Deriving Programming Laws Categorically

Nico Verwer

RUU-CS-90-6
Eebruary 1990

Utrecht University

S
Oulo -
; ‘ - Department of Computer Science
< ' Padualaan 14, P.O. Box 80.089,
4771 3508 TB Utrecht, The Netherlands,
Tel. : ... + 31 - 30 - 531454

ISSN:0924-3275

Deriving Programming Laws Categorically

Nico Verwer
Department of Computer Science, University of Utrecht
P.0.Box 80.089, 3508 TB Utrecht, The Netherlands
email: verwer@cs.ruu.nl

February 19, 1990

Abstract

In this article, category theory is used to describe functional programming, with
the aim of deriving programming laws. Because category theory is a rather abstract
model, it allows us to start from very few principles. As a result, we are able to derive
laws which capture a number of laws which were previously derived seperately.

We review some category theoretical concepts, using notions taken over from func-
tional programming. Then we study function spaces, and derive the laws that come
with the lifting functor. In the last part we show that the polymorphic functions that
come with strong type-constructors are natural.

Contents
1 Introduction

2 Categorical background

2.1 Types and functions — Objects and arrows
2.2 Type constructors — Functors

3 Function spaces and lifting

3.1 Functionaltypes0.0 ',
3.2 A notational convention
3.3 Theliftinglaws
3.4 Lifting binary operators
3.5 Applications

.............................

....................................

Functors and polymorphism

4.1 Strongfunctors
4.2 Strong functors and naturality
4.3 Representable functors
4.4 Abstract data types

1 Introduction

Programming laws are the basis of the formal derivation of programs from specifications.
Such laws can be used to transform an inefficient specification step-by-step into an efficient
implementation [3]. At present, the number of laws used has become very large, and some
unification of similar laws would be advantageous.

In this article we start from as few principles as possible, in order to obtain a few,
general laws. Most of the laws in this article were known previously, but they were
postulated, and not derived from other (more fundamental) laws [1]. A derivation of these
laws can increase our understanding of them. To mark the distinction, it is shown clearly
which formulas are axioms (numbered A1, A2, ...) and which are derived (numbered D1,
D2,...).

Because the laws of functional programming are statements about programs, we need
to take an abstract approach to programs. We claim that category theory is a useful
framework for the development of a theory of functional programming. This framework
has already been explored by other researchers, who have studied specific data types, such
as lists, with the help of category theory [6, 9). In this paper we consider the basic building
blocks of functional programs, (polymorphic) functions. We use the category of sets as
a model for for functional programming languages, although we do not explicitly give a
semantics.

Most of the results we derive were known before, either in category theory or in func-
tional programming. The main contribution of this paper is the method of deriving pro-
gramming laws categorically. In another paper, we have used this method to derive laws
which hold for homomorphisms on data types [10].

Our treatment is aimed at those who have not studied category theory in great detail,
and we shall use ‘functional programming parlance’ as much as possible. However, we
highly recommend reading [8], which is a good introduction to category theory, and [2],
which shows how category theory may be applied to functional programming.

2 Categorical background

2.1 Types and functions — Objects and arrows

Since we want to derive laws about programs, which are independent of the data ma-
nipulated by these programs, we shall not consider the inner structure of datatypes. If
we look at datatypes only from the outside, they are ob jects in a category, without any
further structure. The particular category in which we model functional programming is
the category of sets, which is a useful model of the lambda-calculus [4]. (In fact, for most
of the results we could have used any cartesian closed category, except in the proof of D17
and section 4.3.)

We shall denote types by A, B,... These may stand for any available datatype in a
particular programming language. Functions are represented by arrows between types:

fitA—=B or AL, B

is a total function named f which maps values in A to values in B.
We assume the existence of the identity function

A4, 4

for every type A. We use g o f for the function composition of g and f. This is an
associative operation. Type and functions, together with identities and an associative
composition operator, form a category.

In order to have functions with more than one argument, we introduce the cartesian
product:

Definition 1 Let 4 and B be types, then there exists a type A X B, the cartesian product
of A and B, and there are projection functions

AXB-Z, A and AxB-*. B

and for every pair of functions

C3.4 and c-%, 3

a unique function

CU—’QZAXB

such that:

f=7o(f,9) g=n'o(f,g) (A1)

From this definition, it is easy to prove that

(fr9)oh=(foh,goh). (D1)

Some people prefer commuting diagrams like the one in figure 1 instead of algebraic
equations to express equalities. The dotted arrow indicates that (f , g) is the unique
function such that the diagram commutes. Such diagrams have the advantage that the
types of the functions involved can easily be seen, whereas an algebraic equation with full
type information can be hard to read. However, the steps of a derivation are clearer from
a list of algebraic equations than a single diagram.

The types A x (B x C) and (A x B) x C are isomorphic, which means that there is a
function

((7r,7ro7r’),1r’o7r’):Ax(BxC)—»(AXB)XC

which has an inverse. Isomorphism is indicated with 2. This means that that X is
associative up to isomorphism, so we can make ternary, quaternary, etc. functions, like

if : (bool X 4 x A) — A.

A binary operator @ which takes its arguments from A and B, and yields a result in
C is represented by

Ax B -2, ¢c.

Figure 1: Cartesian product

A constant is a function taking zero parameters. We represent an A-constant c by
1254

where 1 is the one-point type, a type with only one value (the terminal ob ject in category
theory). For every type A there is exactly one arrow from A to 1:

1

which maps every value from A to the single value in 1. The one-point type is the unit
element of the cartesian product:

AX121xAA, (D2)

This is, again, an equality ‘up to isomorphism’; one may prove this by asserting that 74,
and (i4q, !4) are inverses.

2.2 Type constructors — Functors

In category theory, type constructors are modeled by functors. Functors extend the notion
of type constructors, as they can be applied to both types and functions. For instance,

the (bi-)functor — x — applied to the types A and B gives the cartesian product A x B,
and for all functions

AL, 4 anda B p
we have a function
AxBIX% 4y p
satisfying
To(fXg)=form

(A2)
To(fXg)=gon

(see figure 2). It is an easy exercise to prove that

T !

Al — A'x B! B
A
: |
f : fxg g
|
A Ax B B
T 7r’
Figure 2: Product of functions
fXg=(for,gon'). (D3)
From 1 x1 1 it follows that fora:1 — A and b:1 — B:
axb=(a,b). (D4)

Another example of a functor is the list-constructor, named *. The type A* has all
(possibly empty) lists with elements of type A. For every f : A — B there is a function
f* 1 A* — B*, the map of f.

Like all functors, the list functor must preserve identity and composition:

(i4)" =g

(9o f) =g*0o f~

For the product functor these properties amount to:

(A3)

ia Xip =isxp
(fof)x(go9)=(fxg)e(f xg).
Another important functor is the identity functor I:
Al=4
fi=t.

Following (2] we shall write functors in postfix-notation where this is not too inconve-
nient. We do not explicitly indicate functor composition:

att = anl,

2.3 Polymorphic functions — Natural transformations

The identity iy : A — A is an instance of a function which is polymorphic in A. By
polymorphism we mean parametric polymorphism, i.e. a polymorphic function operates
on structures rather than the types over which these structures are built.

The identity is a polymorphic function from the ‘identity structure’ to itself:

i:I—1 or I-,1

In category theory, a polymorphic function is modeled by a natural transformation, indi-
cated by the dot under the arrow. The domain and range of polymorphic functions are
functors (structures), not types. Only when we instantiate a polymorphic function with a
type, we obtain a function between types, like

ig: Al = AL
We could have written polymorphic functions something like
i:VA: Al 5 4l

but the type-variable A is a dummy, so we prefer the shorter notation using dotted arrows.

Usually, we do not indicate the type to which a polymorphic function is instantiated,
and we write

A—1. 4 insteadof A4, 4

when the type A is clear from the context. It is the task of a type-inference system to
derive this information, and a particular system may or may not allow the programmer
to leave out type-information in certain places.

The behaviour of a truly polymorphic function is not dependent on the element types
of its source and target structures. For example, a function on lists must behave similarly
on a list of integers and a list of characters. Some programming languages offer a function
that converts data of different types to a textual representation (e.g. the write procedure

in Pascal), but this is not parametrically polymorphic, as it depends on the inner structure
of its argument.

The polymorphism condition is expressed in a law which must hold for all natural
transformations:

Definition 2 Let { and { be functors. A family of functions
T4 : At - 4t
is a natural transformation, if for all types A, B and functions f: A — B,
o ft = ff 0T4 (A4)
(see figure 3). a
An example is the natural transformation
X — L

where < is the bi-functor defined by

TA

At ——— 4t

ft Jil

Bt Bt

B

Figure 3: The natural transformation property

A€ B=A

f<g=F.
The natural transformation property for this polymorphic function reads
TAr,B! © (f X g) = f o T4 B.

This is exactly the first half of property (A2) of the projection function which we stated
before.

Natural transformations can be composed like functions:
(O'OT)A T O40T4. (A5)

Just as we applied functors to functions, we may apply functors to natural transfor-
mations:

Definition 3 Let 7:t — t be a natural transformation, and f a functor, then

o tf — 1t
is a natural transformation, defined by
(rha =t | (A6)

O

The fact that polymorphic functions can be modeled by natural transformations was noted

before [12]. It was used in [2] to derive some interesting programming laws, and to simplify
proofs.

An example of a natural transformation is the function which reverses the order of the
elements of a list
rev
* — %

It is easy to see that this makes the diagram in figure 4 commute. One can apply the list
functor to rev, and obtain a natural transformation

Tevy

A# A*
f* fr
B* B*

revpg

Figure 4: Naturality of rev

.
r_e.v_)

which is the reverse function applied to every element of a list (by As6):

(rev*)4 = (rev,)*.

3 Function spaces and lifting

3.1 Functional types

With the help of the general notions defined above, we can define function spaces (which
in category theory are referred to as exponentials, cf. [8]). We characterize function spaces
by a functional type, the evaluation operator and the Curry-operator which is used to
partially parameterize functions.

Definition 4 Let 4 be a type. For every type C, the function space from A to C is
defined by

® a type
C—A

e a function
c:(C—A4)xA->C

which applies a function to an argument.

o for every function @ : (Bx A) - C a unique function
®:B— (C—A)
(sometimes written as &™) such that

‘co(®xis)=0. (A7)

BxA

B xig &

D
fe---u

A (C—A)x A

C
*c

Figure 5: Function space

This is shown in the commuting diagram of figure 5. The dashed line again indicates
that & is the unique function such that the diagram commutes.

O
It is well-known (from category theory) that this definition completely characterizes func-
tion spaces.

One can convince oneself that C — A really is the type of functions from A to C by
looking at its structure. In order to do 80, we construct constants of type C — A. If we

substitute 1 for B in the above definition (remember that A & 1 x A), we obtain for
every function

f:A->C

a (unique) function
fiio(Ce A).

Now fis a constant, and we write
F=Fi1o(Cea)

which is called the name of f. In fact, there is a one-to-one correspondence between f

and "f", and therefore we may identify the type C «— A with all the functions from A to
C (in the category of sets).

We can name functions with higher arity, like ® : Bx A — C as well, but now there
is an important difference between

&:B - (CeA)

and
'® 11— (C—(B x A))
where the latter is the name of ®.

The function & is the curried version of ©, as can be shown by instantiating A7 with
constantsa:1— A and b:1 — B:

Do <b, a) (A7)

'co(éxiA)o(b, a) = (D4, A3)
*C o (é ob) a).
After section 3.2 we shall write this as:
b®a= (@b)a. (D5)

Various other forms can be obtained by instantiating the commuting diagram of the defi-
nition with operators of different arity. The Curry-operator allows us to partially parame-
terize functions. To obtain the name of a function, we must ‘curry away’ all its parameters.
It is also possible to uncurry an operator ® : B — (C «~ A), giving

®:BXA-—>C', ®=-Co(®xi4).
It follows immediately from the definition of currying (A7) that

d=0=2a.

By repeating the above derivation for the name of a function, we obtain an interesting
connection between composition and application (see figure 6):

‘co("f'xig)oa = (D2, D4, A3)
'Co(rf.‘ xa) = (A7)
foa
which we shall write later as:
‘flea=foa. (D6)
(rxA) = A4
' Xia f
(C(—A) X A C

*c

Figure 6: Applying the name of a function

10

3.2 A notational convention

It is conventional in functional programming not to write the composition operator in
ground expressions (i.e. expressions with 1 as their domain):

foxz becomes fr
for z: 1 — A. Likewise,
@o(z,y) becomes z@y

(see figure 7). We shall use these conventions to state the results of our derivations in an
/zv A
®
w)
Y B

Figure 7: Notational convention

1

easily readable way.
Also, functional programmers rarely distinguish between a function

AL, ¢

and its name

r,

1L (cwn).

If we identify these, we have
feca="feca

and by Dé
fleca=foa= fa

so application becomes invisible, just like composition.

We shall avoid this notational convention in our proofs, because it obscures the deriva-
tions. We shall use it in the results of the derivations, however, because it allows us to
state these in a way which is customary in functional programming.

11

3.3 The lifting-laws

Definition 4 has a special structure (called adjunction in category theory) which enables
us to derive the following properties (e.g. [8, p.128)).

Proposition 1 There is a functor — « A for every type A, which maps a type B to

B « A, the type of functions from A to B. The image of a function f: B — C under this
functor is

f*—iA:(B<—A)—>(C4—-A)
which is defined as
f*—iA =(fo‘B)A. (AS)

In alater section it will become clear why we write f i, instead of f — A (analogous to

f Xia).

Proof The action on functions preserves identity and composition:

. ip —iy = (A8)
(i Bo°*p)A = (identity)
5.

From A7 it follows that #3 is the unique function satisfying
*Bo (B Xig)="p
and since ig . 4 satisfies the same condition,
ip—ig =ig.4.
e We know that (A8)
(9o f)—in=(go forp)
is the unique function satisfying (A7)

gofoss=1po(((gcf)—is)xia).

Also,
gofors = (A7)
go‘co((fo'B)AXiA) = (A7)
'Do((go‘C)AXiA)o((fo°B)AXiA) = (A3, A8)

*p o (((9-i4) o (f =14)) X i4)

12

and therefore

(9-ia) o (f~ia) = (g0 f) —ia.

Proposition 2 The function
‘c:(C—A)xA->C

is natural in C, i.e. it is part of a natural transformation
¢i(-—A)xA—1

Proof We check the natural transformation property A4 (see the lower part of figure 8):

fop = (A7)
'co((fen)xis) = (A9) (D7)
*¢ o ((f —ia) X i)

a

If we combine this with A7, we find

fog = (ATong)
feoeBo('g" xiy) = (D7)
*co((feig) Xia)o("g" x ig) = (product composition)

co(((f—ia)e'g") xia).
Because "f o " is the unique function satisfying
fog=+co("fog xis) (ATonfog)
we conclude that
(feid)og'="fog (D8)

(see figure 8). We are not really interested in the type A in f —i,, and therefore we use
f° as a shorthand, whenever the type A is clear from the context. This conforms to the
notation for the lifting operator used in functional programming. Using the notational
conventions, D8 becomes:

(f)9=1fog.

This is the well-known lifting law for unary functions [1], and we therefore say that the
function space-constructor — «— A (denoted —° or —° on functions) is the lifting-functor.
We can rewrite the functor property (A3) for — — A to

13

A

" Xig g
4
(BeA)xA— o p
B
(feig) xig f

A

(C—A)x 4

C
°c

Figure 8: Lifting a unary fuction

(fog)’=f0g° (D9)

which shows that lifting distributes over composition. If we interpret lifting as curried
composition, we might say that composition distributes over itself.

Before we try to lift constants, we note that (1~ A) & 1, since there is only one
function from any type to the one-point set. This implies

‘,=!A:A—>!

(D10)
lyoa=1i, fora:1— 4.
The lifting-law for a constant c: 1 — C now becomes
‘ce(c®xiy) = (D7)
Coe, = (D10) (D11)
Coly

Using the notational convention and instantiating with a A-constant a, we get

c°q = (D10)
colgyoa = (D10)
c

which tells us that c° ‘eats’ its argument and yields ¢. It appears that —° on constants is
the K-combinator.

14

3.4 Lifting binary operators

It can be proved categorically that functors like —° are continuous. Continuity implies
that —° preserves products:

(Cx B = C°x B° (A9) .

In programming languages, this isomorphism is not always implicit, and we then have to
explicitly perform a coercion:

€1 = (7c,8°, 75,5°) : ((C X B) = A) - ((C — A) x (B — 4))
€2 = (*co(TCcwaBeaXis), co (Te 4,84 Xia))"
((C—4)x (B« 4)) - ((C x B) - 4)
Probably, the reader will find the A-form of these expressions more convenient:
co1=Afu{mof, n'o f)
coz = Xf, g) :: (A\z = (fz, gz)).
It is easy to verify that these are the correct coercions, and that they are inverses of each

other.
We shall also need the fact that

(fr9) =coro (S, "g") (D12)
Proof

‘c,Bo((coz0("f", "g")) x ia) = (x is a functor)

*o(cor xig) o ({"f', 'g") xiy) = (A7 on definition of co,)

(o(mxid), =0 (' xin)) o (("f', "¢"y xi4) = (product properties)

(o ("f" xi4), +o ("g" x i4)) = (A7)

)

Since (f, g)" is the unique function satisfying
co((f,g) xia)

the two functions are equal. O

We can now derive the lifting law for a binary operator @ : Bx D — C . By A7 and
D7 we have the commuting diagram of figure 9. The lifting law follows from:

15

A

(f,9) xia (f,9)

((BxD)«—A')xA —Bx D
®° X iy &
(C«——Il)xA c

Figure 9: Lifting a binary operator

o (f,0) = (A7, DT, figure 9)
*o (8° xig)o ((f, g) xig) = (D12, x is a functor)
*o(@°ocor Xig)o({f, '9') xiy) = (leaving out the coercion) (D13)

(notational convention)
co ((f@°g) x i4).
A more familiar form of this equation is obtained by instantiating with an A-constant a:
(fa) ® (ga) = (f@°9g)a

which is the usual definition of lifting for binary operators.
The above derivations can be repeated for operators of any arity, and thus we get
the definitions for all lifting operators. We conclude that all lifting definitions, as they

appear for instance in [1], are consequences of the single fact that application is a natural
transformation.

3.5 Applications

Because we can derive the original definitions, we can also derive other laws on lifted
operators. But of course it is much nicer to derive these categorically, so let’s try a few.
For instance, we can make a generalization of the lifting law for constants: Because there
is only one morphism !4 : A — 1 for every type A, we have

!Bof=1!4 where f:A4— B.

Also, for a constant ¢ : 1 — C, we have

16

Ctcof(c—ig)xis) = (DV)

Co®,

(D10)
Co !A

and likewise with B instead of A, so the diagram of figure 10 commutes:

A d — B
() x iy 1 (c®) x ip
(C—A)x A > C = (C~B)x B

Figure 10: ¢®° is a left-zero of composition

®*o ((co) X iA) =°*0 ((co) X iB) o f
Using the definition of uncurrying we obtain:
®=¢%o f (D14)

If we ignore the types, we might say that c° is a left-zero of composition.

The following example is also taken from {1]. By connecting the appropriate commuting
diagrams, we obtain the following (see figure 11):

o (("f®° g)xig)oh=10 ("fol® goh’)xig).
By the definition of uncurrying, this becomes
(Fe&° g) oh=(fo K& goh)
or, using the notational convention and dropping uncurrying
(f@°9) o h = (f o h)®°(g o h). (D15)

This law tells us that composition distributes over lifted binary operators. Note that we
have been rather sloppy about types and uncurrying to obtain the final result.

17

(rfoh.', rgoh1)XiE

-— D — Ix

(F 7 s ()
(BXD)—A)xA —+ BxD «—— ((BxD)—E)XE

®° X ig ® ®° X ig

(C—A)x A — C +— (C—FE)x FE

Figure 11: o distributes over @°

4 Functors and polymorphism
4.1 Strong functors
Consider a function
f:B->C
and its name
f i1 (C—B).

As we have seen earlier, type constructors are functors, and therefore they can be applied

to functions as well as types. For instance the list functor * acts as the ‘map’ operator on
functions, and we have

f* : B‘ —_ C*
with its name
il (Cr e B*).

Similarly, the functional part of the function-space constructor — «— A is the ‘lifting’ op-
erator, and we have

i1 ((C—A) —(B « A)).
In general, for every functor t, we have
ft:Bt- ¢t

with its name

18

i1 (CteBY.

We see that the functional part of a functor acts very much like a polymorphic function,

for we can repeat the above for any function f : B — C; The functor t maps any function
from B to C into a function from B! to Ct, regardless of the types B and C.

In a previous section we argued that polymorphic functions are natural transforma-
tions, but now it seems that there is also ‘functor-polymorphism’. This problem may be
resolved if we can identify the functional part of a functor with a natural transformation.
Then the ‘functor polymorphism’ is just naturality, and we have only one characterization

of polymorphism. The natural transformation corresponding to the functional part of the
functor t will be called ‘dag’.

Definition 5 A functor is strong if there exists a function
dago,p : (C+— B) — (Ct— BY
such that for every function f:B—>C
daggpo f = "f. (A10)
O

Strong functors are exactly those functors for which a function algorithm exists which
computes "ft* for all functions "f".

4.2 Strong functors and naturality

Proposition 8 The function dag defined in definition Al0,
dagg,p : (C—B) — (Ct—BY

is an instance of a natural transformation

dag: (- = =) — (=t = =)

The proof constitutes the rest of this section.
The general form of the natural transformation property for 7 : t — } is A4:

To(fN=(Hor

There is a problem however, because the functor — — — is contravariant in its second
argument. This means that if we have

g:A—>B and h:C->D
then

(h—9):(C~B)— (D—4) (M.
This function is defined as

(he=g)=(hoscolic—pxg) (A11)
It is easy to verify that

19

f

B C A C+~B
/
g h 1 heg
I'h \'l‘
A---=D °fe9 pea
Figure 12: heg
(h=g)o ' f'="hofog" (seefigure 12). (D1s)

This is consistent with AS8; if we replace g by i we obtain
h® = (h~ip) = (hoec)

We must now check that the natural transformation property holds for dag, i.e. the fol-
lowing holds (see figure 13):

da.gD’A (-] (h (—g) = (h't ‘—gt) [da,gC’B. (D17)

dage p
C~B

Cct— Bt

dagp 4

Figure 13: Naturality of dag.

This can be verified as follows:

20

dagpgo(he=g)o'f° = (D16

dagp 40 hofog = (A10)
"(hofog)t = (A3)
"(hto ftogty = (D16
(ht —gt)o st = (A3)

(At —g) odaggpo S .

We may conclude that dagp 4 o (he—g) = (ht—gh) o dagc p if our model satisfies the
extensionality property, i.e. for every constant z : 1 — A, foz =gox implies f = g.
This is true if we work in a category where every type has enough constants (no junk),
like the category of sets, which we took as a model. We shall, however, not formally prove
this now.

It turns out that extensionality is not necessary for D17 to hold. In [7] a proof is given
which does not use extensionality, but this requires some categorical notions which we did
not explain in this paper.

We have now proved that to the functional part of a strong functor corresponds a
natural transformation. This means that we can still say that polymorphic functions
are natural transformations, provided that all functors are strong. Strongness is a very
important property of functors used in programming languages, because it means that
map-like’ functions like f! are computable by applying a higher order function dag to

I'f .
4.3 Representable functors

The following definition is adapted from [5], and slightly changed, insofar as we use — — R
instead of the set of all functions from R to a certain type. We can safely do this, since in
our model these are isomorphic, as we proved in section 3.1.

Definition 6 A functor { is representable if there exist a type R and natural transforma-
tions

rep:{—(-«—R) and rep7':(-«R)—t
such that
reporep ! =i—ig and rep~! o rep = it

(rep is a natural isomorphism). We say that rep is a representation of t, and that R is its
representing type. O

Proposition 4 If a functor is representable, then it is strong.

Proof Let

21

rep:t — (~ < R)

be a representation of t. By the definition of representation and A8,
= fein = fog

and A10 becomes
dago S = "(fo8) = ("F ovs).

The functional completeness theorem ([4, p.59]) can be used to abstract "f* from this
expression, and we obtain:

dagg,p : (C— B) > ((C +~ R) —(B — R))

dage g = (‘c o(TC—B,B«—R©°T(CwB)x(B—R),R> B °(TCBBw-RX iR)))AA
a
Examples of representable functors are:
— «— A: A representing type is A itself, and a representation is
fcigi (- o d) = (- —4)
I: The identity functor is represented by
Tyl — (- 1)
which follows from the isomorphism between A «— 1 and A.
— X —: The cartesian product is represented by (1,1), and
T, 7' :AX B — (A~1),(Be1)
with its inverse (— , —).

oo: Infinite lists or streams over a type A are represented by functions from the natural
numbers N to A:

th: 0o — (-« N).

Thanks to the above proposition, the natural transformation corresponding to these func-
tors is readily available.

4.4 Abstract data types

Abstract data types can be implemented categorically by Hagino-functors [6, 10]. It is of
course desirable that such functors are strong, so that their action on functions is a natural
transformation. It is, however, beyond the scope of this paper to give a full treatment

of this subject. In a forthcoming paper, we prove that Hagino-functors are indeed strong
[11].

22

