrow graph

End of example

For reasons that will become clear below we can modify rule 4b in an almost trivial fashion.
If rule 4b is applicable because there is an arrow from an f-labeled node m to a variable labeled
node n, it prescribes that a new f-labeled node n’ with new variable labeled children ni,n4 and
an equivalence edge n ~ n' be added to the arrow graph. The modified rule 4b is as follows.
Instead of adding three new nodes n’, n/,n) and an equivalence edge n ~ n’ we add only two new
nodes, ny,n) (labeled with new variables), change the label of n from a variable to f, and make
ni, ny the children of n. (The old label of n is remembered in some auxiliary data structure.
This information is only needed for reading off the most general semi-unifier from a final arrow
graph, but not for the execution of Algorithm A itself.) This modification is given in detail in
Figure 7. Henceforth, we shall assume that Algorithm A uses the modified rule 4b.

The correctness of Algorithm A is proved in great detail in [Hen89), and it is a minor issue
to verify that the modified version of rule 4b preserves correctness.

Example:

The final arrow graph after executing modified Algorithm A on the arrow graph represen-
tation of system Sp of Figure 2 is shown in Figure 8. Note that the arrow graph contains no
equivalence edges, and only rules 2 and 4b of Algorithm A were applied.

End of example

Let us consider an arrow graph representation of a left-linear system of inequalities S and
one of its nodes m that represents a left-hand side. Since S is left-linear the subgraph rooted at
m is a tree; that is, there is one and only one path consisting of term edges from m to any of the
nodes reachable from m via term edges. Executing Algorithm A on the arrow graph of Figure 2
we see that at no point rule 3a, the only rule that could possibly introduce the first equivalence
edge, is applicable. This is not just a peculiar property of the specific example, but holds for
every (arrow representation of a) left-linear system of inequalities.

An ezecution (of Algorithm A) is a sequence of arrow graphs (Go,-..,Gij,...) in which every
component is derived from its predecessor by application of one of the closure rules of Algorithm
A (see Figure 3 or Figure 4).

Theorem 1 Let (Go,...,Gy,...) be an ezecution of Algorithm A. If Gg is an arrow graph rep-
resentation of a lefi-linear system of inequalities, then G4y is derived from G; by rule 2 or rule

4.

Proof:

For (Go,...,Gi,...) we can prove by induction on ¢ that the following properties hold for
every G; # O:

1. Every node has at most one outarrow of any given color.

2. The subgraph rooted at any node with an outarrow (of any color) is a tree

10



Figure 8: A final arrow graph produced by modified Algorithm A

This implies the theorem since it guarantees that neither rule 3 nor rule 1 is applicable to any
of the G;’s.

End of proof

This theorem yields the critical insight for speeding up Algorithm A for the special case of
solving left-linear semi-unification problems. We will give very informal considerations below
that will lead us, directly from the observation of theorem 1, to the polynomial time LLSU-
algorithm L1 below. L1 is presented in and its correctness is proved in the following section.

A quite immediate simplification of Algorithm A is that, for left-linear semi-unification, rules
3 and 1 are not needed. But further simplifications are possible. Note that the color maintained
with every arrow is only needed as a criterion for applying rule 3. For example, if a node n has
two outarrows with equal color to distinct nodes n’ and n” an equivalence edge n’ ~ n' has to
be added, but if the two arrows have different colors no such equivalence edge has to be added.
Because, by theorem 1, the first case can never happen for left-linear systems of inequalities, we
can dispense with the coloring information on arrows altogether.

But without color information we may also maintain the arrows transitively closed; that is,
we can maintain an arrow from n; to ny (all arrows are uncolored now) with every arrow path
from n; to n;. This is not an advantage by itself, but it does away with the need to apply
rule 4b at all, if we adopt a modified extended occurs check rule (rule 4a). Basically, the only
relevant effect of rule 4b on left-linear arrow graph representations is to create establish arrow
paths between the children of f-labeled nodes that are in turn connected with an arrow path.
This can be achieved directly, without adding new nodes, by maintaining the transitive closure
of the arrows as indicated above or by generalizing rule 2 to apply arrow paths instead of only
individual arrows. If there is an arrow path from a function symbol labeled node n; to another
function symbol labeled node n; in the original algorithm, our strategy of maintaining an arrow

11



Figure 9: A final arrow with “shortcutting”

for every arrow path guarantees that there is also an arrow from n; to nj, and applying rule
2, which propagates arrows downwards to the children of n; and n;, will guarantee that there
is an arrow from any child of n; to the corresponding child of n;. We call the “contraction” of
arrow paths to single arrows shortcutting since repeated copying with rule 4b is not necessary
any more — it is “shortcut”.

Example:

Consider again the system of inequalities So. The algorithm outlined informally above will
simply propagate an arrow path between two f-labeled nodes to single arrows between their
corresponding children with rule 2. Instead of the arrow graph of Figure 8 the we obtain the
final arrow graph in Figure 9.

End of example

This leads to a polynomial time algorithm as can be easily seen from the fact that it is not
necessary any more to add new nodes and all computational steps — maintaining the transitive
closure and applying rule 2 — can be performed in polynomial time.

3 A polynomial time LLSU algorithm

In this section we present a polynomial time algorithm, Algorithm L1, for solving left-linear
systems of inequalities over alphabet A,. In fact, the algorithm can be used to compute a most
general semi-unifier, but we shall leave this aspect unexplored at this point. We show that L1
can be made to run in time O(n3) by adapting the fast dynamic transitive closure algorithm of
La Poutré and van Leeuwen [LPvL87].

A reduced arrow graph is an arrow graph without equivalence edges and with only one color
on arrows, which is consequently completely redundant and may be left off. We write n — n
for an uncolored arrow from n to n’. A reduced arrow graph representation of a system of
inequalities is simply an arrow graph representation with the colors on arrows left off.

Our first algorithm, Algorithm L1, is described in Figure 10. Roughly, it starts with a reduced

12



algorithm L1(A: reduced arrow graph)
while there exist nodes m;,n; and mg,n3 in A and number i such that
n, is the i-th child of m; and nj is the i-th child of my,
my, m; are f-labeled (have the same function symbol label),
there is an arrow path from m; to mg,
and there is no arrow from n,; to ns
do
add an arrow (arrow path) from n, to n; to A
end while;
if there is a cycle in A consisting arrows traversed in forward direction
and term edges traversed in backward direction (i.e., from child to parent)
then  signal non-semi-unifiability

else signal semi-unifiability
end if;

Figure 10: Algorithm L1

arrow graph representation of a given system of inequalities, in which the colors of arrows are
ignored. It then looks for arrow paths between f-labeled nodes and adds (uncolored) arrows
between their corresponding children until this entails no more changes to the reduced arrow
graph. In the final stage, the resultant reduced arrow graph is checked whether it contains a cycle
that is made up of arrows — traversed in forward direction — and term edges — traversed from
child to parent — and contains at least one term edge. If there is such a cycle we say the final
arrow graph fails the acyclicity test and the algorithm signals non-semi-unifiability; otherwise,
the final arrow graph passes the acyclicity test, and the algorithm signals semi-unifiability.

We first establish the correctness of L1 and then show that it can be implemented in polyno-
mial time. To address correctness we need to recall some results on the structure of terms with
respect to subsumption [Hue80].

Term subsumption is a preordering. The equivalence relation canonically induced by < is
defined by M = N & M < NA N < M. We write [M] for the -equivalence class of term M;
T(A,V)/« for the set of equivalence classes of all terms over A and V; and < for the partial
order on T'(A, V)/« induced by the preorder <.

Theorem 2 (T%/,<) is a complete lattice.

Proof: See [Hue80]. End of proof

In particular, every set of terms M has a least upper bound \/ M w.r.t. the subsumption
preordering < that is unique modulo 2. The equivalence relation 2 is also sometimes informally
referred to as “renaming of variables”. Note that every finite set of terms has a least upper
bound whose variables are disjoint from the variables occurring in any fixed finite set.

Theorem 3 Let A be a reduced arrow graph representing a left-linear system of inequalities S.

If A signals non-semi-unifiability then S is not semi-unifiable. If A signals semi-unifiability then
S is i3 semi-unifiable.

Proof:

We shall show that if L1 fails the acyclicity test then S has no semi-unifier, and if L1 passes the
acyclicity test then it has a semi-unifier. In fact the most-general semi-unifier can be extracted
from the final, acyclic reduced arrow graph.

13



1. (L1 fails the acyclicity test)

Assume S has a semi-unifier . Then every node n in the final arrow graph represents a
unique term T'(n) with respect to o according to the following rule.
Ty(n) = J(Ts(n1),To(n2)) if nis f-labeled with children ny,n,
T oz if n is labeled with variable z
We shall write [M| for the size of M, measured in terms of the number of function symbol
occurrences and variable occurrences in M. If ¢ is a semi-unifier of S, then it is easy
to see that the final reduced arrow graph must satisfy the following relations. If n — n’
then |T5(n)| < |To(n’)|, and if n is a child of n’ then |T,(n)| < |To(n’)|. But if the final

reduced arrow graph contains a cycle with at least one term edge then there is a node n
with |T,(n)| < |To(n)|, which is impossible. Consequently, S does not have a semi-unifier.

2. (L1 passes the acyclicity test)

If L1 passes the acyclicity test, the final reduced arrow graph A’ is acyclic in the sense that
all cycles consist of arrows only. We define a term interpretation T for every node in A’ as
follows. Consider the strong components Cy,...,Cy of A’ in topological order. For every
node n in a strong component C; we associate a term T'(n).

Let T'(n) be defined for all nodes in components Cy,...,C;..;. Consider the predecessors
ni,...,nk of node n in component C; where, for all j € {1,...,k}, n; € Cj: for some
J' < i, and n is labeled with variable z. If k = 0 then T(n) = 2. Otherwise, define the
preliminary term interpretation Tpretim(n) = V{T(n1),...,T(ne)}. If n is f-labeled with
children n;,n; we define Tpreiim(n) = f(T(n1), T(n2)).

Now, if C; consists of the nodes n,n/,...,n(", let

T= V{Tpreh’m(n): Tprelim(n,)’ ) Tprelim(n(l))}y

and let T",...,T® be ~-equivalent to T with pairwise disjoint variables. Finally, define
T(n)=T,T(n")=T,...,T(nM) =TV,

Note that T is not uniquely defined, but, most importantly, it has the property that for
every pair of variable labeled nodes n,n’ the sets of variables in T'(n), T(n’) are disjoint.?

Define substitution ¢ = |J{z + T(n) : nis labeled with variable z}. By construction of
T we have that for every arrow n — n’ in A’, where n’ is variable labeled, there is a
substitution p such that p(T'(n)) = T(n’); in particular, we can take p = T(n’)/T(n). By
induction on the term structure in A’ it follows that this holds also for an f-labeled node
n’. Since it holds, in particular, for all arrows in the original arrow graph A this shows
that o is a semi-unifier. Some more analysis shows that it is a most general semi-unifier.

End of proof
Theorem 4 Algorithm L1 is implementable in polynomial time.

Proof:
Algorithm L1 can add at most n? new arrows to an arrow graph of size n, and the applica-
bility of a single arrow addition step takes time at most O(n3) (with a naive transitive closure

algorithm). Finally, the acyclicity testing step can be performed in time O(n?).
End of proof

2We assume that every least upper bound of a finite set of terms defined above has variables disjoint from all
variables occurring in all previously defined term interpretations.
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Corollary 1 Left-linear semi-unifiability is in P.

In the following theorem we show that adapting a fast dynamic transitive closure algorithm
can be used to implement Algorithm L1 in time O(n3).

Theorem 5 There is a dynamic transitive closure based implementation of Algorithm L1 that
runs in O(n3) time for a lefi-linear system of inequalities of size n.

Proof: (Sketch)

Since there can be as many as O(n?) additions of arrows in Algorithm A, a naive implemen-
tation that maintains the transitive closure of all arrows in O(n?) with respect to a single edge
addition takes a total of O(n*) time. The algorithms of La Poutré/Van Leeuwen [LPvL87] and
Yellin [Yel88], however, have accumulative cost of O(n3) and can be modified to permit finding
a pair of f-labeled nodes n,n’ whose children are not yet connected via arrows as a by-product
of maintaining the transitive closure of the arrow graph. Consequently the total cost of the
while-loop is O(n®). The final acyclicity test can be implemented in time O(n?) with a fast
maximal strong components algorithm.

We give a sketch, due to Han La Poutré, of a modified dynamic transitive closure implementa-
tion that permits fast execution of the Boolean test in the while-loop of Algorithm L1 (see Figure
10) as part of updates after edge additions. Basically, we work with 5 copies, V, Vi, V., Vip, Veps
of the original nodes in the arrow graph A. Initially, we add edges as follows.

e If n; is a left child of n in A then we add an edge from the copy of n; in Vj, to the copy of
nin V and an edge from the copy of n in V' to the copy of n; in V.

e If n, is a right child of n in A then we add an edge from the copy of n, in V;. to the copy
of nin V and an edge from the copy of n in V to the copy of n, in V,,.

o If there is an arrow n — n’ then we add an edge from the copy of n in V to the copy of n’
in V.

Let us call the resulting directed graph G. We maintain the transitive closure of G in a bit
matrix (of size O(n?)). The while-loop in Algorithm L1 is executed as follows. Let S be the
workset of pairs of nodes n, n’ where n is a node in Vi, and n’ in V;, (or n in V;p and 0’ in V)
and n reaches n’ in G. These pairs represent the candidates for which an arrow has to be added.
While there is a pair (n,n’) in S, we delete it from S and, if there is no edge between the copies
of n and n’ in V (!) we add it, calculate the transitive closure of G, and update S accordingly;
ie., if a new node n’ in Vi, (V;..) becomes reachable from a node n in Vi, (V;,), we add the pair
(n,n’) to S.

This sketch shows that finding update candidates can be performed as part of a dynamic
transitive closure algorithm without additional asymptotic cost. Consequently, using the fast
dynamic transitive closure algorithm for edge additions of La Poutré and van Leeuwen [LPvL87]
yields an O(n®) implementation of Algorithm L1.

End of proof

Since the arrow additions are predetermined by Algorithm L1 itself, we believe that there is
an O(n?) implementation of L1 based on a dynamic depth-first search algorithm. Since there
can be as many as O(n?) arrows added by L1, this would be the best that is possible for L1. Of
course, other algorithms with even better asymptotic bounds are conceivable. We leave this as
an open problem.
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Figure 11: A monotone circuit

4 P-completeness of left-linear semi-unifiability

The existence of a polynomial time sequential algorithm raises the question as to whether there
are fast (NC-class) parallel algorithms for left-linear semi-unification. We shall show that, unless
NC = P, this is not the case by giving a log-space reduction from the circuit value problem for
monotone circuits to LLSU, which establishes P-completeness of LLSU under log-space reduc-
tions.

A monotone circuit is a directed acyclic graph C = (V, E) whose nodes, called gates, are of
five different kinds:

[

input gates with no inedge and 1 outedge;

2. and-gates with 2 inedges and 1 outedge;

3. or-gates with 2 inedges and 1 outedge;

4. fan-out gates with 1 inedge and 2 outedges;

5. a single output gate with 1 inedge and no outedge.

Furthermore, all gates are reachable from the input gate, and the output gate is reachable from
all gates.

Example:

An example of a monotone circuit implementing the Boolean function y = ((z3 V z2) V (z2 A
z3)) A (23 V z4) is shown in Figure 11. The circles represent fan-out gates.
End of example

Every assignment a of truth values to the input gates of C can be extended uniquely to a
truth value assignment @ to all gates of C' by defining

1. if n is an input gate, then @(n) = a(n);
2. if n is an and-gate with predecessors n’, n”, then @(n) = a(n’) A a(n’’);

3. if n is an or-gate with predecessors n',n’, then a(n) = a(n’) v a(n”);
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4. if n is a fan-out gate with predecessor n' then a(n) = a(n');
5. if n is the output gate with predecessor n’ then a(n) = a(n').

The monotone circuit value problem (MCVP) is the problem of deciding, given monotone
circuit C and assignment a to the input gates of C, whether @(n) = true for the output gate n.

Theorem 6 LLSU is P-complete under log-space reductions.

Proof:

We give a log-space reduction of MCVP to LLSU by adapting a proof of Dwork, Kanellakis,
and Mitchell for P-completeness of unification. MCVP is known to be P-complete [Gol77].
Together with the existence of a polynomial time algorithm (see previous section) for LLSU this
implies the theorem.

First we describe how we represent a circuit C by a term graph A. Then the assignment
a is encoded by adding arrows to A to make it an arrow graph. The thus constructed A will
be a reduced arrow graph representation of a left-linear system of inequalities. It is easy to
construct the actual system of inequalities instead of its reduced arrow graph representation,
but for expositional purposes it is easier to describe the construction of A.

For every kind of gate we describe a term graph “gadget” for that gate. Every one of these
gadgets is actually a term graph with a pair of designated nodes for every in- and outedge of
the encoded gate. These gadgets are then “glued” together at their input and output node pairs
with some arrows to represent C. Additional arrows encode a.

1. An input gadget consists of two variable labeled nodes n,n’. It has no input node pair, and
its only pair of output nodes is (n,n’).

2. An and-gadget consists of three nodes n,n’, n”. The two pairs (n, n’), (n’, n"") are its input
node pairs, and (n,n") is its output node pair.

3. An or-gadget consists of two variable labeled nodes n,n’. The two identical pairs (n,n’)
and (n, n’) are its input node pairs, and (n,n’) is also its output node pair.

4. A fan-out gadget consists of six nodes n,nj,na,n’,n{,ny, where ny,ny are the variable
labeled children of n and n),n} are the variable labeled children of n’ (i.e., n and n’ are
f-labeled). The input pair is (n,n’) and the output pairs are (n,, n}), (n2, nb).

5. The output gate is represented by three nodes n,n’, n”, where n’, n" are the variable labeled
children of n, and (n, n’) is the designated input pair of the gadget. (It has no output pair.)

For a given combinational circuit C we use one of the gadgets above for every gate and
connect the input and output node pairs with arrows whenever two gates are connected via an
edge. Specifically, if there is an edge from gate g to gate ¢’ in C, the edge corresponds to an
output pair in the gadget for g and an input pair in the gadget for ¢’. Let (n,n’) be this output
pair in the gadget for g and (m, m’) the corresponding input pair in the gadget for g’. We add
the arrows m — n and n’ — m. Finally, for every input gate g that is set to true by a we add
an arrow n — n’ between the output pair (n,n’) in the gadget representing g.

If we associate with every arrow in the thus constructed arrow graph A a distinct color
then A is an arrow graph representation of a left-linear system of inequalities (that we can
construct from A in logarithmic space). It is easy to check that after applying Algorithm L1 to
A (ignoring the colors) the resultant arrow graph A’ has an arrow path from n to its child n’ in
the output gadget of A’ if and only if the value true is assigned to the output gate of C' under
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Figure 12: An arrow graph encoding of a monotone circuit

a. Consequently A’ fails the acyclicity test if and only if @ assigns true to the output gate in C.
Since the construction of A can be implemented in logarithmic space, this proves the theorem.

End of proof

Example:

An arrow graph encoding of the circuit of Figure 11 is shown in Figure 12.

End of example

Let kLLSU be the problem of left-linear semi-unification with exactly k term inequalities.
The proof of the previous theorem can be strengthened to yield the following result.

Corollary 2 2LLSU is P-complete.

Proof:

Consider the step in the proof of Theorem 6 where a distinct color is associated with every
arrow in the arrow graph A constructed from a monotone circuit C and assignment a. We can
make do by using only two colors; in fact, only when connecting the input pairs of an or-gate
g we use two distinct colors for the two outarrows from node n in the input pair (n,n’) in the
or-gadget. For all other arrows we can use the same color. The resulting arrow graph has two
colors and represents a left-linear system of 2 inequalities that can be constructed in logarithmic
space from the arrow graph.

End of proof

This implies, of course, that kLLSU is P-complete for all k > 2. We conjecture that 1LLSU
is also P-complete.
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5 Concluding remarks and open problems

Kfoury, Tiuryn and Urzyczyn showed that left-linear semi-unifiability (LLSU) is decidable. Their
proof is essentially an exponential-time decision procedure and thus their result shows that LLSU
is in DEXPTIME.

In this paper we have given a tight structural upper and lower bound for LLSU by proving
that it is P-complete. We have shown that a dynamic transitive closure based implementation
of a generic algorithm yields an O(n3) time decision procedure for LLSU.

Several issues and open problems remain:

e We conjecture there is an O(n?) time algorithm based on our generic Algorithm L1.

o We conjecture that 1LLSU (left-linear semi-unifiability with only 1 inequality) is P-complete
(we proved completeness for k inequalities for k > 1).

e Possible applications of LLSU to proof theory remain to be explored (suggested by Hans
LeiB).

o Several generalizations are not directly addressed, but do not pose any major difficulties.
By adding a unification-like postprocessing phase to algorithm L1 it is possible to generalize
algorithm L1 to arbitrary alphabets (instead of only .A2). A dynamic transitive closure
based implementation still takes only O(n®) time. Furthermore, it is possible to extract a
most general semi-unifier from the output of Algorithm L1. In particular, size and algebraic
properties of most general semi-unifiers of left-linear systems of inequalities appear to follow
immediately from the correctness of L1.
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