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1. z 13 a minimal (maximal) element of S’ iff z € S’ andy< z (z < y) implies z = y, for each
ve s.

2. z is a lower (upper) bound of &' iff z Sy(y<z)foralyes'.
3. z is a least (greatest) element of S’ iff z € S’ and z is a lower (upper) bound of S'.

4. = is the greatest lower (least upper) bound of S’ iff z is the greatest (least) element of the
set of all lower (upper) bounds of S'.

The least upper bound (lub) or join of a set S is denoted by V/ S, and the greatest lower bound
(glb) or meetby A S. If S consists of two elements z and y then we write zVy, resp. zAy. Special
cases: the lub of @ is the least element of the poset, and the glb of @ is the greatest element of the
poset.

A suitable kind of mapping for posets preserves the order structure.

Definition 5 Let (S, <) and (R, <) be posets. A function f : 8§ — R is monotone iff z < y implies
that f(z) < f(y), forallz,y€ S.

In the sequel we will assume some familiarity with category theory (cf. [7]). We define the category
Pos as the category with as objects posets, and as arrows monotone functions.

Theorem 6 Pos is a Cartesian closed category ( ccce).

Proof: Let P, P; be posets. The product P; x P; in Pos is the usual Cartesian product of sets,

ordered pointwise. The exponents P, => P, in Pos are the sets of monotone functions ordered
pointwise. |

This means that Pos is a model of the typed lambda calculus (we interpret types as posets and

terms as monotone functions). Cartesian closure is an important property of a category of domains
and we will meet it again and again.

Each poset is a category itself: the objects are the elements of the underlying set and there is

exactly one arrow z — y iff z < y. Functors between posets (considered as categories) are just
monotone functions.

2 Lattices

Definition 7 An upper semilattice L is a poset in which the lub of each finite subset erists.

An upper semilattice is sometimes called a Join-semilattice. Note that L can not be empty, for it

must contain a least one element (lub of #). An upper semilattice is sometimes defined as a poset
in which the lub of each finite, non-empty subset exists.

Dually we define a lower- or meet-semilattice L as a poset in which the glb of each finite subset
exists.

Definition 8 A lattice L is a poset in which the lub and the glb of each finite subset exists.
Definition 9 A complete lattice L is a poset in which the lub and the glb of each subset exists.

It makes no sense to define a complete upper/lower semilattice, for all lubs exist iff all glbs exist:
Let L have all lubs. The glb of an arbitrary subset S of [ is given by \/{z € LIVz' € S : z < 2'}.

Example 10

® The set F(S) U {S} (where F(S) is the set of finite subsets of a set S) ordered by inclusion
is a lattice, but not a complete lattice.

o The powerset P(S) of a set S ordered by inclusion is a complete lattice.



e The interval [0, 1] of real numbers ordered as usual is a complete lattice.
Monotone functions on a complete lattice have the following important property.

Theorem 11 Let L be a complete lattice, and f : L — L a monotone function. Then f has a
least fized point, i.c. there is a z € L such that:

. f(e) =2
e V' e L(f(z') ="'z < ')
Proof: The element A{z € L|f(z) < z} is the least fixed point. |

Let Clat be the full subcategory of Pos with complete lattices as objects.

Theorem 12 Clat is a CCC.

Proof: Product and exponent are just as in Pos. |
Using the fact that every function in Clat has a fixed point we see that Clat is in fact a model of

the typed lambda calculus with a fixpoint combinator, i.e. a combinator Y such that Yt reduces
to t(Y't) for a term t. The term Y1 is interpreted as the least fixed point of the interpretation of ¢.

3 Complete posets

The theory of complete lattices is not totally satisfactory. For example, the usual way to consider
the set of natural numbers as a lattice is to take N = {0,1,2,.. }U{L, T} as underlying set, and
toorder Nbyz<y& (r=yvz=1lvy= T). The existence of the least element L is intuitively
plausible as it stands for ”undefined”. However the greatest element has not such a direct meaning
(sometimes it is considered as standing for the ”overdefined element”).

In this section a more general type of structures, which nevertheless have the desirable properties
of lattices, is defined.

Definition 13 An w-chain C in a poset (5,<) is a countable subset C of S with an enumeration
€0, €1, ... of its elements such that ¢; < Cit1-

Definition 14 An (w-)complete poset (cpo) is a poset in which each w-chain has a lub.
Example 15

e Each finite poset is a cpo.

® The set {0,1,2,...} U{L} orderedbyz <y &> (z=yVz = 1) is a cpo.

e The set of finite and infinite strings over an alphabet T ordered by the prefix ordering is a
cpo.

e A coherence space A is a cpo.

Definition 16 A function f : P, — P, between the (underlying sets of) two posets is w-continuous
iff it preserves lubs of w-chains, i.e. if C is an w-chain in P, then FVC) = V{f(c)lc € C}.

Note that an w-continuous function is monotone.

Theorem 17 Let D be a cpo and f : D — D an w-conlinuous function. If z < f(z) for some
z € D then there is a least y € D such that z < y and v=f(y).

Proof: Take y=\/{f*(z)|i € N}, where f° = id, and fi+! = fi o f. [ |

In particular w-continuous functions on cpo’s with a least element have least fixed points. Let
Cpo be the category with as objects cpo’s, and as arrows w-continuous functions.



Definition 18 If C is a subcategory of Pos, then Cy is the full subcategory of C with as objects
those of C with a least element.

Note that we do not require that functions in C L preserve the least element.

Theorem 19 Cpo and Cpoy are CCC’s.

Proof: Product in Cpo and Cpo; is just as in Pos. If P, P, are cpo’s, then the exponent P, = P,
is the set of w-continuous functions from P, to P,. ||

Hence Cpo, is a CCC where each arrow has a least fixed point.

4 Directed complete posets

Directed complete partial orders are often used instead of w-complete partial orders.

Definition 20 Let (S, <) be a poset, then S' C S is directed iff each finite subset of S’ has an
upperbound in S'.

Alternatively we can say that S’ is directed iff S is not empty, and Vz,y € $’3z € §’ such that
z < zand y < z (S’ can not be empty for there has to be an upperbound of the empty set in S').

It is easy to see that every w-chain is a directed set. In fact the concept of directed set is a
generalisation of the concept w-chain.

Definition 21 A directed complete poset (dcpo) is a poset in which each directed subset has a
lub.

Clearly every dcpo is a cpo. In fact all the examples of cpo’s in the previous section are depo’s.

Example 22 Let P be a poset. A subset S of P is down-closed ifz <ye€S impliesz e S.

An ideal I of P is a directed, down-closed subset of P. The set IdI(P) of ideals of P ordered by
inclusion is a dcpo.

The following theorem shows that the difference between cpo’s and dcpo’s is essentially one of
cardinality.

Theorem 23 A poset is a cpo iff it has all lubs of countable directed sets.
Proof: In every countable directed set S’ there is a w-chain C such that Vs =VcC. |

The following relation holds between dcpo’s and complete lattices.
Theorem 24 A dcpo D is a complete lattice iff it is a join-semilattice.

Proof: One side is trivial. For the other let D be a dcpo with all finite lubs. Let S be an arbitrary

subset of D. The set consisting of all the lubs of the finite subsets of S is directed, and has the
same lub as S. |

Definition 25 A function f : P, — P, between the (underlying sets of ) two posets is continuous

iff it preserves lubs of directed subsets, i.e. if S is a directed subset of Py then f(\/ S) = \V{f(z)|z €
S}.

The theorem of the previous section on fixed points holds also for dcpo’s and continuous functions.
Define Dcpo as the category with as objects dcpo’s, and as arrows continuous functions.

Theorem 26 Dcpo and Dcpoy are CCC'’s.

Proof: The product is just as in Pos. The exponent D) = D, of two depo’s Dy, D, is the set of
continuous functions from D, to D, ordered pointwise. |

Dcpo, is a CCC with least fixed points.



5 Domain equations

We can generalize the results of the two previous sections by taking categories instead of posets.

While in the previous sections we required special subsets to have lub’s, we will now require special
diagrams to have colimits.

Definition 27 An w-chain in a category C is a functor w — C, where w is the poset of natural
numbers ordered by i < i+ 1. A directed diagram is a Junctor I — C, where I is a directed set.

Still more general we could consider filtered diagrams. However, in the so-called categories of
embeddings, which are frequently used in domain theory (see definition 32), all the arrows are
monomorpisms, and filtered diagrams coincide with directed diagrams.

Definition 28 An w-chain complete category is a category in which each w-chain has a colimit.
A directed complete category is a category in which each directed diagram has a colimit.

Example 29

o Set (the category of sets and functions) is directed complete.
® Dcpo®® (the dual category of Depo) is directed complete.

We define a cocontinuous resp. w-cocontinuous functor as a functor which preserves colimits of
directed diagrams resp. w-chains. There is a fixed point theorem.

Theorem 30 Let C be an w-chain complete category, and F : C — C an w-cocontinuous functor.
If f 1z — F(z) is an arrow in C, then there is an y in C such that F(y) = y.

Prooft Let y be the colimit of the chain Fi(f). |

The same holds for directed complete categories.

So we can solve domain-equations in Dcpo®. For example the equation D = D x D is solved as
follows. Take the cocontinuous functor A : Dcpo®® — Dcpo® : D+ D x D. Let f : A(Dg) — Dy
be an arrow in Depo, so an arrow f : Dy — A(Dg) in Depo®®. Then we can find a D which satisfies
the equation as in the theorem. By taking a non-trivial f we can ensure that the result will be
non-trivial.

It is not possible to solve the equation D = D = D in this manner, where D = D is the
exponent in Dcpo, i.e. the set of all continuous functions from D to D. Because the functor
() = (.) : Depo® x Depo — Depo is contravariant in the first, but covariant in the second com-
ponent, there is no functor F : Dcpo® — Depo® such that F(D)=D= D.

We therefore take a subcategory of Depo with as arrows certain pairs of arrows of Dcpo.

Definition 31 Let C be a subcategory of Pos. An arrow f : P — Q in C is a section iff there is
an arrow g : Q — P in C such that go f = idp. In this case g is called a retraction. If f, g satisfy
the further condition that fog < idq, then f is called an embedding, and g a projection.

Every embedding e determines an unique projection, wich we will denote by e~1.

Definition 32 Let C be a subcategory of Pos. CE is the category having the same objects as C
and having embeddings as arrows.

Theorem 33 Dcpof and Dcpo¥ are directed complete.

We can define a functor F : Depof — Dcpof on objects as D — (D => D), and on arrows as
(e:D— E)ws(eo()oel: (D= D) — (E = E)). Using this cocontinuous functor, and with
the help of the theorem on fixed points, domain equations in which = occurs can be solved.



6 Algebraic dcpo’s

We define the full subcategory of Depo consisting of the algebraic dcpo’s. A dcpo D is algebraic

iff there is a countable subset (a basis) of D such that each element of D is ” generated” by this
subset.

Definition 34 Let D be a dcpo. An element d € D is called compact iff for each directed subset
S of D we have thatd < \/ S implies Iz € S : d <=z

A compact element is sometimes called finite or isolated.

Example 35 In a coherence space A the compact elements are precisely the finite sets.

Definition 36 D is an (w-)algebraic dcpo iff D is a dcpo and if there is a countable subset Cp

of compact elements of D, such that for each z € D the set Cp(z) = {d € D|d € Cp,d < z} is
directed, and z = \/ Cp(z). ‘

In an algebraic dcpo each element is the lub of a directed set of compact elements. The set Cp is
called a basis for D.

Example 37 A coherence space A is an algebraic dcpo.

Example 38 If P is a countable poset, then IdI(P) is an algebraic dcpo. As Crap) we take the
principal ideals I, = {y € Ply < z}, for z € P.
In particular if D is an algebraic dcpo, then Idl(Cp) = D.

If D,E are algebraic dcpo’s, then the function space D => E (the set of continuous functions

D — FE) need not be algebraic. For example there may be no countable set Cp= g of compact
elements.

Example 39 Let N be the set of natural numbers considered as a poset, i.e. n<m &S n=m.

Let 2 be the set {0,1} considered as a poset. Then each element of the set of functions N = 2 is
finite. Hence Cn9 is not countable.

If D, E are algebraic dcpo’s and E has a least element L, we can find a countable subset S of
compact elements of D => E, such that each continuous function f : D — E is the lub of the
elements of S under it. The set S consists of the step functions. A step function is given by a pair
(d, e), with d € Cp and e € Cg. Application is defined by (d,e)(z) = e iffl d < z and (d,e)(z) = L
otherwise. It can easily be shown that each step function is compact in D = E. Moreover we have

that
f=V{d,e)l(d,e) < £}

However D => E need not be algebraic, because the set {f' < f|f' € S} is not always directed.
This is shown by the next example.
AN

Example 40 Let D be the algebraic depo with as underlying set {ao, ay,...}U{bo,b1,... }U{L, T}
ordered by z < y & (z=yvVz=Llvy=TV(z =ciAy=c} Ai < j)), where c,c € {a,b}.

The identity function idp is not compact in D = D: It is clear that the set {Az.a;} is directed,
and that it has lub Az.T. The identity on D is less than Az.T, but idp £ z.a;.

The set R = {(L, 1), (ao, ao), (bo, bo)} contains step functions, and hence compact elements of
D = D, which are under idp. Let f be an upperbound of this set, and f < idp. Then f(L) = 1,
and we can prove by induction that f(a;) = a; and f(b;) = b;. So f = idp. Therefore R has no
compact upperbound and there is no directed set of compact elements with lub idp .

Define Alg as the full subcategory of Dcpo with as objects algebraic dcpo’s. By the previous
arguments Alg is not a CCC. So we are going to look for Cartesian closed subcategories of Alg.



7 Saturated posets

In this section we define various sorts of saturated poséts. The intersection of categories of these
posets with Alg will give us some Cartesian closed subcategories of Alg.

Definition 41 Let P be a poset, and S C P. S is x-consistent iff for all ' C S we have that
|IS’ll < & implies S’ has an upperbound in P.

Let P # 0, then 0 is k-consistent for each x. Further every subset of P is 0,1,2-consistent. A
3-consistent subset is a pairwise consistent or coherent subset, i.e. each pair of elements in the
subset has an upperbound in P. In an w-consistent subset each finite subset has an upperbound
in P. Note that each directed set is an w-consistent set, but not vice versa.

If & < &’ then each «’-consistent set is x-consistent.

Definition 42 A x-saturated poset is a non-empty poset in which each x-consistent subset has a
lub,

Remark: In the literature x-saturated posets are called K-complete posets.
Example 43 A coherence space A is a 3-saturated poset.

Let s < &’ then each x-saturated poset is x’-saturated.

Theorem 44 If k < w, then each x-saturated poset is a dcpo with a least element.

Prooft The empty set is x-consistent, and the lub of the empty set is the least element.
Each directed set is w-consistent, hence k-consistent for < w, and therefore it has a lub. |

It is clear that the x-saturated posets with 0 < K < 3 are precisely the complete lattices. The
cases kK = 3 and k = w also have special names. We call the 3-saturated posets coherent (com-
plete) dcpo’s, and the w-saturated posets bounded complete dcpo’s. The latter are also known as

conditionally or consistently complete dcpo’s. The motivation for these last names is given by the
following theorem.

Theorem 48 D is an w-saturated poset iff D is a depo, D has a least element L, and each bounded
subset of D has a lub. :

Proof: (=): Let D be an w-saturated poset. Let S be a bounded subset of D, then each finite
subset of S has an upperbound in D, so S is w-consistent. Therefore S has a lub.
(«<): Let D be a dcpo such that each bounded subset has a lub. Let S be a w-consistent subset

of D. Then each finite subset of S is bounded and has a lub. The set of all these lubs is directed
and has a lub in D, which is the lub of S. |

In the proof of the theorem we use only lubs of bounded subsets which are finite so we can
also state the following.

Theorem 46 D is an w-saturated poset iff D is a dcpo, D has a least element L, and each bounded
finite subset of D has a lub.

Theorem 47 D is a bounded complete depo iff D is a dcpo and each non-empty subset has a glb.

Proof: (=>): Let S be a non-empty subset of the bounded complete dcpo D. The set lwb(S) of
lowerbounds of S is bounded, and A S = V lwb(S).

(¢=): Let D be a dcpo such that each non-empty subset has a glb. Let S be a bounded subset of
P. Then the set upb(S) of upperbounds of S is non-empty and \/ S = A upb(S). u

So a bounded complete dcpo is similar to a complete lattice. It may fail to be a complete lattice
by not having a greatest element (i.e. the glb of the empty-set).
Theorem 48 D is a bounded complete dcpo iff D is a dcpo and D7 is a complete latiice.

Define the category x-Sat of x-saturated posets and continuous maps.
Theorem 49 «-Sat is a CCC.



8 Saturated algebraic dcpo’s
We have the following theorem.

Theorem 50 If D, E are w-saturated algebraic dcpo’s, then the function space is algebraic.

Proof: We have seen in the section on algebraic dcpo’s that if E has a least element then we can
define step functions, and that each step function is compact in the functionspace D = E. It is
easy to see that in general the lub of a finite set of compact elements, if it exists, is a compact
element. If E is an w-saturated algebraic depo, then the compact elements of D => E are exactly

the lubs of finite sets of step functions. So we take for Cp=E the set of lubs of finite set of step
functions, which is countable. |

If D,E are x-saturated algebraic dcpo’s (x < w), then they are w-saturated, so D = E is al-
gebraic.

For an arbitrary « define x-Alg as the full subcategory of Dcpo with as objects the x-saturated
algebraic dcpo’s. So 0-Alg has as objects algebraic lattices, 3-Alg has as objects coherent alge-

braic dcpo’s, and w-Alg has as objects bounded complete algebraic depo’s. The objects in the last
category are the famous Scott domains.

Theorem 51 x-Alg (k <w) is a CCC.

Example 52 A coherence space A is a coherent algebraic dcpo.

9 Strongly algebraic dcpo’s
There is a larger subcategory of Alg than w-Alg that is a CCC.

Definition 53 A strongly algebraic dcpo is a poset which is the colimit of an w-chain of finite
dcpo’s in Depo¥ .

The strongly algebraic depo’s are sometimes called SFP-objects, where SFP stands for ”Sequences
of Finite Partial orders”.

It is clear that each strongly algebraic dcpo is a dcpo. There is another characterisation of this

class of dcpo’s, which shows that they are algebraic dcpo’s with some other properties. First we -
need some definitions.

Definition 54 Let S be a subset of a partial order P. Define MUB(S) as the set of minimal
upperbounds of S. Then S has property M iff

1. MUB(S) is finite.

2. MU B(S) is complete, i.c. every upperbound of S is above some element of MUB(S).
Definition 85 Let S be a subset of a partial order P. Define an operator U* as follows:

e U'S) =S5

o Unt(S) = {MUB(S")|S' C U™(S), and §' finite}

. U*(S) =YUn(s)

Theorem 56 D is a strongly algebraic dcpo iff D is an algebraic dcpo with a least element, and
such that the following holds for every finite subset S of Cp:

1. S has property M.
2. U*(S) is finite.



Define SF P as the full subcategory of Dcpo with as objects the strongly algebraic depo’s. By the
previous theorem we have that SFP is a full subcategory of Alg.

Theorem 57 SFP is a CCC.

It is a consequence of the following theorems that w-Alg is a subcategory of SFP.
Theorem 58 If D and D = D are algebraic dcpo’s, then D is strongly algebraic.

Theorem 59 SFP is the largest Cartesian closed full subcategory of Alg.

10 Continuous dcpo’s

We can generalize the notion of algebraic depo to that of continuous dcpo.

Definition 60 Let D be a dcpo. Define the way-below relation € on D x D as follows:

z Ly iff for each directed subset S of D we have that y <V S implies there exists an y € S such
thatz < y/.

Theorem 61 The way-below relation < has the following properties:
e rLy=>zc<y
o z Lz & T is compact

srlz€y<y =<y

Definition 62 D is a (w-)continuous dcpo iff D is a dcpo and there exists a countable subset Bp
of D such that for each z € D the set Bp(z) = {z' € Bplz' & z} is directed, and z = \/ Bp(z).

The set Bp is called a basis for D.

If we define § (z) = {z' € D|z' < z}, then in a continuous dcpo D this set is directed, and
Vi@ =2

Example 63 Every algebraic dcpo D is continuous: Take Bp = Cp, then Bp(z) = Cp(z), so
Bp(z) is directed and has lub z.

Theorem 64 Let D be a continuous dcpo, then for each z,z € D we have that z < z implies that
there exists an y € D such that z € y<z.

Proof: Take S={d€ D|I3ye D:d < y <« z}. .
S is directed: It is clear that S is non-empty. Suppose d;,d; € S, then there are y;,y. € D such
that d; € y; < z. Now § (2) is directed, so there exists ¥s € D such that y3 € 2 and y;, 2 < ys.

The set | (y3) is directed, so there exists d3 € D such that ds < y3 and d,, d, < dj.
Further \/ §

=VIVIWly <2}

= VB,

=z.

Now suppose z € 2, then z € z < V S. So there exists d € D such that z <d,soz<d€<y<€z
for certain y. So z € y < 2. |

Example 65 Let P be a countable poset, with a relation R C P x P such that:
1. R(z,y)=>z<y

2. R(z1,z) A R(z3,2) >3y € P:zy,2, < YA R(y, z)



3. ¥ <zAR(z,y) Ay<y = R(z', )
4. R(z,2) =3y € P: R(z,y) A R(y,z) .

A rounded ideal I of P with respect to R is an ideal I such that ifz €I, then there ezists any € I
such that R(z,y). Define RIdI(P) as the set of rounded ideals of P, ordered by inclusion. It is

casy to see that RIdI(P) is a continuous dcpo, with as basis the elements I, = {' € P|R(z',2)},
forzeP.

We can characterize the continuous dcpo’s as follows.

Theorem 66 D is a continuous dcpo iff there ezists a continuous retraction r : E — D, with E
an algebraic dcpo.

Proof: If D is a continuous dcpo, then V(=) : Idl(Bp) — D is a retraction, with { (-):D—
Idl(Bp) as section. ]

Definition 67 Let C be a full subcategory of Dcpo, then R(C) is the full subcategory of C with
as objects the continuous retracts of C, i.e. D is an object of R(C) iff there erists a continuous
retractionr : E — D, with E in C.

If we define Con as the full subcategory of Dcpo with as objects the continuous dcpo’s, then
Con=R(Alg).

Con is not a CCC, just like Alg. However it is easy to find Cartesian closed subcategories of Con.
Theorem 68 If C is a CCC, then R(C) is a CCC.
For example R(x-Alg) (x < w) is a CCC. We can characterize the objects in these categories.

Theorem 69 D is a k-saturated continuous dcpo iff there exists a continuous retraction r : E —
D, with E a k-saturated algebraic depo.

11 Prime algebraic dcpo’s

Compact elements are defined with respect to lubs of directed sets. Complete prime elements are
defined in the same manner with respect to arbitrary lubs.

Definition 70 Let D be a dcpo. An element d € D is called complete prime iff for each subset S
of D we have that d < \/ S implies 3z € S : d <z

A prime element is defined in the same manner with respect to lubs of finite sets.

Example 71 In a coherence space A the complete prime elements are precisely the one element
sets.

It is easy to see that a complete prime element is compact.

Definition 72 D is an (w-)prime algebraic depo iff D is a dcpo and there is a countable subset
Pp of complete prime elements of D such that Jor each z € D we have that V Pp(z) = =, where
PD(:!:) = {d € Dld € Pp,d< z}.

Example 73 A coherence space A is a prime algebraic dcpo.

Let PAlg be the full subcategory of Dcpo with as objects the prime algebraic dcpo’s. Then Alg is
not a subcategory of PAlg. Neither PAlg is a subcategory of Alg.

Definition 74 Let D, E be dcpo’s, and let E have a least element L. A prime step function is a
pair (c,p), where ¢ is compact in D, and p is complete prime in E.
Application is defined by (c,p)(z) = p iff c < z, and (¢, p)(z) = L otherwise.

10



Theorem 75 Let D be an algebraic depo, and E a prime algebraic dcpo with a least element 1,
then every f € D = E is the lub of the prime step functions under st.

Theorem 76 Let D be a dcpo, and E a k-aaturated (x < w) dcpo with a least element L, then
each prime step function is a complete prime element of D=>E.

Theorem 77 Let D be a k-saturated prime algebraic depo (k S w), then D is algebraic.
Proof: Show that it holds for w-saturated prime algebraic dcpo’s. Take Cp={VX|XC Pp,X
finite and bounded}. ]

Define «-Palg as the full subcategory of Dcpo with as objects the x-saturated prime algebraic
dcpo’s. By the last theorem we have that k-PAlg is a full subcategory of x-Alg.
We can combine the previous three theorems as follows.

Theorem 78 «-Palg (k < w) is-a CCC.
A dcpo D satisfies aziom d iff for all z, ¥,2€D
ylz=zA(yva)=(zAy)V(zA2)
Theorem 79 Let D be a x-saturated prime algebraic dcpo, then D satisfies ariom d.
Proof: We have only to show that if y | 2 then z A (yV2) < (2Ay)V(z Az) (the reverse inequality
is always true). Show now that each complete prime under zA(yVz) is also under (zAy)V(zAz). B

In the next section we shall consider a special subclass of the w-saturated prime algebraic dcpo’s.

12 dI-domains

Definition 80 Let D be a dcpo. An element d € D is called very finite iff there are only finitely
many elements below d.

It is easy to see that in an algebraic dcpo each very finite element is compact. An algebraic dcpo
satisfies aziom I iff the reverse is also true, i.e. each compact element is very finite.

Definition 81 A dI-domain D is an w-saturated algebraic dcpo (i.e. a Scott domain) which sat-
isfies ariom d and I,

A coherent dI-domain is a dI-domain which is coherent, i.e. 3-saturated.
Example 82 A coherence space A is a coherent dI-domain

We will show that the class of dI-domains is a subclass of the class of w-saturated prime algebraic
dcpo’s, viz. those which satisfy axiom I. We need two lemma’s.

Lemma 83 Let D be an w-saturated dcpo, and d € D, then d is a complete prime iff d is compact
and prime.

Lemma 84 Let D be an algebraic dcpo, then D is prime algebraic iff there is a countable subset
P of complete primes of D such that for each ¢ € Cp we have that c = \/{plp< ¢c,p € P}.

Theorem 85 D is a dI-domain iff D is an w-saturated prime algebraic dcpo which satisfies aziom
L

Proof: The if-part follows by the results of the previous section.

For the only if-part suppose D is a dI-domain. We have to show that D is prime algebraic. By
lemma 84 we have to find a countable subset P of complete primes such that each ¢ € Cp is the
lub of elements from P. Take P = {p complete prime|3c € Cp : p < ¢c}. Clearly P is countable.

We will now show that a very finite element d € D is the lub of complete primes by induction to
the number n of elements below d.
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basis If n = 0, then d is the least element 1 of D, and Viprlp < L} = V08 = L (note that L is
not a complete prime).

hypothesis Suppose that if there are k elements below d, and k € {0, ...,,n}, then d is the lub of
complete primes.

step Let there be n + 1 elements below d. If d is itself a complete prime then we are ready.
Suppose d is not a complete prime. The element d is very finite, hence it is compact, and
by lemma 83 it follows that d is not prime. So there is a finite subset S of D, such that
d<VS, and for all z € S d £ z. Consider the elements d A z for z € S. We have that
V{dAz|z € S} = dA\/S, because S is finite, D satisfies axiom d,anddfzforallze S.
Further d A\/ S = d, because d < \/ S. Hence d is the lub of the elements d A z.
We have that d A z < d, because d £ z. So there are less than n + 1 elements below d A z,
and we may apply the induction hypothesis to it. Therefore d = V{dAziz € S} = V{p
complete prime|p < dA z,z € S}.

The category of dI-domains and continuous functions is not Cartesian closed, because in the func-
tion space compact points need not be very finite. However there is a non-full Cartesian closed
subcategory of Dcpo with as objects the dI-domains.

Definition 86 Let D, E be dcpo’s and f : D — E a continuous Junction. f is stable iff for every
d € D and e < f(d) there ezists a d' < d such that e Sf(d) andVd" <d:e< f(d") = d' < d".

So a function f is stable iff for every d € D and e < f(d) the set {d"|d” < d and e < f(d")} has
a least element. This least element will be denoted by L(f,d,e). Intuitively a function is stable iff
it uses a definite part of the input for a certain part of the output.

Theorem 87 Let D, E be w-saturated dcpo’s, and f : D — E a continuous function, the f is
stable iff for every bounded X C D we have that FAX) = A £(X).

Proof: (¢«=): Take L(f,d,e) = A{d"|d” < d and e < f(@")}.
(=):Let X C D be bounded by u. Show that L(f,u, A f(X)) is a lowerbound of X. Then
AF(X) < F(L(f,u, A £(X)) < F(A X), and A £(X) = f(A X) follows, because ANF(X) 2 .f(/\X.)

is trivial.

Definition 88 Let D, E be dcpo’s, and f : D — E a continuous function. f is conditionally
multiplicative (c.m.) iff {d, d'} bounded implies that fdAd) = f(d) A f(2).

It is clear that if D, E are w-saturated, then a stable f is c.m. If we restrict to dI-domains then
the reverse is also true.

Theorem 89 Let D, E be dI-domains, and f : D — E a continuous Junction, then f is stable iff
fisem.

Let dI- Dom be the subcategory of Depo with as objects dI-domains, and as arrows stable functions.

Theorem 90 dI-Dom is a CCC.

13 coherence spaces

Definition 91 Let D be a dcpo with a least element. An element d € D is called primitive iff
there are ezactly two elements < d.
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