Paramorphisms

Lambert Meertens

RUU-CS-90-4
January 1990

Toe

Utrecht University

g
Do, :
;‘ <. Department of Computer Science
<
\:.’.’1 5 Padualaan 14, P.O. Box 80.089,

S
e 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31- 30 - 531454

Paramorphisms

Lambert Meertens

Technical Report RUU-CS-90-4
January 1990

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

formal program construction, this can be mechanised in conjunction with
mechanical type inference.

The present paper is concerned with another contribution to avoiding formal
overhead, less dramatic, but probably still important, namely a generalisa-
tion of homomorphisms on initial data types, dubbed paramorphisms. While
often much leverage is obtained by using homomorphisms, the occasions are
also ample where the gain of the homomorphism approach is less clear. It
will be shown below that for a class of functions that are not themselves
homomorphisms, but that satisfy a similar simple recursive pattern, a short-
cut can be made, resulting in properties that are very similar to well-known
properties of homomorphisms, such as the promotion properties. The recur-
sive pattern involved is well known : it is essentially the same as the standard
pattern used in the so-called elimination rules for a data type in constructive
type theory (see, e.g., [1]). The specific investigation of which these results
form a part is not complete; rather, it has barely begun. There is some
evidence that the approach can be generalised to other recursive patterns,
possibly giving rise to a more elegant theory than expounded in this snap-
shot.

A few words are in order on the proof methods used here, and on the no-
tation. The current pace of development of proof methods is so rapid that,
although I valiantly tried to use the best techniques I knew in constructing
the proofs in this paper, I now think of them as being thoroughly out-dated.
This is mainly due to the work of Roland Backhouse and his crew at Gronin-
gen University; using their techniques, some of the lenghthier proofs given
here, requiring mildly excruciating symbol manipulation, can be presented in
one or two extremely simple calculation steps! Since there is, at the time of
writing, no published account of these developments, I have refrained from
updating the proofs.

As to the notation, I have taken the liberty (as in all my other papers in
this area) to conduct some further notational experiments. While deviation
from “established” notation is hard on the reader, most current notations
were clearly not designed with a view to the exigencies of calculation. Where
notation is concerned, an attempt has been made to make this paper rea-
sonably self-contained. However, not all non-standard notations are formally
introduced—namely when their meaning can be inferred from the context.

2

A convention here, as well as in [8], is to treat values of type A as nullary
functions of type A «— 1. This makes it possible to denote function appli-
cation unambiguously as function composition, for which the symbol « is
used. Within functional expressions this operator has the lowest precedence.

1 The problem

Structural induction is the traditional technique for proving the equality of
two functions that are defined on an inductively defined domain. Such func-
tional equalities can also be proved by calculation in an equational proof style.
This is based on the fact that, under a suitably chosen algebraic viewpoint,
these functions are homomorphisms whose source algebra (an “algebraic data
type”) is initial. It is then possible to invoke elementary algebraic tools that
replace the induction proofs (GOGUEN[4]). In particular, the Unique Exten-
sion Property and the Promotion Theorem for that source algebra provide
the same proof-theoretic power as structural induction.

An examination of the proof obligations under the two approaches—tra-
ditional induction and algebra—reveals that they are ultimately identical.
Thus it would seem that nothing is gained by using the homomorphic ap-
proach. However, the reduction in the labour needed to record the full proof
is striking, especially when combined with a dummy-free style.

The explanation of this phenomenon is simple. A proof by structural
induction follows a fixed ritual, that is repeated for each next proof. In
the algebraic theorems, this proof has been given once and for all; what
remains as the applicability condition is the heart of the matter. Moreover,
the adoption of the algebraic viewpoint makes it possible to give concise
notations for inductively defined functions|7, 2, 3], reducing the formal labour
further.

The straightforward algebraic approach fails, however, when the definitional
pattern of a function does not mimic the structural pattern of its domain.
There is a standard trick that often makes it possible to apply the algebraic
methods in such cases: ‘tuple’ the function concerned together with the
identity function, thus giving another function that is a homomorphism.
Unfortunately, this method entails much formal overhead, making it less
attractive for practical use.

In this paper we develop a generic extension of the theory that caters for
a slightly more general class of definitional patterns. The term ‘generic’ here
means that the theory applies to all inductively defined data types.

2 A simple example

A simple inductive data type is formed by the naturals, with a unary con-
structor succ and a nullary constructor 0. Consider the following pattern of
functional equations (with a function dummy F):

(1) I(F) := (Fesucc = s+ F)A(F+0 = 2)

This pattern has two yet unbound function variables, a unarys € A—A
and a nullary z € A «— 1, where A is some type. Given bindings for s and z,
a function satisfying II is a homomorphism from the algebra of the naturals
with signature (succ, 0) to the algebra on A with signature (s, z). Since the
algebra of naturals is defined as the initial algebra in this category, there
exists—by the definition of ‘initial’—ezactly one such homomorphism for
each choice of (s, z). Therefore this is a means for defining functions on the
naturals. Moreover, given two functions f, g € A — N, we have

f =g « I(f)ATl(g)

This is the Unique Extension Property for the naturals. It can be seen that
the task of proving one functional equality is replaced by the obligation of
proving two times (for this date type) two such equalities, which however
tend to be simpler. To invoke this instrument, a suitable instantiation of s
and z must be chosen, but if one of the two functions is inductively defined,
not only is the necessary instantiation known, but we also have for free that
that function satisfies II.

After having established II(f) and II(g), the induction approach to conclude
to f = g still has to go through the following ritual steps:

Basis : feO=ge0
{(1): I(f), (g)}

zZ =

{reflexivity of =}
true

Step: fesuccen = gesuccen
{(): 1(£), Ti(g)}
sefen = gegen
&< {Leibniz}
fen = gen

i

{Induction Hypothesis}
true

End of ritual steps.

The more complicated the inductive construction of the data type, the longer
these rites.

Of course, in many cases the proof of the equality of two functions can be
given purely equationally without appealing to either induction or these al-
gebraic tools—otherwise no proof would be possible at all, since the common
proof obligation has the shape of a set of functional equalities. Somewhat
surprisingly, it turns out that often such a proof can also be substantially
shortened by appealing to the Unique Extension Property.

Not all functions on the naturals are homomorphisms. Attempts to prove
a (valid) functional equality for a non-homomorphic function by appeal to
the Unique Extension Property are doomed to fail, and, in fact, even for
homomorphisms success is not guaranteed. An example is the factorial func-
tion fac: there exists no simple function s such that II(fac) holds. However,
there are simple functions @ and 2z such that IIII(fac) holds, where IIII is
the pattern given by

II(F) := (Fesucc = FR d)A(F+0 = 2)

(Here ® is a binary function; between two functions returning naturals ®"
then denotes the application of ® to the results of these functions.) The
instantiation that gives the factorial function is that in which ® is taken to
be the operation such that m® n = m x (succ » n), and z is 1.

5

Like II before, ITII has a unique solution for each choice for the unbound
functions, in this case @ and z. So the following is a valid statement :

f =g <« III(f)ATI(g)

This can be shown to follow from the Unique Extension Property. But the
proof of this is (even for a simple type like the naturals) non-obvious, lengthy,

and in fact a new ritual that can be avoided by a properly designed extension
of the theory.

3 Functors

Category theory provides some concepts that have proven indispensable in
the formulation of generic theory, paramount among which is the notion of a
functor. We give a treatment here slightly geared towards our purposes. In
particular, we handle only the unary case, although the type constructors |
and 4} introduced below are also (binary) functors.

A functor is a pair of functions, one acting on types, and one on functions,
with some further properties as stated below.

The application of a functor is denoted as a postfix operation. A functor
1 assigns to each type A a type At, and to each function f € A«— B
a function ft € At«— Bf, where the latter mapping preserves function
composition and identity ; more precisely :

(2) (feg)t = ftegt ,
(3) idt = id .

Equality (2) requires that f + g is well-typed; this is viewed as a well-
formedness condition that applies in general to all constituents of functional
expressions, and is from now on left implicit. In denoting an identity func-
tion, as in (3), its type is not stated, but in any context id is assumed to have
a specific type, and so (3) stands for as many equalities as there are types.

An appeal to these equalities will be indicated in the justification of a
proof step by “t is a functor”.

An important type constructor is ||. In category theory this is usually de-
noted by x. It has a corresponding action on functions. (In [8] I used

6

different notations for || on types and on functions, which was a bad idea.)
It is informally defined by:

A||B := “the type whose elements are the pairs (a, b)
for a€ A and b € B,
filg := “the function that, applied to a pair (a, b),

returns the pair ((f « a), (g * b)).

We have the usual “projection functions” from A || B to A and B, which
are denoted as:

<€ A—A|B ,
>e€e B—A|B ,

We also need the combinator that combines two functions f € A+«— C
and g € B — C into one function

foge A|B—C

(The usual category-theory notation is (f,g).)
The relevant properties that we shall have occasion to use are:

(4) FAG-H = (F-H)n(G-H)
(5) fllg«FpG = (f<F)p(g+G)
(6) <<°Fer = F
(7) >F4G = G
(8) L4>» = id

A fact that we shall also use is that any mapping 1 F, i.e., mapping a function
f with the same domain as F to the function f ¢ F, is a bijection (since
composition to the left with < undoes the mapping), so that

(9) f=g = fqF = gqF

For discussing the application of the theory we need the dual type constructor
4, which forms the “disjoint” or “tagged” union. The usual category-theory

7

notation is +. Informally,

A4B := “the type whose elements are the union of the
elements of A and B, tagged with the origin
of an element (left or right)”,

f4g := “the function that, for a left-tagged value a
returns the left-tagged value f « a, and for a
right-tagged value b the right-tagged value
geb.
There are “injection functions” from each of A and B to A 4 B, which are

not needed here, and a combinator that combines two functions f € C — A
and g € C «— B into one function

fgge C—A4B ,

which amounts to applying f to left-tagged, and g to right-tagged values,
thereby loosing the tag information. (The usual category-theory notation is
[f, g].) There are similar (but dual) properties to those given for || and
friends, which are not listed here since they will not be used.

From functors and || and 4}, we can form new functors. Functors can be
formed by the composition of two functors, which is denoted by juxtaposi-
tion :

A(fY) = (ADt ,
£(11) = ()1
If B is some type, || B and 4B are functors, defined by

A(||B) = A|B ,

f(I|B) = f|id ,
and

A(4B) = A4B ,

f(4B) = foid

Combining this, we have, e.g., that (|| B)(1) is a functor, with

A((I B)(4#1)) = (Al B) #1

8

4 Types as initial fixed points

The treatment in this section is mainly based on work by MALCOLM[6, 5|.
Functors can be used to characterise a class of algebras with compatible
signatures. If 1 is a functor, it characterises the class of algebras (4, ¢), in
which A is some type and the signature is

p€ A— Af

(For simplicity, we do not consider here the possibility of laws on the algebra.

The theory developed here applies, nevertheless, equally to algebras with
laws.)

For example, in the algebra of naturals (N, succ 4¢ 0) the signature has
type

succg0 € N — N 4§11

(which is equivalent to: (succ € N e—N)A (0 € N — 1)), so0 it belongs
to the class characterised by the functor 4}1.

If (A, ¢) and (B, 1) are two t-algebras, then h € A — B is called a homo-
morphism between these algebras when:

bt = hey

We introduce a concise notation for the homomorphic property :
(10) Feg¢pe—9 := ¢peFt = Fey

An algebra is called initial in the class of {-algebras if there is a unique
homomorphism from it to each algebra in the class. If two algebras in the
same class are initial, they are isomorphic: each can be obtained from the
other by renaming. We assume that we can fix some representative, which is
then called the initial algebra. For all functors introduced in this paper the
class of algebras has an initial element. The initial algebra for { is denoted
by u(t).

If we have

(L, in) = n(f) ,

then it can be shown (only for the lawless case!) that L and Lt are isomorphic,
which is the reason to call the type L the initial fired point of 1.

So the naturals can be defined by:
(N, succ 40) := p(41)

The non-empty “snoc” lists over the base type A can likewise be defined
by:

(A%, k¢ D) := u((]|A)(#1))

Let (L, in) be the initial algebra u(t) for some functor }. A function ¢ €
A «— At determines uniquely an algebra (A, ¢), and therefore a unique
homomorphism h € A «— L, that is, a function h satisfying

he ¢ < in

Denote it by ([¢]). It is useful to have a term for these homomorphisms whose
domain is an initial algebra, and to this end we coin the term catamorphism.
So we now have the following characterisation of catamorphisms:

CATAMORPHISM :
(11) h=(g) = he ¢ «—in |,
which we shall also invoke in the equivalent version

(12) h=(#) = ¢+ht = hein ,

obtained by unfolding definition (10), and in the weaker version

(13) ¢-(eDt = () -in ,
obtained by taking h := (¢].

The following two are now (almost) immediate :

UNIQUE EXTENSION PROPERTY (UEP):

f=g « (fep—inA(ge ¢ < in)

10

IDENTITY CATAMORPHISM :
(14) (in) = id € L—1
Another easy consequence is:
PROMOTION :

(@) = f(¥) « feop Iy

All functions defined on an initial type that have a left inverse are catamor-
phisms. For let f € A«—— L and g € L— A be two functions. Then

(15) f=(feinegt) « gef =1id

Proof.

£ = (f-inegt)

= {(12): Catamorphism}
feinegt oft = fein

= {id is identity of «}
foeinegt oft = feineid

= {(2,3): t is a functor}
feine(gef)t = foineid}

&< {Leibniz}

gef =id
End of proof.

A function f € A «— L need not be a catamorphism, but the result of tupling
it with the identity function, namely f{id € A|| L« L, always is, for it
has, by (7), a left inverse >. So, by instantiating (15), we obtain:

FIRST TUPLING LEMMA :

(16) fqid = (fqideine>t)

11

5 Paramorphisms

Throughout this and the next section (L, in) denotes the initial algebra u(%)
for some functor 1.

Define, for ¢ € A+— (A|| L)1,
(17) V¢ = ¢p(ine>t) € A||L— (A|| L)

The notation /¢ introduced here serves merely as a shorthand and is purely
local to this section.

Define, furthermore, for ¢ as above,

(18) [4ll == <+(v¢) € A—L

Functions expressed in this form will be called paramorphisms. The actual
notation used here is provisional, but is chosen to be reminiscent of the
notation ((¢]) used for catamorphisms.

We have seen that a function ¢ € A «— At determines a function of type
A — L with certain important properties, namely the catamorphism (¢]),
and also that not all functions with source type L can be obtained this way,
since not all are catamorphisms.

A function ¢ € A «—— (A|| L)t also determines a function of type A «— L,
namely [[¢]]. Not only are, as we shall see, all functions with source type
L expressible in this form, but—somewhat surprisingly in the light of the
generality—it will also turn out that we still have properties that are very
similar to the Unique Extension Property and the Promotion rule.

First we show the generality of the construction by determining, for a given
f € A« L, afunction ¢ such that f = [[¢]]:

f
= {(6): F = <« F4G}
L« fqid

{(16): First Tupling Lemma}
<<-([fﬂid~in°>>ﬂ)

{(4): F4G-H = (F-H)¢ (G« H)}

12

L ((feine>t)p(ine>1))
= {¢ = f-in->>1'}

L+ (¢ (ine>1))
= {(17): v}

<+ (V4D
= {(18): [[#]1}

ll¢ll

Remember that (16), used in the second step in this calculation, was based on
expressing the injective function f {}id as a catamorphism. So for the partic-
ular instantiation of ¢ used above we could as easily prove that 3> « (/@) =

id. However, the validity of this functional equality is not dependent on the
instantiation of ¢:

CLAmM: For ¢ € A«— (A|| D),
(19) ><(/d) = id € L—1L

Proof. First we reduce the functional equality to another one:

> (v¢) = id

{(14): Identity catamorphism}
>+ (vé) = (i)

{(12): Catamorphism}

in e (> (Vo)) = >« (Vo) +in

The last equality is proved thus:

ine (>« (vt
{(2): t is a functor}
ine>>1 « (VoDt
= {(1°: G =>»F4G}
>« ¢ (in e >1) « (Vi
= {(17): V¢}
>« Vo« (VoDt

I

13

{(13): Catamorphism (weak version)}
>« (V¢ +in
End of proof.
(Remark. It is likely that a one-step proof of this claim could be given,
based on theory about some “generically defined” functions being uniquely

determined by their types. As far as I am aware, the currently developed
theory is not yet powerful enough for this.)

The result just proved can be nicely combined with the definition of [[¢]],
giving:

SECOND TUPLING LEMMA :

(20) l¢lnid = (V4D

Proof.
li]] 1 id
= {(19): above claim}
[[#]] 4 (>« (v¢D)
= {(18): [l¢l1}
(< (vVed) (> - (veD)
= {(®: (F-H)#(G+H) = F4G+H)
<> - (ve)
= {(8): «g>» = id}
(vé)
End of proof.

We are now ready to obtain the central result, namely a unique characteri-
sation for paramorphisms. From it the other, calculationally possibly more
important, properties follow easily.

PARAMORPHISM :
(1) f=[g] = ¢+(fpid)t = fein

14

Proof.

i

£ = [l
{(9): ¢t F is a bijection}
foid = [[4]] ¢id
{(20): Second Tupling Lemma}
Fid = (v4)
{(12): Catamorphism}
Vo (fpid)t = fyidein
{(17): V¢}
g (ine>t) e (Fid)t = foidein
{(4): F4G+H = (F+H){ (G« H) (both sides)}
(8 (ERidI) plin+> 1 « (F4id)) = (£ in) 4 (id »in)
{(2)": t is a functor}
(8+ (£ pid)f) (ine (> + £ 4id)f) = (£ in) p(d + i)
{(): »F4G = G}
(¢« (fpid)t) g (ineidt) = (f «in)(id « in)
{(3)": t is a functor; id is identity (both sides)}
(8- (Eid)t) prin = (£ in)qrin
{(9)": 4 F is a bijection}
(8- (Eqid)) = £oin .

End of proof.

The substitution f := [[¢]] gives the weaker version

(22)

¢+ ([l pid)t = [[g]] in .

The uniqueness gives us:

UEP FOR PARAMORPHISMS :

=g & (¢p(fpid)t = fein)A(d+(gpid)t = gein) .

Whereas for catamorphisms the unique characterisation involves a condition
of the same form as for the promotion law, here we find a divergence. The
analogon of the promotion law for paramorphisms is:

15

PARAMORPHISM PROMOTION :

(23) [lell = fe[w] < ¢e(fllid)t = foyp .

Proof.
[[#ll = £[¥ll
= {(21): Paramorphism}
¢ ((£+[[¥)pid)t = fe[[g]]+in
= {id is identity of »}
¢ ((fo[#D)p(ideid)t = £o[[4]) «in
= {(8)": (f=F)(g+G) = fllg+ F¢t G}
¢« (f]lid«{l])nid)f = £o[[g]] «in
= {(2): 1 is a functor}
¢« (fllid)f « (Wl id)t = £o[[4])+in
= {(22)*: Paramorphism (weak version)}
¢ (fllid)t « ([l i)t = £« (([]] pid)t
&< {Leibniz}
ge(fllid)t = fov .
End of proof.

6 Relationship with catamorphisms

We shall see now two ways in which paramorphisms and catamorphisms are
related.

Firstly, paramorphisms can be viewed as a generalisation of catamorphisms,
in the sense that the characterisation for catamorphisms, (12), follows for-
mally from that for paramorphisms, (21). To show this we have to express a
catamorphism as a paramorphism. The crucial result is:

(24) h=[g-<tl]l « ¢kt = hein .
Proof.

16

h = [l¢. <]
{(21): Paramorphism}
¢+ <t +(hpid)t = hein
{(2): 1 is a functor}
¢+ (K ehqid)t = hein
{(6): L*F¢4G = F}
¢eht = hein

End of proof.

The right-hand side of (24) is precisely the equivalent of h = (/¢]) figuring in
(12); in other words, considering paramorphisms as primitive, [[¢ » «f]] can
be viewed as a new definition of the catamorphism ([g]). With this definition,
then, (24) states the same as (12).

Secondly, note that the condition in the rule for paramorphism promotion,
(23), can be expressed as a homomorphic property, namely as follows. Let }
denote the functor (|| L)1, that is,

(25) At = AlDt
(26) ff = (fflid)t
Then
feg gy
= {(10): homomorphic property}
peoff = foy
= {(26)}

¢ (fllid)t = fe9 ,

which is precisely the condition of (23). So a “parapromotable” function with
respect to { is a true homomorphism in the category. of }-algebras.

Put (M, IN) := pu(}), in which we use IN as notation for the constructor
to avoid confusion with the constructor in of L. We have IN € M «— M{,
or, equivalently, expanding } by means of (25),

INe M«— (M| L)}

17

Therefore IN has a type that makes the form [[IN]] meaningful. We give a
name to this paramorphism :

(27) preds := [[IN]] € M«—1L

Now it turns out that all paramorphisms can be formed from this particular
one by the composition with a catamorphism on the type M. To make
explicit that these catamorphisms are defined on the initial }-algebra, rather
than the {-algebra as until now, we write them as (#]);. The result is then:

(4] = (#D: ¢+ preds

Proof.
(4] = (#Ds « preds
= {(27): preds}
(¢l = (¢D; « [IN]]
< {(23): Paramorphism promotion}
¢+ ((eDs lid)t = (#Ds <IN
= {(26)": 1}
¢+ (8Dt = (4Ds-IN
= {(13): Catamorphism (weak version)}
true
End of proof.

With this as a basis, it is trivial to prove the promotion rule (23) for paramor-
phisms.

To conclude, we examine what this means for the initial example, the facto-
rial function fac. Here L := N, which is obtained by taking the initial fixed
point of t:= 4/1. Putting

® := x e«(id|succ) ,
1 := succe0 ,

the recursive definition pattern of fac can be expressed as

18

Q@ ¢ls(facqid)fid = fac. succ 0
which equivales, by (21),
fac = [[® 1]

We have, further,§ = (|| N)(#1). Then (M, IN)is (N, ¢0), the algebra
of the finite lists of naturals, and thus preds € N« N. It satisfies, by
(21) with the proper instantiations, the pattern

K O« (predspid) 4 id = preds ¢ succ 0

which in a more traditional style can be expressed as

predsesuccen = (predsen)-Kn
preds « 0 = 0O ,
or, informally, preds « n = [0,1,...,n — 1]. Catamorphisms on snoc-lists

are also known as left-reduces, and another way of writing (®41)is @5
(BIRD[2, 3]). Thus,

fac = ®-f+1 o preds

References

(1] Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman.
Do-it-yourself type theory. Formal Aspects of Computing, 1:19-84, 1989.

[2] Richard S. Bird. An introduction to the theory of lists. In M. Broy,
editor, Logic of Programming and Calculi of Discrete Design, volume
F36 of NATO ASI Series, pages 5-42. Springer—Verlag, 1987.

[3] Richard S. Bird. Lectures on constructive functional programming. In
M. Broy, editor, Constructive Methods in Computing Science, volume F55
of NATO ASI Series, pages 151-216. Springer-Verlag, 1989.

[4] J. A. Goguen. How to prove inductive hypotheses without induction. In
W. Bibel and R. Kowalski, editors, Proc. 5th Conference on Automated
Deduction, pages 356-373. Springer-Verlag, 1980. LNCS 87.

19

[5] Grant Malcolm. Factoring homomorphisms. Technical Report Comput-
ing Science Notes CS 8908, Department of Mathematics and Computing
Science, University of Groningen, 1989.

[6] Grant Malcolm. Homomorphisms and promotability. In J.L.A. van de
Snepscheut, editor, Mathematics of Program Construction, pages 335-
347. Springer-Verlag, 1989. LNCS 375.

[7] Lambert Meertens. Algorithmics-towards programming as a mathemat-
ical activity. In J. W. de Bakker, M. Hazewinkel, and J.K. Lenstra, edi-
tors, Proceedings of the CWI Symposium on Mathematics and Computer

Science, volume 1 of CWI Monographs, pages 289-334. North-Holland,
1986.

[8] Lambert Meertens. Constructing a calculus of programs. In J.L.A. van de
Snepscheut, editor, Mathematics of Program Construction, pages 66-90.
Springer-Verlag, 1989. LNCS 375.

20

Paramorphisms

Lambert Meertens

RUU-CS-90-4
January 1990

Utrecht University
Department of Computer Science

W

3 5

s <] Padualaan 14, P.O. Box 80.089,
KF oA DN

3508 TB Utrecht, The Netherlands,
Tel. : ... +31-30- 531454

Paramorphisms

Lambert Meertens

Technical Report RUU-CS-90-4
January 1990

Department of Computer Science
Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

Paramorphisms

Lambert Meertens
CWI, Amsterdam, & University of Utrecht

0 Context

This paper is a small contribution in the context of an ongoing effort directed
towards the design of a calculus for constructing programs. Typically, the
development of a program contains many parts that are quite standard, re-
quiring no invention and posing no intellectual challenge of any kind. If, as
is indeed the aim, this calculus is to be usable for constructing programs by
completely formal manipulation, a major concern is the amount of labour
currently required for such non-challenging parts.

On one level this concern can be addressed by building more or less spe-
cialised higher-level theories that can be drawn upon in a derivation, as
is usual in almost all branches of mathematics, and good progress is be-
ing made here. This leaves us still with much low-level laboriousness, like
administrative steps with little or no algorithmic content. Until now, the
efforts in reducing the overhead in low-level formal labour have concentrated
on using equational reasoning together with specialised notations to avoid
the introduction of dummy variables, in particular for “canned induction”
in the form of promotion properties for homomorphisms-which have turned
out to be ubiquitous. Recent developments and observations strongly sug-
gest that further major gains in the proof methods are possible. One of the
most promising developments is that it has become apparent that often a
lengthy administrative calculation can be replaced by a single step by simply
considering the types concerned. In the context of mechanical support for

1

formal program construction, this can be mechanised in conjunction with
mechanical type inference.

The present paper is concerned with another contribution to avoiding formal
overhead, less dramatic, but probably still important, namely a generalisa-
tion of homomorphisms on initial data types, dubbed paramorphisms. While
often much leverage is obtained by using homomorphisms, the occasions are
also ample where the gain of the homomorphism approach is less clear. It
will be shown below that for a class of functions that are not themselves
homomorphisms, but that satisfy a similar simple recursive pattern, a short-
cut can be made, resulting in properties that are very similar to well-known
properties of homomorphisms, such as the promotion properties. The recur-
sive pattern involved is well known : it is essentially the same as the standard
pattern used in the so-called elimination rules for a data type in constructive
type theory (see, e.g., [1]). The specific investigation of which these results
form a part is not complete; rather, it has barely begun. There is some
evidence that the approach can be generalised to other recursive patterns,
possibly giving rise to a more elegant theory than expounded in this snap-
shot.

A few words are in order on the proof methods used here, and on the no-
tation. The current pace of development of proof methods is so rapid that,
although I valiantly tried to use the best techniques I knew in constructing
the proofs in this paper, I now think of them as being thoroughly out-dated.
"This is mainly due to the work of Roland Backhouse and his crew at Gronin-
gen University; using their techniques, some of the lenghthier proofs given
here, requiring mildly excruciating symbol manipulation, can be presented in
one or two extremely simple calculation steps! Since there is, at the time of
writing, no published account of these developments, I have refrained from
updating the proofs.

As to the notation, I have taken the liberty (as in all my other papers in
this area) to conduct some further notational experiments. While deviation
from “established” notation is hard on the reader, most current notations
were clearly not designed with a view to the exigencies of calculation. Where
notation is concerned, an attempt has been made to make this paper rea-
sonably self-contained. However, not all non-standard notations are formally
introduced—namely when their meaning can be inferred from the context.

2

A convention here, as well as in [8], is to treat values of type A as nullary
functions of type A «— 1. This makes it possible to denote function appli-
cation unambiguously as function composition, for which the symbol « is
used. Within functional expressions this operator has the lowest precedence.

1 The problem

Structural induction is the traditional technique for proving the equality of
two functions that are defined on an inductively defined domain. Such func-
tional equalities can also be proved by calculation in an equational proof style.
This is based on the fact that, under a suitably chosen algebraic viewpoint,
these functions are homomorphisms whose source algebra (an “algebraic data
type”) is initial. It is then possible to invoke elementary algebraic tools that
replace the induction proofs (GOGUEN[4]). In particular, the Unique Exten-
sion Property and the Promotion Theorem for that source algebra provide
the same proof-theoretic power as structural induction.

An examination of the proof obligations under the two approaches—tra-
ditional induction and algebra—reveals that they are ultimately identical.
Thus it would seem that nothing is gained by using the homomorphic ap-
proach. However, the reduction in the labour needed to record the full proof
is striking, especially when combined with a dummy-free style.

The explanation of this phenomenon is simple. A proof by structural
induction follows a fixed ritual, that is repeated for each next proof. In
the algebraic theorems, this proof has been given once and for all; what
remains as the applicability condition is the heart of the matter. Moreover,
the adoption of the algebraic viewpoint makes it possible to give concise
notations for inductively defined functions(7, 2, 3], reducing the formal labour
further.

The straightforward algebraic approach fails, however, when the definitional
pattern of a function does not mimic the structural pattern of its domain.
There is a standard trick that often makes it possible to apply the algebraic
methods in such cases: ‘tuple’ the function concerned together with the
identity function, thus giving another function that is a homomorphism.
Unfortunately, this method entails much formal overhead, making it less
attractive for practical use.

In this paper we develop a generic extension of the theory that caters for
a slightly more general class of definitional patterns. The term ‘generic’ here
means that the theory applies to all inductively defined data types.

2 A simple example

A simple inductive data type is formed by the naturals, with a unary con-
structor succ and a nullary constructor 0. Consider the following pattern of
functional equations (with a function dummy F):

(1) II(F) := (Fesucc = s« F)A(F+0 = z)

This pattern has two yet unbound function variables, a unary s € A «— A
and a nullary z € A« 1, where A is some type. Given bindings for s and z,
a function satisfying II is a homomorphism from the algebra of the naturals
with signature (succ, 0) to the algebra on A with signature (s, z). Since the
algebra of naturals is defined as the initial algebra in this category, there
exists—by the definition of ‘initial'—ezactly one such homomorphism for
each choice of (s, z). Therefore this is a means for defining functions on the
naturals. Moreover, given two functions f, g € A — N, we have

f =g « II(f)AIl(g)

This is the Unique Eztension Property for the naturals. It can be seen that
the task of proving one functional equality is replaced by the obligation of
proving two times (for this date type) two such equalities, which however
tend to be simpler. To invoke this instrument, a suitable instantiation of s
and z must be chosen, but if one of the two functions is inductively defined,
not only is the necessary instantiation known, but we also have for free that
that function satisfies II.

After having established II(f) and II(g), the induction approach to conclude
to f = g still has to go through the following ritual steps:

Basis : feO = geo0
{(1): I0(£), T(g)}

zZ =

1l

{reflexivity of =}
true

Step: fesuccen = gesuccen

{(1): TI(£), TI(g)}
Sefen = segen
= {Leibniz}
fen = gen

{Induction Hypothesis}
true

End of ritual steps.

The more complicated the inductive construction of the data type, the longer
these rites.

Of course, in many cases the proof of the equality of two functions can be
given purely equationally without appealing to either induction or these al-
gebraic tools—otherwise no proof would be possible at all, since the common
proof obligation has the shape of a set of functional equalities. Somewhat
surprisingly, it turns out that often such a proof can also be substantially
shortened by appealing to the Unique Extension Property.

Not all functions on the naturals are homomorphisms. Attempts to prove
a (valid) functional equality for a non-homomorphic function by appeal to
the Unique Extension Property are doomed to fail, and, in fact, even for
homomorphisms success is not guaranteed. An example is the factorial func-
tion fac: there exists no simple function s such that II(fac) holds. However,
there are simple functions @ and z such that IIII(fac) holds, where IIII is
the pattern given by

[III{F) := (Fesucc = F@ d)A(F+0 = z)

(Here ® is a binary function; between two functions returning naturals ®"
then denotes the application of ® to the results of these functions.) The
instantiation that gives the factorial function is that in which ® is taken to
be the operation such that m® n = m x (succ « n), and z is 1.

5

Like II before, ITIT has a unique solution for each choice for the unbound
functions, in this case @ and z. So the following is a valid statement :

f =g <« IHI(f) ATIII(g)

This can be shown to follow from the Unique Extension Property. But the
proof of this is (even for a simple type like the naturals) non-obvious, lengthy,
and in fact a new ritual that can be avoided by a properly designed extension
of the theory.

3 Functors

Category theory provides some concepts that have proven indispensable in
the formulation of generic theory, paramount among which is the notion of a
functor. We give a treatment here slightly geared towards our purposes. In
particular, we handle only the unary case, although the type constructors I
and {4 introduced below are also (binary) functors.

A functor is a pair of functions, one acting on types, and one on functions,
with some further properties as stated below.

The application of a functor is denoted as a postfix operation. A functor
T assigns to each type A a type Af, and to each function f € A« B
a function ft € At«— Bf, where the latter mapping preserves function
composition and identity ; more precisely :

(2) (feg)t = ftegt ,
(3) dt = id .

Equality (2) requires that f « g is well-typed; this is viewed as a well-
formedness condition that applies in general to all constituents of functional
expressions, and is from now on left implicit. In denoting an identity func-
tion, as in (3), its type is not stated, but in any context id is assumed to have
a specific type, and so (3) stands for as many equalities as there are types.

An appeal to these equalities will be indicated in the justification of a
proof step by “t is a functor”.

An important type constructor is ||. In category theory this is usually de-
noted by x. It has a corresponding action on functions. (In [8] I used

6

different notations for || on types and on functions, which was a bad idea.)
It is informally defined by :

A||B := “the type whose elements are the pairs (a, b)
for a € A and b € B,
fllg := “the function that, applied to a pair (a, b),

returns the pair ((f « a), (g » b)).

We have the usual “projection functions” from A || B to A and B, which
are denoted as:

<€ A—A|B ,
>€ B—A|B ,

We also need the combinator that combines two functions f € A «— C
and g € B «—— C into one function

frge A|B—C

(The usual category-theory notation is (f, g).)
The relevant properties that we shall have occasion to use are:

(4) FpG-H = (F+H)¢(G+H)
() fllg«F4G = (f<F)p(g-G)
(6) L F#G = F
(7) >+F4G = G
(8) L > = id

A fact that we shall also use is that any mapping 1+ F, i.e., mapping a function
f with the same domain as F to the function f{F, is a bijection (since
composition to the left with « undoes the mapping), so that

(9) f =g = f¢F = gqF

For discussing the application of the theory we need the dual type constructor
4, which forms the “disjoint” or “tagged” union. The usual category-theory

7

notation is +. Informally,

A4B := “the type whose elements are the union of the
elements of A and B, tagged with the origin
of an element (left or right)”,

f4g := “the function that, for a left-tagged value a
returns the left-tagged value f « a, and for a
right-tagged value b the right-tagged value
geb.
There are “injection functions” from each of A and B to A4 B, which are

not needed here, and a combinator that combines two functions f € C — A
and g € C «— B into one function

fgge C—AHB

which amounts to applying f to left-tagged, and g to right-tagged values,
thereby loosing the tag information. (The usual category-theory notation is
[f, g].) There are similar (but dual) properties to those given for || and
friends, which are not listed here since they will not be used.

From functors and || and 4}, we can form new functors. Functors can be

formed by the composition of two functors, which is denoted by juxtaposi-
tion:

A(th) = (Aht
(1Y) = (Nt
If B is some type, | B and 4B are functors, defined by

A(||B) = A|B ,

f£(IB) = fid ,
and

A(#B) = A4B ,

f(#B) = f4id

Combining this, we have, e.g., that (|| B)(#1) is a functor, with

A((lIB)(#1)) = (Al B) 41

8

4 Types as initial fixed points

The treatment in this section is mainly based on work by MALCOLMI6, 5|.
Functors can be used to characterise a class of algebras with compatible
signatures. If t is a functor, it characterises the class of algebras (A, ¢), in
which A is some type and the signature is

€ A— At

(For simplicity, we do not consider here the possibility of laws on the algebra.
The theory developed here applies, nevertheless, equally to algebras with
laws.)

For example, in the algebra of naturals (N, succ 44 0) the signature has
type

succg0 € N—N 41 |

(which is equivalent to: (succ € Ne— AN) A (0 € N 1)), so it belongs
to the class characterised by the functor 41.

If (A, ¢) and (B, 9) are two t-algebras, then h € A «— B is called a homo-
morphism between these algebras when:

¢ehf = hey

We introduce a concise notation for the homomorphic property:

An algebra is called initial in the class of {-algebras if there is a unique
homomorphism from it to each algebra in the class. If two algebras in the
same class are initial, they are isomorphic: each can be obtained from the
other by renaming. We assume that we can fix some representative, which is
then called the initial algebra. For all functors introduced in this paper the
class of algebras has an initial element. The initial algebra for t is denoted
by u(1).

If we have

(L, in) = u(f) ,

then it can be shown (only for the lawless case!) that L and Lt are isomorphic,
which is the reason to call the type L the initial fized point of t.

So the naturals can be defined by :
(N, succ 40) := p(41)

The non-empty “snoc” lists over the base type A can likewise be defined
by :

(A%, kK ¢0) = u((| A)(#1))

Let (L, in) be the initial algebra u(}) for some functor t. A function ¢ €
A «— A} determines uniquely an algebra (A, ¢), and therefore a unique
homomorphism h € A «— L, that is, a function h satisfying

he ¢ < in

Denote it by ([¢]). It is useful to have a term for these homomorphisms whose
domain is an initial algebra, and to this end we coin the term catamorphism.
So we now have the following characterisation of catamorphisms:

CATAMORPHISM :

(11) h=(g) = he ¢ «—in ,

which we shall also invoke in the equivalent version

(12) h=() = é-ht = hein ,

obtained by unfolding definition (10), and in the weaker version
(13) ¢+ (4Dt = (gD +in ,

obtained by taking h := (¢].

The following two are now (almost) immediate :

UNIQUE EXTENSION PROPERTY (UEP):
f=g « (fec ¢ in)A(ge ¢ < in)

10

IDENTITY CATAMORPHISM :
(14) (in) = id € L—1L
Another easy consequence is:
PROMOTION :
4D = @) « feg Ly

All functions defined on an initial type that have a left inverse are catamor-
phisms. For let f € A«— L and g € L+ A be two functions. Then

(15) f = (feinegl) <« gof = id

Proof.

f = (feinegi)

= {(12): Catamorphism}
foinegt eff = foin

= {id is identity of « }
feinegt off = feineid

= {(2,3): t is a functor}
feine(gef)t = foineidt

&< {Leibniz}

gef =id
End of proof.

A function f € A «— L need not be a catamorphism, but the result of tupling
it with the identity function, namely f id € A||L«— L, always is, for it
has, by (7), a left inverse . So, by instantiating (15), we obtain:

FIRST TUPLING LEMMA :
(16) foid = (ffideine >1)

11

5 Paramorphisms

Throughout this and the next section (L, in) denotes the initial algebra e(t)
for some functor f.

Define, for ¢ € A«— (A| L)t,
(17 V¢ = ¢p(in->1) € A|L—(A| L)t

The notation /¢ introduced here serves merely as a shorthand and is purely
local to this section.
Define, furthermore, for ¢ as above,

(18) 4] = <+ (Vo) € A—1L

Functions expressed in this form will be called paramorphisms. The actual
notation used here is provisional, but is chosen to be reminiscent of the
notation ([¢]) used for catamorphisms.

We have seen that a function ¢ € A «— Af determines a function of type
A «— L with certain important properties, namely the catamorphism (¢},
and also that not all functions with source type L can be obtained this way,
since not all are catamorphisms.

A function ¢ € A« (A|| L)f also determines a function of type A — L,
namely [[#]]. Not only are, as we shall see, all functions with source type
L expressible in this form, but—somewhat surprisingly in the light of the
generality—it will also turn out that we still have properties that are very
similar to the Unique Extension Property and the Promotion rule.

First we show the generality of the construction by determining, for a given
f € A« L, a function ¢ such that f = [[¢]]:
f

= {(6): F = ««F¢G}
L fqid

{(16): First Tupling Lemma}
<L o ([fpid «in « >1)
= {4): F4G-H = (F+H)¢(G- H)}

12

K ((feine>t)p(in s >1))
= {¢ := Feine>t}

L+ (g (ine>1))
= {(17): v¢}

< (v¢)
= {(18): [[¢]1}

(4]

Remember that (16), used in the second step in this calculation, was based on
expressing the injective function f 1}id as a catamorphism. So for the partic-
ular instantiation of ¢ used above we could as easily prove that 3> « (/¢) =
id. However, the validity of this functional equality is not dependent on the
instantiation of ¢:

CramM: For g€ A— (Al L),
(19) >+(v¢) =id € L—1L

Proof. First we reduce the functional equality to another one:

> (ve) = id

{(14): Identity catamorphism}
>+ (V) = (in)

{(12): Catamorphism}

ine (>« (VeD)t = >+ (V) «in

The last equality is proved thus:

ine (>« (VD)
{(2): t is a functor}
ine>1 (vt
= {(7)": G = >« F 4G}
> g (ine>1) « (VoDt
{(17): V¢}
> o vé -+ (V)i

13

{(13): Catamorphism (weak version)}
> (vV¢]) «in
End of proof.
(Remark. It is likely that a one-step proof of this claim could be given,
based on theory about some “generically defined” functions being uniquely

determined by their types. As far as I am aware, the currently developed
theory is not yet powerful enough for this.)

The result just proved can be nicely combined with the definition of 81,
giving:

SECOND TUPLING LEMMA :

(20) (¢l nid = (ve)

Proof.
(4] frid
= {(19): above claim}
(8l (> « (VD)
= {(18): ([}
(V) (> (veD)
= {(4): (F+H)#(G-H) = F4G+H}
<> (vV4)
= {(8): «¢>» = id}
(vé)
End of proof.

We are now ready to obtain the central result, namely a unique characteri-
sation for paramorphisms. From it the other, calculationally possibly more
important, properties follow easily.

PARAMORPHISM :

(1) f = [[¢]

¢+ (fqid)t = fein

14

Proof.

f = (4]
{(9): # F is a bijection}
£rid = [#]pid
{(20): Second Tupling Lemma}
fhid = (V4
{(12): Catamorphism}
Vo (fqid)t = foidein
{(17): v}
4 (ine>1)« (Fpid)t = Fpidein
{(4): F4G+H = (F+H)# (G« H) (both sides)}
(e (Fpid)E) r(ine> 1 « (fid)t) = (Fein)f(id «in)
{(2)": 1 is a functor}
(8= (ERi) pline (> = £ 4id)l) = (£~ in)(id+in)
{("): >+ F¢G = G}
(¢ + (£ id)t) f(in + idt) = (£ »in) 4 (id « in)
{(8)": 1 is a functor; id is identity (both sides)}
(8+ (ERi)) pin = (£ «in) yin
{(9)": ¢t F is a bijection}
(8- (Fpid)f) = foin |
End of proof.

il

M

il

The substitution f := [[#]] gives the weaker version
22) ¢ (el pid)t = (4]l +in .
The uniqueness gives us:
UEP FOR PARAMORPHISMS :
=g « (¢+(fpid)f = fein)A (b (gpid)f = gein) .

Whereas for catamorphisms the unique characterisation involves a condition
of the same form as for the promotion law, here we find a divergence. The
analogon of the promotion law for paramorphisms is:

15

PARAMORPHISM PROMOTION :

(23) gl = £+[W]] & ¢=(fllid)t = foy .

Proof.
(¢l = fe[¥l]
= {(21): Paramorphism}
¢+ ((fe[B)pid)t = £o[]]«in
= {id is identity of «}
¢+ ((f+ [P (id « id))f = £« [[4]] «in
= {(5): (f-F)n(g+G) = fllg+Fp G}
o (fllid«[¥lpid)t = fo[(W]) +in
= {(2): t is a functor}
- (fllid)t « ([[W]l grid)t = £« [[¢] «in
= {(22)": Paramorphism (weak version)}
¢ (fllid)t » ([[#’]]Tr'd)lL = fey ([l pidt
& {Leibniz}

B (tllid)t = £ep .
End of proof.

6 Relationship with catamorphisms

We shall see now two ways in which paramorphisms and catamorphisms are
related.

Firstly, paramorphisms can be viewed as a generalisation of catamorphisms,
in the sense that the characterisation for catamorphisms, (12), follows for-
mally from that for paramorphisms, (21). To show this we have to express a
catamorphism as a paramorphism. The crucial result is:

(24) h=[¢+<t]l < ¢+ht = hein .

Proof.

16

h = ¢+ <H]
{(21): Paramorphism}
¢t o (hppid)f = hein
{(2): t is a functor}
e (Kehqid)t = hein
{(6): <« +F¢4G = F}
¢oht = hein

End of proof.

H]

The right-hand side of (24) is precisely the equivalent of h = ([¢]) figuring in
(12); in other words, considering paramorphisms as primitive, [[¢ « <{]] can
be viewed as a new definition of the catamorphism (¢]). With this definition,
then, (24) states the same as (12).

Secondly, note that the condition in the rule for paramorphism promotion,
(23), can be expressed as a homomorphic property, namely as follows. Let i
denote the functor (|| L)t, that is,

(%) At = (4Dt ,
(26) ff = (f|lid)t
Then
fe oo
= {(10): homomorphic property}
peoft = feoy
= {(26)}

¢ (fllid)f = fe9p

which is precisely the condition of (23). So a “parapromotable” function with
respect to { is a true homomorphism in the category.of i-algebras.

Put (M, IN) := p(}), in which we use IN as notation for the constructor
to avoid confusion with the constructor in of L. We have IN € M «— M1,
or, equivalently, expanding } by means of (25),

INe M« (M| L)t

17

Therefore IN has a type that makes the form [[IN]] meaningful. We give a
name to this paramorphism:

(27) preds := [[IN] € M—1L

Now it turns out that all paramorphisms can be formed from this particular
one by the composition with a catamorphism on the type M. To make
explicit that these catamorphisms are defined on the initial }-algebra, rather
than the t-algebra as until now, we write them as ((¢]);. The result is then:

(4] = (8D; « preds

Proof.

[¢]] = (D * preds
{(27): preds}
(¢ll = (Ds « [[IN]]
= {(23): Paramorphism promotion}
¢+ ((#D: |lid)t = (¢Ds+IN
{(26)": 1}
¢+ (eDst = (gDs-IN
{(13): Catamorphism (weak version)}

]

true

End of proof.

With this as a basis, it is trivial to prove the promotion rule (23) for paramor-
phisms.

To conclude, we examine what this means for the initial example, the facto-
rial function fac. Here L := N, which is obtained by taking the initial fixed
point of §:= 41. Putting

® = xo(id]| succ) |,
1 := succe0 ,

the recursive definition pattern of fac can be expressed as

18

® g1+ (facqid) fid = fac e succq0 ,
which equivales, by (21),
fac = [[® 1*1]]

We have, further, { = (|| NV)(41). Then (M, IN)is (N'*,-k40), the algebra
of the finite lists of naturals, and thus preds € N «— N. It satisfies, by
(21) with the proper instantiations, the pattern

K ¢ O« (predsftid) 4 id = preds « succ ¢0 ,

which in a more traditional style can be expressed as

predsesuccen = (predssn)-Kn
preds « 0 = 0 ,
or, informally, preds « n = [0,1,...,n — 1]. Catamorphisms on snoc-lists

are also known as left-reduces, and another way of writing (® 44 1)) is ®/>1
(BIRD[2, 3]). Thus,

fac = -1 preds

References

[1] Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman.
Do-it-yourself type theory. Formal Aspects of Computing, 1:19-84, 1989.

[2] Richard S. Bird. An introduction to the theory of lists. In M. Broy,
editor, Logic of Programming and Calculi of Discrete Design, volume
F36 of NATO ASI Series, pages 5-42. Springer—Verlag, 1987.

[3] Richard S. Bird. Lectures on constructive functional programming. In
M. Broy, editor, Constructive Methods in Computing Science, volume F55
of NATO ASI Series, pages 151-216. Springer—Verlag, 1989.

[4] J. A. Goguen. How to prove inductive hypotheses without induction. In
W. Bibel and R. Kowalski, editors, Proc. 5th Conference on Automated
Deduction, pages 356-373. Springer-Verlag, 1980. LNCS 87.

19

[5] Grant Malcolm. Factoring homomorphisms. Technical Report Comput-
ing Science Notes CS 8908, Department of Mathematics and Computing
Science, University of Groningen, 1989.

[6] Grant Malcolm. Homomorphisms and promotability. In J.L.A. van de
Snepscheut, editor, Mathematics of Program Construction, pages 335-
347. Springer-Verlag, 1989. LNCS 375.

[7] Lambert Meertens. Algorithmics—towards programming as a mathemat-
ical activity. In J. W. de Bakker, M. Hazewinkel, and J.K. Lenstra, edi-
tors, Proceedings of the CWI Symposium on Mathematics and Computer
Science, volume 1 of CWI Monographs, pages 289-334. North-Holland,
1986.

[8] Lambert Meertens. Constructing a calculus of programs. In J.L.A. van de
Snepscheut, editor, Mathematics of Program Construction, pages 66-90.
Springer-Verlag, 1989. LNCS 375.

20

