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1 Introduction

The pathwidth and treewidth of a graph are two notions with a large number of differ-
ent applications in many areas, like algorithmic graph theory, VLSI-design and others
(see e.g. [1, 13]). Unfortunately, determining the pathwidth or treewidth of a given
graph is NP-complete [2]. In this paper we show that there are efficient algorithms for
determining the pathwidth or treewidth of a cograph. We also derive some technical
lemmas, which are not only necessary to prove correctness of the algorithms, but are also
interesting in their own right. For instance, we show that the pathwidth of a cograph
equals its treewidth.

The complexity of the problems to determine the pathwidth and treewidth of graphs
has also been studied for other interesting classes of graphs. Gustedt [10] showed that
the pathwidth problem stays NP-complete when restricted to chordal graphs. For fixed
k, the problem of determining whether the pathwidth or treewidth of a given graph is
at most k can be solved in polynomial time with dynamic programming [2, 8], and in
O(n?) time with graph minor theory [5, 16].

The notions of pathwidth and treewidth have several equivalent characterizations (see
e.g. [1, 13, 18].) For instance, a graph is a partial k-tree, if and only if its treewidth is
at most k.

This paper is further organized as follows. In section 2 we give most necessary
definitions and some preliminary results. In section 3 we prove a number of interesting
graph-theoretic lemmas and theorems. In section 4 we show how these can be used to

obtain linear time algorithms for pathwidth and related notions on cographs. Some final
remarks are made in section 5.

2 Definitions and preliminary results

In this section we give most necessary definitions and some preliminary results. We
start with introducing the notion of cographs.

Notation
Let G = (V,E), H = (W, F) be undirected graphs.

(i) We denote the disjoint union of G and H by GUH = (VUW, EUF) (where U is

the disjoint union on graphs, and sets, respectively.)

(ii) With G x H we denote the following type of “product” of G and H: G x H =
(VUW, EGF U {(v,w)|v € V,w € W})

(iii) The complement of G is denoted by G¢ = {V, E°}, with E¢ = {(v,w)lv,w e V,v #
w, (v,w) ¢ E}.

Proposition 2.1 U, x are commautative and transitive. G x H = (GUH®)e.

Definition 2.1 A graph G = (V,E) is a cograph, iff one of the following conditions
holds:



1. |V|=1
2. There are cographs G, ...,Gy and G = G,UG,U ... UG,
3. There are cographs Gy,...,Gy and G =Gy x Gy X ... X G

There are other, equivalent characterizations of the class of cographs. Rule 3 can be
replaced by:

3'. There is a cograph H and G = He.

Also, one can restrict k in rule 2 and 3 to be 2. Alternatively, one can define the class
of cographs as the graphs that do not contain P4, a path with 4 vertices, as an induced
subgraph. (See e.g. [6]).

With each cograph G = (V, E), one can associate a labeled tree, called the cotree Tg
of G. Each vertex of G corresponds to a unique leaf in T. Internal vertices of T have a
label € {0,1}. To each vertex in Tg one can associate a cotree in the following manner:
a leaf corresponds to a cotree, consisting of one vertex. The cograph corresponding to
a 0-labeled vertex v in Tg is the disjoint union of the cographs, corresponding to the
sons of v in Tg. The cograph corresponding to a 1-labeled vertex v in Tg is the product
(“x”) of the cographs, corresponding to the sons of v in Tg. Note that (v,w) € E, if
and only if the lowest common ancestor of v and w in Ty is labeled with a 1. (There
are other very similar notions of “cotree”).

Corneil, Perl and Stewart [7] gave an O(n + e) algorithm for determining whether a
given graph G = (V, E) is a cograph, and if so, building the corresponding cotree.

A cotree T can easily be transformed to an equivalent cotree T¢ such that every
internal vertex in T¢ has exactly 2 sons. (Note that G1U...UG; = (G1U. .. UGy_1)UG,
and G1 X... X Gy = (G1 X...G_1) X G. The resulting operation on trees is illustrated
in Figure 1).

S0, in the remainder of this paper we assume that cographs G are given together with
a binary cotree Tg.

Next we give the definitions of pathwidth and treewidth, introduced by Robertson
and Seymour [15, 16].

Definition 2.2 A tree-decomposition of a graph G = (V, E) is a pair ({X;li € I},T =
(I, F)) with {X;|i € I} a family of subsets of V, and T a tree, such that

o Ui/ Xi=V
o V(vw)eE:Jiel:veX;AweEX;
e VveV:{iellve X;} forms a subtree of T

The treewidth of a tree-decomposition ({X;|i € I}, T = (I, F)) is max;es | Xi| — 1. The
treewidth of G is the minimum treewidth over all possible tree-decompositions of G.
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Figure 1: Transformation to a binary co-tree ; € {0,1}

Note that the third condition can be replaced by:
Vi,j,k € I: if j is on the path from 7 to k in T, then X; N X, C X,

There are several other notions that are equivalent to the notion of treewidth, e.g. a
graph G is a partial k-tree, if and only if treewidth(G) < k. (See [1, 18]).

The notion of pathwidth is obtained from the notion of treewidth by requiring that
the tree T in the tree-decompositions is a path.

Definition 2.3 A path-decomposition of a graph G = (V, E) is a pair ({Xili € I}, 1),
with {X;|i € I} a family of subsets, and Ir e IN: I = {1,2...,7}, such that

o Uier Xi =V
e Viv,w)€eE:Fel:veX;AweE X;
e VeV :3b,e,el:Viel:veX, b, <i<e,

The pathwidth of ({Xili € I},I) is maxier|Xi|. The pathwidth of G is the minimum
pathwidth over all possible path-decompositions of G.

The third condition states that for all v € V {i € I|v € X;} forms an interval in I, and
is equivalent to “Vi4,5,k:i<j<k=X;NX, CX,”.

The notion of pathwidth is closely related to several other notions, including node
search number and interval thickness.

Definition 2.4 The node search number of a graph G = (V, E) is the minimum number
of searchers needed to clear all edges of G, under the following rules.



Initially all edges are contaminated.
e A move can consist of

1. Putting a searcher on a vertez,
2. Removing a searcher from a vertez,

3. Moving a searcher over an edge from a verter to an adjacent vertez.

A contaminated edge becomes cleared when there is a searcher on both ends of the
edge.

A cleared edge becomes recontaminated when there is a path from the edge to a
contaminated edge that does not pass through a vertezr with a searcher on it.

Definition 2.5 A graph G = (V,E) is an interval graph if to each v € V an interval
[bv; 5] € IR can be associated such that ¥V v,w e V : (v,w) € E & [by,e,] N [by, e, # .

Lemma 2.1 (See [4, 9))

Let G = (V,E) be an interval graph. Let the chromatic number of G be x(G), let
the mazimum size of a cligue in G be w(G). Then x(G) = w(G) = treewidth(G) + 1 =
pathwidth(G) + 1.

Definition 2.6 The interval thickness of a graph G = (V, E) is the minimum chromatic
number of an interval graph H that contains G as a subgraph.

Theorem 2.1 [11, 18]: For every graph G = (V, E), the following three numbers are
equal:

o the pathwidth of G + 1
o the node search number of G

o the interval thickness of G.

3 Graph-theoretic results

In this section we derive some new and interesting graph theoretic results which are
needed to derive the algorithm, but have also interest on their own. We start with a
very short proof of a known result.

Definition 3.1 A family {Ti|i € I} of subsets of a set T is said to satisfy the Helly-
property, if for all J C I with for alli,j € J: T;NT; # 0 it holds that NjesT; # 0.

Theorem 3.1 (See [9], p.92): A family of induced subtrees of a tree satisfies the Helly
property.



Lemma 3.1 (“Clique containment lemma”)

Let ({Xili € I}, T = (I, F)) be a tree-decomposition of G = (V,E), and let W C V
be a clique in G. Then i€ I: W C X;.

Proof
Let T, = {i € I|lv € X;}. {T.]v € W} is a family of subtrees of T By theorem 3.1:
BiEI:VuEW:z'ET.,.HenceEIGI:WQX,-. O

Older and longer proofs of lemma 3.1 can be found in [4, 18]. With the help of the

Helly-property for trees we can also prove a variant of the clique-containment lemma
for bipartite subgraphs.

Lemma 3.2 “Complete bipartite subgraph containment lemma”
Let ({Xili € I},T = (I, F)) be a tree-decomposition of G = (V,E). Let ALBC V,
and suppose {(v,w)lv € A, we€ BYCE,ANB=0. ThenJi€I:AC X, or BC X;.

Proof

Let ({Xili € I},T = (I, F)),G = (V,E), and A and B be given. Suppose that for all
1€1:B¢ZX;. Let T, = {i € Ilv € X;}. Consider the family {T,|v € B} of subtrees of
T. As NyeBT, = 9, it follows from theorem 3.1 that there are b1, b; € B such that T},
and T}, are vertex disjoint. Consider the unique path of T connecting T, and Tj,, and
let k and £ be the border vertices of this path. (See Figure 2).

Figure 2. An illustration of the proof of Lemma 3.2

Each a € A must be contained in a set X; with i € T}, and in a set X; with j € Tg,.
Hence a € Xj. (Use definition of tree-decomposition). So A C X;. 0

Lemma 3.3 Let ({X;|i € I},T = (I, F)) be a tree decomposition of G = (V, E), and let
A,B CV and suppose {(v,w)lv€ A, w € B}C E,ANB=0. SupposeJiec [: AC X;.
Then there ezists an induced subtree T' = (I', F') of T, such that
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()Viel': AC X;
(ii) B C U,'eIrX,'

(i) ({Xili € I'',T' = (I', F')) with X! = X; N (AUB) is a tree-decomposition of the
subgraph of G induced by AU B.

Proof

Let I' = {i € I|A C X;}. Take T" = (I', F') to be the subgraph of T induced by I'.
By definition of tree-decomposition, T” is again a tree. Clearly, condition (i) is fulfilled.

Because 3 : A C X;,({Xi|i € I}, T) is a tree-decomposition of G' = (V, E') with
E' = EU{(v,w)lv,w € A,v # w}. For all b€ B, AU{b} forms a clique in G’, and hence
by the clique-containment lemma: 3: € I : AU{d} C X; = Ji e I': b € X;. So condition
(ii) is fulfilled. Consider an edge (b,c) € E,b,c € B. AU {b, ¢} forms a clique in G’, and
hence by the clique-containment lemma Ji € I : AU{b,c} C X; = Ji e I : {b,c} C Xi.
It now easily follows that condition (iii) is fulfilled. a

Lemma 3.4 Let G = (V,E), H = (W, F) be graphs.
(1) treewidth(GUH) = max(treewidth(G), treewidth( H)).
(1) pathwidth(GUH) = max(pathwidth(G), pathwidth(H)).
(iii) treewidth(G x H) = min(treewidth(G) + |W|, treewidth( H) + \4)}
(iv) pathwidth(G x H) = min(pathwidth(G) + W], pathwidth(H) + [V'|).

Proof

(1), (it) Trivial.

(iii) First we show that treewidth(G x H) < treewidth(G) + |W|. Take a tree-
decomposition ({X;|i € I},T = (I,F)) of G with treewidth treewidth(G). Then
({Xi uW|i € I},T = (I,F)) is a tree-decomposition of G x H with treewidth
treewidth(G) + |W|. So treewidth(G x H) < treewidth(G) + |W|. Similarly one can
show treewidth(G x H) < treewidth(H) + |V|.

Next we show that treewidth(G x H) > min(treewidth(G) + |W|, treewidth(H) + |V|).
Consider a tree-decomposition ({X;|i € T},T = (I, F)) of G x H. From the complete
bipartite subgraph containment lemma it follows that 3:: V C X; or 3i: W C X;.

Suppose 3¢ : V C X;. Let T = (I’, F') be a subtree of T such that Vi € I' : V C
Xi, W C UierX; and ({X;|i € I'},T' = (I+, F')) is a tree-decomposition of G x H. T'
exists by lemma 3.3. Note that ({X; N Wi € I'},T' = (I, F)) is a tree-decomposition
of H,so 3i € I' : | X;i N W| > treewidth(H) + 1 = 3i € I', | X;| > |V| + treewidth(H) + 1.
So the treewidth of the tree-decomposition ({X;|i € I},T = (I, F)) is at least |V| +
treewidth(H).

Similarly, if 32 : W C X;, one can show that the treewidth of ({X;|i € I},T = (I, F))
is at least |W|+ treewidth(G). Hence treewidth(G x H) > min(|V |+ treewidth(H), |W |+
treewidth(G)).

(iv) Similar to (iii). ]



Theorem 3.2 For every cograph G = (V, E): treewidth(G) = pathwidth(G).

Proof

Use induction on |V|.

If G consists of a single vertex, then treewidth(G) = 0 = pathwidth(G). I G = G,UG,,
then ireewidth(G) = max(trecwidth(G,), treewidth(G,)) = (¢.h.) max(pathwidth(G,),
pathwidth(G2)) = pathwidth(G). K G = G, x G,, with G = V1, Ey), Gy =
(V2, Ey), then treewidth(G) = min(treewidth(G1) + |V3|, treewidth(G,) + |Vi|) =
(¢.h.) min(pathwidth(G,) + |V4|, pathwidth(G:) + |V1|) = pathwidth(G). O

4 Algorithms for pathwidth and related notions on
cographs

In this section we give linear algorithms for determining treewidth, pathwidth, path-
decompositions, optimal node search strategies, and interval graph augmentations with
minimum clique size of cographs.

In Figure 3 we give two recursive procedures. COMPUTE-SIZE computes for ev-
ery vertex in a binary cotree the number of vertices of the corresponding cograph.
COMPUTE-PATHWIDTH computes for every vertex in a binary cotree the pathwidth
of the cograph corresponding to that vertex. To compute the pathwidth of a cograph
G, let r be the root of the binary cotree corresponding to G. Now first call COMPUTE-
SIZE(r), and then COMPUTE-PATHWIDTH(r). As per vertex in the cotree a constant

number of operations are performed, this costs O(n) time in total. Correctness follows
from lemma 3.4.

Theorem 4.1 The pathwidth and treewidth of a cograph given with a corresponding
cotree, can be computed in O(n) time.

It is not hard to construct corresponding path-decompositions in time, linear in the
output, i.e. linear in Y ;c;|X;|. However, in some cases this may be quadratic in n.
(Consider a cograph G = G; x Gy, where G, is a clique with n/2 vertices, and G,
consists of n/2 isolated vertices. The optimal tree-decomposition of G will consist of
n/2 sets X;, each containing each vertex of G; and one vertex of Ga).

Thus, we are looking for a more compact representation of path-decompositions.
We solve this in the following way: for each v € V we compute numbers first(v)=
min{: € Ilv € X;} and last(v) = maz{i € I|v € X;}. These numbers fix the path-
decomposition, because for all v € V,i € I : v € X; & first(v)< i <last(v).

Note that this representation corresponds by assigning to each v € V an interval such
that the corresponding interval graph contains G; the chromatic number = maximum
clique size of this interval graph equals the pathwidth of G plus 1. Thus we also find a
representation of G corresponding to its interval thickness.

The numbers first(v) and last(v) for all v € V are computed in the procedure
MAKE-INTERVALS of Figure 4, which is called with MAKE-INTERVALS (r,1,m),
where r is the root of the binary cotree of G, and m is an integer variable. In the
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procedure COMPUTE-SIZE (v: NODE);
begin if v is a leaf of T
then size (v) :=1
else begin COMPUTE-SIZE (left son of v)
COMPUTE-SIZE (right son of v);
size (v) := size (left son of v) + size (right son of v)
end
end

procedure COMPUTE-PATHWIDTH (v: NODE);
begin if v is a leaf of T
then pathwidth(v) := 0
else begin COMPUTE-PATHWIDTH (left son of v);
COMPUTE-PATHWIDTH (right son of v);
if label(v)=0
then pathwidth(v):= max(pathwidth (left son of v),
pathwidth (right son of v))
else pathwidth(v):= min(size (left son of v) +
pathwidth (right son of v),

pathwidth (left son of v) + size (right son of v))
end

end
Figure 3

procedure, start always denotes the smallest value that can be used for first(w) with w
a leaf in the subtree of the cotree rooted at v, and finish will yield the largest value used
for last(w), with w again leaf in the subtree rooted at v. Correctness of the procedure
easily follows. Clearly, the procedure is linear in the size of the cotree = O(n).

Theorem 4.2 A representation of a path-decomposition with optimal pathwidth of a
cograph, given with a corresponding cotree, can be computed in O(n) time.

Theorem 4.3 The pathwidth and treewidth of cographs and corresponding path-
decompositions or tree-decompositions can be computed in O(n + ¢) time.

Proof

Recall that the cotree of a cograph can be found in O(n + €) time (see section 2). We

now use the fact that optimal path-decompositions of cotrees fulfill 3;¢; | X;| = O(n+e).
O

Theorem 4.4 There exists an algorithm that, given a cograph G and a corresponding
cotree of G, determines in O(n) time an interval graph H that contains G as a subgraph
and has chromatic number equal to the interval thickness of G.



procedure MAKE-INTERVALS (v: vertex, start:integer, finish: var integer);
var help: integer:
begin if v is a leaf of T
then begin first(v) :=start;
last(v) :=start;
finish(v):=start,
end
else if label(v) =0
then begin MAKE-INTERVALS (left son of v, start,help);

MAKE-INTERVALS (right son of v, help+1,finish)
end
else (* label(v) = 1)
if size (left son of v) + pathwidth(right son of v) >
size (right son of v) + pathwidth(left son of v)
then begin MAKE-INTERVALS (left son of v, start, finish);
for each w € V that is a leaf-descendant
of the right son of v
do begin first(w) :=start;
last(w) := finish;
end
end
else begin MAKE-INTERVALS (right son of v, start, finish)
for each w € V that is a leaf-descendant
of the left son of v
do begin first(w) := start;
last(w) := finish;
end
end
end

Figure 4



Theorem 4.5 There ezxists an algorithm that, given a cograph G and a corresponding

cotree of G, determines the node search number of G and corresponding search strategy
in O(n) time.

Proof

Compute first(v) and last(v) for all v € V as described above. Now use the following
search strategy:

put a searcher on each vertex v with first(v) =1
for i := 1 to max{last(v)lv e V} -1
do begin for all v € V with last(v)= i: remove searcher from v;

for all v € V with first(v)= i + 1: put a searcher on v
end

With this search strategy, all edges will be cleared, no recontamination can take place,
and the optimal number of searchers (pathwidth(G)+1) is used. Determining the sets

{vlfirst(v)= 1}, and {v|last(v)=:} can be done with bucket sort in O(n) time in total.
O

5 Final Remarks

In this paper we gave a linear time algorithm to determine the treewidth and pathwidth
of cographs. Currently, we are investigating how to extend the results of this paper to
larger classes of graphs, e.g., graphs that are built with modular composition with small
neighborhood modules (see [14]). Another interesting problem is whether these results
can be extended to distance-hereditary graphs.
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