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The deduction system D, for HL consists of the usual while-rule, the rules for
composition, conditionals and consequence, and the assignement axiom.

Let M be a (set-theoretic) model of £. Let T be the set of states, i.e. the set of
functions o from the set of variables to the domain of M. Then the interpretation

of ¢ in M (denoted by M[4]) is a subset of ¥ in the usual way. In particular
M([false] = @ and M[true] = X.

Definition 1 A subset S C T is definable iff there is a formula ¢ such that M[¢] =
S. In this case we say that ¢ defines S.

Suppose further that M gives a semantics to P, i.e. we can interprete statements

« as functions M[a] from ¥ to . Among other things we require the semantics to
satisfy the following property:

If z does not occur in «, thenVoVd : Mle|(o[d/z]) = (M[a](a))[d/z] (1)

where d is an element of the domain of M, and o[d/x] denotes the function equal to
o except that it delivers d as value for . Further all the statements should have the
usual effect on states, e.g. assignement should correspond to substitution in that

Mlz :=t](0) = o[M[t}(o)/x].
Definition 2 Let a be a program, and S C ¥.

1. The weakest precondition of a and S (denoted by wp(e,S)) is defined as
{o € Z|Vo'(M[e](0) = 0’ = o' € §)}.

2. The total weakest precondition of a and S (denoted by twp(a, S)) is defined
as {0 € £|3'(M[a)(s) = o’ A o’ € S)}.

For formulae ¢ we abbreviate wp(a, M(¢]), resp. twp(a, M[¢]) as wp(a, @), resp.
twp(a, ¢).

Lemma 3 For all programsa and S C £ we have wp(e, S) = twp(a, S)Uwp(«, false).

We can view models M of £ which give a semantics to P as models of HL in the
usual way. We write |=p [ iff [ is true in M. Let Dy be the deduction system

consisting of Dy, with as additional axioms all ¢ such that E=m . We write Fps 1 iff
l is deducible in Dy,.

Definition 4 M is called complete iff Vi(j=p | =k 1).

Each model M of HL satisfies the reverse of definition 4, i.e. Vi(kFam 1 ==n). This
is the soundness of Hoare logic.
However there are a lot of models which are not complete. Let M, (denoted simply

by M) be the class of all complete models of language £. A subclass of M is the
class of expressive models.



Definition 5 M is expressive iff for every a and for every ¢ the set wp(a, @) is
definable.

Let £ (denoted simply by £) be the class of expressive models. It is well-known
that £ C M, i.e. every expressive model is complete. In fact this inclusion is strict.

Theorem 6 ([1]) £ c M

Proof: Let £ be the language of Peano arithmetic, and NV the standard model of
the natural numbers. Then N € M ([2]). Let M be a non-standard model with

the same theory. It follows that the same formulae of HL are true in both models,
hence M is complete. Take

o = [whilez # 0 do z := z — 1 od]

then wp(a, false) = {o|o(z)is non-standard} in M. It is well-known that this set
is not definable, hence M is not expressive. [ |

In this article we shall prove that although complete models need not be expressive,
they satisfy a property which comes very close to it, called weak erpressivity. This
means that for each a and ¢ there is a definable set between twp(a, ¢) and wp(e, ¢).
As a consequence we find among other things that weakest preconditions of total
programs are always definable in a complete model.

In the next section we will define when a model is weak expressive, and we will give
some theorems and lemmas about weak expressive models. In the last section we

prove a certain basic theorem, and use that to show that complete models are weak
expressive.

2 Weak Expressivity

In this section we will define weak expressive models, and consider some properties
of them.

Definition 7 4 model M is weak expressive iff for every a and every ¢ there is a

Y such that
twp(a, ¢) C M[] C wp(a, ¢)

(In fact we consider only pairs (o, @) such that the variables in a are different from
the bound variables in ¢, but we can always rename. )

So although R = wp(a, #) need not be definable in a weak expressive model, there
always is a definable set S, which differs from R only in that it does not contain

all elements on which o does not terminate. It is easy to see that every expressive
model is weak expressive.

Weak expressive models have some interesting properties.
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Theorem 8 If M is weak expressive, |=pr ¢ = 9, and wp(a, ¢) is definable, then
wp(a, ) is definable.

Proof: Suppose ¢’ defines wp(a, #). There is a 9’ such that twp(a,¥) C M[y'] C
wp(a, ). We will show that ¢’ V ' defines wp(a, ).

o M[¢'V ] = M¢'|UM[Y] = wp(a, $) U M[y'] subseteq wp(a, ) U M[p'] C
wp(aa "/)) U wp(a, ¢) = wp(a7 ¢)

o wp(a,) = twp(a, p)Uwp(a, false) C M[p'lUwp(a, false) € M[')Uwp(a, ¢)
= M[y'TUM[¢'] = M[y'V ¢/]

Theorem 9 If M is weak ezpressive, then the following are equivalent for every a:
¢ wp(a, false) is definable
® wp(a, ¢) is definable for all ¢

Proof: By theorem 8. [ |

Theorem 10 If M is weak expressive, then the following are equivalent:
e M is expressive
e wp(a, false) is definable for all «
Proof: By theorem 9. n

Theorem 11 If M is weak expressive, then all weakest preconditions of total pro-
grams are definable.

Proof: If o total, then wp(a, false) = false. The result now follows by theorem
9, |

In the next section we will prove that a model is weak expressive iff it is "weak

expressive for every program and every formula without quantifiers”. To prepare
for it we give some definitions and lemmas.

Definition 12 The projection of a set S C ¥ on the z-component is the set {o €
¥|3d: o[d/z] € S}. Notation: 3zS.
The complement of a set S C T is the set {0 € T|o ¢ S}. Notation: —S.
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It is clear that M[3z¢] = 3z M([¢], and M[~¢] = ~M|4).

Definition 13 Let R,S C X. R is a reduct of S (R < S) iff one of the following
clauses holds:

e R=3zR',and R <« S
¢ R=-R,and RR & S
e R=S

Let ¢' denote a prenex normal form (i.e. ¢! is a formula of L with all quantifiers in
front) for each formula ¢. Let ¢? be the equivalent formula obtained by changing
all Vz in =3z-. Finally let ¢° be the remainder of ¢? when we remove all 3z and -
in front. We now have M[¢] < M[¢°], and ¢° is quantifier-free.

Definition 14 A prefix 7 is a finite sequence of symbols Iz and —. A prefiz is even
iff it contains an even number of —-symbols, otherwise it is odd. The length of a

prefiz m is the number of 3z and - symbols it contains. Let S CXY thenmoSCX
is defined as follows:

o 7 =17

Then 10§ = ("0 S)

o v =dz.7x

Then w0 S = Jz(n’' 0 S)

o T =¢

Then oS =S5

By definition we have R < $ iff there exists a 7 such that 7 0 S = R. If we define
7 0 ¢ as the formula formed by concatenation of = and ¢, then M [7 0 @] = wo M[d).

Lemma 15 Let S C T, 7 an arbitrary prefiz. If v is even, then r 0 S C 7o T,
otherwise roT C 7o S.

Proof: We prove the lemma by induction to the length n of .

basis In the case n = 0 we have r iseven,and 10 S =S CT =70 T.

step Suppose the lemma is true for each prefix with length n, and let 7 be a prefix
with length n + 1. We have the following cases:

o #=dz.7'

Suppose 7’ even, then = is even. By induction hypothesis we have 7'0 S C
7' o T. Suppose ¢ € 0§ = Jz(n’ 0 S), then there is a d such that
old/z] € 7’0 S. So g[d/z) € 7' o T, and & € Iz(x' 0 T)=xoT.
Analogous if #’ is odd.



o T=-7

Suppose 7' is even, hence 7 is odd. By the induction hypothesis 7/ 0§ C
moT,s0omoT=-(xr"oT)C =(r'08)=7o0S.
Analogous if 7’ is odd.

Lemma 18 Let a be a program, = a prefiz, $ C ¥, and suppose the variables in a
are different from those occuring in x. Then:

1. If r is even:
(a) 7o wp(a,S) C wp(a,7 o S)
(b) 7 otwp(a,S) 2 twp(a, 7 0 S)
2. If © is odd:
(a) 7o twp(e,S) C wp(a,n o S)
(b) 7o wp(a,S) D twp(a, 7 0 S)

Proof: Simultaneously we prove these four statements by induction to the length
n of .

basis In the case n = 0, 7 is even, and we have mowp(a, S) = wp(a, S) = wp(a, 7o
S). The same for twp.

hypothesis Suppose that if = has length n, then the theorem is true.

step Now suppose that = has length n + 1. We have to consider eight different
cases. Here we write out two of them.

o We prove la) in the case that 7 = 3z.7’ and 7’ even. By the induction
hypothesis we have 7’ 0 wp(e, S) C wp(a, 7’ 0 §). So:
7 o wp(a, S)

dz(7' o wp(a, S))

-

Jz(wp(a, ' 0 S))

Jz{o|Vo'(M[a](o) =0’ = o’ € 7' 0 §)}
{o|3dVe'(M[c](o[d/z]) = 0’ = o' € 7' 0 §)}

= By property (1) of the semantics.

{o|3dVe’' (30" (M[a](0) = 0" Ao’ = 0"[d/z]) = o' € 7' © S)}
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—{C-a|3dVa"(M[a](a) =0" = o"[d[z] € ' 0 §)}
{_a'|Va”(M[a](a) = 0" = 3d(0"[d/z] € 7' 0 S))}
{o|Vo"(M[a)(0) = 0" = 0" € Fz(x' o S))}

;p(a, Jdz(7' 0 5))

wp(a, 7 0 5)

o We prove 2a) in the case that 7 = =.7’ and =’ even. By the induction
hypothesis we have twp(c, 70 §) C 7' otwp(a, ), so =(7' o twp(e, S)) C
—twp(a, 7’ 0 ). So:

7 o twp(a, S)

=(7’ o twp(e, 5))
-
—twp(a, 7’ 0 S)

f{algar( Mle)(o) =o' Ao’ € 7' 0 S)}
{=0|Va'(M[Ot](U) #o'Vo' gn'oS)}
(oo (Mlel(0) = o' o ¢ 70 5))
EUWG'(M[a](a) =0'= 0’ € ~(1'05))}
,Ep(a, ~(x' 0 5))

wp(a, 0 S)

Lemma 17 Let a be a program and ¢, formulae. Let ¢° be the formula without
quantifiers derived from ¢ as defined earlier, and let w be the prefix (so o ¢° = é).
Let the sets of variables occuring in & and o be disjoint.

Then
1. If twp(a, ¢°) C M[3), then
(a) If © even, then twp(a, ¢) C M[r o 1p].
(b) If  odd, then M[r o 4] C wp(a, ¢).

7



2. If M[¢] C wp(e, ¢°), then

(a) If 7 even, then M[r o ] C wp(e, ¢).
(b) If = odd, then twp(a, ¢) C M[x o).

Proof: We shall only prove case la), as the remaining cases are similar.

We have twp(a, ¢°) € M[y] and 7 even. By lemma 15 it follows that Totwp(a, ¢°) C
7 o M[y]. So with the help of lemma 16 case 1b) we get:

twp(a, ¢)

twp(a, 7 0 ¢°)
Cc

T o twp(a, ¢°)
-

7 o M)

J_\J[woz/z] [ |

3 Complete models are weak expressive

Now we can prove the theorem about weak expressivity announced in the previous
section. Using this theorem we shall prove that complete models are weak expressive.

Theorem 18 A model M is weak ezpressive iff for every a and for every formula
b without quantifiers there exists a formula ¥ such that

twp(a, b) C M[d’] C wp(a, b)

Proof: The only if-part is trivial.

To prove the if-part suppose that « is a program and that ¢ is an arbitrary formula.
We claim that there exists a v such that

twp(a, ¢) € M[] C wp(a, ¢)
Write ¢ = w040, with 7 a prefix and ¢° quantifier-free. We assume that variables are

suitably renamed such that ¢ and a have no variables in common. By assumption
there is a 1’ such that

twp(a, ¢°) C M[y'] C wp(a, ¢°)

Now we have to consider two cases:



e T is even:

Then
twp(e, ¢) € Mr 0 9] C wp(e, ¢)
by lemma 17 1a) and 2a).

e 7 is odd:
Analogous by lemma 17 1b) and 2b).

Theorem 19 M is ezpressive iff for every a the set wp(a, false) is definable.

Proof: The only if-part is trivial.

To prove the if-part, suppose that for every a the set wp(a, false) is definable. First

we show that M is weak expressive. Let b be a formula without quantifiers, and o
a program. Define

o = [ a; if b then while true do z := ]

We have wp(o/, false) = wp(a, b). So wp(a, b) is definable. By theorem 18 it follows
that M is weak expressive.

But now we have a weak expressive model where weakest preconditions of arbitrary
programs and false are definable. So by theorem 10 it follows that M is expressive. l

Finally we show that complete models are weak expressive.
Theorem 20 If M is complete, then M is weak expressive.

Proof: We show that M is weak expressive for formulae b without quantifiers. Then
the result follows by theorem 18.

Let o be a program in P, and b a quantifier-free formula. Suppose z,,...,z, are

the variables occuring in program o, and Y1,...,Yn are new variables (i.e. they do
not occur in « or b). Define a program as follows:

a'=[ Y11= 21 ... }Yn := Tp;0;if =b then while true do Ty =1 0d fijzy i= g1 .. T =y

We now have |=p {true}a’;a{b}}. By completeness of M it follows that Far
{true}o’; a{b}. Because we can only prove this by the rule of composition we must
have bpr {true}e/{y'} and ks {99’} a{b} for a certain ¢'. So E=m {true}a’{y'} and
F=um {¢'}a{b}. By definition of o’ we have therefore
o € twp(a, b) = a(o(z1)/y1] . .. [0(zn)/yn] € M[']
Hence
o € twp(a,b) = o € M[y"]
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where " is the formula obtained by replacing each y; by z; in ¥'. So twp(a, b) C
M[y").

By =M {¥'}a{b} we have that M(¢"] C wp(a,b). Suppose o € M{[y"], then
olo(z1)/n] ... [o(zn)/yn] € M['], 50 oo(21)/11]. .. [0(n)/ya] € wp(a, b). We have

therefore
Vo'(Ma|(olo(z1)/w1]. .. [0(2n)/ya]) = o' = o’ € M]b])
By property (1) of the semantics and the fact that o does not contain an Yi, we have
Vo'(Mla)(0) = 0" = o"[0(21)/31]. . . [0(2n) /ya] € M[B])
Because b does not contain an y; it follows that
Vo'(Mla)(0) = ¢”" = 0" € M[b])

So o € wp(a, b). So M["] C wp(a,b).
We have therefore twp(a,b) C M[y"] C wp(e, b). m

Example 21 Let £ be the language with a unary predicate Z, a unary function s,
and a constant c. Take as a model PRED, with as domain the natural numbers,
Z(z) iff £ =0, s(z) =z —1, 5(0) = 0, and ¢ = 0. Define

a =[while ~Z(z) A ~Z(s(z)) do z := s(s(z)) od]

Observe that a is total, and wp(a, Z(z)) = {o|o(z)is even}. The set of even num-
bers is not definable in £, hence PRED is not complete by the fact that in a weak
ezpressive model every total program has a definable weakest precondition.
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