Homomorphisms, Factorisation and
Promotion

Nico Verwer

RUU-CS-90-5
February 1990

Utrecht University

s X 8
o o :
; < Department of Computer Science
<
Lot 5, Padualaan 14, P.Q. Box 80.089,

S
I 9 3508 TB Utrecht, The Netherlands,
Tel. : ... 4 31 - 30 - 531454

. «

P . “

S
e -

i

it}

I88N:0924~-3275

which is a homomorphism (respects the structure):

$loea = do (' fia).

This is shown in the following commuting diagram.
AtA—E4_, 4t

#ia #

v

BRA B

¢

The dotted arrow indicates that it is the unigue function which makes the diagram
commute.

The constructor € is an isomorphism, with inverse (e[1)! (see for instance [7]).
Because of this isomorphism, At can be seen as a fixed point of ([l4):

AtfA = 4.
For this reason, some people write At as (bX . X[f A). The function
e;l = (EA lﬂiA)h : At o A'lﬂA

splits a At-term in its components. It is the ‘pattern-matching function’, which
is used implicitly in functional programming languages to do case-analysis on the
construction of a term. This provides a recursive definition of @' (which is easily
established from the commuting diagram):

¢ = o (4" {ia) o (ea Mia)".

Malcolm [4, 5] would write (#) instead of ¢!, and (®o0, - - ., ®n) for a components-
functor fl= AXAA. (X QA +...+ X ®, A). He also sometimes writes (F},.. ., F,)
for (fl4). Although in many cases the components-type is indeed a disjoint union

of types, we think that it is not necessary to indicate this, and we rather have one
components-functor.

Example 3. An example of a type-functor is the cons-list constructor *, with

BmA=1+(AxB) , gBf =i, +(f xg)

€ea=[0,>]: A mA - A~

In this case, the commuting diagram says that for all types A, B and functions
[c,®]:1+ (A x B)— B:

[es @1 [0, >+] = [, @]« (s + (i1 X [c, &]))
or, equivalently:
[,el'eO=c, [c,®]" (a >+ z) = a ® ([c, ®]'z).
This function replaces O by ¢ and >+ by &.

The inverse of [O,>+] is ([0, >+]mi 4)! which splits up a list in its head and
tail:

([0, >H @ia) o [0, >+ =i, + (ia x isr)
(O, >Hmia)'eO =i, , ([O,>H®is)e(a>+2) = (a,2).

a

Example 4. Another type-functor is the non-empty join-list constructor *, with

BEA=A+(BxB) , gaf=f+(gxg)
ea =[], +].
The reader is encouraged to draw the corresponding diagram, and investigate its

meaning. (We have not required ++ to be associative, so we really have specified
binary trees.) O

3 Maps

A map is the part of a type-functor that works on functions. In general we have,
for a type-functor t and a function f: A — B, a t-mapped function:

ft: At = Bt
Functors preserve identity and composition:
() =iar , (gof) =g'est.

The idea is that a mapped function only works on the A-elements of a At-term,
leaving the structure unchanged.

We can define maps as homomorphisms. In order to do so, we try to find a
function

¢:B'fA— B!
such that
o' = ft: At - B,
We can do this by first applying f to the A-elements of the (B'[f] A)-term, giving a

term in B[] B. Then we embed this in a Bt-structure by applying the constructors
€p.

Definition 5. The map correspondiﬁg to a type-functor } is defined for all
functions f: A — B as
f!'=(epo(ip N

This is illustrated in the following commuting diagram.

Ath‘l €4 > At
(es+ iar 1) B (enoGia B = £
B A B I B—5— B!

O

This definition is exactly the same as the one in Malcolm’s paper [4], who also
proves that maps indeed preserve identity and composition.

Proposition 6.
floea=eso(f'H).

Proof. This corresponds exactly to the commuting diagram. Crucial steps are the
fact that (bi)functors preserve composition,

(K)o (pllq) = (hep)fi(koq)
the identity laws and the definition of f1:
(f'Hia) o (e @) = FHE S

O

This proposition shows how our definition of maps corresponds to the usual defini-
tion in the Bird-Meertens formalism. For example, in the case of lists it becomes

fleo=0, flot=>o(f x fH.

4 Reductions

On cons-lists, we define reductions @«-, : 4* — A as

(@Fe)O =e , (Dfe)(a>ta)=0a0 (@)

for ®: AX A — Aande: A. Thisis slighty different from the usual definition,
Where @ : A X B — B (see the note below). A reduction is primarily a function on
the structure, not on the elements of a A'-term. (One might argue that the function
+¢0 : N* = N does affect the integer elements in the list, but this is really a
consequence of equations that hold in the integer domain.)

We can define reductions as homomorphisms, just as we did for maps.

Definition 7. A A'-reduction is defined for functions

b:AfA— 4

as
¢l At - Al
This is illustrated by the diagram below.

ATJA—A . g

(#) i r

ABA—

a

Reductions are usually written as @+-. for ¢ = [e, @] (for cons-lists), or another
notation considered appropriate.

Example 8. On non-empty join-lists, reductions are defined for functions
[f,®]: B+ (B x B) — B.

In the special case that f = ig, we write &/ for the reduction lig, ®]'. We shall use
this notation for other data types to emphasize the fact that some homomorphism
is a reduction. The above diagram gives the recursive definition of & /- O

Note that in the above definition we do not require { to be factorable, like
Malcolm [4] does. Thus reductions over cons- or snoc-lists can be defined in the
usual way. For instance, the reduction which is normally written as D+~ is exactly

the same as [e,®]' In this case, the commuting diagram from the definition above
amounts to the definition of @+«-, given earlier.

In the literature on constructive functional programming, reductions on cons-
lists are often defined for operators @ : A x B — B. Although this is more general,
we chose not to do so, because then reductions would be exactly the same as homo-
morphisms. We feel that reductions like they are defined here can be very useful,
because on the elements of a structure At they act as a function from 4 to A. In
Malcolm’s paper, reductions act as the identity function on elements. We had to
mention this property explicitly in the join-list example above. Reductions in the
sense of Malcolm [4] are also reductions according to our definition.

5 Factorisation

It is well known [1] that homomorphisms on lists can be factored into a map followed
by a reduction. In his paper, Malcolm [4] shows that homomorphisms on factorable
type-functors can be factored this way. His definition of factorable requires [f] to
have a special form, as in the following definition.

Definition 9. (Malcolm) A type functor t is factorable if the corresponding
components-functor has the form

XHA=A+XF
where A does not occur in X¥. Its constructor functions must have the form
[f,q]: A+ 4T = 4t

O

This means, for instance, that join-lists are factorable, but cons-lists are not.
In the previous section we defined reductions for all type functors. Still it is not
possible to factor every homomorphism we can think of into a map followed by a
reduction. Therefore, we need a more subtle definition of factorability. We define the

factorability of homomorphisms as a property of the homomorphisms themselves,
not of the type functor for which they are defined.

Definition 10. A homomorphism ¢! : At — C is factorable if the function
¢: CHA — C can be written as
¢=00(icflf)

for some

®:CHlB—C , f:4A— B.

Proposition 11. For a type functor which is factorable in the sense of definition
9, every homomorphism is factorable in the sense of defintion 10.

Proof. Consider a homomorphism ¢! : At — C, where 1 is factorable (according
to definition 9), i.e. XA = A+ XF. Then ¢ = [f,g]: A+ CF — C. Now because

[f,9] = lic,glo(f +icr)
= [ic,g]lo(icfl f)

¢ is factorable according to our definition, as shown in the diagram.

CmA=A+CF [fag] - C

[iCag]

CHC=C+CF
0

We can now formulate the factorisation theorem, which says that factorable
homomorphisms can be factored into a map followed by a homomorphism:

Proposition 12. If ¢! is factorable and ¢ = @o (ic ffl f), where ® : C[|B — C
and f: A — B, then

¢h - @H oft.
Proof. We first prove:

@hoftoeA
®oepo(ipt [l f)o (f1 Hia)
@ o (@' fin) e (ipt @ f)o (' Mia)

@o(iclf)e (@ i) (fBia)
¢o (@ f1) {ia)-

By definition, we also know that ¢! = (@ (i]))! is the unique function which
satisfies

(map diagram)

(reduction diagram)

(functors preserve composition,
identity laws)

(functors preserve composition,
definition of ¢)

Ploeqs = do(¢' [Mia).

Since @'o f! has the same property, we conclude that

¢|I - eﬂof’.

The proof is illustrated in the following diagram.

8

AtHA €4 At —~

f'[ﬂiA map A

Y

Bt ﬁ]AﬁLm_f_.Bt [B—EE & Bt g

o [ﬂ 14 o Iﬂ ip reduction ot

\
CHlA— CHB C <
i icll f i @

From the proof of proposition 11, it is easy to see that in the case of a factorable
type functor, the homomorphism can be factored into a map followed by a reduction
(then the types B and C are equal).

6 Promotion

A very important theorem is the promotion theorem given by Malcolm in [5]. In
our notation it reads:

Proposition 13. Let ¢: BffA > B,y:CflA—>Cand f: B C. If

fod=1vo(flia)
(f is ¢ — y-promotable), then

W= fod
Proof.
(fod) oes = (def. of ¢%)
fodo(dMia) = (promotability-assumption)
Yo(fMlia)o(4'fia) = (functors preserve composition)
bo((fodt)Hia)

Since 9" is the unique function with the property

Yloes = o (P! fia)

we conclude that

Y= fogl.

A’MA €4 At -~

#' Hia ¢

B ¢ . B |y

fHlia f
Y 4
CHA C <
BA—
A special case arises when ¢ = @ : A fl 4 — A, (then ¢! is a reduction), and "
is factorable as
b =Qq(icflf)

Then the promotion theorem becomes:
Proposition 14. If

fo®=0-(ff)
(f is ® — ®-promotable), then

®left=Ff.d/.

Proof. Because of the simplifying assumptions, ¢' may be written as ®/, and by

the factorisation theorem ! = ®/o f!. Substituting this in the general promotion
theorem then gives the special one. O

This is illustrated in the figure below.

AtflA <4 — At~
&/ Mia &/

AfA 3] . ;’1 ®/ o ft
fllia Fif f

BRA T BfiB—z ;4/

10

Example 15. In the case of non-empty join-lists, the last proposition is the
well-known law for list-promotion. If we substitute [i, @] for &, and [is, ®)] for ®,
the promotability-condition becomes

fe®=Qo(fxf)
and we then have
fo®/=8/of

where ®/, ®/ are defined as in the earlier example. a

References

[1] Richard S. Bird, Lectures on constructive functional programming, in Construc-
tive Methods in Computing Science, NATO ASI F55, Springer-Verlag, 1989.

[2] Francis Borceux, User’s guide for the diagram macro’s, UCL, Louvain-la-Neuve,

Belgium. (this macro package can be obtained via FTP from praxis.cs.ruu.nl,
131.211.80.6.)

[3] Tatsuya Hagino, Category Theoretic Approach to Data Types, Thesis, Univer-
sity of Edinburgh, 1987.

[4] Grant Malcolm, Factoring Homomorphisms, Technical Report Computing Sci-

ence Notes C58909, Dept. of Mathematics and Computing Science, University
of Groningen, 1989.

[5] Grant Malcolm, Homomorphisms and Promotability, in Mathematics of Pro-
gram Construction, LNCS 375, Springer-Verlag 1989.

[6] Lambert Meertens, Algorithmics — towards programming as a mathematical
activity, in Proceedings CWI symposium on Mathematics and Computer Sci-
ence, CWI Monographs vol. 1, North-Holland, 1986.

[7] G.C. Wraith, A note on categorical data types, in Category theory and computer
science 1989, LNCS 389, Springer-Verlag 1989.

11

